1
|
Su CW, Yang F, Lai R, Li Y, Naeem H, Yao N, Zhang SP, Zhang H, Li Y, Huang ZG. Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling. Cogn Neurodyn 2025; 19:29. [PMID: 39866663 PMCID: PMC11757662 DOI: 10.1007/s11571-024-10208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/08/2024] [Accepted: 09/29/2024] [Indexed: 01/28/2025] Open
Abstract
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory. Furthermore, we explore the system's involvement in stress responses and pain modulation, as well as its developmental changes and susceptibility to stressors. By integrating molecular, electrophysiological, and theoretical modeling approaches, we shed light on the LC-NE system's complex role in the brain's adaptability and its potential relevance to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Chun-Wang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Fan Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Runchen Lai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Yanhai Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Hadia Naeem
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Nan Yao
- Department of Applied Physics, Xi’an University of Technology, 710054 Shaanxi, China
| | - Si-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Haiqing Zhang
- Xi’an Children’s Hospital, Xi’an, 710003 Shaanxi China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
- Research Center for Brain-Inspired Intelligence, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| |
Collapse
|
2
|
Pisani N, Destito M, Ricciardi C, Pellecchia MT, Cesarelli M, Esposito F, Spadea MF, Amato F. Repeatability of radiomic features from brain T1-W MRI after image intensity normalization: Implications for longitudinal studies on structural neurodegeneration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 265:108738. [PMID: 40203781 DOI: 10.1016/j.cmpb.2025.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/27/2024] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND AND OBJECTIVE Radiomics extracts quantitative features from magnetic resonance images (MRI) and is especially useful in the presence of subtle pathological changes within human soft tissues. This scenario, however, may not cover the effects of intrinsic, e.g., aging-related, (physiological) neurodegeneration of normal brain tissue. The aim of the work was to study the repeatability of radiomic features extracted from an apparently normal area in longitudinally acquired T1-weighted MR brain images using three different intensity normalization approaches typically used in radiomics: Z-score, WhiteStripe and Nyul. METHODS Fifty-nine images of hearing impaired, yet cognitively intact, patients were repeatedly acquired in two different time points within six months. Ninety-one radiomic features were obtained from an area within the pons region, considered to be a healthy brain tissue according to previous analyses and reports. The Intraclass Correlation Coefficient (ICC) and the Concordance Correlation Coefficient (CCC) in the repeatability study were used as metrics. RESULTS Features extracted from the MRI normalized with Z-score showed results comparable in both ICC (0.90 (0.82-0.98)) and CCC (0.82 (0.69-0.95)) distribution values, in terms of median and quartiles, with those extracted from the images normalized with WhiteStripe (0.89 (0.84-0.92)) and (0.80 (0.73-0.84)), respectively. CONCLUSION Our findings underline the importance of, providing useful guidelines for, the intensity normalization of brain MRI prior to a longitudinal radiomic analysis.
Collapse
Affiliation(s)
- Noemi Pisani
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Michela Destito
- Department of Experimental and Clinical Medicine, University of Catanzaro, 88100 Catanzaro, Italy.
| | - Carlo Ricciardi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 7 Naples, Italy.
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry 12 "Scuola Medica Salernitana", University of Salerno, 84131 Salerno, Italy.
| | - Mario Cesarelli
- Department of Engineering, University of Sannio, 82100 Benevento, Italy.
