1
|
Le Run E, Tettelin H, Holland SM, Zelazny AM. Evolution toward extremely high imipenem resistance in Mycobacterium abscessus outbreak strains. Antimicrob Agents Chemother 2024; 68:e0067324. [PMID: 39254295 PMCID: PMC11459939 DOI: 10.1128/aac.00673-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Treatment of Mycobacterium abscessus pulmonary disease requires multiple antibiotics including intravenous β-lactams (e.g., imipenem). M. abscessus produces a β-lactamase (BlaMab) that inactivates β-lactam drugs but less efficiently carbapenems. Due to intrinsic and acquired resistance in M. abscessus and poor clinical outcomes, it is critical to understand the development of antibiotic resistance both within the host and in the setting of outbreaks. We compared serial longitudinally collected M. abscessus subsp. massiliense isolates from the index case of a cystic fibrosis center outbreak and four outbreak-related strains. We found strikingly high imipenem resistance in the later patient isolates, including the outbreak strain (MIC > 512 µg/mL). The phenomenon was recapitulated upon exposure of intracellular bacteria to imipenem. Addition of the β-lactamase inhibitor avibactam abrogated the resistant phenotype. Imipenem resistance was caused by an increase in β-lactamase activity and increased blaMab mRNA level. Concurrent increase in transcription of the preceding ppiA gene indicated upregulation of the entire operon in the resistant strains. Deletion of the porin mspA coincided with the first increase in MIC (from 8 to 32 µg/mL). A frameshift mutation in msp2 responsible for the rough colony morphology and a SNP in ATP-dependent helicase hrpA cooccurred with the second increase in MIC (from 32 to 256 µg/mL). Increased BlaMab expression and enzymatic activity may have been due to altered regulation of the ppiA-blaMab operon by the mutated HrpA alone or in combination with other genes described above. This work supports using carbapenem/β-lactamase inhibitor combinations for treating M. abscessus, particularly imipenem-resistant strains.
Collapse
Affiliation(s)
- Eva Le Run
- Laboratory of Clinical Immunology and Microbiology (LCIM), Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology (LCIM), Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Adrian M. Zelazny
- Department of Laboratory Medicine (DLM), Microbiology Service, Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
le Run E, Tettelin H, Holland SM, Zelazny AM. Evolution towards extremely high β-lactam resistance in Mycobacterium abscessus outbreak strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593223. [PMID: 38903073 PMCID: PMC11188095 DOI: 10.1101/2024.05.08.593223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Treatment of Mycobacterium abscessus pulmonary disease requires multiple antibiotics including intravenous β-lactams (e.g., imipenem, meropenem). M. abscessus produces a β-lactamase (BlaMab) that inactivates β-lactam drugs but less efficiently carbapenems. Due to intrinsic and acquired resistance in M. abscessus and poor clinical outcomes, it is critical to understand the development of antibiotic resistance both within the host and in the setting of outbreaks. We compared serial longitudinally collected M. abscessus subsp. massiliense isolates from the index case of a CF center outbreak and four outbreak-related strains. We found strikingly high imipenem resistance in the later patient isolates, including the outbreak strain (MIC >512 μg/ml). The phenomenon was recapitulated upon exposure of intracellular bacteria to imipenem. Addition of the β-lactamase inhibitor avibactam abrogated the resistant phenotype. Imipenem resistance was caused by an increase in β-lactamase activity and increased bla Mab mRNA level. Concurrent increase in transcription of preceding ppiA gene indicated upregulation of the entire operon in the resistant strains. Deletion of the porin mspA coincided with the first increase in MIC (from 8 to 32 μg/ml). A frameshift mutation in msp2 responsible for the rough colony morphology, and a SNP in ATP-dependent helicase hrpA co-occurred with the second increase in MIC (from 32 to 256 μg/ml). Increased BlaMab expression and enzymatic activity may have been due to altered regulation of the ppiA-bla Mab operon by the mutated HrpA alone, or in combination with other genes described above. This work supports using carbapenem/β-lactamase inhibitor combinations for treating M. abscessus, particularly imipenem resistant strains.
Collapse
Affiliation(s)
- Eva le Run
- Laboratory of Clinical Immunology and Microbiology (LCIM), Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology (LCIM), Immunopathogenesis Section, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Adrian M. Zelazny
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Shallom SJ, Tettelin H, Chandrasekaran P, Park IK, Agrawal S, Arora K, Sadzewicz L, Milstone AM, Aitken ML, Brown-Elliott BA, Wallace RJ, Sampaio EP, Niederweis M, Olivier KN, Holland SM, Zelazny AM. Evolution of Mycobacterium abscessus in the human lung: Cumulative mutations and genomic rearrangement of porin genes in patient isolates. Virulence 2023; 14:2215602. [PMID: 37221835 PMCID: PMC10243398 DOI: 10.1080/21505594.2023.2215602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Mycobacterium abscessus subspecies massiliense (M. massiliense) is increasingly recognized as an emerging bacterial pathogen, particularly in cystic fibrosis (CF) patients and CF centres' respiratory outbreaks. We characterized genomic and phenotypic changes in 15 serial isolates from two CF patients (1S and 2B) with chronic pulmonary M. massiliense infection leading to death, as well as four isolates from a CF centre outbreak in which patient 2B was the index case. RESULTS Comparative genomic analysis revealed the mutations affecting growth rate, metabolism, transport, lipids (loss of glycopeptidolipids), antibiotic susceptibility (macrolides and aminoglycosides resistance), and virulence factors. Mutations in 23S rRNA, mmpL4, porin locus and tetR genes occurred in isolates from both CF patients. Interestingly, we identified two different spontaneous mutation events at the mycobacterial porin locus: a fusion of two tandem porin paralogs in patient 1S and a partial deletion of the first porin paralog in patient 2B. These genomic changes correlated with reduced porin protein expression, diminished 14C-glucose uptake, slower bacterial growth rates, and enhanced TNF-α induction in mycobacteria-infected THP-1 human cells. Porin gene complementation of porin mutants partly restored 14C-glucose uptake, growth rate and TNF-α levels to those of intact porin strains. CONCLUSIONS We hypothesize that specific mutations accumulated and maintained over time in M. massiliense, including mutations shared among transmissible strains, collectively lead to more virulent, host adapted lineages in CF patients and other susceptible hosts.
Collapse
Affiliation(s)
- Shamira J. Shallom
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prabha Chandrasekaran
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - In Kwon Park
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kriti Arora
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron M. Milstone
- Pediatric Infectious Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Moira L. Aitken
- Division of Pulmonary and Critical Care Medicine, University of Washington Medical Center, Seattle, WA, USA
| | | | - Richard J. Wallace
- Mycobacteria/Nocardia Laboratory, University of Texas Health Science Center, Tyler, TX, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | | | - Kenneth N. Olivier
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Adrian M. Zelazny
- Microbiology Service, Department of Laboratory Medicine (DLM), Clinical Center, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Murphy TF, Kirkham C, D’Mello A, Sethi S, Pettigrew MM, Tettelin H. Adaptation of Nontypeable Haemophilus influenzae in Human Airways in COPD: Genome Rearrangements and Modulation of Expression of HMW1 and HMW2. mBio 2023; 14:e0014023. [PMID: 36927061 PMCID: PMC10127715 DOI: 10.1128/mbio.00140-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common debilitating disorder that is the third most common cause of death globally. Chronic lower airway infection by nontypeable Haemophilus influenzae (NTHi) in adults with COPD increases airway inflammation, causes increased symptoms, and accelerates progressive loss of lung function. Little is known about the mechanisms by which NTHi survives in COPD airways. To explore this question, the present study analyzes, in detail, 14 prospectively collected, serial isolates of a strain that persisted for 543 days in a patient with COPD, including analysis of four gap-free complete genomes. The NTHi genome underwent inversion of a ~400-kb segment three times during persistence. This inversion event resulted in switching of expression of the HMW1A and HMW2A adhesins as the inversion sites are in the promoter regions of HMW1 and HMW2. Regulation of the level of expression of HMW 1 and HMW2 in the human airways was controlled by the ~400-kb inversion and by 7-bp repeats in the HMW promoters. Analysis of knockout mutants of the persistent strain demonstrated that HMW1 and HMW2 proteins both function in the adherence of NTHi to human respiratory epithelial cells during persistence and that HMW1 also facilitates invasion of epithelial cells. An inverse relationship between biofilm formation and HMW1 expression was observed during persistence. This work advances understanding of the mechanisms of persistence of NTHi in COPD airways, which can inform the development of novel interventions to treat and prevent chronic NTHi infection in COPD. IMPORTANCE Nontypeable Haemophilus influenzae (NTHi) persists in the lower airways of adults with chronic obstructive pulmonary disease (COPD) for months to years, increasing airway inflammation that accelerates the progressive loss of lung function. Understanding the mechanisms of persistence in human airways by NTHi is critical in developing novel interventions. Here, in detail, we studied longitudinally collected sequential isolates of a strain of NTHi that persisted in an adult with COPD, including analysis of four gap-free genomes and knockout mutants to elucidate how the genome adapts in human airways. The NTHi genome underwent a genome rearrangement during persistence and this inversion impacted regulation of expression of key virulence phenotypes, including adherence to respiratory epithelial cells, invasion of epithelial cells and biofilm formation. These novel observations advance our understanding of the mechanisms of persistence of NTHi in the airways of adults with COPD.
