1
|
Formstone C, Aldeiri B, Davenport M, Francis‐West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2025; 254:102-141. [PMID: 39319771 PMCID: PMC11809137 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological SciencesUniversity of HertfordshireHatfieldUK
| | - Bashar Aldeiri
- Department of Paediatric SurgeryChelsea and Westminster HospitalLondonUK
| | - Mark Davenport
- Department of Paediatric SurgeryKing's College HospitalLondonUK
| | | |
Collapse
|
2
|
Lichtarge J, Cappuccio G, Pati S, Dei-Ampeh AK, Sing S, Ma L, Liu Z, Maletic-Savatic M. MetaboLINK is a novel algorithm for unveiling cell-specific metabolic pathways in longitudinal datasets. Front Neurosci 2025; 18:1520982. [PMID: 39872998 PMCID: PMC11769959 DOI: 10.3389/fnins.2024.1520982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction In the rapidly advancing field of 'omics research, there is an increasing demand for sophisticated bioinformatic tools to enable efficient and consistent data analysis. As biological datasets, particularly metabolomics, become larger and more complex, innovative strategies are essential for deciphering the intricate molecular and cellular networks. Methods We introduce a pioneering analytical approach that combines Principal Component Analysis (PCA) with Graphical Lasso (GLASSO). This method is designed to reduce the dimensionality of large datasets while preserving significant variance. For the first time, we applied the PCA-GLASSO algorithm (i.e., MetaboLINK) to metabolomics data derived from Nuclear Magnetic Resonance (NMR) spectroscopy performed on neural cells at various developmental stages, from human embryonic stem cells to neurons. Results The MetaboLINK analysis of longitudinal metabolomics data has revealed distinct pathways related to amino acids, lipids, and energy metabolism, uniquely associated with specific cell progenies. These findings suggest that different metabolic pathways play a critical role at different stages of cellular development, each contributing to diverse cellular functions. Discussion Our study demonstrates the efficacy of the MetaboLINK approach in analyzing NMR-based longitudinal metabolomic datasets, highlighting key metabolic shifts during cellular transitions. We share the methodology and the code to advance general 'omics research, providing a powerful tool for dissecting large datasets in neurobiology and other fields.
Collapse
Affiliation(s)
- Jared Lichtarge
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Gerarda Cappuccio
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Soumya Pati
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Alfred Kwabena Dei-Ampeh
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Senghong Sing
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, United States
- College of Natural Sciences and Mathematics, University of Houston, Houston, TX, United States
| | - LiHua Ma
- Shared Equipment Authority, Rice University, Houston, TX, United States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Bi Y, Huang N, Xu D, Wu S, Meng Q, Chen H, Li X, Chen R. Manganese exposure leads to depressive-like behavior through disruption of the Gln-Glu-GABA metabolic cycle. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135808. [PMID: 39288524 DOI: 10.1016/j.jhazmat.2024.135808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
There is a correlation between long-term manganese (Mn) exposure and the Parkinson's-like disease (PD), with depression as an early symptom of PD. However, the direct relationship between Mn exposure and depression, and the mechanisms involved, remain unclear. We found that Mn exposure led to depressive-like behavior and mild cognitive impairment in mice, with Mn primarily accumulating in the cornu ammonis 3 (CA3) area of the hippocampus. Mice displayed a reduction in neuronal dendritic spines and damage to astrocytes specifically in the CA3 area. Spatial metabolomics revealed that Mn downregulated glutamic acid decarboxylase 1 (GAD1) expression in astrocytes, disrupting the Glutamine-Glutamate-γ-aminobutyric acid (GlnGluGABA) metabolic cycle in the hippocampus, leading to neurotoxicity. We established an in vitro astrocyte Gad1 overexpression (OEX) model and found that the cultured medium from Gad1 OEX astrocytes reversed neuronal synaptic damage and the expression of gamma-aminobutyric acid (GABA) related receptors. Using the astrocyte Gad1 OEX mouse model, results showed that OEX of Gad1 ameliorated depressive-like behavior and cognitive dysfunction in mice. These findings provide new insight into the important role of GAD1 mediated GlnGluGABA metabolism disorder in Mn exposure induced depressive-like behavior. This study offers a novel sight to understanding abnormal emotional states following central nervous system damage induced by Mn exposure.
Collapse
Affiliation(s)
- Yujie Bi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Nannan Huang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Duo Xu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shenshen Wu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Qingtao Meng
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Hanqing Chen
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaobo Li
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases, Beijing Municipal Education Commission, Beijing 100069, China; Laboratory for Environmental Health and Allergic Nasal Diseases, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China; Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an 710032, China.