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 10 Naples, Italy.
| | - Maria Francesca Spadea
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| | - Francesco Amato
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 7 Naples, Italy.
| |
Collapse
|
3
|
Alves PN, Nozais V, Hansen JY, Corbetta M, Nachev P, Martins IP, Thiebaut de Schotten M. Neurotransmitters' white matter mapping unveils the neurochemical fingerprints of stroke. Nat Commun 2025; 16:2555. [PMID: 40089467 PMCID: PMC11910582 DOI: 10.1038/s41467-025-57680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Distinctive patterns of brain neurotransmission frame determinant circuits for behavior. Understanding the relationship between their damage and the cognitive impairment provoked by brain lesions could provide insights into the pathophysiology and therapeutics of disabling disorders, like stroke. Yet, the challenges of neurotransmitter circuits mapping in vivo have hampered this investigation. Here, we developed an MRI white matter atlas of neurotransmitter circuits and created a method to chart how stroke damages neurotransmitter systems, which distinguishes pre and postsynaptic disruption. Our model, trained and tested in two large stroke patient samples, identified eight clusters with different neurochemical patterns. The associations with patients' cognitive profiles were scarce, denoting that a particular cognitive deficit might have finer underlying neurochemical disturbances that are unfit to the granularity of our analyses. These findings depict stroke neurochemical diaschisis patterns, provide insights into stroke cognitive deficits and potential treatments, and open a new window for tailored neurotransmitter modulation.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Unidade de Acidentes Vasculares Cerebrais, Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, ULSSM, Lisbon, Portugal.
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy
| | - Parashkev Nachev
- Queen Square Institute of Neurology, University College London, London, UK
| | - Isabel Pavão Martins
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Unidade de Acidentes Vasculares Cerebrais, Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, ULSSM, Lisbon, Portugal
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| |
Collapse
|
4
|
Majdi A, Chen L, Larsen LE, Raedt R, Laughlin MM. tDCS cranial nerve Co-stimulation: Unveiling brainstem pathways involved in trigeminal nerve direct current stimulation in rats. Brain Stimul 2025; 18:171-184. [PMID: 39921050 PMCID: PMC12012264 DOI: 10.1016/j.brs.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The effects of transcranial direct current stimulation (tDCS) are generally thought to result from the polarization of cortical neurons by the weak electric fields it creates. However, recent evidence suggests that some tDCS effects may be mediated through co-stimulation of peripheral or cranial nerves, particularly the trigeminal nerve (TN). The TN projects to key brainstem nuclei that regulate neurotransmitter release throughout the central nervous system, but the specific pathways involved are not yet well understood. METHODS In this study, we examined the effects of acute transcutaneous TN direct current stimulation (TN-DCS) on tonic (i.e. mean spike rate) and phasic (number of bursts, spike rate per burst, burst duration, and inter-burst interval) activities while simultaneously recording single-neuron activity across three brainstem nuclei in rats: the locus coeruleus (LC; phasic and tonic activities), dorsal raphe nucleus (DRN; tonic activity), and median raphe nucleus (MnRN; tonic activity). RESULTS TN-DCS significantly modulated tonic activity in the LC and DRN, with interactions between amplitude, polarity, and time affecting mean spike rates. It also influenced phasic activity in the LC, altering burst number, duration, and inter-burst intervals. In contrast, MnRN tonic activity was unchanged. Blocking TN with xylocaine eliminated the effects on tonic activity in both the LC and DRN. CONCLUSIONS These results suggest that tDCS may modulate the TN, altering DRN and LC activity. Differential changes in tonic and phasic LC activity highlight their roles in TN-DCS effects on the cortex. This research offers insights to improve tDCS efficacy and understanding.