Collapse
Affiliation(s)
- Timothy F. Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Adonis D’Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
- Department of Medicine, Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Melinda M. Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sohn J, Li L, Zhang L, Genco RJ, Falkner KL, Tettelin H, Rowsam AM, Smiraglia DJ, Novak JM, Diaz PI, Sun Y, Kirkwood KL. Periodontal disease is associated with increased gut colonization of pathogenic Haemophilus parainfluenzae in patients with Crohn's disease. Cell Rep 2023; 42:112120. [PMID: 36774550 PMCID: PMC10415533 DOI: 10.1016/j.celrep.2023.112120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
Intestinal colonization of the oral bacterium Haemophilus parainfluenzae has been associated with Crohn's disease (CD) severity and progression. This study examines the role of periodontal disease (PD) as a modifier for colonization of H. parainfluenzae in patients with CD and explores the mechanisms behind H. parainfluenzae-mediated intestinal inflammation. Fifty subjects with and without CD were evaluated for the presence of PD, and their oral and fecal microbiomes were characterized. PD is associated with increased levels of H. parainfluenzae strains in subjects with CD. Oral inoculation of H. parainfluenzae elicits strain-dependent intestinal inflammation in murine models of inflammatory bowel disease, which is associated with increased intestinal interferon-γ (IFN-γ)+ CD4+ T cells and disruption of the host hypusination pathway. In summary, this study establishes a strain-specific pathogenic role of H. parainfluenzae in intestinal inflammation and highlights the potential effect of PD on intestinal colonization by pathogenic H. parainfluenzae strains in patients with CD.
Collapse
Affiliation(s)
- Jiho Sohn
- Department of Medicine, State University of New York at Buffalo, University at Buffalo, 645 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214, USA; Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA.
| | - Lu Li
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Lixia Zhang
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Robert J Genco
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Karen L Falkner
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aryn M Rowsam
- Department of Cell Stress Biology, Reconstructive Surgery Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Dominic J Smiraglia
- Department of Cell Stress Biology, Reconstructive Surgery Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Jan M Novak
- Department of Medicine, State University of New York at Buffalo, University at Buffalo, 645 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214, USA
| | - Patricia I Diaz
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Keith L Kirkwood
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA; Department of Head & Neck/Plastic & Reconstructive Surgery Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Ali MQ, Kohler TP, Schulig L, Burchhardt G, Hammerschmidt S. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Front Cell Infect Microbiol 2021; 11:763152. [PMID: 34790590 PMCID: PMC8592123 DOI: 10.3389/fcimb.2021.763152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
Collapse
Affiliation(s)
- Murtadha Q Ali
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Jorrin B, Maluk M, Atoliya N, Kumar SC, Chalasani D, Tkacz A, Singh P, Basu A, Pullabhotla SVSRN, Kumar M, Mohanty SR, East AK, Ramachandran VK, James EK, Podile AR, Saxena AK, Rao DLN, Poole PS. Genomic Diversity of Pigeon Pea ( Cajanus cajan L. Millsp.) Endosymbionts in India and Selection of Potential Strains for Use as Agricultural Inoculants. FRONTIERS IN PLANT SCIENCE 2021; 12:680981. [PMID: 34557206 PMCID: PMC8453007 DOI: 10.3389/fpls.2021.680981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/06/2021] [Indexed: 05/27/2023]
Abstract
Pigeon pea (Cajanus cajan L. Millsp. ) is a legume crop resilient to climate change due to its tolerance to drought. It is grown by millions of resource-poor farmers in semiarid and tropical subregions of Asia and Africa and is a major contributor to their nutritional food security. Pigeon pea is the sixth most important legume in the world, with India contributing more than 70% of the total production and harbouring a wide variety of cultivars. Nevertheless, the low yield of pigeon pea grown under dry land conditions and its yield instability need to be improved. This may be done by enhancing crop nodulation and, hence, biological nitrogen fixation (BNF) by supplying effective symbiotic rhizobia through the application of "elite" inoculants. Therefore, the main aim in this study was the isolation and genomic analysis of effective rhizobial strains potentially adapted to drought conditions. Accordingly, pigeon pea endosymbionts were isolated from different soil types in Southern, Central, and Northern India. After functional characterisation of the isolated strains in terms of their ability to nodulate and promote the growth of pigeon pea, 19 were selected for full genome sequencing, along with eight commercial inoculant strains obtained from the ICRISAT culture collection. The phylogenomic analysis [Average nucleotide identity MUMmer (ANIm)] revealed that the pigeon pea endosymbionts were members of the genera Bradyrhizobium and Ensifer. Based on nodC phylogeny and nod cluster synteny, Bradyrhizobium yuanmingense was revealed as the most common endosymbiont, harbouring nod genes similar to those of Bradyrhizobium cajani and Bradyrhizobium zhanjiangense. This symbiont type (e.g., strain BRP05 from Madhya Pradesh) also outperformed all other strains tested on pigeon pea, with the notable exception of an Ensifer alkalisoli strain from North India (NBAIM29). The results provide the basis for the development of pigeon pea inoculants to increase the yield of this legume through the use of effective nitrogen-fixing rhizobia, tailored for the different agroclimatic regions of India.
Collapse
Affiliation(s)
- Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Marta Maluk
- The James Hutton Institute, Dundee, United Kingdom
| | | | - Shiv Charan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Danteswari Chalasani
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Prachi Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anirban Basu
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Sarma VSRN Pullabhotla
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Murugan Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | | | - Alison K. East
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | | | | - Appa Rao Podile
- Department of Plant Sciences, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - DLN Rao
- ICAR-Indian Institute of Soil Science, Bhopal, India
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Evolutionary genomic and bacteria GWAS analysis of Mycobacterium avium subsp. paratuberculosis and dairy cattle Johne's disease phenotypes. Appl Environ Microbiol 2021; 87:AEM.02570-20. [PMID: 33547057 PMCID: PMC8091108 DOI: 10.1128/aem.02570-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle. The Regional Dairy Quality Management Alliance (RDQMA) project is a multistate research program involving MAP isolates taken from three intensively studied commercial dairy farms in the northeastern United States, which emphasized longitudinal data collection of both MAP isolates and animal health in three regional dairy herds for a period of about 7 years. This paper reports the results of a pan-GWAS analysis involving 318 MAP isolates and dairy cow Johne's disease phenotypes, taken from these three farms. Based on our highly curated accessory gene count the pan-GWAS analysis identified several MAP genes associated with bovine Johne's disease phenotypes scored from these three farms, with some of the genes having functions suggestive of possible cause/effect relationships to these phenotypes. This paper reports a pan-genomic comparative analysis between MAP and Mycobacterium tuberculosis, assessing functional Gene Ontology category enrichments between these taxa. Finally, we also provide a population genomic perspective on the effectiveness of herd isolation, involving closed dairy farms, in preventing MAP inter-farm cross infection on a micro-geographic scale.IMPORTANCE Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants, which has important health consequences for dairy cattle, and enormous economic consequences for the dairy industry. Understanding which genes in this bacterium are correlated with key disease phenotypes can lead to functional experiments targeting these genes and ultimately lead to improved control strategies. This study represents a rare example of a prolonged longitudinal study of dairy cattle where the disease was measured and the bacteria were isolated from the same cows. The genome sequences of over 300 MAP isolates were analyzed for genes that were correlated with a wide range of Johne's disease phenotypes. A number of genes were identified that were significantly associated with several aspects of the disease and suggestive of further experimental follow-up.
Collapse
|
9
|
Forn-Cuní G, Fulton KM, Smith JC, Twine SM, Mendoza-Barberà E, Tomás JM, Merino S. Polar Flagella Glycosylation in Aeromonas: Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation. Front Microbiol 2021; 11:595697. [PMID: 33584564 PMCID: PMC7874193 DOI: 10.3389/fmicb.2020.595697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Polar flagella from mesophilic Aeromonas strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes (pse). Bioinformatic analysis of mesophilic Aeromonas genomes identified three types of polar flagella glycosylation islands (FGIs), denoted Group I, II and III. FGI Groups I and III are small genomic islands present in Aeromonas strains with flagellins modified with a single monosaccharide pseudaminic acid derivative. Group II were large genomic islands, present in strains found to modify polar flagellins with heterogeneous glycan moieties. Group II, in addition to pse genes, contained numerous glycosyltransferases and other biosynthetic enzymes. All Group II strains shared a common glycosyltransferase downstream of luxC that we named flagella glycosylation island 1, fgi-1, in A. piscicola AH-3. We demonstrate that Fgi-1 transfers the first sugar of the heterogeneous glycan to the pseudaminic acid derivative linked to polar flagellins and could be used as marker for polysaccharidic glycosylation of Aeromonas polar flagella.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Kelly M. Fulton
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | | | - Susan M. Twine
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | - Elena Mendoza-Barberà
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Korol CB, Shallom SJ, Arora K, Boshoff HI, Freeman AF, King A, Agrawal S, Daugherty SC, Jancel T, Kabat J, Ganesan S, Torrero MN, Sampaio EP, Barry C, Holland SM, Tettelin H, Rosenzweig SD, Zelazny AM. Tissue specific diversification, virulence and immune response to Mycobacterium bovis BCG in a patient with an IFN-γ R1 deficiency. Virulence 2020; 11:1656-1673. [PMID: 33356838 PMCID: PMC7781554 DOI: 10.1080/21505594.2020.1848108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Summary: We characterized Mycobacterium bovis BCG isolates found in lung and brain samples from a previously vaccinated patient with IFNγR1 deficiency. The isolates collected displayed distinct genomic and phenotypic features consistent with host adaptation and associated changes in antibiotic susceptibility and virulence traits. Background: We report a case of a patient with partial recessive IFNγR1 deficiency who developed disseminated BCG infection after neonatal vaccination (BCG-vaccine). Distinct M. bovis BCG-vaccine derived clinical strains were recovered from the patient's lungs and brain. Methods: BCG strains were phenotypically (growth, antibiotic susceptibility, lipid) and genetically (whole genome sequencing) characterized. Mycobacteria cell infection models were used to assess apoptosis, necrosis, cytokine release, autophagy, and JAK-STAT signaling. Results: Clinical isolates BCG-brain and BCG-lung showed distinct Rv0667 rpoB mutations conferring high- and low-level rifampin resistance; the latter displayed clofazimine resistance through Rv0678 gene (MarR-like transcriptional regulator) mutations. BCG-brain and BCG-lung showed mutations in fadA2, fadE5, and mymA operon genes, respectively. Lipid profiles revealed reduced levels of PDIM in BCG-brain and BCG-lung and increased TAGs and Mycolic acid components in BCG-lung, compared to parent BCG-vaccine. In vitro infected cells showed that the BCG-lung induced a higher cytokine release, necrosis, and cell-associated bacterial load effect when compared to BCG-brain; conversely, both strains inhibited apoptosis and altered JAK-STAT signaling. Conclusions: During a chronic-disseminated BCG infection, BCG strains can evolve independently at different sites likely due to particular microenvironment features leading to differential antibiotic resistance, virulence traits resulting in dissimilar responses in different host tissues.
