1
|
Micsonai A, Wien F, Murvai N, Nyiri MP, Balatoni B, Lee YH, Molnár T, Goto Y, Jamme F, Kardos J. BeStSel: analysis site for protein CD spectra-2025 update. Nucleic Acids Res 2025:gkaf378. [PMID: 40357643 DOI: 10.1093/nar/gkaf378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Circular dichroism (CD) spectroscopy is a widely used technique to characterize the secondary structure composition of proteins. We have developed the Beta Structure Selection (BeStSel) method (PNAS, 112, E3095), which solves the main problem of protein CD spectroscopy-namely, the spectral variability of β-structures. The BeStSel web server utilizes this method to provide tools to the community for CD spectrum analysis. BeStSel uniquely provides information on eight secondary structure components, including parallel β-structure and antiparallel β-sheets with three different twist groups. It outperforms all available methods in accuracy and information content, and is also able to predict protein folds down to the topology/homology level of the CATH classification. The algorithm has been further developed, and the accuracy of the estimation of the secondary structure elements is improved by 0.7% as an average on the reference dataset. A new module of the web server calculates protein stability from the thermal denaturation profile followed by CD. Secondary structure calculations of uploaded PDB and mmcif files support the experimental verification of MD simulations and AlphaFold models by CD spectroscopy. Well-proven modules for disorder-order classification and extinction coefficient calculation continue to work. The BeStSel server is freely accessible at https://bestsel.elte.hu.
Collapse
Affiliation(s)
- András Micsonai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
- ELTE-Functional Nucleic Acid Motifs Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Frank Wien
- Synchrotron SOLEIL, Gif-sur-Yvette 91192, France
| | - Nikoletta Murvai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
- ELTE-Functional Nucleic Acid Motifs Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Márton Péter Nyiri
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Bori Balatoni
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Young-Ho Lee
- Biopharmaceutical Research Center, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Gyeonggi 17546, Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tamás Molnár
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Yuji Goto
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | | | - József Kardos
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| |
Collapse
|
2
|
Lasiwa D, Kursula I. Crystal structure of Anopheles gambiae actin depolymerizing factor explains high affinity to monomeric actin. FEBS J 2025; 292:2381-2397. [PMID: 39932036 DOI: 10.1111/febs.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 05/11/2025]
Abstract
Actin is an intrinsically dynamic protein, the function and state of which are modulated by actin-binding proteins. Actin-depolymerizing factors (ADF)/cofilins are ubiquitous actin-binding proteins that accelerate actin turnover. Malaria is an infectious disease caused by parasites of the genus Plasmodium, which belong to the phylum Apicomplexa. The parasites require two hosts to complete their life cycle: the definitive host, or the vector, an Anopheles spp. mosquito, and a vertebrate intermediate host, such as humans. Here, the malaria vector Anopheles gambiae ADF (AgADF) crystal structure is reported. AgADF has a conserved ADF/cofilin fold with six central β-strands surrounded by five α-helices with a long β-hairpin loop protruding out of the structure. The G- and F-actin-binding sites of AgADF are conserved, and the structure shows features of potential importance for regulation by membrane binding and redox state. AgADF binds monomeric ATP- and ADP-actin with a high affinity, having a nanomolar Kd, and binds effectively also to actin filaments.
Collapse
Affiliation(s)
- Devaki Lasiwa
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
- Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|
3
|
Risueño C, Carbajo I, Charro D, Abrescia NGA, Coluzza I. pH-antenna residues trigger a large-scale conformational change in the large extracellular loop domain of the CD81 human receptor. J Chem Phys 2025; 162:154111. [PMID: 40237186 DOI: 10.1063/5.0251361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
CD81 is a human receptor that clusters into microdomains to mediate cell signaling processes. Previous structural studies on the CD81 large-extracellular-loop domain (CD81LEL) proposed that its conformation (ranging from closed to open) may depend on environmental pH conditions. However, the precise mechanism governing CD81LEL plasticity has remained unconfirmed until now. Here, by combining molecular dynamics simulations and spectroscopic experiments on CD81LEL, we show that the mechanism underlying the dependence of the changes in pH to the opening of CD81LEL relates to the modulation of the solvation shell by "antenna" residues. The antenna residues are D139 and E188. Under acidic conditions, such residues generate a signal cascade propagating through the CD81LEL molecule changing the local solvation that, in turn, acts as an effector of the closed-to-open conformational transition. We further proved the key role of D139 and E188 by introducing mutations that switch off their sensitivity to pH. As expected, the mutations stabilize the closed conformation. This signal transduction mechanism might play a role in other cellular receptors that function along the endosomal pathway.
Collapse
Affiliation(s)
- C Risueño
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), BRTA, San Sebastian, Spain
| | - I Carbajo
- Materials Physics Center (CFM-MPC), Paseo Manuel de Lardizabal, 5-E-20018 Donostia-San Sebastián, Gipuzkoa, Spain
- Universidad del País Vasco (UPV/EHU) Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - D Charro
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - N G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - I Coluzza
- CICA-Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
4
|
Chandravanshi K, Singh R, Kumar A, Bhange GN, Kumar A, Makde RD. Structural adaptations for carboxypeptidase activity in putative S9 acylaminoacyl peptidase from Bacillus subtilis. Int J Biol Macromol 2024; 282:136734. [PMID: 39433196 DOI: 10.1016/j.ijbiomac.2024.136734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Prolyl oligopeptidase, or S9 (MEROPS) family enzymes are crucial drug targets due to their association with various diseases, neurological disorders, cell growth, and survival. These implications render them an exceptionally fascinating field of research. Despite sharing similar structural features, they exhibit diverse enzyme activities, including endopeptidase, dipeptidyl peptidase, and acylaminoacyl peptidase. Additionally, a few members of the S9 family demonstrate carboxypeptidase activity. A recent study showed that the S9 peptidase of Bacillus subtilis (S9bs) possesses the conserved sequence feature necessary for carboxypeptidase activity despite being annotated as an acylaminoacyl peptidase in the UniProt database. However, the mechanism of action and identity of S9bs as carboxypeptidase remain unclear. Consequently, we focused our studies on thoroughly investigating S9bs for its carboxypeptidase activity. In the present study, we report biochemical and biophysical analyses of S9bs, confirming its identity as a carboxypeptidase. Further, structural analysis reveals the molecular basis of S9bs' carboxypeptidase activity, highlighting the crucial structural elements like the "cavity loop" and the "two-arginine" residues essential for this activity. Additionally, our studies confirmed that S9bs forms a stable tetrameric assembly and established its quaternary molecular arrangement, which reveals the presence of an oligomeric pore. Altogether, these structural features play a crucial role in substrate selection for S9 carboxypeptidases. Overall, our findings reveal a distinct carboxypeptidase within the S9 family and significantly enhance our understanding of these enzymes. Moreover, this study sheds light on the mechanisms underlying carboxypeptidase activity, offering valuable insights that could contribute to therapeutic and drug design.
Collapse
Affiliation(s)
- Khileshwari Chandravanshi
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India.
| | - Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Gauri N Bhange
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Amit Kumar
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, 453552, Madhya Pradesh, India.
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
5
|
Berkowitz N, MacMillan A, Simmons MB, Shinde U, Purdy GE. Structural modeling and characterization of the Mycobacterium tuberculosis MmpL3 C-terminal domain. FEBS Lett 2024; 598:2734-2747. [PMID: 39198717 PMCID: PMC11560685 DOI: 10.1002/1873-3468.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The Mycobacterium tuberculosis (Mtb) cell envelope provides a protective barrier against the immune response and antibiotics. The mycobacterial membrane protein large (MmpL) family of proteins export cell envelope lipids and siderophores; therefore, these proteins are important for the basic biology and pathogenicity of Mtb. In particular, MmpL3 is essential and a known drug target. Despite interest in MmpL3, the structural data in the field are incomplete. Utilizing homology modeling, AlphaFold, and biophysical techniques, we characterized the cytoplasmic C-terminal domain (CTD) of MmpL3 to better understand its structure and function. Our in silico models of the MmpL11TB and MmpL3TB CTD reveal notable features including a long unstructured linker that connects the globular domain to the last transmembrane (TM) in each transporter, charged lysine and arginine residues facing the membrane, and a C-terminal alpha helix. Our predicted overall structure enables a better understanding of these transporters.
Collapse
Affiliation(s)
- Naomi Berkowitz
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Allison MacMillan
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Marit B. Simmons
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| | - Ujwal Shinde
- Oregon Health & Science University, Biophysics Core Facility, Portland, OR, 97239, United States
| | - Georgiana E. Purdy
- Oregon Health & Science University, Department of Molecular Microbiology & Immunology, Portland, OR, 97239, United States
| |
Collapse
|
6
|
Abdulkareem RA, Doekhie A, Fotaki N, Koumanov F, Dodson CA, Sartbaeva A. Thermal Stabilisation of Lysozyme through Ensilication. Molecules 2024; 29:4207. [PMID: 39275055 PMCID: PMC11396922 DOI: 10.3390/molecules29174207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Protein therapeutics, vaccines, and other commercial products are often sensitive to environmental factors, such as temperature and long-term storage. In many cases, long-term protein stability is achieved by refrigeration or freezing. One alternative is the encapsulation of the protein cargo within an inert silica matrix (ensilication) and storage or transport at room temperature as a dry powder. In this paper, we test the effect of three commonly used biological buffers on the ensilication, storage, and desilication of the enzyme lysozyme. We show that ensilication protects lysozyme from heat (100 °C for 1 h) and during storage (18 months at room temperature). The choice of ensilication buffer has little effect on the activity of lysozyme after desilication. Our results provide confidence in the continued pursuit of ensilication as a methodology for protein stabilisation and in its compatibility with biological buffers.