Collapse
Affiliation(s)
- Alireza Majdi
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | - Liyi Chen
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium
| | - Lars E Larsen
- 4BRAIN, Department of Head and Skin, Ghent University, 9000, Ghent, Belgium; MEDISIP, Department of Electronics and Information Systems, Ghent University, 9000, Ghent, Belgium
| | - Robrecht Raedt
- MEDISIP, Department of Electronics and Information Systems, Ghent University, 9000, Ghent, Belgium
| | - Myles Mc Laughlin
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
5
|
Zhang L, Su H, Wang S, Fu Y, Wang M. Gut Microbiota and Neurotransmitter Regulation: Functional Effects of Four Traditional Chinese Fermented Soybean (Sojae Semen Praeparatum). Foods 2025; 14:671. [PMID: 40002115 PMCID: PMC11854601 DOI: 10.3390/foods14040671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
This study aims to evaluate the potential disease prevention and treatment functions of four types of traditional Chinese fermented Sojae Semen Praeparatum (SSP) by analyzing their nutritional active components and their effects on the gut microbiota. Raw soybeans and the four SSPs were administered as dietary supplements to normal SD rats for 6 weeks. Fecal samples were collected at weeks 0, 2, and 6 to assess changes in the gut microbiota. Our results revealed that different fermentation methods resulted in variations in soybean isoflavone content. Fermented soybeans promoted the growth of beneficial microorganisms associated with short-chain fatty acid production in the gut microbiota, such as Christensenellaceae_R_7_group, compared to unfermented soybeans. Supplementation with SSPs fermented with different processes increased the diversity of the rat gut microbiota, except for the fermented group of qingwenjiedu decoction (QW). The dominant gut microbiota in the fermented group of Artemisia Annuae Herba and Mori Folium (QS) exhibited anti-inflammatory effects, while the dominant gut microbiota in the fermented group of Ephedrae Herba and Perillae Folium (MZ) showed antidepressant effects. In the neurotransmitter analysis, MZ reduced gamma-aminobutyric acid (GABA) levels, the fermented group without Chinese medicine (DD) decreased dopamine levels, and both QS and QW increased norepinephrine levels. Correlation analysis highlighted connections between gut microbiota, neurotransmitters, and chemical levels. The results indicate that SSPs may contribute uniquely to health by maintaining intestinal balance and improving neurological disorders while predicting a potential association between neurotransmitters and gut microbiota by correlation analysis.
Collapse
Affiliation(s)
| | | | | | | | - Manyuan Wang
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Carli S, Schirripa A, Mirino P, Capirchio A, Caligiore D. The role of the prefrontal cortex in cocaine-induced noradrenaline release in the nucleus accumbens: a computational study. BIOLOGICAL CYBERNETICS 2025; 119:6. [PMID: 39920377 PMCID: PMC11805868 DOI: 10.1007/s00422-025-01005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Research has extensively explored the role of the dopaminergic system in the reward circuit, while the contribution of the noradrenergic system remains less understood. This study aims to fill this gap by employing computational modeling to examine how the medial prefrontal cortex (mPFC) influences cocaine-induced norepinephrine (NE) release in the nucleus accumbens shell (NAcc), with mediation by the nucleus of the tractus solitarius (NTS) and the locus coeruleus (LC). The model replicates previously reported data on NE release in the mPFC following cocaine administration. Additionally, it predicts that NE depletion in the mPFC affects NE release in the NAcc through interactions with the NTS and LC. This work proposes a system-level hypothesis, suggesting that the mPFC regulates NE release in the NAcc by modulating the LC and NTS. These findings enhance our understanding of the neurochemical response to cocaine and offer potential directions for future addiction treatments.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
- Entersys s.r.l., Via San Pio X 44, 35027, Noventa Padovana, Padua, Italy
| | - Aurelia Schirripa
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
| | - Pierandrea Mirino
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Adriano Capirchio
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy.
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy.