Collapse
Affiliation(s)
- Cecilia B. Korol
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | | | - Kriti Arora
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Helena I. Boshoff
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Alejandra King
- Department of Pediatric Immunology, Hospital Luis Calvo MacKenna, Universidad De, Chile, Chile
| | - Sonia Agrawal
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Sean C. Daugherty
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Timothy Jancel
- Department of Pharmacy, Clinical Center, NIH, Bethesda, USA
| | - Juraj Kabat
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Sundar Ganesan
- Department Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Marina N. Torrero
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | - Elizabeth P. Sampaio
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Clifton Barry
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Steve M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | | | - Adrian M. Zelazny
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| |
Collapse
|
11
|
Tretina K, Pelle R, Orvis J, Gotia HT, Ifeonu OO, Kumari P, Palmateer NC, Iqbal SBA, Fry LM, Nene VM, Daubenberger CA, Bishop RP, Silva JC. Re-annotation of the Theileria parva genome refines 53% of the proteome and uncovers essential components of N-glycosylation, a conserved pathway in many organisms. BMC Genomics 2020; 21:279. [PMID: 32245418 PMCID: PMC7126163 DOI: 10.1186/s12864-020-6683-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.
Collapse
Affiliation(s)
- Kyle Tretina
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Roger Pelle
- Biosciences Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hanzel T Gotia
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Olukemi O Ifeonu
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Priti Kumari
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nicholas C Palmateer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shaikh B A Iqbal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lindsay M Fry
- Animal Disease Research Unit, Agricultural Research Service, USDA, Pullman, WA, 99164, USA
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | - Claudia A Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Richard P Bishop
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Ma B, France MT, Crabtree J, Holm JB, Humphrys MS, Brotman RM, Ravel J. A comprehensive non-redundant gene catalog reveals extensive within-community intraspecies diversity in the human vagina. Nat Commun 2020; 11:940. [PMID: 32103005 PMCID: PMC7044274 DOI: 10.1038/s41467-020-14677-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Analysis of metagenomic and metatranscriptomic data is complicated and typically requires extensive computational resources. Leveraging a curated reference database of genes encoded by members of the target microbiome can make these analyses more tractable. In this study, we assemble a comprehensive human vaginal non-redundant gene catalog (VIRGO) that includes 0.95 million non-redundant genes. The gene catalog is functionally and taxonomically annotated. We also construct a vaginal orthologous groups (VOG) from VIRGO. The gene-centric design of VIRGO and VOG provides an easily accessible tool to comprehensively characterize the structure and function of vaginal metagenome and metatranscriptome datasets. To highlight the utility of VIRGO, we analyze 1,507 additional vaginal metagenomes, and identify a high degree of intraspecies diversity within and across vaginal microbiota. VIRGO offers a convenient reference database and toolkit that will facilitate a more in-depth understanding of the role of vaginal microorganisms in women’s health and reproductive outcomes. Reference databases are essential for studies on host-microbiota interactions. Here, the authors present the construction of VIRGO, a human vaginal non-redundant gene catalog, which represents a comprehensive resource for taxonomic and functional profiling of vaginal microbiomes from metagenomic and metatranscriptomic datasets.
Collapse
Affiliation(s)
- Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael T France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
D'Mello A, Ahearn CP, Murphy TF, Tettelin H. ReVac: a reverse vaccinology computational pipeline for prioritization of prokaryotic protein vaccine candidates. BMC Genomics 2019; 20:981. [PMID: 31842745 PMCID: PMC6916091 DOI: 10.1186/s12864-019-6195-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background Reverse vaccinology accelerates the discovery of potential vaccine candidates (PVCs) prior to experimental validation. Current programs typically use one bacterial proteome to identify PVCs through a filtering architecture using feature prediction programs or a machine learning approach. Filtering approaches may eliminate potential antigens based on limitations in the accuracy of prediction tools used. Machine learning approaches are heavily dependent on the selection of training datasets with experimentally validated antigens (positive control) and non-protective-antigens (negative control). The use of one or few bacterial proteomes does not assess PVC conservation among strains, an important feature of vaccine antigens. Results We present ReVac, which implements both a panoply of feature prediction programs without filtering out proteins, and scoring of candidates based on predictions made on curated positive and negative control PVCs datasets. ReVac surveys several genomes assessing protein conservation, as well as DNA and protein repeats, which may result in variable expression of PVCs. ReVac’s orthologous clustering of conserved genes, identifies core and dispensable genome components. This is useful for determining the degree of conservation of PVCs among the population of isolates for a given pathogen. Potential vaccine candidates are then prioritized based on conservation and overall feature-based scoring. We present the application of ReVac, applied to 69 Moraxella catarrhalis and 270 non-typeable Haemophilus influenzae genomes, prioritizing 64 and 29 proteins as PVCs, respectively. Conclusion ReVac’s use of a scoring scheme ranks PVCs for subsequent experimental testing. It employs a redundancy-based approach in its predictions of features using several prediction tools. The protein’s features are collated, and each protein is ranked based on the scoring scheme. Multi-genome analyses performed in ReVac allow for a comprehensive overview of PVCs from a pan-genome perspective, as an essential pre-requisite for any bacterial subunit vaccine design. ReVac prioritized PVCs of two human respiratory pathogens, identifying both novel and previously validated PVCs.
Collapse
Affiliation(s)
- Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christian P Ahearn
- Department of Microbiology and Immunology, University at Buffalo, the State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Timothy F Murphy
- Department of Microbiology and Immunology, University at Buffalo, the State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, the State University of New York, Buffalo, NY, USA.,Division of Infectious Disease, Department of Medicine, University at Buffalo, the State University of New York, Buffalo, NY, 14203, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Kolishovski G, Lamoureux A, Hale P, Richardson JE, Recla JM, Adesanya O, Simons A, Kunde-Ramamoorthy G, Bult CJ. The JAX Synteny Browser for mouse-human comparative genomics. Mamm Genome 2019; 30:353-361. [PMID: 31776723 PMCID: PMC6892358 DOI: 10.1007/s00335-019-09821-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 10/30/2022]
Abstract
Visualizing regions of conserved synteny between two genomes is supported by numerous software applications. However, none of the current applications allow researchers to select genome features to display or highlight in blocks of synteny based on the annotated biological properties of the features (e.g., type, function, and/or phenotype association). To address this usability gap, we developed an interactive web-based conserved synteny browser, The Jackson Laboratory (JAX) Synteny Browser. The browser allows researchers to highlight or selectively display genome features in the reference and/or the comparison genome according to the biological attributes of the features. Although the current implementation for the browser is limited to the reference genomes for the laboratory mouse and human, the software platform is intentionally genome agnostic. The JAX Synteny Browser software can be deployed for any two genomes where genome coordinates for syntenic blocks are defined and for which biological attributes of the features in one or both genomes are available in widely used standard bioinformatics file formats. The JAX Synteny Browser is available at: http://syntenybrowser.jax.org/. The code base is available from GitHub: https://github.com/TheJacksonLaboratory/syntenybrowser and is distributed under the Creative Commons Attribution license (CC BY).
Collapse
Affiliation(s)
- Georgi Kolishovski
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Anna Lamoureux
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Paul Hale
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Joel E Richardson
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Jill M Recla
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Omoluyi Adesanya
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
- Institute of Public Health, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Al Simons
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | | | - Carol J Bult
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
15
|
Identification of Virulence-Associated Properties by Comparative Genome Analysis of Streptococcus pneumoniae, S. pseudopneumoniae, S. mitis, Three S. oralis Subspecies, and S. infantis. mBio 2019; 10:mBio.01985-19. [PMID: 31481387 PMCID: PMC6722419 DOI: 10.1128/mbio.01985-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae is one of the most important human pathogens but is closely related to Streptococcus mitis, with which humans live in harmony. The fact that the two species evolved from a common ancestor provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. By detailed comparisons of genomes of the two species and other related streptococci, we identified 224 genes associated with virulence and 25 genes unique to the mutualistic species. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms. From a common ancestor, Streptococcus pneumoniae and Streptococcus mitis evolved in parallel into one of the most important pathogens and a mutualistic colonizer of humans, respectively. This evolutionary scenario provides a unique basis for studies of both infection-associated properties and properties important for harmonious coexistence with the host. We performed detailed comparisons of 60 genomes of S. pneumoniae, S. mitis, Streptococcus pseudopneumoniae, the three Streptococcus oralis subspecies oralis, tigurinus, and dentisani, and Streptococcus infantis. Nonfunctional remnants of ancestral genes in both S. pneumoniae and in S. mitis support the evolutionary model and the concept that evolutionary changes on both sides were required to reach their present relationship to the host. Confirmed by screening of >7,500 genomes, we identified 224 genes associated with virulence. The striking difference to commensal streptococci was the diversity of regulatory mechanisms, including regulation of capsule production, a significantly larger arsenal of enzymes involved in carbohydrate hydrolysis, and proteins known to interfere with innate immune factors. The exclusive presence of the virulence factors in S. pneumoniae enhances their potential as vaccine components, as a direct impact on beneficial members of the commensal microbiota can be excluded. In addition to loss of these virulence-associated genes, adaptation of S. mitis to a mutualistic relationship with the host apparently required preservation or acquisition of 25 genes lost or absent from S. pneumoniae. Successful adaptation of S. mitis and other commensal streptococci to a harmonious relationship with the host relied on genetic stability and properties facilitating life in biofilms.