Collapse
Affiliation(s)
- Reveng A. Abdulkareem
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Department of Medical Education, College of Medicine, University of Duhok, 1006 AJ Duhok, Kurdistan Region, Iraq
| | - Aswin Doekhie
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Nikoletta Fotaki
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise and Metabolism, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Charlotte A. Dodson
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Asel Sartbaeva
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Ensilicated Technologies Ltd., Science Creates St. Philips, Albert Road, St. Philips, Bristol BS2 0XJ, UK
| |
Collapse
|
7
|
Nagy G, Hoffmann SV, Jones NC, Grubmüller H. Reference Data Set for Circular Dichroism Spectroscopy Comprised of Validated Intrinsically Disordered Protein Models. APPLIED SPECTROSCOPY 2024; 78:897-911. [PMID: 38646777 PMCID: PMC11453034 DOI: 10.1177/00037028241239977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/15/2024] [Indexed: 04/23/2024]
Abstract
Circular dichroism (CD) spectroscopy is an analytical technique that measures the wavelength-dependent differential absorbance of circularly polarized light and is applicable to most biologically important macromolecules, such as proteins, nucleic acids, and carbohydrates. It serves to characterize the secondary structure composition of proteins, including intrinsically disordered proteins, by analyzing their recorded spectra. Several computational tools have been developed to interpret protein CD spectra. These methods have been calibrated and tested mostly on globular proteins with well-defined structures, mainly due to the lack of reliable reference structures for disordered proteins. It is therefore still largely unclear how accurately these computational methods can determine the secondary structure composition of disordered proteins. Here, we provide such a required reference data set consisting of model structural ensembles and matching CD spectra for eight intrinsically disordered proteins. Using this set of data, we have assessed the accuracy of several published CD prediction and secondary structure estimation tools, including our own CD analysis package, SESCA. Our results show that for most of the tested methods, their accuracy for disordered proteins is generally lower than for globular proteins. In contrast, SESCA, which was developed using globular reference proteins, but was designed to be applicable to disordered proteins as well, performs similarly well for both classes of proteins. The new reference data set for disordered proteins should allow for further improvement of all published methods.
Collapse
Affiliation(s)
- Gabor Nagy
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Nykola C. Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
8
|
Ikujuni AP, Dhar R, Cordova A, Bowman AM, Noga S, Slusky JSG. Discovery and Characterization of Two Folded Intermediates for Outer Membrane Protein TolC Biogenesis. J Mol Biol 2024; 436:168652. [PMID: 38871177 PMCID: PMC11297670 DOI: 10.1016/j.jmb.2024.168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
TolC is the outer membrane protein responsible for antibiotic efflux in E. coli. Compared to other outer membrane proteins it has an unusual fold and has been shown to fold independently of commonly used periplasmic chaperones, SurA and Skp. Here we find that the assembly of TolC involves the formation of two folded intermediates using circular dichroism, gel electrophoresis, site-specific disulfide bond formation and radioactive labeling. First the TolC monomer folds, and then TolC assembles into a trimer both in detergent-free buffer and in the presence of detergent micelles. We find that a TolC trimer also forms in the periplasm and is present in the periplasm before it inserts in the outer membrane. The monomeric and trimeric folding intermediates may be used in the future to develop a new approach to antibiotic efflux pump inhibition by targeting the assembly pathway of TolC.
Collapse
Affiliation(s)
- Ayotunde Paul Ikujuni
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Andres Cordova
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Sarah Noga
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, United States; Computational Biology Program, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66045-7534, United States.
| |
Collapse
|
9
|
Rogers DM, Do H, Hirst JD. An Improved Diabatization Scheme for Computing the Electronic Circular Dichroism of Proteins. J Phys Chem B 2024; 128:7350-7361. [PMID: 39034688 DOI: 10.1021/acs.jpcb.4c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
We advance the quality of first-principles calculations of protein electronic circular dichroism (CD) through an amelioration of a key deficiency of a previous procedure that involved diabatization of electronic states on the amide chromophore (to obtain interamide couplings) in a β-strand conformation of a diamide. This yields substantially improved calculated far-ultraviolet (far-UV) electronic circular dichroism (CD) spectra for β-sheet conformations. The interamide couplings from the diabatization procedure for 13 secondary structural elements (13 diamide structures) are applied to compute the CD spectra for seven example proteins: myoglobin (α helix), jacalin (β strand), concanavalin A (β type I), elastase (β type II), papain (α + β), 310-helix bundle (310-helix) and snow flea antifreeze protein (polyproline). In all cases, except concanavalin A and papain, the CD spectra computed using the interamide couplings from the diabatization procedure yield improved agreement with experiment with respect to previous first-principles calculations.
Collapse
Affiliation(s)
- David M Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hainam Do
- Department of Chemical and Environmental Engineering and Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
10
|
Das S, Salah KHB, Wenger E, Legrand B, Didierjean C, Inguimbert N. Bergofungin D, a peptaibol template for the introduction of chemical modifications, synthesis of analogs and comparative studies of their structures. J Pept Sci 2024; 30:e3598. [PMID: 38531546 DOI: 10.1002/psc.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Bergofungin D is a helical peptide of the peptaibol family consisting of 14 amino acids, six of which are the helix inducer aminoisobutyric acid (Aib). In the second third of the sequence, a hydroxyproline causes a bending of the helix and a disruption of the hydrogen bond network, and Aib7 is the only amino acid in this region involved in the hydrogen bond network. Therefore, modification of this residue can serve as a probe to monitor the effect of introducing amino acid substitutions on this more fragile helical turn. To validate this approach, we simplified the original bergofungin D by reducing the number of non-classical amino acids, replacing the (R)-isovaleric acid by its enantiomer or an Aib and the hydroxyproline with a proline, respectively, without affecting its secondary structure. Within the modified structure, we replaced Aib7-Aib8 by its 1,2,3-triazolodipeptide equivalent or Aib7 by a serine or a dehydrobutyrine. We have reported and analyzed five crystal structures, three of which are new, demonstrating the usefulness of the modified bergofungin D as a probe for monitoring the introduction of amino acid substitutions within a helical structure.
Collapse
Affiliation(s)
- Sanjit Das
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, Perpignan, France
| | | | - Emmanuel Wenger
- CRM2, UMR UL-CNRS 7036, Faculté des Sciences et Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron (IBMM), Institut des Biomolécules Max Mousseron (IBMM), Univ Montpellier, CNRS, UM, ENSCM, Montpellier, France
| | - Claude Didierjean
- CRM2, UMR UL-CNRS 7036, Faculté des Sciences et Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Nicolas Inguimbert
- CRIOBE, UAR CNRS-EPHE-UPVD 3278, Université de Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
11
|
Kumamoto S, Yamamoto A, Shiratsuchi Y, Matsuo K, Higashiura A, Hira D. Structural Investigations of Cargo Molecules Inside Icosahedrally Symmetric Encapsulin by VUVCD Spectroscopic Measurements. Chirality 2024; 36:e23700. [PMID: 39077830 DOI: 10.1002/chir.23700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024]
Abstract
Prokaryotes organize intracellular compartments with protein-based organelles called encapsulins. Encapsulins with icosahedral symmetry can encapsulate specific cargo proteins mediated by targeting peptides or encapsulation-mediating domains. Encapsulins have been used in eukaryotic cells for bioengineering, vaccine development, and nanoparticle alignment. Their versatility makes them attractive for research; however, detailed structural information on encapsulins is crucial for further applied research. However, cargo proteins are randomly oriented inside the icosahedral encapsulins. The random orientation of cargo proteins presents a challenge for structural analysis that relies on averaging processes such as x-ray crystallography and cryo-electron microscopy (cryo-EM) single-particle imaging. Therefore, we aimed to accurately estimate the secondary structure content and elucidate the structure of cargo proteins inside the particle by measuring the circular dichroism (CD) spectra using vacuum ultraviolet circular dichroism (VUVCD) spectroscopy. Thus, the structure of the cargo protein inside encapsulin was evaluated. This approach could potentially set a standard for evaluating cargo proteins inside particles in future applied research on encapsulins.