| |
Collapse
|
7
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
8
|
Suzuki T, Nagasaka K, Otsuki T, Otsuru N, Onishi H. Tonic Electrical Stimulation of the Locus Coeruleus Enhances Cortical Sensory-Evoked Responses via Noradrenaline α1 and β Receptors. Eur J Neurosci 2025; 61:e70020. [PMID: 39939180 DOI: 10.1111/ejn.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
The locus coeruleus (LC) neurons send extensive projections to the somatosensory cortex and release noradrenaline (NA) at synaptic terminals, which is thought to regulate the activation of sensory-related cells by acting on three types of receptors (α1, α2 and β). Although previous studies have examined the effects of LC stimulation on single-unit sensory neurons, their impact on somatosensory evoked potentials (SEPs) and their temporal variations, as well as the specific roles of NA receptors, remain unclear. Herein, we investigated how SEPs are modulated by tonic LC stimulation at physiological frequencies (0.1, 1 and 4 Hz) and identified the receptors involved in these changes. Forepaw stimulation-induced amplitudes in SEP were enhanced in response to 1 Hz stimulation of the LC but not in response to 0.1 and 4 Hz stimulation. Interestingly, the enhancement of SEPs after LC stimulation persisted for tens of minutes following the cessation of stimulation. Optical imaging using a voltage-sensitive dye showed an increase in the depolarizing response in the somatosensory cortex after 1 Hz stimulation. Prazosin (α1 receptor antagonist) and propranolol (β receptor antagonist) inhibited SEP enhancement following 1 Hz LC stimulation, whereas yohimbine (α2 receptor antagonist) had no effect. This suggests that the enhancement in SEP observed is primarily mediated by the activation of cortical excitatory α1 and β receptors. These findings provide insight into the impact of the NA system on sensory information processing and the pathophysiology of sensory disorders related to the disruption of the NA system.
Collapse
Affiliation(s)
- Takanobu Suzuki
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of System Pathology for Neurological Disorders, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Tomofumi Otsuki
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
9
|
Černe U, Horvat A, Sanjković E, Kozoderc N, Kreft M, Zorec R, Scholz N, Vardjan N. Ca 2+ excitability of glia to neuromodulator octopamine in Drosophila living brain is greater than that of neurons. Acta Physiol (Oxf) 2025; 241:e14270. [PMID: 39801347 PMCID: PMC11726276 DOI: 10.1111/apha.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/13/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca2+ signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive. This study aimed to characterize Ca2+ responses of neurons and astrocytes to neuromodulatory octopamine signals. METHODS We expressed Ca2+ indicator jGCaMP7b in specific cell type in adult Drosophila brains and performed intracellular Ca2+ imaging in the brain optic lobes upon bath application of octopamine by confocal microscopy. RESULTS Octopamine-stimulated Ca2+ responses in neurons were different from those of glial cells. The amplitude of octopamine-mediated Ca2+ signals in neurons was 3.4-fold greater than in astrocytes. However, astrocytes were more sensitive to octopamine; the median effective concentration that triggered Ca2+ responses was nearly 6-fold lower in astrocytes than in neurons. In both cell types, Ca2+ transients are shaped by Gq and Gs protein-coupled octopamine/tyramine receptors. Our snRNA-seq database screening uncovered differential expression patterns of these receptors between brain cell types, which may explain the difference in Ca2+ signaling. CONCLUSION In the brain optic lobes, astrocytes, not neurons, appear to be the sole responders to low concentration octopamine signals, and therefore likely drive synaptic plasticity and visual processing. Given the interconnectivity of the optic lobes with other brain regions, octopaminergic signals acting through the optic lobe astrocytes may also influence higher-order brain functions including learning and memory.