Collapse
|
16
|
Hiller NL, Sá-Leão R. Puzzling Over the Pneumococcal Pangenome. Front Microbiol 2018; 9:2580. [PMID: 30425695 PMCID: PMC6218428 DOI: 10.3389/fmicb.2018.02580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
The Gram positive bacterium Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human host, and in the nasopharynx, sinus, and middle ear it survives as a biofilm. This mode of growth is optimal for multi-strain colonization and genetic exchange. Over the last decades, the far-reaching use of antibiotics and the widespread implementation of pneumococcal multivalent conjugate vaccines have posed considerable selective pressure on pneumococci. This scenario provides an exceptional opportunity to study the evolution of the pangenome of a clinically important bacterium, and has the potential to serve as a case study for other species. The goal of this review is to highlight key findings in the studies of pneumococcal genomic diversity and plasticity.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Estes AM, Hearn DJ, Agrawal S, Pierson EA, Dunning Hotopp JC. Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep 2018; 8:15936. [PMID: 30374192 PMCID: PMC6205999 DOI: 10.1038/s41598-018-33809-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed. The Enterobacter sp. OLF genome encodes both uricase and ureases, and the Er. dacicola genome encodes an allantoate transport pathway, suggesting that bird feces or recycling the fly's waste products may be important sources of nitrogen. No homologs to known nitrogenases were identified in either bacterial genome, despite suggestions of their presence from experiments with antibiotic-treated flies. Comparisons between the olive fly endosymbionts and their free-living relatives revealed similar GC composition and genome size. The Er. dacicola genome has fewer genes for amino acid metabolism, cell motility, and carbohydrate transport and metabolism than free-living Erwinia spp. while having more genes for cell division, nucleotide metabolism and replication as well as mobile elements. A 6,696 bp potential lateral gene transfer composed primarily of amino acid synthesis and transport genes was identified that is also observed in Pseudomonas savastanoii pv savastanoii, the causative agent of olive knot disease.
Collapse
Affiliation(s)
- Anne M Estes
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA.
| | - David J Hearn
- Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A & M University, College Station, TX, 77843, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
18
|
Changes in IgA Protease Expression Are Conferred by Changes in Genomes during Persistent Infection by Nontypeable Haemophilus influenzae in Chronic Obstructive Pulmonary Disease. Infect Immun 2018; 86:IAI.00313-18. [PMID: 29760213 DOI: 10.1128/iai.00313-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an exclusively human pathobiont that plays a critical role in the course and pathogenesis of chronic obstructive pulmonary disease (COPD). NTHi causes acute exacerbations of COPD and also causes persistent infection of the lower airways. NTHi expresses four IgA protease variants (A1, A2, B1, and B2) that play different roles in virulence. Expression of IgA proteases varies among NTHi strains, but little is known about the frequency and mechanisms by which NTHi modulates IgA protease expression during infection in COPD. To assess expression of IgA protease during natural infection in COPD, we studied IgA protease expression by 101 persistent strains (median duration of persistence, 161 days; range, 2 to 1,422 days) collected longitudinally from patients enrolled in a 20-year study of COPD upon initial acquisition and immediately before clearance from the host. Upon acquisition, 89 (88%) expressed IgA protease. A total of 16 of 101 (16%) strains of NTHi altered expression of IgA protease during persistence. Indels and slipped-strand mispairing of mononucleotide repeats conferred changes in expression of igaA1, igaA2, and igaB1 Strains with igaB2 underwent frequent changes in expression of IgA protease B2 during persistence, mediated by slipped-strand mispairing of a 7-nucleotide repeat, TCAAAAT, within the open reading frame of igaB2 We conclude that changes in iga gene sequences result in changes in expression of IgA proteases by NTHi during persistent infection in the respiratory tract of patients with COPD.
Collapse
|
19
|
Chung M, Small ST, Serre D, Zimmerman PA, Dunning Hotopp JC. Draft genome sequence of the Wolbachia endosymbiont of Wuchereria bancrofti wWb. Pathog Dis 2018; 75:4584485. [PMID: 29099918 PMCID: PMC5827699 DOI: 10.1093/femspd/ftx115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
The draft genome assembly of the Wolbachia endosymbiont of
Wuchereria bancrofti (wWb) consists of 1060 850 bp in
100 contigs and contains 961 ORFs, with a single copy of the 5S rRNA, 16S rRNA and 23S
rRNA and each of the 34 tRNA genes. Phylogenetic core genome analyses show
wWb to cluster with other strains in supergroup D of the
Wolbachia phylogeny, while being most closely related to the
Wolbachia endosymbiont of Brugia malayi strain TRS
(wBm). The wWb and wBm genomes share
779 orthologous clusters with wWb having 101 unclustered genes and
wBm having 23 unclustered genes. The higher number of unclustered genes
in the wWb genome likely reflects the fragmentation of the draft
genome.
Collapse
Affiliation(s)
- Matthew Chung
- Institute for Genome Sciences, University of Maryland, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Scott T Small
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA.,Eck Institute for Global Health, University of Notre Dame, South Bend, IN 46556, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Pettigrew MM, Ahearn CP, Gent JF, Kong Y, Gallo MC, Munro JB, D'Mello A, Sethi S, Tettelin H, Murphy TF. Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 2018; 115:E3256-E3265. [PMID: 29555745 PMCID: PMC5889651 DOI: 10.1073/pnas.1719654115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) exclusively colonize and infect humans and are critical to the pathogenesis of chronic obstructive pulmonary disease (COPD). In vitro and animal models do not accurately capture the complex environments encountered by NTHi during human infection. We conducted whole-genome sequencing of 269 longitudinally collected cleared and persistent NTHi from a 15-y prospective study of adults with COPD. Genome sequences were used to elucidate the phylogeny of NTHi isolates, identify genomic changes that occur with persistence in the human airways, and evaluate the effect of selective pressure on 12 candidate vaccine antigens. Strains persisted in individuals with COPD for as long as 1,422 d. Slipped-strand mispairing, mediated by changes in simple sequence repeats in multiple genes during persistence, regulates expression of critical virulence functions, including adherence, nutrient uptake, and modification of surface molecules, and is a major mechanism for survival in the hostile environment of the human airways. A subset of strains underwent a large 400-kb inversion during persistence. NTHi does not undergo significant gene gain or loss during persistence, in contrast to other persistent respiratory tract pathogens. Amino acid sequence changes occurred in 8 of 12 candidate vaccine antigens during persistence, an observation with important implications for vaccine development. These results indicate that NTHi alters its genome during persistence by regulation of critical virulence functions primarily by slipped-strand mispairing, advancing our understanding of how a bacterial pathogen that plays a critical role in COPD adapts to survival in the human respiratory tract.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
| | - Christian P Ahearn
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
| | - Janneane F Gent
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510
- W.M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510
| | - Mary C Gallo
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Adonis D'Mello
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sanjay Sethi
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Department of Medicine, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Timothy F Murphy
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203;
- Clinical and Translational Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14203
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14203
| |
Collapse
|
21
|
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjærgaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev 2018; 41:854-879. [PMID: 29029129 DOI: 10.1093/femsre/fux037] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Being the principal causative agent of bacterial pneumonia, otitis media, meningitis and septicemia, the bacterium Streptococcus pneumoniae is a major global health problem. To highlight the molecular basis of this problem, we have portrayed essential biological processes of the pneumococcal life cycle in eight watercolor paintings. The paintings are done to a consistent nanometer scale based on currently available data from structural biology and proteomics. In this review article, the paintings are used to provide a visual review of protein synthesis, carbohydrate metabolism, cell wall synthesis, cell division, teichoic acid synthesis, virulence, transformation and pilus synthesis based on the available scientific literature within the field of pneumococcal biology. Visualization of the molecular details of these processes reveals several scientific questions about how molecular components of the pneumococcal cell are organized to allow biological function to take place. By the presentation of this visual review, we intend to stimulate scientific discussion, aid in the generation of scientific hypotheses and increase public awareness. A narrated video describing the biological processes in the context of a whole-cell illustration accompany this article.
Collapse
Affiliation(s)
- Ditte Høyer Engholm
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Rutgers, the State University of New Jersey, NJ 08901, USA
| | - Ebbe Sloth Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark
| | | |
Collapse
|
22
|
The Streptococcus agalactiae Stringent Response Enhances Virulence and Persistence in Human Blood. Infect Immun 2017; 86:IAI.00612-17. [PMID: 29109175 PMCID: PMC5736797 DOI: 10.1128/iai.00612-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent.