| |
Collapse
|
4
|
Hussein Y, Weisblum‐Neuman H, Ben Zeev B, Stern S. Previously defined variants of uncertain significance may play an important role in epilepsy and interactions between certain variants may become pathogenic. Epilepsia Open 2024; 9:2443-2453. [PMID: 39509559 PMCID: PMC11633689 DOI: 10.1002/epi4.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVE Epilepsy is a chronic neurological disorder related to various etiologies, and the prevalence of active epilepsy is estimated to be between 4 and 10 per 1000 individuals having a significant role in genetic mutations. Next-Generation Sequencing (NGS) panels are utilized for genetic testing, but a substantial proportion of the results remain uncertain and are not considered directly causative of epilepsy. This study aimed to reevaluate pediatric patients diagnosed with epilepsy who underwent genetic investigation using NGS panels, focusing on inconclusive variant findings or multiple variants of uncertain significance (VUSs). METHODS A subgroup of pediatric patients aged 0-25 years, diagnosed with epilepsy, who underwent genetic investigation with an NGS epilepsy panel at the Child Neurology Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, between 2018 and 2022 through Invitae, was reevaluated. Patients with inconclusive variant findings or multiple VUSs in their test results were included. Genetic data were analyzed to identify potentially pathogenic variants and frequent genetic combinations. RESULTS Two unrelated potentially pathogenic variants were identified in the SCN9A and QARS1 genes. A frequent genetic combination, RANBP2&RYR3, was also observed among other combinations. The RANBP2 gene consistently co-occurred with RYR3 variants in uncertain results, suggesting potential pathogenicity. Analysis of unaffected parents' data revealed certain combinations inherited from different parents, suggesting specific gene combinations as possible risk factors for the disease. SIGNIFICANCE This study highlights the importance of reevaluating genetic data from pediatric epilepsy patients with inconclusive variant findings or multiple VUSs. Identification of potentially pathogenic variants and frequent genetic combinations, such as RANBP2&RYR3, could aid in understanding the genetic basis of epilepsy and identifying potential hotspots. PLAIN LANGUAGE SUMMARY We have performed a retrospective analysis on a subpopulation of pediatric patients diagnosed with epilepsy. We found that specific genetic variants were repeatable, indicating their potential pathogenicity to the disease.
Collapse
Affiliation(s)
- Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| | - Hila Weisblum‐Neuman
- Pediatric Neurology Unit, The Edmond and Lily Safra Children's HospitalSheba Medical CenterRamat GanIsrael
| | - Bruria Ben Zeev
- Pediatric Neurology Unit, The Edmond and Lily Safra Children's HospitalSheba Medical CenterRamat GanIsrael
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural SciencesUniversity of HaifaHaifaIsrael
| |
Collapse
|
5
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
6
|
Iacomino M, Houerbi N, Fortuna S, Howe J, Li S, Scorrano G, Riva A, Cheng KW, Steiman M, Peltekova I, Yusuf A, Baldassari S, Tamburro S, Scudieri P, Musante I, Di Ludovico A, Guerrisi S, Balagura G, Corsello A, Efthymiou S, Murphy D, Uva P, Verrotti A, Fiorillo C, Delvecchio M, Accogli A, Elsabbagh M, Houlden H, Scherer SW, Striano P, Zara F, Chou TF, Salpietro V. Allelic heterogeneity and abnormal vesicle recycling in PLAA-related neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1268013. [PMID: 38650658 PMCID: PMC11033462 DOI: 10.3389/fnmol.2024.1268013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
The human PLAA gene encodes Phospholipase-A2-Activating-Protein (PLAA) involved in trafficking of membrane proteins. Through its PUL domain (PLAP, Ufd3p, and Lub1p), PLAA interacts with p97/VCP modulating synaptic vesicles recycling. Although few families carrying biallelic PLAA variants were reported with progressive neurodegeneration, consequences of monoallelic PLAA variants have not been elucidated. Using exome or genome sequencing we identified PLAA de-novo missense variants, affecting conserved residues within the PUL domain, in children affected with neurodevelopmental disorders (NDDs), including psychomotor regression, intellectual disability (ID) and autism spectrum disorders (ASDs). Computational and in-vitro studies of the identified variants revealed abnormal chain arrangements at C-terminal and reduced PLAA-p97/VCP interaction, respectively. These findings expand both allelic and phenotypic heterogeneity associated to PLAA-related neurological disorders, highlighting perturbed vesicle recycling as a potential disease mechanism in NDDs due to genetic defects of PLAA.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nadia Houerbi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Jennifer Howe
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Giovanna Scorrano
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Riva
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Mandy Steiman
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Iskra Peltekova
- McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Afiqah Yusuf
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Serena Tamburro
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, Sant'Annunziata Hospital, University "G. D'Annunzio", Chieti, Italy
| | - Sara Guerrisi
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Montreal Neurological Institute-Hospital, Azrieli Centre for Autism Research, McGill University, Montreal, QC, Canada
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Stephen W Scherer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, United States
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
7
|
Gefen AM, Zaritsky JJ. Review of childhood genetic nephrolithiasis and nephrocalcinosis. Front Genet 2024; 15:1381174. [PMID: 38606357 PMCID: PMC11007102 DOI: 10.3389/fgene.2024.1381174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Nephrolithiasis (NL) is a common condition worldwide. The incidence of NL and nephrocalcinosis (NC) has been increasing, along with their associated morbidity and economic burden. The etiology of NL and NC is multifactorial and includes both environmental components and genetic components, with multiple studies showing high heritability. Causative gene variants have been detected in up to 32% of children with NL and NC. Children with NL and NC are genotypically heterogenous, but often phenotypically relatively homogenous, and there are subsequently little data on the predictors of genetic childhood NL and NC. Most genetic diseases associated with NL and NC are secondary to hypercalciuria, including those secondary to hypercalcemia, renal phosphate wasting, renal magnesium wasting, distal renal tubular acidosis (RTA), proximal tubulopathies, mixed or variable tubulopathies, Bartter syndrome, hyperaldosteronism and pseudohyperaldosteronism, and hyperparathyroidism and hypoparathyroidism. The remaining minority of genetic diseases associated with NL and NC are secondary to hyperoxaluria, cystinuria, hyperuricosuria, xanthinuria, other metabolic disorders, and multifactorial etiologies. Genome-wide association studies (GWAS) in adults have identified multiple polygenic traits associated with NL and NC, often involving genes that are involved in calcium, phosphorus, magnesium, and vitamin D homeostasis. Compared to adults, there is a relative paucity of studies in children with NL and NC. This review aims to focus on the genetic component of NL and NC in children.