Collapse
Affiliation(s)
- Shiori Kumamoto
- Department of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yu Shiratsuchi
- Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Koichi Matsuo
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
12
|
Ciura P, Smardz P, Spodzieja M, Sieradzan AK, Krupa P. Multilayered Computational Framework for Designing Peptide Inhibitors of HVEM-LIGHT Interaction. J Phys Chem B 2024; 128:6770-6785. [PMID: 38958133 PMCID: PMC11264271 DOI: 10.1021/acs.jpcb.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The herpesvirus entry mediator (HVEM) and its ligand LIGHT play crucial roles in immune system regulation, including T-cell proliferation, B-cell differentiation, and immunoglobulin secretion. However, excessive T-cell activation can lead to chronic inflammation and autoimmune diseases. Thus, inhibiting the HVEM-LIGHT interaction emerges as a promising therapeutic strategy for these conditions and in preventing adverse reactions in organ transplantation. This study focused on designing peptide inhibitors, targeting the HVEM-LIGHT interaction, using molecular dynamics (MD) simulations of 65 peptides derived from HVEM. These peptides varied in length and disulfide-bond configurations, crucial for their interaction with the LIGHT trimer. By simulating 31 HVEM domain variants, including the full-length protein, we assessed conformational changes upon LIGHT binding to understand the influence of HVEM segments and disulfide bonds on the binding mechanism. Employing multitrajectory microsecond-scale, all-atom MD simulations and molecular mechanics with generalized Born and surface area (MM-GBSA) binding energy estimation, we identified promising CRD2 domain variants with high LIGHT affinity. Notably, point mutations in these variants led to a peptide with a single disulfide bond (C58-C73) and a K54E substitution, exhibiting the highest binding affinity. The importance of the CRD2 domain and Cys58-Cys73 disulfide bond for interrupting HVEM-LIGHT interaction was further supported by analyzing truncated CRD2 variants, demonstrating similar binding strengths and mechanisms. Further investigations into the binding mechanism utilized steered MD simulations at various pulling speeds and umbrella sampling to estimate the energy profile of HVEM-based inhibitors with LIGHT. These comprehensive analyses revealed key interactions and different binding mechanisms, highlighting the increased binding affinity of selected peptide variants. Experimental circular dichroism techniques confirmed the structural properties of these variants. This study not only advances our understanding of the molecular basis of HVEM-LIGHT interactions but also provides a foundation for developing novel therapeutic strategies for immune-related disorders. Furthermore, it sets a gold standard for peptide inhibitor design in drug development due to its systematic approach.
Collapse
Affiliation(s)
- Piotr Ciura
- Faculty
of Chemistry, Fahrenheit Union of Universities in Gdańsk, University of Gdańsk, Baż̇yńskiego
8, 80-309 Gdansḱ, Poland
| | - Pamela Smardz
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Marta Spodzieja
- Faculty
of Chemistry, Fahrenheit Union of Universities in Gdańsk, University of Gdańsk, Baż̇yńskiego
8, 80-309 Gdansḱ, Poland
| | - Adam K. Sieradzan
- Faculty
of Chemistry, Fahrenheit Union of Universities in Gdańsk, University of Gdańsk, Baż̇yńskiego
8, 80-309 Gdansḱ, Poland
| | - Pawel Krupa
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
13
|
van Midden KP, Mantz M, Fonovič M, Gazvoda M, Svete J, Huesgen PF, van der Hoorn RAL, Klemenčič M. Mechanistic insights into CrCEP1: A dual-function cysteine protease with endo- and transpeptidase activity. Int J Biol Macromol 2024; 271:132505. [PMID: 38768911 DOI: 10.1016/j.ijbiomac.2024.132505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Proteases, essential regulators of plant stress responses, remain enigmatic in their precise functional roles. By employing activity-based probes for real-time monitoring, this study aimed to delve into protease activities in Chlamydomonas reinhardtii exposed to oxidative stress induced by hydrogen peroxide. However, our work revealed that the activity-based probes strongly labelled three non-proteolytic proteins-PsbO, PsbP, and PsbQ-integral components of photosystem II's oxygen-evolving complex. Subsequent biochemical assays and mass spectrometry experiments revealed the involvement of CrCEP1, a previously uncharacterized papain-like cysteine protease, as the catalyst of this labelling reaction. Further experiments with recombinant CrCEP1 and PsbO proteins replicated the reaction in vitro. Our data unveiled that endopeptidase CrCEP1 also has transpeptidase activity, ligating probes and peptides to the N-termini of Psb proteins, thereby expanding the repertoire of its enzymatic activities. The hitherto unknown transpeptidase activity of CrCEP1, working in conjunction with its proteolytic activity, unveils putative complex and versatile roles for proteases in cellular processes during stress responses.
Collapse
Affiliation(s)
- Katarina P van Midden
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Melissa Mantz
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany
| | - Marko Fonovič
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Martin Gazvoda
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany; CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | | | - Marina Klemenčič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Xu T, Li Y, Gao X, Zhang L. Understanding the Fast-Triggering Unfolding Dynamics of FK-11 upon Photoexcitation of Azobenzene. J Phys Chem Lett 2024; 15:3531-3540. [PMID: 38526058 DOI: 10.1021/acs.jpclett.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Photoswitchable molecules can control the activity and functions of biomolecules by triggering conformational changes. However, it is still challenging to fully understand such fast-triggering conformational evolution from nonequilibrium to equilibrium distribution at the molecular level. Herein, we successfully simulated the unfolding of the FK-11 peptide upon the photoinduced trans-to-cis isomerization of azobenzene based on the Markov state model. We found that the ensemble of FK-11 contains five conformational states, constituting two unfolding pathways. More intriguingly, we observed the microsecond-scale conformational propagation of the FK-11 peptide from the fully folded state to the equilibrium populations of the five states. The computed CD spectra match well with the experimental data, validating our simulation method. Overall, our study not only offers a protocol to study the photoisomerization-induced conformational changes of enzymes but also could orientate the rational design of a photoswitchable molecule to manipulate biological functions.
Collapse
Affiliation(s)
- Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fuzhou, Fujian 361005, China
| |
Collapse
|
15
|
Jacinto‐Méndez D, Granados‐Ramírez CG, Carbajal‐Tinoco MD. KCD: A prediction web server of knowledge-based circular dichroism. Protein Sci 2024; 33:e4967. [PMID: 38532692 PMCID: PMC10966356 DOI: 10.1002/pro.4967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
We present a web server that predicts the far-UV circular dichroism (CD) spectra of proteins by utilizing their three-dimensional (3D) structures from the Protein Data Bank (PDB). The main algorithm is based on the classical theory of optical activity together with a set of atomic complex polarizabilities, which are obtained from the analysis of a series of synchrotron radiation CD spectra and their related 3D structures from the PDB. The results of our knowledge-based CD method (KCD) are in good agreement with measured spectra that could include the effect of D-amino acids. Our method also delivers some of the most accurate predictions, in comparison with the calculated spectra from well-established models. Specifically, using a metric of closeness based on normalized absolute deviations between experimental and calculated spectra, the mean values for a series of 57 test proteins give the following figures for such models: 0.26 KCD, 0.27 PDBMD2CD, 0.30 SESCA, and 0.47 DichroCalc. From another point of view, it is worth mentioning the remarkable capabilities of the recent approaches based on artificial intelligence, which can precisely predict the native structure of proteins. The structure of proteins, however, is flexible and can be modified by a diversity of environmental factors such as interactions with other molecules, mechanical stresses, variations of temperature, pH, or ionic strength. Experimental CD spectra together with reliable predictions can be utilized to assess eventual secondary structural changes. A similar kind of evaluation can be done for the case of an incomplete protein structure that has been reconstructed by using different approaches. The KCD method can be freely accessed from: https://kcd.cinvestav.mx/.
Collapse
Affiliation(s)
- Damián Jacinto‐Méndez
- Departamento de FísicaCentro de Investigación y de Estudios Avanzados del IPNMexico CityMexico
| | | | | |
Collapse
|
16
|
Hoyos-Gonzalez N, Ochoa-Leyva A, Benitez-Cardoza CG, Brieba LG, Lukaszewicz G, Trasviña-Arenas CH, Sotelo-Mundo RR. Identification of a cryptic functional apolipophorin-III domain within the Prominin-1 gene of Litopenaeus vannamei. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110928. [PMID: 38043730 DOI: 10.1016/j.cbpb.2023.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
The Apolipophorin-III (apoLp-III) is reported as an essential protein element in lipids transport and incorporation in lepidopterans. Structurally, apoLp-III has an α-helix bundle structure composed of five α-helices. Interestingly, classic studies proposed a structural switch triggered by its interaction with lipids, where the α-helix bundle opens. Currently, the study of the apoLp-III has been limited to insects, with no homologs identified in other arthropods. By implementing a structure-based search with the Phyre2 algorithm surveying the shrimp Litopenaeus vannamei's transcriptome, we identified a putative apoLp-III in this farmed penaeid (LvApoLp-III). Unlike canonical apoLp-III, the LvApoLp-III was identified as an internal domain within the transmembrane protein Prominin-1. Structural modeling using the template-based Phyre2 and template-free AlphaFold algorithms rendered two distinct structural topologies: the α-helix bundle and a coiled-coil structure. Notably, the secondary structure composition on both models was alike, with differences in the orientation and distribution of the α-helices and hydrophobic moieties. Both models provide insights into the classical structural switch induced by lipids in apoLp-III. To corroborate structure/function inferences, we cloned the synthetic LvApoLp-III domain, overexpressed, and purified the recombinant protein. Circular dichroism measurements with the recombinant LvApoLp-III agreed with the structural models. In vitro liposome interaction demonstrated that the apoLp-III domain within the PROM1 of L.vannamei associated similarly to exchangeable apolipoproteins. Altogether, this work reports the presence of an apolipophorin-III domain in crustaceans for the first time and opens questions regarding its function and importance in lipid metabolism or the immune system.