Collapse
|
23
|
Zimpel CK, Brandão PE, de Souza Filho AF, de Souza RF, Ikuta CY, Ferreira Neto JS, Camargo NCS, Heinemann MB, Guimarães AMS. Complete Genome Sequencing of Mycobacterium bovis SP38 and Comparative Genomics of Mycobacterium bovis and M. tuberculosis Strains. Front Microbiol 2017; 8:2389. [PMID: 29259589 PMCID: PMC5723337 DOI: 10.3389/fmicb.2017.02389] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium bovis causes bovine tuberculosis and is the main organism responsible for zoonotic tuberculosis in humans. We performed the sequencing, assembly and annotation of a Brazilian strain of M. bovis named SP38, and performed comparative genomics of M. bovis genomes deposited in GenBank. M. bovis SP38 has a traditional tuberculous mycobacterium genome of 4,347,648 bp, with 65.5% GC, and 4,216 genes. The majority of CDSs (2,805, 69.3%) have predictive function, while 1,206 (30.07%) are hypothetical. For comparative analysis, 31 M. bovis, 32 M. bovis BCG, and 23 Mycobacterium tuberculosis genomes available in GenBank were selected. M. bovis RDs (regions of difference) and Clonal Complexes (CC) were identified in silico. Genome dynamics of bacterial groups were analyzed by gene orthology and polymorphic sites identification. M. bovis polymorphic sites were used to construct a phylogenetic tree. Our RD analyses resulted in the exclusion of three genomes, mistakenly annotated as virulent M. bovis. M. bovis SP38 along with strain 35 represent the first report of CC European 2 in Brazil, whereas two other M. bovis strains failed to be classified within current CC. Results of M. bovis orthologous genes analysis suggest a process of genome remodeling through genomic decay and gene duplication. Quantification, pairwise comparisons and distribution analyses of polymorphic sites demonstrate greater genetic variability of M. tuberculosis when compared to M. bovis and M. bovis BCG (p ≤ 0.05), indicating that currently defined M. tuberculosis lineages are more genetically diverse than M. bovis CC and animal-adapted MTC (M. tuberculosis Complex) species. As expected, polymorphic sites annotation shows that M. bovis BCG are subjected to different evolutionary pressures when compared to virulent mycobacteria. Lastly, M. bovis phylogeny indicates that polymorphic sites may be used as markers of M. bovis lineages in association with CC. Our findings highlight the need to better understand host-pathogen co-evolution in genetically homogeneous and/or diverse host populations, considering the fact that M. bovis has a broader host range when compared to M. tuberculosis. Also, the identification of M. bovis genomes not classified within CC indicates that the diversity of M. bovis lineages may be larger than previously thought or that current classification should be reviewed.
Collapse
Affiliation(s)
- Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo E Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio F de Souza Filho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Robson F de Souza
- Laboratory of Protein Structure and Evolution, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cássia Y Ikuta
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Soares Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila C Soler Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana M S Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Farrer RA. Synima: a Synteny imaging tool for annotated genome assemblies. BMC Bioinformatics 2017; 18:507. [PMID: 29162056 PMCID: PMC5697234 DOI: 10.1186/s12859-017-1939-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/14/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ortholog prediction and synteny visualization across whole genomes are valuable methods for detecting and representing a range of evolutionary processes such as genome expansion, chromosomal rearrangement, and chromosomal translocation. Few standalone methods are currently available to visualize synteny across any number of annotated genomes. Results Here, I present a Synteny Imaging tool (Synima) written in Perl, which uses the graphical features of R. Synima takes orthologues computed from reciprocal best BLAST hits or OrthoMCL, and DAGchainer, and outputs an overview of genome-wide synteny in PDF. Each of these programs are included with the Synima package, and a pipeline for their use. Synima has a range of graphical parameters including size, colours, order, and labels, which are specified in a config file generated by the first run of Synima – and can be subsequently edited. Synima runs quickly on a command line to generate informative and publication quality figures. Synima is open source and freely available from https://github.com/rhysf/Synima under the MIT License. Conclusions Synima should be a valuable tool for visualizing synteny between two or more annotated genome assemblies.
Collapse
Affiliation(s)
- Rhys A Farrer
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK. .,Department of Genetics, Environment and Evolution, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
25
|
Agrawal S, Arze C, Adkins RS, Crabtree J, Riley D, Vangala M, Galens K, Fraser CM, Tettelin H, White O, Angiuoli SV, Mahurkar A, Fricke WF. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline. BMC Genomics 2017; 18:332. [PMID: 28449639 PMCID: PMC5408420 DOI: 10.1186/s12864-017-3717-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 11/11/2022] Open
Abstract
Background The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. Results CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in <36 h on a local desktop or at a cost of <$20 on EC2. Conclusions CloVR-Comparative allows anybody with Internet access to run comparative genomics projects, while eliminating the need for on-site computational resources and expertise. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3717-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Cesar Arze
- Institute for Genome Sciences, Baltimore, MD, USA
| | | | | | - David Riley
- Institute for Genome Sciences, Baltimore, MD, USA
| | | | - Kevin Galens
- Institute for Genome Sciences, Baltimore, MD, USA
| | - Claire M Fraser
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Owen White
- Institute for Genome Sciences, Baltimore, MD, USA.,Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - W Florian Fricke
- Institute for Genome Sciences, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Nutrigenomics, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
26
|
Lomholt HB, Scholz CFP, Brüggemann H, Tettelin H, Kilian M. A comparative study of Cutibacterium (Propionibacterium) acnes clones from acne patients and healthy controls. Anaerobe 2017; 47:57-63. [PMID: 28434779 DOI: 10.1016/j.anaerobe.2017.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cutibacterium (Propionibacterium) acnes is assumed to play an important role in the pathogenesis of acne. OBJECTIVES To examine if clones with distinct virulence properties are associated with acne. METHODS Multiple C. acnes isolates from follicles and surface skin of patients with moderate to severe acne and healthy controls were characterized by multilocus sequence typing. To determine if CC18 isolates from acne patients differ from those of controls in the possession of virulence genes or lack of genes conducive to a harmonious coexistence the full genomes of dominating CC18 follicular clones from six patients and five controls were sequenced. RESULTS Individuals carried one to ten clones simultaneously. The dominating C. acnes clones in follicles from acne patients were exclusively from the phylogenetic clade I-1a and all belonged to clonal complex CC18 with the exception of one patient dominated by the worldwide-disseminated and often antibiotic resistant clone ST3. The clonal composition of healthy follicles showed a more heterogeneous pattern with follicles dominated by clones representing the phylogenetic clades I-1a, I-1b, I-2 and II. Comparison of follicular CC18 gene contents, allelic versions of putative virulence genes and their promoter regions, and 54 variable-length intragenic and inter-genic homopolymeric tracts showed extensive conservation and no difference associated with the clinical origin of isolates. CONCLUSIONS The study supports that C. acnes strains from clonal complex CC18 and the often antibiotic resistant clone ST3 are associated with acne and suggests that susceptibility of the host rather than differences within these clones may determine the clinical outcome of colonization.
Collapse
Affiliation(s)
- H B Lomholt
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark.
| | - C F P Scholz
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark
| | - H Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark
| | - H Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - M Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
27
|
Comparative Genomics of the Aeromonadaceae Core Oligosaccharide Biosynthetic Regions. Int J Mol Sci 2017; 18:ijms18030519. [PMID: 28264491 PMCID: PMC5372535 DOI: 10.3390/ijms18030519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 01/25/2023] Open
Abstract
Lipopolysaccharides (LPSs) are an integral part of the Gram-negative outer membrane, playing important organizational and structural roles and taking part in the bacterial infection process. In Aeromonas hydrophila, piscicola, and salmonicida, three different genomic regions taking part in the LPS core oligosaccharide (Core-OS) assembly have been identified, although the characterization of these clusters in most aeromonad species is still lacking. Here, we analyse the conservation of these LPS biosynthesis gene clusters in the all the 170 currently public Aeromonas genomes, including 30 different species, and characterise the structure of a putative common inner Core-OS in the Aeromonadaceae family. We describe three new genomic organizations for the inner Core-OS genomic regions, which were more evolutionary conserved than the outer Core-OS regions, which presented remarkable variability. We report how the degree of conservation of the genes from the inner and outer Core-OS may be indicative of the taxonomic relationship between Aeromonas species.
Collapse
|
28
|
Capsular Polysaccharide Expression in Commensal Streptococcus Species: Genetic and Antigenic Similarities to Streptococcus pneumoniae. mBio 2016; 7:mBio.01844-16. [PMID: 27935839 PMCID: PMC5111408 DOI: 10.1128/mbio.01844-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule production distinguishes S. pneumoniae from closely related commensals of the mitis group streptococci. Based on antigenic and genetic analyses of 187 mitis group streptococci, including 90 recognized serotypes of S. pneumoniae, we demonstrated capsule production by the Wzy/Wzx pathway in 74% of 66 S. mitis strains and in virtually all tested strains of S. oralis (subspecies oralis, dentisani, and tigurinus) and S. infantis. Additional analyses of genomes of S. cristatus, S. parasanguinis, S. australis, S. sanguinis, S. gordonii, S. anginosus, S. intermedius, and S. constellatus revealed complete capsular biosynthesis (cps) loci in all strains tested. Truncated cps loci were detected in three strains of S. pseudopneumoniae, in 26% of S. mitis strains, and in a single S. oralis strain. The level of sequence identities of cps locus genes confirmed that the structural polymorphism of capsular polysaccharides in S. pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S. pneumoniae raises concerns about potential misidentifications in addition to important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and for the pathogen. Expression of a capsular polysaccharide is among the principal virulence factors of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species of streptococci that form a significant part of our commensal microbiota. The demonstrated antigenic identity of many capsular polysaccharides expressed by commensal streptococci and S. pneumoniae raises important questions concerning the consequences for vaccination and host-parasite relationships both for the commensals and the pathogen.
Collapse
|
29
|
Chibucos MC, Soliman S, Gebremariam T, Lee H, Daugherty S, Orvis J, Shetty AC, Crabtree J, Hazen TH, Etienne KA, Kumari P, O'Connor TD, Rasko DA, Filler SG, Fraser CM, Lockhart SR, Skory CD, Ibrahim AS, Bruno VM. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat Commun 2016; 7:12218. [PMID: 27447865 PMCID: PMC4961843 DOI: 10.1038/ncomms12218] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
- Marcus C. Chibucos
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Sameh Soliman
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Teclegiorgis Gebremariam
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Hongkyu Lee
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | - Sean Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Joshua Orvis
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Tracy H. Hazen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Kizee A. Etienne
- Fungal Reference Laboratory, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Priti Kumari
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Timothy D. O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California 90502, USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Shawn R. Lockhart
- Fungal Reference Laboratory, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Christopher D. Skory
- National Center for Agriculture Utilization Research, USDA, Agricultural Research Service, Peoria, Illinois 61604, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, California 90502, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California 90502, USA
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
30
|
Abstract
Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.