Collapse
Affiliation(s)
- Ashley M. Gefen
- Phoenix Children’s Hospital, Department of Pediatrics, Division of Nephrology, Phoenix, AZ, United States
| | | |
Collapse
|
8
|
Xie J, Wang Y, Ye C, Li XJ, Lin L. Distinctive Patterns of 5-Methylcytosine and 5-Hydroxymethylcytosine in Schizophrenia. Int J Mol Sci 2024; 25:636. [PMID: 38203806 PMCID: PMC10779130 DOI: 10.3390/ijms25010636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Schizophrenia is a highly heritable neuropsychiatric disorder characterized by cognitive and social dysfunction. Genetic, epigenetic, and environmental factors are together implicated in the pathogenesis and development of schizophrenia. DNA methylation, 5-methycytosine (5mC) and 5-hydroxylcytosine (5hmC) have been recognized as key epigenetic elements in neurodevelopment, ageing, and neurodegenerative diseases. Recently, distinctive 5mC and 5hmC pattern and expression changes of related genes have been discovered in schizophrenia. Antipsychotic drugs that affect 5mC status can alleviate symptoms in patients with schizophrenia, suggesting a critical role for DNA methylation in the pathogenesis of schizophrenia. Further exploring the signatures of 5mC and 5hmC in schizophrenia and developing precision-targeted epigenetic drugs based on this will provide new insights into the diagnosis and treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Li Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (J.X.); (Y.W.); (C.Y.); (X.-J.L.)
| |
Collapse
|
9
|
Chen Y, Ji X, Bao Z. Identification of the Shared Gene Signatures Between Alzheimer's Disease and Diabetes-Associated Cognitive Dysfunction by Bioinformatics Analysis Combined with Biological Experiment. J Alzheimers Dis 2024; 101:611-625. [PMID: 39213070 PMCID: PMC11492114 DOI: 10.3233/jad-240353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
Background The connection between diabetes-associated cognitive dysfunction (DACD) and Alzheimer's disease (AD) has been shown in several observational studies. However, it remains controversial as to how the two related. Objective To explore shared genes and pathways between DACD and AD using bioinformatics analysis combined with biological experiment. Methods We analyzed GEO microarray data to identify DEGs in AD and type 2 diabetes mellitus (T2DM) induced-DACD datasets. Weighted gene co-expression network analysis was used to find modules, while R packages identified overlapping genes. A robust protein-protein interaction network was constructed, and hub genes were identified with Gene ontology enrichment and Kyoto Encyclopedia of Genome and Genome pathway analyses. HT22 cells were cultured under high glucose and amyloid-β 25-35 (Aβ25-35) conditions to establish DACD and AD models. Quantitative polymerase chain reaction with reverse transcription verification analysis was then performed on intersection genes. Results Three modules each in AD and T2DM induced-DACD were identified as the most relevant and 10 hub genes were screened, with analysis revealing enrichment in pathways such as synaptic vesicle cycle and GABAergic synapse. Through biological experimentation verification, 6 key genes were identified. Conclusions This study is the first to use bioinformatics tools to uncover the genetic link between AD and DACD. GAD1, UCHL1, GAP43, CARNS1, TAGLN3, and SH3GL2 were identified as key genes connecting AD and DACD. These findings offer new insights into the diseases' pathogenesis and potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China
| | - Xueying Ji
- Department of General Practice, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Boussetta A, Abida N, Jellouli M, Ziadi J, Gargah T. Delayed Graft Function in Pediatric Kidney Transplant: Risk Factors and Outcomes. EXP CLIN TRANSPLANT 2024; 22:110-117. [PMID: 38385384 DOI: 10.6002/ect.mesot2023.o20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
OBJECTIVES We aimed to identify risk factors and outcomes of delayed graft function in pediatric kidney transplant. MATERIALS AND METHODS This retrospective study included all kidney transplant recipients ≤19 years old followed up in our department for a period of 34 years, from January 1989 to December 2022. RESULTS We included 113 kidney transplant recipients. Delayed graft function occurred in 17 cases (15%). Posttransplant red blood cell transfusion was strongly associated with delayed graft function (adjusted odds ratio = 23.91; 95% CI, 2.889-197.915). Use of allografts with multiple arteries and cold ischemia time >20 hours were risk factors for delayed graft function (adjusted odds ratio = 52.51 and 49.4; 95% CI, 2.576-1070.407 and 1.833-1334.204, respectively). Sex-matched transplants and living donors were protective factors for delayed graft function (adjusted odds ratio = 0.043 and 0.027; 95% CI, 0.005-0.344 and 0.003-0.247, respectively). Total HLA mismatches <3 played a protective role for delayed graft function (adjusted odds ratio = 0.114; 95% CI, 0.020-0.662), whereas transplant within compatible but different blood types increased the risk of delayed graft function (adjusted odds ratio = 20.54; 95% CI, 1.960- 215.263). No significant correlation was shown between delayed graft function and allograft survival (P = .190). Our study suggested delayed graft function as a key factor in allograft rejection-free survival (adjusted odds ratio = 3.832; 95% CI, 1.186-12.377). Delayed graft function was a negative factor for early graft function; patients with delayed graft function had a lower estimated glomerular filtration rate at discharge (P = .024) and at 3 (P = .034), 6 (P = .019), and 12 months (P = .011) posttransplant. CONCLUSIONS Delayed graft function is a major determinant of early graft function and allograft rejection-free survival. Further research is required to establish proper preventive measures.