Collapse
Affiliation(s)
- Nallely Hoyos-Gonzalez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, Mexico. https://twitter.com/uga_langebio
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico. https://twitter.com/ibt_unam
| | - Claudia G Benitez-Cardoza
- Laboratorio de Bioquímica y Biofísica Computacional, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico. https://twitter.com/IPN_mx
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, Mexico. https://twitter.com/uga_langebio
| | - German Lukaszewicz
- Instituto de Investigaciones Marinas y Costeras, IIMyC, FCEyN, UNMdP, CONICET, Mar del Plata B7608FBY, Argentina. https://twitter.com/fceyn_unmdp
| | - Carlos H Trasviña-Arenas
- Centro de Investigación sobre Envejecimiento, Centro de Investigación y de Estudios Avanzados (CINVESTAV) Unidad Sede Sur, Tlalpan, 14330 Mexico City, Mexico.
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C., Ejido La Victoria, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
17
|
Kinkar OU, Singh R, Prashar A, Kumar A, Hire RS, Makde RD. 20-kDa accessory protein (P20) from Bacillus thuringiensis subsp. israelensis ISPC-12: Purification, characterization, solution scattering and structural analysis. Int J Biol Macromol 2024; 254:127985. [PMID: 37949263 DOI: 10.1016/j.ijbiomac.2023.127985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The 20-kDa accessory protein (P20) from Bacillus thuringiensis subsp. israelensis (Bti) has been identified as an essential molecular chaperone in the enhancement of Cry11Aa and Cyt1Aa toxins production and their bio-crystallization. Additionally, P20 plays a vital role in suppressing the toxic effect of Cyt toxin on the host bacterium and also enhances insecticidal activity of Cry1Ac protein. Thus, the function of P20 is more specific than that of the chaperones. However, P20 is poorly investigated and insufficiently characterized. In the present study, we recombinantly expressed p20 from local isolate Bti ISPC-12 in heterologous bacterium E. coli and P20 protein was purified to homogeneity. Detailed biochemical and biophysical characterization provides crucial insights about in-vitro behavior as well as spatial conformations of P20 protein. Further, structural modelling and analysis provides insights into three-dimensional organization of the protein and shows that P20 is a non-toxic member of cytolytic (Cyt) toxin family similar to Cyt1Ca, with presence of conserved cytolysin fold. Additionally, solution scattering reveals that P20 is present as a dimer in the solution and probable dimeric assembly of P20 is presented. The findings reported here reveal engaging facts about P20 thereby advancing our understanding about this protein, which will expedite future studies.
Collapse
Affiliation(s)
- Omkar U Kinkar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Rahul Singh
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Arpit Prashar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Ramesh S Hire
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Ravindra D Makde
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
18
|
Ham D, Ahn D, Chung C, Chung KY. Isolation and conformational analysis of the Gα α-helical domain. Biochem Biophys Res Commun 2023; 685:149153. [PMID: 37913692 DOI: 10.1016/j.bbrc.2023.149153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Heterotrimeric G proteins (G proteins), composed of Gα, Gβ, and Gγ subunits, are the major downstream signaling molecules of the G protein-coupled receptors. Upon activation, Gα undergoes conformational changes both in the Ras-like domain (RD) and the α-helical domain (AHD), leading to the dissociation of Gα from Gβγ and subsequent regulation of downstream effector proteins. Gα RD mediate the most of classical functions of Gα. However, the role of Gα AHD is relatively not well elucidated despite its much higher sequence differences between Gα subtypes than those between Gα RD. Here, we isolated AHD from Gαs, Gαi1, and Gαq to provide tools for examining Gα AHD. We investigated the conformational dynamics of the isolated Gα AHD compared to those of the GDP-bound Gα. The results showed higher local conformational dynamics of Gα AHD not only at the domain interfaces but also in regions further away from the domain interfaces. This finding is consistent with the conformation of Gα AHD in the receptor-bound nucleotide-free state. Therefore, the isolated Gα AHD could provide a platform for studying the functions of Gα AHD, such as identification of the Gα AHD-binding proteins.
Collapse
Affiliation(s)
- Donghee Ham
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghoon Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chiwoon Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
19
|
Janes RW, Wallace BA. DichroPipeline: A suite of online and downloadable tools and resources for protein circular dichroism spectroscopic data analyses, interpretations, and their interoperability with other bioinformatics tools and resources. Protein Sci 2023; 32:e4817. [PMID: 37881887 PMCID: PMC10680340 DOI: 10.1002/pro.4817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Circular Dichroism (CD) spectroscopy is a widely-used method for characterizing individual protein structures in solutions, membranes, films and macromolecular complexes, as well as for probing macromolecular interactions, conformational changes associated with binding substrates, and in different functionally-related environments. This paper describes a series of related computational and display tools that have been developed over many years to aid in those characterizations and functional interpretations. The new DichroPipeline described herein links a series of format-compatible data processing, analysis, and display tools to enable users to facilely produce the spectra, which can then be made available in the Protein Circular Dichroism Data Bank (https://pcddb.cryst.bbk.ac.uk/) resource, in which the CD spectral and associated metadata for each entry are linked to other structural and functional data bases including the Protein Data Bank (PDB), and the UniProt sequence data base, amongst others. These tools and resources thus provide the basis for a wide range of traceable structural characterizations of soluble, membrane and intrinsically-disordered proteins.
Collapse
Affiliation(s)
- Robert W. Janes
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - B. A. Wallace
- School of Biological SciencesBirkbeck University of LondonLondonUK
| |
Collapse
|
20
|
Dhar R, Bowman AM, Hatungimana B, Sg Slusky J. Evolutionary Engineering a Larger Porin Using a Loop-to-Hairpin Mechanism. J Mol Biol 2023; 435:168292. [PMID: 37769963 PMCID: PMC11215794 DOI: 10.1016/j.jmb.2023.168292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane β-barrels, duplication is visible with β-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane β-barrels. Specifically, the topology of some 16- and 18-stranded β-barrels appear to have evolved through a loop to β-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded β-barrel and an evolutionarily related 16-stranded β-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane β-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to β-hairpin transition.
Collapse
Affiliation(s)
- Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA. https://twitter.com/Rik_Skywalker
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Brunojoel Hatungimana
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Joanna Sg Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA; Computational Biology Program, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
21
|
Dhar R, Bowman AM, Hatungimana B, Slusky JS. Evolutionary engineering a larger porin using a loop-to-hairpin mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544993. [PMID: 37398247 PMCID: PMC10312768 DOI: 10.1101/2023.06.14.544993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane β-barrels, duplication is visible with β-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane β-barrels. Specifically, the topology of some 16- and 18-stranded β-barrels appear to have evolved through a loop to β-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded β-barrel and an evolutionarily related 16-stranded β-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane β-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to β-hairpin transition. Highlights We find evidence supporting a novel diversification mechanism in membrane β-barrelsThe mechanism is the conversion of an extracellular loop to transmembrane β-hairpinA chimeric protein modeling this mechanism folds stably in the membraneThe chimera has more β-structure and a larger pore, consistent with a loop-to-hairpin transition.
Collapse
Affiliation(s)
- Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
| | | | - Joanna Sg Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
- Computational Biology Program, The University of Kansas, Lawrence KS 66047
| |
Collapse
|
22
|
Krokengen OC, Raasakka A, Kursula P. The intrinsically disordered protein glue of the myelin major dense line: Linking AlphaFold2 predictions to experimental data. Biochem Biophys Rep 2023; 34:101474. [PMID: 37153862 PMCID: PMC10160357 DOI: 10.1016/j.bbrep.2023.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Abstract
Numerous human proteins are classified as intrinsically disordered proteins (IDPs). Due to their physicochemical properties, high-resolution structural information about IDPs is generally lacking. On the other hand, IDPs are known to adopt local ordered structures upon interactions with e.g. other proteins or lipid membrane surfaces. While recent developments in protein structure prediction have been revolutionary, their impact on IDP research at high resolution remains limited. We took a specific example of two myelin-specific IDPs, the myelin basic protein (MBP) and the cytoplasmic domain of myelin protein zero (P0ct). Both of these IDPs are crucial for normal nervous system development and function, and while they are disordered in solution, upon membrane binding, they partially fold into helices, being embedded into the lipid membrane. We carried out AlphaFold2 predictions of both proteins and analysed the models in light of experimental data related to protein structure and molecular interactions. We observe that the predicted models have helical segments that closely correspond to the membrane-binding sites on both proteins. We furthermore analyse the fits of the models to synchrotron-based X-ray scattering and circular dichroism data from the same IDPs. The models are likely to represent the membrane-bound state of both MBP and P0ct, rather than the conformation in solution. Artificial intelligence-based models of IDPs appear to provide information on the ligand-bound state of these proteins, instead of the conformers dominating free in solution. We further discuss the implications of the predictions for mammalian nervous system myelination and their relevance to understanding disease aspects of these IDPs.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, Oulu, Finland
| |
Collapse
|
23
|
Kinkar OU, Prashar A, Yadav B, Kumar A, Hadapad AB, Hire RS, Makde RD. Purification, characterization and proteolytic processing of mosquito larvicidal protein Cry11Aa from Bacillus thuringensis subsp. isralensis ISPC-12. Int J Biol Macromol 2023:124979. [PMID: 37245748 DOI: 10.1016/j.ijbiomac.2023.124979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Cry11Aa is the most potent mosquito larvicidal protein of Bacillus thuringiensis subsp. israelensis (Bti). Development of resistance against insecticidal proteins including Cry11Aa is known but no field resistance was observed with Bti. The phenomenon of increasing resistance in insect pests necessitates the development of new strategies and techniques to enhance efficacy of insecticidal proteins. Recombinant technology offers better control over the molecule and allows modification of protein to achieve maximal effect against target pests. In this study, we standardised protocol for recombinant purification of Cry11Aa. Recombinant Cry11Aa found active against larvae of Aedes and Culex mosquito species and LC50 were estimated. Detailed biophysical characterization provides crucial insights into stability and in-vitro behaviour of the recombinant Cry11Aa. Moreover, trypsin hydrolysis doesn't improve overall toxicity of recombinant Cry11Aa. Proteolytic processing suggests domain I and II are more prone to proteolysis in comparison to domain III. Significance of structural features for proteolysis of Cry11Aa was observed after performing molecular dynamics simulations. Findings reported here are contributing significantly in method for purification, understanding in-vitro behaviour and proteolytic processing of Cry11Aa which could facilitate in efficient utilisation of Bti for insect pests and vectors control.