Collapse
|
31
|
Whiteside MD, Laing CR, Manji A, Kruczkiewicz P, Taboada EN, Gannon VPJ. SuperPhy: predictive genomics for the bacterial pathogen Escherichia coli. BMC Microbiol 2016; 16:65. [PMID: 27067409 PMCID: PMC4828761 DOI: 10.1186/s12866-016-0680-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/29/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Predictive genomics is the translation of raw genome sequence data into a phenotypic assessment of the organism. For bacterial pathogens, these phenotypes can range from environmental survivability, to the severity of human disease. Significant progress has been made in the development of generic tools for genomic analyses that are broadly applicable to all microorganisms; however, a fundamental missing component is the ability to analyze genomic data in the context of organism-specific phenotypic knowledge, which has been accumulated from decades of research and can provide a meaningful interpretation of genome sequence data. RESULTS In this study, we present SuperPhy, an online predictive genomics platform ( http://lfz.corefacility.ca/superphy/ ) for Escherichia coli. The platform integrates the analytical tools and genome sequence data for all publicly available E. coli genomes and facilitates the upload of new genome sequences from users under public or private settings. SuperPhy provides real-time analyses of thousands of genome sequences with results that are understandable and useful to a wide community, including those in the fields of clinical medicine, epidemiology, ecology, and evolution. SuperPhy includes identification of: 1) virulence and antimicrobial resistance determinants 2) statistical associations between genotypes, biomarkers, geospatial distribution, host, source, and phylogenetic clade; 3) the identification of biomarkers for groups of genomes on the based presence/absence of specific genomic regions and single-nucleotide polymorphisms and 4) in silico Shiga-toxin subtype. CONCLUSIONS SuperPhy is a predictive genomics platform that attempts to provide an essential link between the vast amounts of genome information currently being generated and phenotypic knowledge in an organism-specific context.
Collapse
Affiliation(s)
- Matthew D. Whiteside
- National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
| | - Chad R. Laing
- National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
| | - Akiff Manji
- National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
| | - Peter Kruczkiewicz
- National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
| | - Eduardo N. Taboada
- National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
| | - Victor P. J. Gannon
- National Microbiology Laboratory @ Lethbridge, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
| |
Collapse
|
32
|
Scholz CFP, Brüggemann H, Lomholt HB, Tettelin H, Kilian M. Genome stability of Propionibacterium acnes: a comprehensive study of indels and homopolymeric tracts. Sci Rep 2016; 6:20662. [PMID: 26857276 PMCID: PMC4746626 DOI: 10.1038/srep20662] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/11/2016] [Indexed: 01/06/2023] Open
Abstract
We present a species-wide comparative analysis of 90 genomes of Propionibacterium acnes that represent the known diversity of the species. Our results are augmented by six high-quality genomes and a manual investigation of all gene-sized indels found in the strains. Overall, the order of genes is conserved throughout the species. A public sybil database for easy comparative analysis of the 90 genomes was established. The analysis of indels revealed a total of 66 loci of non-core genes that correlate with phylogenetic clades. No gene was strain-specific in agreement with our conclusion that the P. acnes pan-genome is closed. An exhaustive search for homopolymeric tracts (HPTs) identified a total of 54 variable-length HPTs almost exclusively of guanine/cytosines located between genes or affecting the reading frame of genes. The repeat variation was consistent with phylogenetic clades suggesting slow accumulation over time rather than active modification. By transcriptome analysis we demonstrate how an HPT variation can affect the gene expression levels. Selected cases of both indels and HPTs are described. The catalogued data and the public P. acnes Sybil database provide a solid foundation for generating hypotheses and facilitate comparative genetic analyses in future P. acnes research.
Collapse
Affiliation(s)
| | | | | | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, USA
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
33
|
Fischer A, Santana-Cruz I, Hegerman J, Gourlé H, Schieck E, Lambert M, Nadendla S, Wesonga H, Miller RA, Vashee S, Weber J, Meens J, Frey J, Jores J. High quality draft genomes of the Mycoplasma mycoides subsp. mycoides challenge strains Afadé and B237. Stand Genomic Sci 2015; 10:89. [PMID: 26516405 PMCID: PMC4625578 DOI: 10.1186/s40793-015-0067-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/16/2015] [Indexed: 11/10/2022] Open
Abstract
Members of the Mycoplasma mycoides cluster' represent important livestock pathogens worldwide. Mycoplasma mycoides subsp. mycoides is the etiologic agent of contagious bovine pleuropneumonia (CBPP), which is still endemic in many parts of Africa. We report the genome sequences and annotation of two frequently used challenge strains of Mycoplasma mycoides subsp. mycoides, Afadé and B237. The information provided will enable downstream 'omics' applications such as proteomics, transcriptomics and reverse vaccinology approaches. Despite the absence of Mycoplasma pneumoniae like cyto-adhesion encoding genes, the two strains showed the presence of protrusions. This phenotype is likely encoded by another set of genes.
Collapse
Affiliation(s)
- Anne Fischer
- />International Livestock Research Institute, PO Box 30709, 00100 Nairobi, Kenya
- />International Centre for Insect Physiology and Ecology, PO Box 30772, 00100 Nairobi, Kenya
| | - Ivette Santana-Cruz
- />Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore Street BioPark II, 21201 Baltimore, MD USA
| | - Jan Hegerman
- />Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- />Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- />REBIRTH Cluster of Excellence, Hannover, Germany
| | - Hadrien Gourlé
- />Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, SE75007 Uppsala, Sweden
| | - Elise Schieck
- />International Livestock Research Institute, PO Box 30709, 00100 Nairobi, Kenya
| | - Mathieu Lambert
- />Department of Animal Breeding and Genetics, SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences, SE75007 Uppsala, Sweden
| | - Suvarna Nadendla
- />Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore Street BioPark II, 21201 Baltimore, MD USA
| | - Hezron Wesonga
- />Kenya Agricultural and Livestock Research Organization (KALRO) Muguga, PO Box 32-00902, Kikuyu, Kenya
| | - Rachel A. Miller
- />International Livestock Research Institute, PO Box 30709, 00100 Nairobi, Kenya
- />Department of Food Science, Cornell University, Ithaca, NY USA
| | - Sanjay Vashee
- />J. Craig Venter Institute, 9704 Medical Center Drive, 20850 Rockville, MD USA
| | - Johann Weber
- />Lausanne Genomic Technologies Facility Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jochen Meens
- />Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joachim Frey
- />Institute of Veterinary Bacteriology, University of Bern, CH-3001 Bern, Switzerland
| | - Joerg Jores
- />International Livestock Research Institute, PO Box 30709, 00100 Nairobi, Kenya
- />Institute of Veterinary Bacteriology, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
34
|
Freschi L, Jeukens J, Kukavica-Ibrulj I, Boyle B, Dupont MJ, Laroche J, Larose S, Maaroufi H, Fothergill JL, Moore M, Winsor GL, Aaron SD, Barbeau J, Bell SC, Burns JL, Camara M, Cantin A, Charette SJ, Dewar K, Déziel É, Grimwood K, Hancock REW, Harrison JJ, Heeb S, Jelsbak L, Jia B, Kenna DT, Kidd TJ, Klockgether J, Lam JS, Lamont IL, Lewenza S, Loman N, Malouin F, Manos J, McArthur AG, McKeown J, Milot J, Naghra H, Nguyen D, Pereira SK, Perron GG, Pirnay JP, Rainey PB, Rousseau S, Santos PM, Stephenson A, Taylor V, Turton JF, Waglechner N, Williams P, Thrane SW, Wright GD, Brinkman FSL, Tucker NP, Tümmler B, Winstanley C, Levesque RC. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front Microbiol 2015; 6:1036. [PMID: 26483767 PMCID: PMC4586430 DOI: 10.3389/fmicb.2015.01036] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022] Open
Abstract
The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.