Collapse
Affiliation(s)
- Abir Boussetta
- From the Pediatric Nephrology Department, Charles Nicolle Hospital and the University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
11
|
Scorrano G, Battaglia L, Spiaggia R, Basile A, Palmucci S, Foti PV, David E, Marinangeli F, Mascilini I, Corsello A, Comisi F, Vittori A, Salpietro V. Neuroimaging in PRUNE1 syndrome: a mini-review of the literature. Front Neurol 2023; 14:1301147. [PMID: 38178891 PMCID: PMC10764560 DOI: 10.3389/fneur.2023.1301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Prune exopolyphosphatase 1 (PRUNE1) is a short-chain phosphatase that is part of the aspartic acid-histidine-histidine (DHH) family of proteins. PRUNE1 is highly expressed in the central nervous system and is crucially involved in neurodevelopment, cytoskeletal rearrangement, cell migration, and proliferation. Recently, biallelic PRUNE1 variants have been identified in patients with neurodevelopmental disorders, hypotonia, microcephaly, variable cerebral anomalies, and other features. PRUNE1 hypomorphic mutations mainly affect the DHH1 domain, leading to an impactful decrease in enzymatic activity with a loss-of-function mechanism. In this review, we explored both the clinical and radiological spectrum related to PRUNE1 pathogenic variants described to date. Specifically, we focused on neuroradiological findings that, together with clinical phenotypes and genetic data, allow us to best characterize affected children with diagnostic and potential prognostic implications.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", Catania, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Mascilini
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
12
|
Battaglia L, Scorrano G, Spiaggia R, Basile A, Palmucci S, Foti PV, Spatola C, Iacomino M, Marinangeli F, Francia E, Comisi F, Corsello A, Salpietro V, Vittori A, David E. Neuroimaging features of WOREE syndrome: a mini-review of the literature. Front Pediatr 2023; 11:1301166. [PMID: 38161429 PMCID: PMC10757851 DOI: 10.3389/fped.2023.1301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L’aquila, L’aquila, Italy
| | - Elisa Francia
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
13
|
Scorrano G, D'Onofrio G, Accogli A, Severino M, Buchert R, Kotzaeridou U, Iapadre G, Farello G, Iacomino M, Dono F, Di Francesco L, Fiorile MF, La Bella S, Corsello A, Calì E, Di Rosa G, Gitto E, Verrotti A, Fortuna S, Soler MA, Chiarelli F, Oehl-Jaschkowitz B, Haack TB, Zara F, Striano P, Salpietro V. A PAK1 Mutational Hotspot Within the Regulatory CRIPaK Domain is Associated With Severe Neurodevelopmental Disorders in Children. Pediatr Neurol 2023; 149:84-92. [PMID: 37820543 DOI: 10.1016/j.pediatrneurol.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gianluca D'Onofrio
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Andrea Accogli
- Department of Medical Genetics, Montreal Children's Hospital, McGill University Health Centre (MUHC), Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Giulia Iapadre
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Farello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Ludovica Di Francesco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Chieti, Italy
| | - Antonio Corsello
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Elisa Calì
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | | | - Sara Fortuna
- Computational Modelling of Nanoscale and Biophysical Systems Laboratory (CONCEPT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Miguel A Soler
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | | | | | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genova, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
14
|
Roustaei B, Zarezadeh S, Ghotbi-Ravandi AA. A review on epilepsy, current treatments, and potential of medicinal plants as an alternative treatment. Neurol Sci 2023; 44:4291-4306. [PMID: 37581769 DOI: 10.1007/s10072-023-07010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Epilepsy is considered common neurological diseases that threaten the lives of millions of people all around the world. Since ancient times, different forms of medications have been used to treat this condition. Adverse events associated with treatments and the residence time of available drugs caused to search for safer and more efficient therapies and drugs remain one of the major areas of research interest for scientists. As one of the therapeutics with fewer side effects, plants and their essential oils can be considered replacements for existing treatments. Medicinal plants have proven to be an effective natural source of antiepileptic drugs; most of them have their mechanism of action by affecting GABA receptors in different paths. Cannabis indica and Cymbopogon winterianus are well-known plant species with antiepileptic activities. The current review presenting a list of plants with antiepileptic effects aims to pave the way for finding alternative drugs with fewer side effects for scientists.
Collapse
Affiliation(s)
- Bahar Roustaei
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
15
|
Ivlev AP, Naumova AA. Postnatal development of the hippocampal GABAergic system in rats genetically prone to audiogenic seizures. Int J Dev Neurosci 2023; 83:703-714. [PMID: 37655366 DOI: 10.1002/jdn.10298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023] Open
Abstract
Epileptogenesis can be associated with altered genetic control of the GABAergic system. Here we analyzed Krushinsky-Molodkina (KM) rats genetically prone to audiogenic epilepsy. KM rats express fully formed audiogenic seizures (AGSs) not early, then they reach 3 months. At the age of 1-2 months, KM rats either do not express AGS or demonstrate an incomplete pattern of seizure. Such long-term development of AGS susceptibility makes KM rats an especially convenient model to investigate the mechanisms and dynamics of the development of inherited epilepsy. The analysis of the GABAergic system of the hippocampus of KM rats was done during postnatal development at the 15th, 60th, and 120th postnatal days. Wistar rats of corresponding ages were used as a control. In the hippocampus of KM pups, we observed a decrease in the expression of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV), which points to a decrease in the activity of GABAergic neurons. Analysis of the 2-month-old KM rats showed an increase in GAD67 and PV expression while synapsin I and vesicular GABA transporter (VGAT) were decreased. In adult KM rats, the expression of GAD67, PV, and synapsin I was upregulated. Altogether, the obtained data indicate significant alterations in GABAergic transmission in the hippocampus of audiogenic KM rats during the first postnatal months.