Collapse
Affiliation(s)
- Omkar U Kinkar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Arpit Prashar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Beena Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Ashok B Hadapad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Ramesh S Hire
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Ravindra D Makde
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
24
|
Adjuvant effect of mesoporous silica SBA-15 on anti-diphtheria and anti-tetanus humoral immune response. Biologicals 2022; 80:18-26. [DOI: 10.1016/j.biologicals.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/25/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
|
25
|
Kinkar OU, Prashar A, Kumar A, Hadapad AB, Hire RS, Makde RD. Txp40, an insecticidal toxin protein from Xenorhabdus nematophila: Purification, toxicity assessment and biophysical characterization. Toxicon 2022; 218:40-46. [PMID: 36096207 DOI: 10.1016/j.toxicon.2022.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Txp40 is a ubiquitous toxin from Xenorhabdus and Photorhabdus bacteria, exhibits insecticidal activity against a wide range of insect pests belonging to Lepidoptera and Diptera orders. Initially, Txp40 affects midgut of the target insect and further damages some other tissues like fat bodies but the detailed mode of action is not known. Txp40 shares no significant sequence match to any proteins with known structure or function, suggesting that it is a novel type of insecticidal toxin. Here, we report purification, toxicity and biophysical characterization of the Txp40b toxin from X. nematophila (ATCC, 19061). The recombinant Txp40b was found toxic to Galleria mellonella larvae with LD50 of 30.42 ng larva-1. Circular dichroism spectroscopy revealed that purified Txp40b is an α-helix rich protein with a relatively lower melting temperature of 45 °C. In-silico model generated suggests two domain structure of Txp40b toxin. Detailed structural analysis of Txp40b will provide new insights about the mode of action and possibly it would illustrate a new domain and/or motif in the area of insecticidal proteins.
Collapse
Affiliation(s)
- Omkar U Kinkar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Arpit Prashar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashwani Kumar
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ashok B Hadapad
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ramesh S Hire
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| | - Ravindra D Makde
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, Maharashtra, India; Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, Maharashtra, India.
| |
Collapse
|
26
|
Rogers DM, Do H, Hirst JD. Electronic circular dichroism of proteins computed using a diabatisation scheme. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- David M. Rogers
- School of Chemistry, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Hainam Do
- Department of Chemical and Environmental Engineering and Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, People’s Republic of China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo, People’s Republic of China
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham, United Kingdom
| |
Collapse
|
27
|
Effect of ultrasonication on the protein–polysaccharide complexes: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Xu Z, Khan S, Schnicker NJ, Baker S. Pentameric assembly of the Kv2.1 tetramerization domain. Acta Crystallogr D Struct Biol 2022; 78:792-802. [PMID: 35647925 PMCID: PMC9159280 DOI: 10.1107/s205979832200568x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
The Kv family of voltage-gated potassium channels regulate neuronal excitability. The biophysical characteristics of Kv channels can be matched to the needs of different neurons by forming homotetrameric or heterotetrameric channels within one of four subfamilies. The cytoplasmic tetramerization (T1) domain plays a major role in dictating the compatibility of different Kv subunits. The only Kv subfamily lacking a representative structure of the T1 domain is the Kv2 family. Here, X-ray crystallography was used to solve the structure of the human Kv2.1 T1 domain. The structure is similar to those of other T1 domains, but surprisingly formed a pentamer instead of a tetramer. In solution the Kv2.1 T1 domain also formed a pentamer, as determined by inline SEC-MALS-SAXS and negative-stain electron microscopy. The Kv2.1 T1-T1 interface involves electrostatic interactions, including a salt bridge formed by the negative charges in a previously described CDD motif, and inter-subunit coordination of zinc. It is shown that zinc binding is important for stability. In conclusion, the Kv2.1 T1 domain behaves differently from the other Kv T1 domains, which may reflect the versatility of Kv2.1, which can assemble with the regulatory KvS subunits and scaffold ER-plasma membrane contacts.
Collapse
Affiliation(s)
- Zhen Xu
- Protein and Crystallography Facility, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Saif Khan
- Protein and Crystallography Facility, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | - Sheila Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| |
Collapse
|
29
|
Zhao Y, Rai J, Xu C, He H, Li H. Artificial intelligence-assisted cryoEM structure of Bfr2-Lcp5 complex observed in the yeast small subunit processome. Commun Biol 2022; 5:523. [PMID: 35650250 PMCID: PMC9160021 DOI: 10.1038/s42003-022-03500-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome is maturated through an elaborate process that includes modification, processing and folding of pre-ribosomal RNA (pre-rRNAs) by a series of ribosome assembly intermediates. More than 70 factors participate in the dynamic assembly and disassembly of the small subunit processome (90S) inside nucleolus, leading to the early maturation of small subunit. The 5' domain of the 18S rRNA is the last to be incorporated into the stable 90S prior to the cleavage of pre-rRNA at the A1 site. This step is facilitated by the Kre33-Enp2-Bfr2-Lcp5 protein module with the participation of the DEAD-box protein Dbp4. Though structures of Kre33 and Enp2 have been modeled in previously observed 90S structures, that of Bfr2-Lcp5 complex remains unavailable. Here, we report an AlphaFold-assisted structure determination of the Bfr2-Lcp5 complex captured in a 3.99 Å - 7.24 Å cryoEM structure of 90S isolated from yeast cells depleted of Pih1, a chaperone protein of the 90S core assembly. The structure model is consistent with the protein-protein interaction results and the secondary structures of recombinant Bfr2 and Bfr2-Lcp5 complex obtained by Circular Dichroism. The Bfr2-Lcp5 complex interaction mimics that of exosome factors Rrp6-Rrp47 and acts to regulate 90S transitions.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Chong Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
30
|
Boyd RJ, Olson TL, Zook JD, Stein D, Aceves M, Lin WH, Craciunescu FM, Hansen DT, Anastasiadis PZ, Singharoy A, Fromme P. Characterization and computational simulation of human Syx, a RhoGEF implicated in glioblastoma. FASEB J 2022; 36:e22378. [PMID: 35639414 PMCID: PMC9262375 DOI: 10.1096/fj.202101808rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein‐protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co‐elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic—Diffuse B‐cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.
Collapse
Affiliation(s)
- Ryan J Boyd
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Tien L Olson
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - James D Zook
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Derek Stein
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Manuel Aceves
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Felicia M Craciunescu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA.,Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, USA
| | | | - Abhishek Singharoy
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
31
|
Gomes Ramalli S, John Miles A, Janes RW, Wallace BA. The PCDDB (Protein Circular Dichroism Data Bank): A Bioinformatics Resource for Protein Characterisations and Methods Development. J Mol Biol 2022; 434:167441. [PMID: 34999124 DOI: 10.1016/j.jmb.2022.167441] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
The Protein Circular Dichroism Data Bank (PCDDB) [https://pcddb.cryst.bbk.ac.uk] is an established resource for the biological, biophysical, chemical, bioinformatics, and molecular biology communities. It is a freely-accessible repository of validated protein circular dichroism (CD) spectra and associated sample and other metadata, with entries having links to other bioinformatics resources including, amongst others, structure (PDB) and sequence (UniProt) databases, as well as to published papers which produced the data and cite the database entries. It includes primary (unprocessed) and final (processed) spectral data, which are available in both text and pictorial formats, as well as detailed sample and validation information produced for each of the entries. Recently the metadata content associated with each of the entries, as well as the number and structural breadth of the protein components included, have been expanded. The PCDDB includes data on both wild-type and mutant proteins, and because CD studies primarily examine proteins in solution, it also contains examples of the effects of different environments on their structures, plus thermal unfolding/folding series. Methods for both sequence and spectral comparisons are included. The data included in the PCDDB complement results from crystal, cryo-electron microscopy, NMR spectroscopy, bioinformatics characterisations and classifications, and other structural information available for the proteins via links to other databases. The entries in the PCDDB have been used for the development of new analytical methodologies, for interpreting spectral and other biophysical data, and for providing insight into structures and functions of individual soluble and membrane proteins and protein complexes.