Collapse
Affiliation(s)
- Luca Freschi
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Julie Jeukens
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | | | - Brian Boyle
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Marie-Josée Dupont
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Jérôme Laroche
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Stéphane Larose
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Halim Maaroufi
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Matthew Moore
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University Vancouver, BC, Canada
| | - Shawn D Aaron
- Ottawa Hospital Research Institute Ottawa, ON, Canada
| | - Jean Barbeau
- Faculté de Médecine Dentaire, Université de Montréal Montréal, QC, Canada
| | - Scott C Bell
- QIMR Berghofer Medical Research Institute Brisbane, QLD, Australia
| | - Jane L Burns
- Seattle Children's Research Institute, University of Washington School of Medicine Seattle, WA, USA
| | - Miguel Camara
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - André Cantin
- Département de Médecine, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Steve J Charette
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec Quebec, QC, Canada ; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval Quebec, QC, Canada
| | - Ken Dewar
- Department of Human Genetics, McGill University Montreal, QC, Canada
| | - Éric Déziel
- INRS Institut Armand Frappier Laval, QC, Canada
| | - Keith Grimwood
- School of Medicine, Griffith University Gold Coast, QLD, Australia
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada
| | - Joe J Harrison
- Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark Lyngby, Denmark
| | - Baofeng Jia
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Dervla T Kenna
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England London, UK
| | - Timothy J Kidd
- Child Health Research Centre, The University of Queensland Brisbane, QLD, Australia ; Centre for Infection and Immunity, Queen's University Belfast Belfast, UK
| | - Jens Klockgether
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Germany
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago Dunedin, New Zealand
| | - Shawn Lewenza
- Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Nick Loman
- Institute for Microbiology and Infection, University of Birmingham Birmingham, UK
| | - François Malouin
- Département de Médecine, Université de Sherbrooke Sherbrooke, QC, Canada
| | - Jim Manos
- Department of Infectious Diseases and Immunology, The University of Sydney Sydney, NSW, Australia
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Josie McKeown
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Julie Milot
- Department of Pneumology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval Quebec, QC, Canada
| | - Hardeep Naghra
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Dao Nguyen
- Department of Human Genetics, McGill University Montreal, QC, Canada ; Department of Microbiology and Immunology and Department of Experimental Medicine, McGill University Montreal, QC, Canada
| | - Sheldon K Pereira
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-On-Hudson NY, USA
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital Brussels, Belgium
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey University Albany, New Zealand ; Max Planck Institute for Evolutionary Biology Plön, Germany
| | - Simon Rousseau
- Department of Human Genetics, McGill University Montreal, QC, Canada
| | - Pedro M Santos
- Department of Biology, University of Minho Braga, Portugal
| | | | - Véronique Taylor
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Jane F Turton
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England London, UK
| | - Nicholas Waglechner
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Paul Williams
- School of Life Sciences, University of Nottingham Nottingham, UK
| | - Sandra W Thrane
- Department of Systems Biology, Technical University of Denmark Lyngby, Denmark
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University Hamilton, ON, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University Vancouver, BC, Canada
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | - Burkhard Tümmler
- Klinische Forschergruppe, Medizinische Hochschule Hannover, Germany
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool Liverpool, UK
| | - Roger C Levesque
- Institute for Integrative and Systems Biology, Université Laval Quebec, QC, Canada
| |
Collapse
|
35
|
Bessen DE, McShan WM, Nguyen SV, Shetty A, Agrawal S, Tettelin H. Molecular epidemiology and genomics of group A Streptococcus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:393-418. [PMID: 25460818 PMCID: PMC4416080 DOI: 10.1016/j.meegid.2014.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | - W Michael McShan
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Scott V Nguyen
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
36
|
Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol 2014; 23:148-54. [PMID: 25483351 DOI: 10.1016/j.mib.2014.11.016] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Next generation sequencing technologies have engendered a genome sequence data deluge in public databases. Genome analyses have transitioned from single or few genomes to hundreds to thousands of genomes. Pan-genome analyses provide a framework for estimating the genomic diversity of the dataset at hand and predicting the number of additional whole genomes sequences that would be necessary to fully characterize that diversity. We review recent implementations of the pan-genome approach, its impact and limits, and we propose possible extensions, including analyses at the whole genome multiple sequence alignment level.
Collapse
Affiliation(s)
- George Vernikos
- Novartis (Hellas) S.A.C.I., 12th Km Athens-Lamia North Road, 14451 Metamorfossi, Athens, Greece
| | - Duccio Medini
- Novartis Vaccines Research, Via Fiorentina 1, 53100 Siena, Italy
| | - David R Riley
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
37
|
Metcalf JA, Jo M, Bordenstein SR, Jaenike J, Bordenstein SR. Recent genome reduction of Wolbachia in Drosophila recens targets phage WO and narrows candidates for reproductive parasitism. PeerJ 2014; 2:e529. [PMID: 25165636 PMCID: PMC4137656 DOI: 10.7717/peerj.529] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022] Open
Abstract
Wolbachia are maternally transmitted endosymbionts that often alter their arthropod hosts’ biology to favor the success of infected females, and they may also serve as a speciation microbe driving reproductive isolation. Two of these host manipulations include killing males outright and reducing offspring survival when infected males mate with uninfected females, a phenomenon known as cytoplasmic incompatibility. Little is known about the mechanisms behind these phenotypes, but interestingly either effect can be caused by the same Wolbachia strain when infecting different hosts. For instance, wRec causes cytoplasmic incompatibility in its native host Drosophila recens and male killing in D. subquinaria. The discovery of prophage WO elements in most arthropod Wolbachia has generated the hypothesis that WO may encode genes involved in these reproductive manipulations. However, PCR screens for the WO minor capsid gene indicated that wRec lacks phage WO. Thus, wRec seemed to provide an example where phage WO is not needed for Wolbachia-induced reproductive manipulation. To enable investigation of the mechanism of phenotype switching in different host backgrounds, and to examine the unexpected absence of phage WO, we sequenced the genome of wRec. Analyses reveal that wRec diverged from wMel approximately 350,000 years ago, mainly by genome reduction in the phage regions. While it lost the minor capsid gene used in standard PCR screens for phage WO, it retained two regions encompassing 33 genes, several of which have previously been associated with reproductive parasitism. Thus, WO gene involvement in reproductive manipulation cannot be excluded and reliance on single gene PCR should not be used to rule out the presence of phage WO in Wolbachia. Additionally, the genome sequence for wRec will enable transcriptomic and proteomic studies that may help elucidate the Wolbachia mechanisms of altered reproductive manipulations associated with host switching, perhaps among the 33 remaining phage genes.
Collapse
Affiliation(s)
- Jason A Metcalf
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Minhee Jo
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - John Jaenike
- Department of Biology, University of Rochester , Rochester, NY , USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Pathology, Microbiology, and Immunology, Vanderbilt University , Nashville, TN , USA
| |
Collapse
|
38
|
Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. mBio 2014; 5:e01490-14. [PMID: 25053789 PMCID: PMC4120201 DOI: 10.1128/mbio.01490-14] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022] Open
Abstract
The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes. Meanwhile, the pathogenic pneumococcus evolved into a master of genomic flexibility and imports genes from S. mitis and other related streptococci. This process ensured antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae, which conceivably will continue to increase and present a challenge to disease prevention.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - David R Riley
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anders Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Guimaraes AMS, Santos AP, do Nascimento NC, Timenetsky J, Messick JB. Comparative genomics and phylogenomics of hemotrophic mycoplasmas. PLoS One 2014; 9:e91445. [PMID: 24642917 PMCID: PMC3958358 DOI: 10.1371/journal.pone.0091445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Hemotrophic mycoplasmas (hemoplasmas) are a group of animal pathogens of the Mollicutes class. Recently, the genomes of 8 hemoplasmas have been completely sequenced. The aim of this study was to gain a better understanding of their genomic features and relationship to other Mycoplasma species. The genome structure and dynamics of hemoplasmas were analyzed by evaluating gene synteny, adaptive evolution of paralogous gene families (PGF) and horizontal gene transfer (HGT). The Mollicutes class was then phylogenetically analyzed by constructing a distance matrix of the 16S rRNA genes and a phylogenetic tree with 32 conserved, concatenated proteins. Our results suggest that the hemoplasmas have dynamic genomes. The genome size variation (from 547 to 1,545 genes) indicates substantial gene gain/loss throughout evolution. Poorly conserved gene syntenies among hemoplasmas, positional shuffling of paralogous genes between strains, HGT, and codons under positive selection in PGFs were also observed. When compared to other Mollicutes species, the hemoplasmas experienced further metabolic reduction, and the 16S rRNA gene distance matrix of the available mollicutes suggests that these organisms presently constitute the most divergent clade within its class. Our phylogenetic tree of concatenated proteins showed some differences when compared to the 16S rRNA gene tree, but non-mycoplasma organisms, such as Ureaplasma spp. and Mesoplasma spp., continue to branch within Mycoplasma clades. In conclusion, while the hemoplasmas experienced further metabolic shrinkage through gene loss, PGFs with positively selected codons are likely beneficial to these species. Phylogeny of the mollicutes based on 16S rRNA genes or concatenated proteins do not obey the current taxonomy. The metabolism and genetic diversity of the mollicutes, the presence of HGT, and lack of standard for genus circumscription are likely to hinder attempts to classify these organisms based on phylogenetic analyses.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES)-Fulbright Program, Ministério da Educação, Brasília, Distrito Federal, Brazil
| | - Andrea P. Santos
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Naíla C. do Nascimento
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Jorge Timenetsky
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Joanne B. Messick
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
40
|
Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 2013; 42:D705-10. [PMID: 24194595 PMCID: PMC3965050 DOI: 10.1093/nar/gkt1029] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Aspergillus Genome Database (AspGD; http://www.aspgd.org) is a freely available web-based resource that was designed for Aspergillus researchers and is also a valuable source of information for the entire fungal research community. In addition to being a repository and central point of access to genome, transcriptome and polymorphism data, AspGD hosts a comprehensive comparative genomics toolbox that facilitates the exploration of precomputed orthologs among the 20 currently available Aspergillus genomes. AspGD curators perform gene product annotation based on review of the literature for four key Aspergillus species: Aspergillus nidulans, Aspergillus oryzae, Aspergillus fumigatus and Aspergillus niger. We have iteratively improved the structural annotation of Aspergillus genomes through the analysis of publicly available transcription data, mostly expressed sequenced tags, as described in a previous NAR Database article (Arnaud et al. 2012). In this update, we report substantive structural annotation improvements for A. nidulans, A. oryzae and A. fumigatus genomes based on recently available RNA-Seq data. Over 26 000 loci were updated across these species; although those primarily comprise the addition and extension of untranslated regions (UTRs), the new analysis also enabled over 1000 modifications affecting the coding sequence of genes in each target genome.