Collapse
Affiliation(s)
- Andrey P Ivlev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
16
|
Scorrano G, David E, Calì E, Chimenz R, La Bella S, Di Ludovico A, Di Rosa G, Gitto E, Mankad K, Nardello R, Mangano GD, Leoni C, Ceravolo G. The Cardiofaciocutaneous Syndrome: From Genetics to Prognostic-Therapeutic Implications. Genes (Basel) 2023; 14:2111. [PMID: 38136934 PMCID: PMC10742720 DOI: 10.3390/genes14122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is one of the rarest RASopathies characterized by multiple congenital ectodermal, cardiac and craniofacial abnormalities with a mild to severe ocular, gastrointestinal and neurological involvement. It is an autosomal dominant syndrome, with complete penetrance, caused by heterozygous pathogenic variants in the genes BRAF, MAP2K1/MEK1, MAP2K2/MEK2, KRAS or, rarely, YWHAZ, all part of the RAS-MAPK pathway. This pathway is a signal transduction cascade that plays a crucial role in normal cellular processes such as cell growth, proliferation, differentiation, survival, metabolism and migration. CFC syndrome overlaps with Noonan syndrome, Costello syndrome, neurofibromatosis type 1 and Legius syndrome, therefore making the diagnosis challenging. Neurological involvement in CFC is more severe than in other RASopathies. Phenotypic variability in CFC patients is related to the specific gene affected, without a recognized genotype-phenotype correlation for distinct pathogenic variants. Currently, there is no specific treatment for CFC syndrome. Encouraging zebrafish model system studies suggested that, in the future, MEK inhibitors could be a suitable treatment of progressive phenotypes of CFC in children. A multidisciplinary care is necessary for appropriate medical management.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Emanuele David
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Elisa Calì
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| | - Roberto Chimenz
- Pediatric Nephrology and Dialysis Unit, University Hospital “G. Martino”, 98124 Messina, Italy;
| | - Saverio La Bella
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Armando Di Ludovico
- Department of Pediatrics, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (G.S.); (A.D.L.)
| | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98124 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98122 Messina, Italy;
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, UK;
| | - Rosaria Nardello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Giuseppe Donato Mangano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, “G. D’Alessandro” University of Palermo, 90127 Palermo, Italy; (R.N.); (G.D.M.)
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgia Ceravolo
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (E.C.); (G.C.)
| |
Collapse
|
17
|
Steel D, Reid KM, Pisani A, Hess EJ, Fox S, Kurian MA. Advances in targeting neurotransmitter systems in dystonia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:217-258. [PMID: 37482394 DOI: 10.1016/bs.irn.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia is characterised as uncontrolled, often painful involuntary muscle contractions that cause abnormal postures and repetitive or twisting movements. These movements can be continuous or sporadic and affect different parts of the body and range in severity. Dystonia and its related conditions present a huge cause of neurological morbidity worldwide. Although therapies are available, achieving optimal symptom control without major unwanted effects remains a challenge. Most pharmacological treatments for dystonia aim to modulate the effects of one or more neurotransmitters in the central nervous system, but doing so effectively and with precision is far from straightforward. In this chapter we discuss the physiology of key neurotransmitters, including dopamine, noradrenaline, serotonin (5-hydroxytryptamine), acetylcholine, GABA, glutamate, adenosine and cannabinoids, and their role in dystonia. We explore the ways in which existing pharmaceuticals as well as novel agents, currently in clinical trial or preclinical development, target dystonia, and their respective advantages and disadvantages. Finally, we discuss current and emerging genetic therapies which may be used to treat genetic forms of dystonia.
Collapse
Affiliation(s)
- Dora Steel
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kimberley M Reid
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Ellen J Hess
- Emory University School of Medicine, CA, United States
| | - Susan Fox
- Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, ON, Canada
| | - Manju A Kurian
- UCL GOS Institute of Child Health (Zayed Centre for Research into Rare Diseases in Children), London, United Kingdom; Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
18
|
von Hardenberg S, Wallaschek H, Du C, Schmidt G, Auber B. A holistic approach to maximise diagnostic output in trio exome sequencing. Front Pediatr 2023; 11:1183891. [PMID: 37274821 PMCID: PMC10238563 DOI: 10.3389/fped.2023.1183891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Rare genetic diseases are a major cause for severe illness in children. Whole exome sequencing (WES) is a powerful tool for identifying genetic causes of rare diseases. For a better and faster assessment of the vast number of variants that are identified in the index patient in WES, parental sequencing can be applied ("trio WES"). Methods We assessed the diagnostic rate of routine trio WES including analysis of copy number variants in 224 pediatric patients during an evaluation period of three years. Results Trio WES provided a diagnosis in 67 (30%) of all 224 analysed children. The turnaround time of trio WES analysis has been reduced significantly from 41 days in 2019 to 23 days in 2021. Copy number variants could be identified to be causative in 10 cases (4.5%), underlying the importance of copy number variant analysis. Variants in three genes which were previously not associated with a clinical condition (GAD1, TMEM222 and ZNFX1) were identified using the matching tool GeneMatcher and were part of the first description of a new syndrome. Discussion Trio WES has proven to have a high diagnostic yield and to shorten the process of identifying the correct diagnosis in paediatric patients. Re-evaluation of all 224 trio WES 1-3 years after initial analysis did not establish new diagnoses. Initiating (trio) WES as a first-tier diagnostics including copy number variant detection should be considered as early as possible, especially for children treated in ICU, if a monogenetic disease is suspected.