Collapse
Affiliation(s)
- Sergio Gomes Ramalli
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Andrew John Miles
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Robert W Janes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
32
|
Russo L, Salzano G, Corvino A, Bistaffa E, Moda F, Celauro L, D'Abrosca G, Isernia C, Milardi D, Giachin G, Malgieri G, Legname G, Fattorusso R. Structural and dynamical determinants of a β-sheet-enriched intermediate involved in amyloid fibrillar assembly of human prion protein. Chem Sci 2022; 13:10406-10427. [PMID: 36277622 PMCID: PMC9473526 DOI: 10.1039/d2sc00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
The conformational conversion of the cellular prion protein (PrPC) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, via Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90–231) thermal unfolding and characterize the conformational equilibrium between its native structure and a β-enriched intermediate state, named β-PrPI. By comparing the folding mechanisms of metal-free and Cu2+-bound HuPrP(23–231) and HuPrP(90–231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated μs–ms dynamics that in turn modulate the folding process. Moreover, via thioflavin T (ThT)-fluorescence fibrillization assays we show that β-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the β-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions. The N-ter domain in HuPrP regulates the folding mechanism by tuning the long-range μs–ms dynamics. Removal of the N-ter domain triggers the formation of a stable β-enriched intermediate state inducing amyloid aggregates with HuPrPSc seeding activity.![]()
Collapse
Affiliation(s)
- Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giulia Salzano
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Andrea Corvino
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography, National Research Council, Catania, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, Padova, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli, Caserta, Italy
| |
Collapse
|
33
|
Machimbirike VI, Pornputtapong N, Senapin S, Wangkahart E, Srisapoome P, Khunrae P, Rattanarojpong T. A multi-epitope chimeric protein elicited a strong antibody response and partial protection against Edwardsiella ictaluri in Nile tilapia. JOURNAL OF FISH DISEASES 2022; 45:1-18. [PMID: 34472110 DOI: 10.1111/jfd.13525] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Edwardsiella ictaluri infects several fish species and protection of the all the susceptible fish hosts from the pathogen using a monovalent vaccine is impossible because the species is composed of host-based genotypes that are genetic, serological and antigenic heterogenous. Here, immunoinformatic approach was employed to design a cross-immunogenic chimeric EiCh protein containing multi-epitopes. The chimeric EiCh protein is composed of 11 B-cell epitopes and 7 major histocompatibility complex class II epitopes identified from E. ictaluri immunogenic proteins previously reported. The 49.32 kDa recombinant EiCh protein was expressed in vitro in Escherichia coli BL-21 (DE3) after which inclusion bodies were successfully solubilized and refolded. Ab initio protein modelling revealed secondary and tertiary structures. Secondary structure was confirmed by circular dichroism spectroscopy. Antigenicity of the chimeric EiCh protein was exhibited by strong reactivity with serum from striped catfish and Nile tilapia experimentally infected with E. ictaluri. Furthermore, immunogenicity of the chimeric EiCh protein was investigated in vivo in Nile tilapia juveniles and it was found that the protein could strongly induce production of specific antibodies conferring agglutination activity and partially protected Nile tilapia juveniles with a relative survival percentage (RPS) of 42%. This study explored immunoinformatics as reverse vaccinology approach in vaccine design for aquaculture to manage E. ictaluri infections.
Collapse
Affiliation(s)
- Vimbai Irene Machimbirike
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Natapol Pornputtapong
- Department of Biochemistry and Microbiology, Faculty of Medicine, Faculty of Pharmaceutical Sciences and Center of Excellence in Systems Biology, Chulalongkorn University, Bangkok, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Faculty of Science, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Eakapol Wangkahart
- Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
34
|
Granados-Ramírez CG, Carbajal-Tinoco MD. Knowledge-Based Atomic Polarizabilities Used to Model Circular Dichroism Spectra of Proteins. J Phys Chem B 2021; 126:80-92. [PMID: 34971307 DOI: 10.1021/acs.jpcb.1c08183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a model of circular dichroism for proteins, which is mainly based on both the classical theory of optical activity and a series of effective atomic polarizabilities. Such polarizabilities are extracted from the analysis of a set of synchrotron radiation circular dichroism spectra and their corresponding three-dimensional structures from the Protein Data Bank. Each modeled spectrum is obtained from the protein atomic coordinates and the identification of its secondary structure elements. The resulting spectra are in good agreement with additional experimental data and also with the predictions of some other models. Among them, only our approach is able to describe the effect of d-amino acids. Moreover, our model is also utilized to evaluate protein reconstructions as well as structural changes.
Collapse
Affiliation(s)
- Carmen Giovana Granados-Ramírez
- Facultad de Ciencias y Educación PCLQ, Universidad Distrital Francisco José de Caldas, Car. 3 No. 26A - 40, C.P. 110311 Bogotá D.C., Colombia
| | - Mauricio D Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, C.P. 07360 Cd. de México, Mexico
| |
Collapse
|
35
|
Franco Cairo JPL, Almeida DV, Damasio A, Garcia W, Squina FM. The periplasmic expression and purification of AA15 lytic polysaccharide monooxygenases from insect species in Escherichia coli. Protein Expr Purif 2021; 190:105994. [PMID: 34655732 DOI: 10.1016/j.pep.2021.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are metalloenzymes that cleave structural polysaccharides through an oxidative mechanism. The enzymatic activity of LPMOs relies on the presence of a Cu2+ histidine-brace motif in their flat catalytic surface. Upon reduction by an external electron donor and in the presence of its co-substrates, O2 or H2O2, LPMOs can generate reactive oxygen species to oxidize the substrates. Fungal and bacterial LPMOs are involved in the catabolism of polysaccharides, such as chitin, cellulose, and hemicelluloses, and virulence mechanisms. Based on the reports on the discovery of LPMOs from the family AA15 in termites, firebrats, and flies, the functional role of the LPMO in the biosphere could expand, as these enzymes may be correlated with chitin remodeling and molting in insects. However, there is limited knowledge of AA15 LPMOs due to difficulties in recombinant expression of soluble proteins and purification protocols. In this study, we describe a protocol for the cloning, expression, and purification of insect AA15 LPMOs from Arthropoda, mainly from termites, followed by the expression and purification of an AA15 LPMO from the silkworm Bombyx mori, which contains a relatively high number of disulfide bonds. We also report the recombinant expression and purification of a protein with homology to AA15 family from the western European honeybee Apis mellifera, an LPMO-like enzyme lacking the canonical histidine brace. Therefore, this work can support future studies concerning the role of LPMOs in the biology of insects and inspire molecular entomologists and insect biochemists in conducting activities in this field.
Collapse
Affiliation(s)
- João Paulo L Franco Cairo
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Programa de Processos Tecnológicos da Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Dnane V Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Fabio M Squina
- Programa de Processos Tecnológicos da Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
36
|
Dingfelder F, Macocco I, Benke S, Nettels D, Faccioli P, Schuler B. Slow Escape from a Helical Misfolded State of the Pore-Forming Toxin Cytolysin A. JACS AU 2021; 1:1217-1230. [PMID: 34467360 PMCID: PMC8397351 DOI: 10.1021/jacsau.1c00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 05/12/2023]
Abstract
The pore-forming toxin cytolysin A (ClyA) is expressed as a large α-helical monomer that, upon interaction with membranes, undergoes a major conformational rearrangement into the protomer conformation, which then assembles into a cytolytic pore. Here, we investigate the folding kinetics of the ClyA monomer with single-molecule Förster resonance energy transfer spectroscopy in combination with microfluidic mixing, stopped-flow circular dichroism experiments, and molecular simulations. The complex folding process occurs over a broad range of time scales, from hundreds of nanoseconds to minutes. The very slow formation of the native state occurs from a rapidly formed and highly collapsed intermediate with large helical content and nonnative topology. Molecular dynamics simulations suggest pronounced non-native interactions as the origin of the slow escape from this deep trap in the free-energy surface, and a variational enhanced path-sampling approach enables a glimpse of the folding process that is supported by the experimental data.
Collapse
Affiliation(s)
- Fabian Dingfelder
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Iuri Macocco
- Department
of Physics, Trento University, Via Sommarive 14, 38123 Povo (Trento), Italy
- SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Stephan Benke
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Nettels
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Pietro Faccioli
- Department
of Physics, Trento University, Via Sommarive 14, 38123 Povo (Trento), Italy
- INFN-TIFPA, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
37
|
Miles AJ, Janes RW, Wallace BA. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem Soc Rev 2021; 50:8400-8413. [PMID: 34132259 PMCID: PMC8328188 DOI: 10.1039/d0cs00558d] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 12/31/2022]
Abstract
Circular dichroism (CD) spectroscopy is a widely-used method in biochemistry, structural biology and pharmaceutical chemistry. More than 24 000 papers published in the past decade have included CD characterisations of proteins; many of those studies have also included other complementary chemical, biophysical, and computational chemistry methods. This tutorial review describes the background to the technique of CD spectroscopy and good practice methods for high quality data collection. It specifically focuses on both established and new methods and tools available for experimental design and interpretation, data processing, visualisation, analysis, validation, archiving, and accession, including tools developed to enhance the complementarity of this method with other structural and chemical biology studies.