Collapse
Affiliation(s)
- Gustavo C Cerqueira
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02141, USA Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, Cantarel BL, Pagan PE, Hernandez YA, Vargas LC, Dunn JJ, Schutzer SE, Fraser CM, Qiu WG, Luft BJ. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics 2013; 14:693. [PMID: 24112474 PMCID: PMC3833655 DOI: 10.1186/1471-2164-14-693] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lyme disease is caused by spirochete bacteria from the Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) species complex. To reconstruct the evolution of B. burgdorferi s.l. and identify the genomic basis of its human virulence, we compared the genomes of 23 B. burgdorferi s.l. isolates from Europe and the United States, including B. burgdorferi sensu stricto (B. burgdorferi s.s., 14 isolates), B. afzelii (2), B. garinii (2), B. "bavariensis" (1), B. spielmanii (1), B. valaisiana (1), B. bissettii (1), and B. "finlandensis" (1). RESULTS Robust B. burgdorferi s.s. and B. burgdorferi s.l. phylogenies were obtained using genome-wide single-nucleotide polymorphisms, despite recombination. Phylogeny-based pan-genome analysis showed that the rate of gene acquisition was higher between species than within species, suggesting adaptive speciation. Strong positive natural selection drives the sequence evolution of lipoproteins, including chromosomally-encoded genes 0102 and 0404, cp26-encoded ospC and b08, and lp54-encoded dbpA, a07, a22, a33, a53, a65. Computer simulations predicted rapid adaptive radiation of genomic groups as population size increases. CONCLUSIONS Intra- and inter-specific pan-genome sizes of B. burgdorferi s.l. expand linearly with phylogenetic diversity. Yet gene-acquisition rates in B. burgdorferi s.l. are among the lowest in bacterial pathogens, resulting in high genome stability and few lineage-specific genes. Genome adaptation of B. burgdorferi s.l. is driven predominantly by copy-number and sequence variations of lipoprotein genes. New genomic groups are likely to emerge if the current trend of B. burgdorferi s.l. population expansion continues.
Collapse
Affiliation(s)
- Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lechat P, Souche E, Moszer I. SynTView - an interactive multi-view genome browser for next-generation comparative microorganism genomics. BMC Bioinformatics 2013; 14:277. [PMID: 24053737 PMCID: PMC3849071 DOI: 10.1186/1471-2105-14-277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/16/2013] [Indexed: 12/31/2022] Open
Abstract
Background Dynamic visualisation interfaces are required to explore the multiple microbial genome data now available, especially those obtained by high-throughput sequencing — a.k.a. “Next-Generation Sequencing” (NGS) — technologies; they would also be useful for “standard” annotated genomes whose chromosome organizations may be compared. Although various software systems are available, few offer an optimal combination of feature-rich capabilities, non-static user interfaces and multi-genome data handling. Results We developed SynTView, a comparative and interactive viewer for microbial genomes, designed to run as either a web-based tool (Flash technology) or a desktop application (AIR environment). The basis of the program is a generic genome browser with sub-maps holding information about genomic objects (annotations). The software is characterised by the presentation of syntenic organisations of microbial genomes and the visualisation of polymorphism data (typically Single Nucleotide Polymorphisms — SNPs) along these genomes; these features are accessible to the user in an integrated way. A variety of specialised views are available and are all dynamically inter-connected (including linear and circular multi-genome representations, dot plots, phylogenetic profiles, SNP density maps, and more). SynTView is not linked to any particular database, allowing the user to plug his own data into the system seamlessly, and use external web services for added functionalities. SynTView has now been used in several genome sequencing projects to help biologists make sense out of huge data sets. Conclusions The most important assets of SynTView are: (i) the interactivity due to the Flash technology; (ii) the capabilities for dynamic interaction between many specialised views; and (iii) the flexibility allowing various user data sets to be integrated. It can thus be used to investigate massive amounts of information efficiently at the chromosome level. This innovative approach to data exploration could not be achieved with most existing genome browsers, which are more static and/or do not offer multiple views of multiple genomes. Documentation, tutorials and demonstration sites are available at the URL: http://genopole.pasteur.fr/SynTView.
Collapse
Affiliation(s)
- Pierre Lechat
- Institut Pasteur, Plate-forme Bioanalyse Génomique, 28 rue du Docteur Roux, Paris, Cedex 15 75724, France.
| | | | | |
Collapse
|
43
|
Paterson T, Law A. ArkMAP: integrating genomic maps across species and data sources. BMC Bioinformatics 2013; 14:246. [PMID: 23941167 PMCID: PMC3751345 DOI: 10.1186/1471-2105-14-246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/09/2013] [Indexed: 11/20/2022] Open
Abstract
Background The visualisation of genetic and genomic maps aligned within and between species and across data sources can be used to inform studies of genome evolution, assist genome assembly projects and aid gene discovery and identification. Whilst annotation, integration and exploration of assembled genome sequences is well supported, there are fewer tools available which can display genetic maps for less well-characterized species, and integrate these maps with annotated reference genomes to support cross species comparisons. Results We have developed a desktop application to draw and align genetic and genomic maps, retrieved from remote data sources or loaded as local files. Maps can be retrieved from our public map database ArkDB or from any Ensembl data source (i.e. Ensembl and Ensembl Genomes). By using the JEnsembl API, maps can be drawn for any release version of any of the thousands of species present in Ensembl data sources, allowing not only inter-specific comparisons, but also comparisons between different versions/revisions of assembled genomes. Maps can be aligned by relating identical or synonymous markers across maps, or through the gene homology/orthology relationship data stored in the Ensembl Compara databases, allowing ready visualization of regions of conserved synteny between species. The map drawing canvas is highly configurable, supports interactive exploration of maps, markers and relationships and allows export of publication quality graphics. Conclusions ArkMAP allows users to draw and interactively explore gene and variation maps for any version of any annotated genome curated in the Ensembl data sources, and to integrate local mapping data. The maps and inter-map relationships drawn are highly configurable and ArkMAP may be used to produce publication quality graphics. ArkMAP is freely available as an auto-updating Java ‘Web Start’ application, or as a standalone archived application.
Collapse
Affiliation(s)
- Trevor Paterson
- Division of Genetics and Genomics, The Roslin Institute, Royal-Dick School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | | |
Collapse
|
44
|
Genome Sequences of Two Pathogenic Streptococcus agalactiae Isolates from the One-Humped Camel Camelus dromedarius. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00515-13. [PMID: 23868134 PMCID: PMC3715676 DOI: 10.1128/genomea.00515-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Streptococcus agalactiae causes a range of clinical syndromes in camels (Camelus dromedarius). We report the genome sequences of two S. agalactiae isolates that induce abscesses in Kenyan camels. These genomes provide novel data on the composition of the S. agalactiae "pan genome" and reveal the presence of multiple genomic islands.
Collapse
|
45
|
Kimaro Mlacha SZ, Romero-Steiner S, Hotopp JCD, Kumar N, Ishmael N, Riley DR, Farooq U, Creasy TH, Tallon LJ, Liu X, Goldsmith CS, Sampson J, Carlone GM, Hollingshead SK, Scott JAG, Tettelin H. Phenotypic, genomic, and transcriptional characterization of Streptococcus pneumoniae interacting with human pharyngeal cells. BMC Genomics 2013; 14:383. [PMID: 23758733 PMCID: PMC3708772 DOI: 10.1186/1471-2164-14-383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 05/24/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae is a leading cause of childhood morbidity and mortality worldwide, despite the availability of effective pneumococcal vaccines. Understanding the molecular interactions between the bacterium and the host will contribute to the control and prevention of pneumococcal disease. RESULTS We used a combination of adherence assays, mutagenesis and functional genomics to identify novel factors involved in adherence. By contrasting these processes in two pneumococcal strains, TIGR4 and G54, we showed that adherence and invasion capacities vary markedly by strain. Electron microscopy showed more adherent bacteria in association with membranous pseudopodia in the TIGR4 strain. Operons for cell wall phosphorylcholine incorporation (lic), manganese transport (psa) and phosphate utilization (phn) were up-regulated in both strains on exposure to epithelial cells. Pneumolysin, pili, stress protection genes (adhC-czcD) and genes of the type II fatty acid synthesis pathway were highly expressed in the naturally more invasive strain, TIGR4. Deletion mutagenesis of five gene regions identified as regulated in this study revealed attenuation in adherence. Most strikingly, ∆SP_1922 which was predicted to contain a B-cell epitope and revealed significant attenuation in adherence, appeared to be expressed as a part of an operon that includes the gene encoding the cytoplasmic pore-forming toxin and vaccine candidate, pneumolysin. CONCLUSION This work identifies a list of novel potential pneumococcal adherence determinants.
Collapse
|
46
|
Whole genome sequencing to investigate the emergence of clonal complex 23 Neisseria meningitidis serogroup Y disease in the United States. PLoS One 2012; 7:e35699. [PMID: 22558202 PMCID: PMC3338715 DOI: 10.1371/journal.pone.0035699] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/20/2012] [Indexed: 12/05/2022] Open
Abstract
In the United States, serogroup Y, ST-23 clonal complex Neisseria meningitidis was responsible for an increase in meningococcal disease incidence during the 1990s. This increase was accompanied by antigenic shift of three outer membrane proteins, with a decrease in the population that predominated in the early 1990s as a different population emerged later in that decade. To understand factors that may have been responsible for the emergence of serogroup Y disease, we used whole genome pyrosequencing to investigate genetic differences between isolates from early and late N. meningitidis populations, obtained from meningococcal disease cases in Maryland in the 1990s. The genomes of isolates from the early and late populations were highly similar, with 1231 of 1776 shared genes exhibiting 100% amino acid identity and an average πN = 0.0033 and average πS = 0.0216. However, differences were found in predicted proteins that affect pilin structure and antigen profile and in predicted proteins involved in iron acquisition and uptake. The observed changes are consistent with acquisition of new alleles through horizontal gene transfer. Changes in antigen profile due to the genetic differences found in this study likely allowed the late population to emerge due to escape from population immunity. These findings may predict which antigenic factors are important in the cyclic epidemiology of meningococcal disease.
Collapse
|