Collapse
Affiliation(s)
| | | | | | | | - Bernd Auber
- Correspondence: Sandra von Hardenberg Bernd Auber
| |
Collapse
|
19
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Ghouli MR, Jonak CR, Sah R, Fiacco TA, Binder DK. Regulation of the Volume-Regulated Anion Channel Pore-Forming Subunit LRRC8A in the Intrahippocampal Kainic Acid Model of Mesial Temporal Lobe Epilepsy. ASN Neuro 2023; 15:17590914231184072. [PMID: 37410995 PMCID: PMC10331354 DOI: 10.1177/17590914231184072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Volume-regulated anion channels (VRACs) are a group of ubiquitously expressed outwardly-rectifying anion channels that sense increases in cell volume and act to return cells to baseline volume through an efflux of anions and organic osmolytes, including glutamate. Because cell swelling, increased extracellular glutamate levels, and reduction of the brain extracellular space (ECS) all occur during seizure generation, we set out to determine whether VRACs are dysregulated throughout mesial temporal lobe epilepsy (MTLE), the most common form of adult epilepsy. To accomplish this, we employed the IHKA experimental model of MTLE, and probed for the expression of LRRC8A, the essential pore-forming VRAC subunit, at acute, early-, mid-, and late-epileptogenic time points (1-, 7-, 14-, and 30-days post-IHKA, respectively). Western blot analysis revealed the upregulation of total dorsal hippocampal LRRC8A 14-days post-IHKA in both the ipsilateral and contralateral hippocampus. Immunohistochemical analyses showed an increased LRRC8A signal 7-days post-IHKA in both the ipsilateral and contralateral hippocampus, along with layer-specific changes 1-, 7-, and 30-days post-IHKA bilaterally. LRRC8A upregulation 1 day post-IHKA was observed primarily in astrocytes; however, some upregulation was also observed in neurons. Glutamate-GABA/glutamine cycle enzymes glutamic acid decarboxylase, glutaminase, and glutamine synthetase were also dysregulated at the 7-day timepoint post status epilepticus. The timepoint-dependent upregulation of total hippocampal LRRC8A and the possible subsequent increased efflux of glutamate in the epileptic hippocampus suggest that the dysregulation of astrocytic VRAC may play an important role in the development of epilepsy.
Collapse
Affiliation(s)
- Manolia R. Ghouli
- Division of Biomedical Sciences, School of Medicine, University of California—Riverside, Riverside, CA, USA
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
| | - Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California—Riverside, Riverside, CA, USA
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd A. Fiacco
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
- Department of Cell Biology and Neuroscience, University of California—Riverside, Riverside, CA, USA
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California—Riverside, Riverside, CA, USA
- Center for Glial-Neuronal Interactions, University of California—Riverside, Riverside, CA, USA
| |
Collapse
|
21
|
Yang H, Liao H, Gan S, Xiao T, Wu L. ARHGEF9 gene variant leads to developmental and epileptic encephalopathy: Genotypic phenotype analysis and treatment exploration. Mol Genet Genomic Med 2022; 10:e1967. [PMID: 35638461 PMCID: PMC9266599 DOI: 10.1002/mgg3.1967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background The ARHGEF9 gene variants have phenotypic heterogeneity, the number of reported clinical cases are limited and the genotype–phenotype relationship is still unpredictable. Methods Clinical data of the patients and their family members were gathered in a retrospective study. The exome sequencing that was performed on peripheral blood samples was applied for genetic analysis. We used the ARHGEF9 gene as a key word to search the PubMed database for cases of ARHGEF9 gene variants that have previously been reported and summarized the reported ARHGEF9 gene variant sites, their corresponding clinical phenotypes, and effective treatment. Results We described five patients with developmental and epileptic encephalopathy caused by ARHGEF9 gene variants. Among them, the antiepileptic treatment of valproic acid and levetiracetam was effective in two cases individually. The exome sequencing results showed five children with point mutations in the ARHGEF9 gene: p.R365H, p.M388V, p.D213E, and p.R63H. So far, a total of 40 children with ARHGEF9 gene variants have been reported. Their main clinical phenotypes include developmental delay, epilepsy, epileptic encephalopathy, and autism spectrum disorders. The variants reported in the literature, including 22 de novo variants, nine maternal variants, and one unknown variant. There were 20 variants associated with epileptic phenotypes, of which six variants are effective for valproic acid treatment. Conclusion The genotypes and phenotypes of ARHGEF9 gene variants represent a wide spectrum, and the clinical phenotype of epilepsy is often refractory and the prognosis is poor. The p.R365H, p.M388V, p.D213E, and p.R63H variants have not been reported in the current literature, and our study has expanded the genotype spectrum of ARHGEF9 gene. Our findings indicate that levetiracetam and valproic acid can effectively control seizures in children with epileptic phenotype caused by ARGHEF9 gene variations. These findings will help clinicians improve the level of diagnosis and treatment of the genetic disease.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Siyi Gan
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| |
Collapse
|
22
|
Marafi D, Fatih JM, Kaiyrzhanov R, Ferla MP, Gijavanekar C, Al-Maraghi A, Liu N, Sites E, Alsaif HS, Al-Owain M, Zakkariah M, El-Anany E, Guliyeva U, Guliyeva S, Gaba C, Haseeb A, Alhashem AM, Danish E, Karageorgou V, Beetz C, Subhi AA, Mullegama SV, Torti E, Sebastin M, Breilyn MS, Duberstein S, Abdel-Hamid MS, Mitani T, Du H, Rosenfeld JA, Jhangiani SN, Coban Akdemir Z, Gibbs RA, Taylor JC, Fakhro KA, Hunter JV, Pehlivan D, Zaki MS, Gleeson JG, Maroofian R, Houlden H, Posey JE, Sutton VR, Alkuraya FS, Elsea SH, Lupski JR. Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy. Brain 2022; 145:909-924. [PMID: 34605855 PMCID: PMC9050560 DOI: 10.1093/brain/awab369] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Correspondence to: Dana Marafi, MD, MSc Department of Pediatrics, Faculty of Medicine, Kuwait University P.O. Box 24923, 13110 Safat, Kuwait E-mail:
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Matteo P Ferla
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | | | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Emily Sites
- Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University 11533, Riyadh, Saudi Arabia
| | - Mohamed Zakkariah
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | - Ehab El-Anany
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | | | | | - Colette Gaba
- Department of Pediatrics, Bon Secours Mercy Health, Toledo, OH 43608, USA
| | - Ateeq Haseeb
- Mercy Children’s Hospital, Toledo, OH 43608, USA
| | - Amal M Alhashem
- Division of Medical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Enam Danish
- Department of Ophthalmology, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | | | | | - Alaa A Subhi
- Neurosciences Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | | | | | - Monisha Sebastin
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Division of Genetics, Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, 10467, USA
| | - Margo Sheck Breilyn
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan Duberstein
- Isabelle Rapin Division of Child Neurology in the Saul R Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Jill V Hunter
- E.B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, CA 92123, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence may also be addressed to: James R. Lupski, MD, PhD, DSc (hon) Department of Molecular and Human Genetics, Baylor College of Medicine One Baylor Plaza, Room 604B, Houston, TX 77030, USA E-mail:
| |
Collapse
|
23
|
Bowles KR, Pugh DA, Oja LM, Jadow BM, Farrell K, Whitney K, Sharma A, Cherry JD, Raj T, Pereira AC, Crary JF, Goate AM. Dysregulated coordination of MAPT exon 2 and exon 10 splicing underlies different tau pathologies in PSP and AD. Acta Neuropathol 2022; 143:225-243. [PMID: 34874463 PMCID: PMC8809109 DOI: 10.1007/s00401-021-02392-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Understanding regulation of MAPT splicing is important to the etiology of many nerurodegenerative diseases, including Alzheimer disease (AD) and progressive supranuclear palsy (PSP), in which different tau isoforms accumulate in pathologic inclusions. MAPT, the gene encoding the tau protein, undergoes complex alternative pre-mRNA splicing to generate six isoforms. Tauopathies can be categorized by the presence of tau aggregates containing either 3 (3R) or 4 (4R) microtubule-binding domain repeats (determined by inclusion/exclusion of exon 10), but the role of the N-terminal domain of the protein, determined by inclusion/exclusion of exons 2 and 3 has been less well studied. Using a correlational screen in human brain tissue, we observed coordination of MAPT exons 2 and 10 splicing. Expressions of exon 2 splicing regulators and subsequently exon 2 inclusion are differentially disrupted in PSP and AD brain, resulting in the accumulation of 1N4R isoforms in PSP and 0N isoforms in AD temporal cortex. Furthermore, we identified different N-terminal isoforms of tau present in neurofibrillary tangles, dystrophic neurites and tufted astrocytes, indicating a role for differential N-terminal splicing in the development of disparate tau neuropathologies. We conclude that N-terminal splicing and combinatorial regulation with exon 10 inclusion/exclusion is likely to be important to our understanding of tauopathies.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derian A Pugh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura-Maria Oja
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin M Jadow
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kurt Farrell
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abhijeet Sharma
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana C Pereira
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Jiang W, Kakizaki T, Fujihara K, Miyata S, Zhang Y, Suto T, Kato D, Saito S, Shibasaki K, Ishizaki Y, Isoda K, Yokoo H, Obinata H, Hirano T, Miyasaka Y, Mashimo T, Yanagawa Y. Impact of GAD65 and/or GAD67 deficiency on perinatal development in rats. FASEB J 2022; 36:e22123. [PMID: 34972242 DOI: 10.1096/fj.202101389r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022]
Abstract
GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.
Collapse
Affiliation(s)
- Weiru Jiang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Toshikazu Kakizaki
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuyuki Fujihara
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeo Miyata
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan.,Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University, Dalian, China
| | - Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Shibasaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuki Ishizaki
- Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koji Isoda
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideru Obinata
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Touko Hirano
- Laboratory for Analytical Instruments, Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
25
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|
26
|
Duba-Kiss R, Niibori Y, Hampson DR. GABAergic Gene Regulatory Elements Used in Adeno-Associated Viral Vectors. Front Neurol 2021; 12:745159. [PMID: 34671313 PMCID: PMC8521139 DOI: 10.3389/fneur.2021.745159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Several neurological and psychiatric disorders have been associated with impairments in GABAergic inhibitory neurons in the brain. Thus, in the current era of accelerated development of molecular medicine and biologically-based drugs, there is a need to identify gene regulatory sequences that can be utilized for selectively manipulating the expression of nucleic acids and proteins in GABAergic neurons. This is particularly important for the use of viral vectors in gene therapy. In this Mini Review, we discuss the use of various gene regulatory elements for targeting GABAergic neurons, with an emphasis on adeno-associated viral vectors, the most widely used class of viral vectors for treating brain diseases.