Collapse
Affiliation(s)
- A. J. Miles
- Institute of Structural and Molecular Biology, Birkbeck University of LondonLondon WC1E 7HXUK
| | - Robert W. Janes
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon E1 4NSUK
| | - B. A. Wallace
- Institute of Structural and Molecular Biology, Birkbeck University of LondonLondon WC1E 7HXUK
| |
Collapse
|
38
|
Feng CJ, Sinitskiy A, Pande V, Tokmakoff A. Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. J Phys Chem B 2021; 125:4620-4633. [PMID: 33929849 DOI: 10.1021/acs.jpcb.1c00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have investigated the structure and conformational dynamics of insulin dimer using a Markov state model (MSM) built from extensive unbiased atomistic molecular dynamics simulations and performed infrared spectral simulations of the insulin MSM to describe how structural variation within the dimer can be experimentally resolved. Our model reveals two significant conformations to the dimer: a dominant native state consistent with other experimental structures of the dimer and a twisted state with a structure that appears to reflect a ∼55° clockwise rotation of the native dimer interface. The twisted state primarily influences the contacts involving the C-terminus of insulin's B chain, shifting the registry of its intermolecular hydrogen bonds and reorganizing its side-chain packing. The MSM kinetics predict that these configurations exchange on a 14 μs time scale, largely passing through two Markov states with a solvated dimer interface. Computational amide I spectroscopy of site-specifically 13C18O labeled amides indicates that the native and twisted conformation can be distinguished through a series of single and dual labels involving the B24F, B25F, and B26Y residues. Additional structural heterogeneity and disorder is observed within the native and twisted states, and amide I spectroscopy can also be used to gain insight into this variation. This study will provide important interpretive tools for IR spectroscopic investigations of insulin structure and transient IR kinetics experiments studying the conformational dynamics of insulin dimer.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Anton Sinitskiy
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Vijay Pande
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
39
|
Goncharuk MV, Lushpa VA, Goncharuk SA, Arseniev AS, Mineev KS. Sampling the cultivation parameter space for the bacterial production of TLR1 intracellular domain reveals the multiple optima. Protein Expr Purif 2021; 181:105832. [PMID: 33516826 DOI: 10.1016/j.pep.2021.105832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 10/25/2022]
Abstract
T7 expression system is an extremely popular approach for the recombinant protein production in Escherichia coli for structural and functional studies and therapeutic applications. There are many useful tools and successful techniques that allow expressing the desired protein in this system. However, high yield of soluble protein often requires a systematic optimization of a wide range of cell cultivation parameters. Here we analyze the effect of three key cultivation parameters - chemical inductor, temperature and time of post-induction culturing on the expression level of TLR1 intracellular TIR domain in a soluble form. In addition, the influence of Triton X-100 detergent on the protein solubility during the cell lysis was investigated. We show that a high expression level of the correctly folded soluble protein can be obtained under different combinations of cultivation parameters.
Collapse
Affiliation(s)
- Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia.
| | - Vladislav A Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia; Moscow Institute of Physics and Technology, 141701, Institutsky per, 9, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Miklukho-Maklaya str., 16/10, Moscow, Russia
| |
Collapse
|
40
|
Granados-Ramírez CG, Carbajal-Tinoco MD. Secondary structure specified polarizabilities of residues for an evaluation of circular dichroism spectra of proteins. J Chem Phys 2020; 153:155101. [DOI: 10.1063/5.0023360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Carmen Giovana Granados-Ramírez
- Facultad de Ciencias y Educación PCLQ, Universidad Distrital Francisco José de Caldas, Car. 3 No. 26A-40, C.P. 110311 Bogotá D.C., Colombia
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, C.P. 07360 Cd. de México, Mexico
| |
Collapse
|
41
|
Cárdenas R, Martínez-Seoane J, Amero C. Combining Experimental Data and Computational Methods for the Non-Computer Specialist. Molecules 2020; 25:E4783. [PMID: 33081072 PMCID: PMC7594097 DOI: 10.3390/molecules25204783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Experimental methods are indispensable for the study of the function of biological macromolecules, not just as static structures, but as dynamic systems that change conformation, bind partners, perform reactions, and respond to different stimulus. However, providing a detailed structural interpretation of the results is often a very challenging task. While experimental and computational methods are often considered as two different and separate approaches, the power and utility of combining both is undeniable. The integration of the experimental data with computational techniques can assist and enrich the interpretation, providing new detailed molecular understanding of the systems. Here, we briefly describe the basic principles of how experimental data can be combined with computational methods to obtain insights into the molecular mechanism and expand the interpretation through the generation of detailed models.
Collapse
Affiliation(s)
| | | | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico; (R.C.); (J.M.-S.)
| |
Collapse
|
42
|
Drew ED, Janes RW. PDBMD2CD: providing predicted protein circular dichroism spectra from multiple molecular dynamics-generated protein structures. Nucleic Acids Res 2020; 48:W17-W24. [PMID: 32343309 PMCID: PMC7319452 DOI: 10.1093/nar/gkaa296] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/29/2020] [Accepted: 04/25/2020] [Indexed: 01/27/2023] Open
Abstract
PDBMD2CD is a new web server capable of predicting circular dichroism (CD) spectra for multiple protein structures derived from molecular dynamics (MD) simulations, enabling predictions from thousands of protein atomic coordinate files (e.g. MD trajectories) and generating spectra for each of these structures provided by the user. Using MD enables exploration of systems that cannot be monitored by direct experimentation. Validation of MD-derived data from these types of trajectories can be difficult via conventional structure-determining techniques such as crystallography or nuclear magnetic resonance spectroscopy. CD is an experimental technique that can provide protein structure information from such conditions. The website utilizes a much faster (minimum ∼1000×) and more accurate approach for calculating CD spectra than its predecessor, PDB2CD (1). As well as improving on the speed and accuracy of current methods, new analysis tools are provided to cluster predictions or compare them against experimental CD spectra. By identifying a subset of the closest predicted CD spectra derived from PDBMD2CD to an experimental spectrum, the associated cluster of structures could be representative of those found under the conditions in which the MD studies were undertaken, thereby offering an analytical insight into the results. PDBMD2CD is freely available at: https://pdbmd2cd.cryst.bbk.ac.uk.
Collapse
Affiliation(s)
- Elliot D Drew
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Robert W Janes
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
43
|
Li Z, Hirst JD. Computed optical spectra of SARS-CoV-2 proteins. Chem Phys Lett 2020; 758:137935. [PMID: 33518776 PMCID: PMC7836526 DOI: 10.1016/j.cplett.2020.137935] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/03/2023]
Abstract
Calculated circular dichroism spectra in the far- and near-UV spectra. Calculated infra-red (IR) spectra in the amide I region. Based on experimental structures and computational models of SARS-CoV-2 proteins. Near-UV CD spectra offer greatest sensitivity to conformation.
Treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19, may well be predicated on knowledge of the structures of protein of this virus. However, often these cannot be determined easily or quickly. Herein, we provide calculated circular dichroism (CD) spectra in the far- and near-UV, and infra-red (IR) spectra in the amide I region for experimental structures and computational models of SARS-CoV-2 proteins. The near-UV CD spectra offer greatest sensitivity in assessing the accuracy of models.
Collapse
Affiliation(s)
- Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
44
|
Manne K, Chattopadhyay D, Agarwal V, Blom AM, Khare B, Chakravarthy S, Chang C, Ton-That H, Narayana SVL. Novel structure of the N-terminal helical domain of BibA, a group B streptococcus immunogenic bacterial adhesin. Acta Crystallogr D Struct Biol 2020; 76:759-770. [PMID: 32744258 PMCID: PMC7397492 DOI: 10.1107/s2059798320008116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BibA, a group B streptococcus (GBS) surface protein, has been shown to protect the pathogen from phagocytic killing by sequestering a complement inhibitor: C4b-binding protein (C4BP). Here, the X-ray crystallographic structure of a GBS BibA fragment (BibA126-398) and a low-resolution small-angle X-ray scattering (SAXS) structure of the full-length N-terminal domain (BibA34-400) are described. The BibA126-398 fragment crystal structure displayed a novel and predominantly helical structure. The tertiary arrangement of helices forms four antiparallel three-helix-bundle-motif repeats, with one long helix from a bundle extending into the next. Multiple mutations on recombinant BibA34-400 delayed the degradation of the protein, and circular dichroism spectroscopy of BibA34-400 suggested a similar secondary-structure composition to that observed in the crystallized BibA126-398 fragment. A model was generated for the 92 N-terminal residues (BibA34-125) using structural similarity prediction programs, and a BibA34-400 model was generated by combining the coordinates of BibA34-126 and BibA126-398. The X-ray structure of BibA126-398 and the model of BibA34-400 fitted well into the calculated SAXS envelope. One possible binding site for the BibA N-terminal domain was localized to the N-terminal CCP (complement-control protein) domains of the C4BP α-chain, as indicated by the decreased binding of BibA to a ΔCCP1 C4BP α-chain mutant. In summary, it is suggested that the GBS surface protein BibA, which consists of three antiparallel α-helical-bundle motifs, is unique and belongs to a new class of Gram-positive surface adhesins.
Collapse
Affiliation(s)
- Kartik Manne
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| | | | - Vaibhav Agarwal
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - Sthanam V. L. Narayana
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birningham, AL 35294, USA
| |
Collapse
|
45
|
Palomino-Hernandez O, Buratti FA, Sacco PS, Rossetti G, Carloni P, Fernandez CO. Role of Tyr-39 for the Structural Features of α-Synuclein and for the Interaction with a Strong Modulator of Its Amyloid Assembly. Int J Mol Sci 2020; 21:ijms21145061. [PMID: 32709107 PMCID: PMC7404028 DOI: 10.3390/ijms21145061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/03/2022] Open
Abstract
Recent studies suggest that Tyr-39 might play a critical role for both the normal function and the pathological dysfunction of α-synuclein (αS), an intrinsically disordered protein involved in Parkinson’s disease. We perform here a comparative analysis between the structural features of human αS and its Y39A, Y39F, and Y39L variants. By the combined application of site-directed mutagenesis, biophysical techniques, and enhanced sampling molecular simulations, we show that removing aromatic functionality at position 39 of monomeric αS leads to protein variants populating more compact conformations, conserving its disordered nature and secondary structure propensities. Contrasting with the subtle changes induced by mutations on the protein structure, removing aromaticity at position 39 impacts strongly on the interaction of αS with the potent amyloid inhibitor phthalocyanine tetrasulfonate (PcTS). Our findings further support the role of Tyr-39 in forming essential inter and intramolecular contacts that might have important repercussions for the function and the dysfunction of αS.
Collapse
Affiliation(s)
- Oscar Palomino-Hernandez
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; (O.P.-H.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 2121 Nicosia, Cyprus
- Institute of Life Science, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Fiamma A. Buratti
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina; (F.A.B.); (P.S.S.)
| | - Pamela S. Sacco
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina; (F.A.B.); (P.S.S.)
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; (O.P.-H.); (G.R.)
- Department of Oncology, Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany; (O.P.-H.); (G.R.)
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany
- Institute for Neuroscience and Medicine (INM-11) Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence: (P.C.); (C.O.F.); Tel.: +54-341-4237868 (ext. 752) (C.O.F)
| | - Claudio O. Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC) and Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, S2002LRK Rosario, Argentina; (F.A.B.); (P.S.S.)
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
- Correspondence: (P.C.); (C.O.F.); Tel.: +54-341-4237868 (ext. 752) (C.O.F)
| |
Collapse
|
46
|
Lima AM, Barros NLF, Freitas ACO, Tavares LSC, Pirovani CP, Siqueira AS, Gonçalves EC, de Souza CRB. A new Piper nigrum cysteine proteinase inhibitor, PnCPI, with antifungal activity: molecular cloning, recombinant expression, functional analyses and molecular modeling. PLANTA 2020; 252:16. [PMID: 32661769 DOI: 10.1007/s00425-020-03425-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A new Piper nigrum cysteine proteinase inhibitor, PnCPI, belonging to group I of phytocystatins, with inhibitory activity against papain and growth of Fusarium solani f. sp. piperis, was isolated and characterized. Previous studies (de Souza et al. 2011) have identified a partial cDNA sequence of putative cysteine proteinase inhibitor differentially expressed in roots of black pepper (P. nigrum L.) infected by F. solani f. sp. piperis. Here, we aimed to isolate the full-length cDNA and genomic sequences of the P. nigrum cysteine proteinase inhibitor gene, named PnCPI. Sequence analyses showed that the PnCPI gene encodes a deduced protein of 108 amino acid residues with a predicted molecular mass of 12.3 kDa and isoelectric point of 6.51. Besides the LARFAV-like sequence, common to all phytocystatins, PnCPI contains three conserved motifs of the superfamily cystatin: a glycine residue at the N-terminal region, the QxVxG reactive site more centrally positioned, and one tryptophan in the C-terminal region. PnCPI, belonging to group I of phytocystatins, showed high identity with cystatins isolated from several plant species. Sequence analyses also revealed no putative signal peptide at the N-terminal of PnCPI, as well as no introns within the genomic sequence corresponding to the PnCPI coding region. Molecular modeling showed the ability of PnCPI to interact with papain, while its inhibitory activity against this protease was confirmed after heterologous expression in Escherichia coli. The effects of heat treatments on the inhibitory activity of recombinant PnCPI, rPnCPI, were evaluated. In addition, rPnCPI exhibited in vitro activity against F. solani f. sp. piperis, revealing a new cystatin with the potential antifungal application. The identification of PnCPI as a functional cystatin able to inhibit the in vitro growth of F. solani f. sp. piperis indicates other factors contributing to in vivo susceptibility of black pepper to root rot disease.
Collapse
Affiliation(s)
- Aline Medeiros Lima
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
- Universidade Federal Rural da Amazônia, Tomé-Açu, PA, 68680-000, Brazil
| | - Nicolle Louise Ferreira Barros
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Ana Camila Oliveira Freitas
- Laboratório de Proteômica, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | | | - Carlos Priminho Pirovani
- Laboratório de Proteômica, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, Ilhéus, BA, 45662-900, Brazil
| | - Andrei Santos Siqueira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | | | | |
Collapse
|
47
|
Abstract
We present an atomistic force field for the azo-moiety of the photoswitchable FK-11-X peptide. We use the parameters to study the unfolding of the peptide through molecular dynamics simulations. The unfolded ensemble contains many different structures, ranging from a partially unfolded peptide to a fully unfolded structure. The averaged computed far-ultraviolet circular dichroism (CD) spectrum of the set of structures, which was simulated using the newly developed force field, agrees well with experiment. The rate of the simulated unfolding process was estimated to have a time constant of 5.80 ± 0.03 ns from the time evolution of the CD spectrum of the peptide, computed from the backbone conformations sampled over 40 simulated trajectories. Our estimated time constant is faster than, but not inconsistent with, previous experimental estimates from time-resolved infrared and optical rotatory dispersion spectroscopy.
Collapse
Affiliation(s)
- Francois Auvray
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
48
|
Sun X, Lai L. Protein Fibrils Formed by Rationally Designed α-Helical Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6126-6131. [PMID: 32419459 DOI: 10.1021/acs.langmuir.0c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibrillar structures of proteins play essential roles in normal life events as well as diseases. It is of great importance to understand the principles by which proteins organize into fibrils. Here, we report a rationally designed α-helical peptide that can aggregate into fibrils. Mutation studies indicate that the helicity of the peptide is crucial for fibril formation. Multiscale molecular dynamics simulations demonstrated that the peptide may assemble in a quasiregular pattern, which is different from both the coiled coil and cross-α structures reported before. Our study provides a new helical peptide design that produces a fibrillar structure and contributes to the understanding of fibrillar structures formed by α-helices.
Collapse
Affiliation(s)
- Xiangyu Sun
- BNLMS, and Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS, and Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Pathak S, Tripathi S, Deori N, Ahmad B, Verma H, Lokhande R, Nagotu S, Kale A. Effect of tetracycline family of antibiotics on actin aggregation, resulting in the formation of Hirano bodies responsible for neuropathological disorders. J Biomol Struct Dyn 2020; 39:236-253. [PMID: 31948361 DOI: 10.1080/07391102.2020.1717629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Actin, an ATPase superfamily protein, regulates some vital biological functions like cell locomotion, cytokinesis, synaptic plasticity and cell signaling in higher eukaryotes, and is dependent on the dynamics of actin polymerization process. Impaired regulation of actin polymerization has been implicated in the formation and deposition of rod-like paracrystalline structures called as Hirano bodies in neuronal cells of patients suffering from Alzheimer's disease, Pick's disease, Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. Aggregation of actin forming amorphous deposition in the brain cells is also associated with chronic alcoholism and aging of the neurons. In the current article, we propose the breaking of the highly amorphous and dysregulated actin aggregates using generic compounds like tetracycline, oxytetracycline, doxycycline and minocycline which are used as antibiotics against tuberculosis and infection caused due to various Gram-negative bacteria. We have investigated the effect and affinity of binding of these four compounds to that of actin aggregates using 90° light scattering, size exclusion chromatography, dynamic light scattering, circular dichroism, scanning electron microscopy, transmission electron microscopy imaging and kinetic analysis. The isothermal calorimetric measurements showed that the binding constant for the cycline family molecules used in this study range from 9.8 E4 M-1 to 1.3 E4 M-1. To understand the in vivo effect, we also studied the effect of these drugs on Saccharomyces cerevisiae Δend3 mutant cells. Our data suggest that these generic compounds can plausibly be used for the treatment of various neurodegenerative diseases occurring due to Hirano body formation in brain cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Sarita Tripathi
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Nayan Deori
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Basir Ahmad
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India.,Protein Assembly Laboratory, JH-Institute of Molecular Medicine, New Delhi, India
| | - Hriday Verma
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Rama Lokhande
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
50
|
Yao H, Sheng K, Sun J, Yan S, Hou Y, Lu H, Olsen BD. Secondary structure drives self-assembly in weakly segregated globular protein–rod block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01680e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imparting secondary structure to the polymer block can drive self-assembly in globular protein–helix block copolymers, increasing the effective segregation strength between blocks with weak or no repulsion.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Kai Sheng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jialing Sun
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Shupeng Yan
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Yingqin Hou
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Hua Lu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|