Collapse
Affiliation(s)
- Robert Duba-Kiss
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - David R Hampson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Prominent and Regressive Brain Developmental Disorders Associated with Nance-Horan Syndrome. Brain Sci 2021; 11:brainsci11091150. [PMID: 34573171 PMCID: PMC8465299 DOI: 10.3390/brainsci11091150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder caused mainly by loss of function variants in the NHS gene. NHS is characterized by congenital cataracts, dental anomalies, and distinctive facial features, and a proportion of the affected individuals also present intellectual disability and congenital cardiopathies. Despite identification of at least 40 distinct hemizygous variants leading to NHS, genotype-phenotype correlations remain largely elusive. In this study, we describe a Sicilian family affected with congenital cataracts and dental anomalies and diagnosed with NHS by whole-exome sequencing (WES). The affected boy from this family presented a late regression of cognitive, motor, language, and adaptive skills, as well as broad behavioral anomalies. Furthermore, brain imaging showed corpus callosum anomalies and periventricular leukoencephalopathy. We expand the phenotypic and mutational NHS spectrum and review potential disease mechanisms underlying the central neurological anomalies and the potential neurodevelopmental features associated with NHS.
Collapse
|
28
|
Biallelic Variants in KIF17 Associated with Microphthalmia and Coloboma Spectrum. Int J Mol Sci 2021; 22:ijms22094471. [PMID: 33922911 PMCID: PMC8123208 DOI: 10.3390/ijms22094471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Microphthalmia, anophthalmia, and coloboma (MAC) are a group of congenital eye anomalies that can affect one or both eyes. Patients can present one or a combination of these ocular abnormalities in the so called “MAC spectrum”. The KIF17 gene encodes the kinesin-like protein Kif17, a microtubule-based, ATP-dependent, motor protein that is pivotal for outer segment development and disc morphogenesis in different animal models, including mice and zebrafish. In this report, we describe a Sicilian family with two siblings affected with congenital coloboma, microphthalmia, and a mild delay of motor developmental milestones. Genomic DNA from the siblings and their unaffected parents was sequenced with a clinical exome that revealed compound heterozygous variants in the KIF17 gene (NM_020816.4: c.1255C > T (p.Arg419Trp); c.2554C > T (p.Arg852Cys)) segregating with the MAC spectrum phenotype of the two affected siblings. Variants were inherited from the healthy mother and father, are present at a very low-frequency in genomic population databases, and are predicted to be deleterious in silico. Our report indicates the potential co-segregation of these biallelic KIF17 variants with microphthalmia and coloboma, highlighting a potential conserved role of this gene in eye development across different species.
Collapse
|
29
|
Abstract
Welcome to Insights, a new series in which articles published in FEBS Open Bio are summarised for the wider community. We hope that this series will help make the findings we publish more accessible to the general public and encourage greater engagement. In this first article of the series, we introduce a research paper on fear in rats, authored by Professor Yuchio Yanagawa and colleagues and published in this issue. Photo: Young rat and cat in front of black background. Cynoclub/Shutterstock.com.
Collapse
|
30
|
Fujihara K, Sato T, Miyasaka Y, Mashimo T, Yanagawa Y. Genetic deletion of the 67-kDa isoform of glutamate decarboxylase alters conditioned fear behavior in rats. FEBS Open Bio 2020; 11:340-353. [PMID: 33325157 PMCID: PMC7876494 DOI: 10.1002/2211-5463.13065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
The GABAergic system is thought to play an important role in the control of cognition and emotion, such as fear, and is related to the pathophysiology of psychiatric disorders. For example, the expression of the 67‐kDa isoform of glutamate decarboxylase (GAD67), a GABA‐producing enzyme, is downregulated in the postmortem brains of patients with major depressive disorder and schizophrenia. However, knocking out the Gad1 gene, which encodes GAD67, is lethal in mice, and thus, the association between Gad1 and cognitive/emotional functions is unclear. We recently developed Gad1 knockout rats and found that some of them can grow into adulthood. Here, we performed fear‐conditioning tests in adult Gad1 knockout rats to assess the impact of the loss of Gad1 on fear‐related behaviors and the formation of fear memory. In a protocol assessing both cued and contextual memory, Gad1 knockout rats showed a partial antiphase pattern of freezing during training and significantly excessive freezing during the contextual test compared with wild‐type rats. However, Gad1 knockout rats did not show any synchronous increase in freezing with auditory tones in the cued test. On the other hand, in a contextual memory specialized protocol, Gad1 knockout rats exhibited comparable freezing behavior to wild‐type rats, while their fear extinction was markedly impaired. These results suggest that GABA synthesis by GAD67 has differential roles in cued and contextual fear memory.
Collapse
Affiliation(s)
- Kazuyuki Fujihara
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Department of Psychiatry and Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Takumi Sato
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, the University of Tokyo, Japan
| | - Yuchio Yanagawa
- Departments of Genetic and Behavioral Neuroscience, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
31
|
Weckhuysen S, Tajsharghi H. Reply: Rational therapy with vigabatrin and a ketogenic diet in a patient with GAD1 deficiency. Brain 2020; 143:e92. [PMID: 33169137 PMCID: PMC7719017 DOI: 10.1093/brain/awaa290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sarah Weckhuysen
- Applied and Translational Genomics Group, VIB-Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Neurology, University Hospital Antwerp, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Homa Tajsharghi
- School of Health Sciences, Division Biomedicine, University of Skovde, Skovde, Sweden
| |
Collapse
|
32
|
Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 2020; 265:118826. [PMID: 33259863 DOI: 10.1016/j.lfs.2020.118826] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Epilepsy is a neurologicaldisorder characterized by persistent predisposition to recurrent seizurescaused by abnormal neuronal activity in the brain. Epileptic seizures maydevelop due to a relative imbalance of excitatory and inhibitory neurotransmitters. Expressional alterations of receptors and ion channelsactivated by neurotransmitters can lead to epilepsy pathogenesis. AIMS In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy. MATERIALS AND METHODS A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles. KEY FINDINGS Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission. SIGNIFICANCE The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.
Collapse
|