Collapse
Grants
- P40 OD018537 NIH HHS
- Deutsche Forschungsgemeinschaft (FOR 2149, 265903901/P01; CRC 1423, 421152132/B06)
- Slovenian Research and Innovation Agency (P3-0310, J3-2523, J3-50104, MR+ 2019, I0-0034, I0-0022: MRIC-Carl Zeiss Reference Centre for Laser Confocal Microscopy)
- European Cooperation in Science and Technology (COST) action CA18133 (European Research Network on Signal Transduction (ERNEST))
- European Cooperation in Science and Technology (COST) action CA18133 (European Research Network on Signal Transduction (ERNEST))
- Slovenian Research and Innovation Agency (P3‐0310, J3‐2523, J3‐50104, MR+ 2019, I0‐0034, I0‐0022: MRIC‐Carl Zeiss Reference Centre for Laser Confocal Microscopy)
- Deutsche Forschungsgemeinschaft (FOR 2149, 265903901/P01; CRC 1423, 421152132/B06)
Collapse
Affiliation(s)
- Urška Černe
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| | - Anemari Horvat
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| | - Ena Sanjković
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
| | - Nika Kozoderc
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| | - Nicole Scholz
- Division of General Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of BiochemistryLeipzig UniversityLeipzigGermany
| | - Nina Vardjan
- Laboratory of Neuroendocrinology‐Molecular Cell Physiology, Faculty of Medicine, Institute of PathophysiologyUniversity of LjubljanaLjubljanaSlovenia
- Laboratory of Cell Engineering, Celica BiomedicalLjubljanaSlovenia
| |
Collapse
|
10
|
Nasr NN, El-Hagrassi AM, Ahmed YR, Hamed MA. GC/MS and LC-ESI-MS Analysis of Conocarpus erectus Leaves Extract via Regulating Amyloid-β-Peptide, Tau Protein, Neurotransmitters, Inflammation and Oxidative Stress against AlCl 3-Induced Alzheimer's Disease in Rats. Chem Biodivers 2025; 22:e202401960. [PMID: 39367808 DOI: 10.1002/cbdv.202401960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/07/2024]
Abstract
This study investigated the therapeutic effect of Conocarpus erectus leaves methanolic extract against AlCl3 -induced Alzheimer's disease (AD) in rats comparing with Donepezil-hydrochloride as a reference drug. The bioactive compounds of C. erectus leaves were isolated and identified by GC/MS and LC-ESI-MS analysis. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), amyloid-β-peptide (Aβ-peptide), tau protein, acetylcholinesterase (AChE), serotonin (5-HT), dopamine (DA) and nor-adrenaline (NE) levels were estimated. The neuromuscular strength, memory behavior and histopathological examination of cerebral cortex region were also conducted. Forty-three compounds were characterized from the non-polar fraction of C. erectus L. leaves extract and nineteen compounds were identified from the defatted extract. AlCl3- induction caused significant elevation of brain oxidative stress, Aβ-peptide, tau protein, IL-6, TNF-α and AChE levels. A significant decrease in 5-HT, ND and DA levels were noticed. Additionally, AlCl3 reduced neuromuscular strength and compromised memory function. Treatment of AlCl3- induced rats with C. erectuse extract ameliorated these selected parameters by variable degrees. In conclusion, C. erectus protects against AlCl3- induced AD in rats through its antioxidant, anti-inflammatory, and antineural damage. [Correction added on 3 December 2024, after first online publication: The term "antineutron" was corrected to "antineural" in the preceding sentence.]. It could be considered as a new nutraceutical agent for attenuating symptoms associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Noha N Nasr
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Ali M El-Hagrassi
- Phytochemistry and Plant Systematic Department, National Research Centre, 33 El-Buhouth St., Dokki, Giza, Egypt
| | - Yomna R Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Miliotou AN, Kotsoni A, Zacharia LC. Deciphering the Role of Adrenergic Receptors in Alzheimer's Disease: Paving the Way for Innovative Therapies. Biomolecules 2025; 15:128. [PMID: 39858522 PMCID: PMC11764010 DOI: 10.3390/biom15010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases are currently among the most devastating diseases with no effective disease-modifying drugs in the market, with Alzheimer's disease (AD) being the most prevalent. AD is a complex multifactorial neurodegenerative disorder characterized by progressive and severe cognitive impairment and memory loss. It is the most common cause of progressive memory loss (dementia) in the elderly, and to date, there is no effective treatment to cure or slow disease progression substantially. The role of adrenergic receptors in the pathogenesis of Alzheimer's disease and other tauopathies is poorly understood or investigated. Recently, some studies indicated a potential benefit of drugs acting on the adrenergic receptors for AD and dementias, although due to the heterogeneity of the drug classes used, the results on the whole remain inconclusive. The scope of this review article is to comprehensively review the literature on the possible role of adrenergic receptors in neurodegenerative diseases, stemming from the use of agonists and antagonists including antihypertensive and asthma drugs acting on the adrenergic receptors, but also from animal models and in vitro models where these receptors have been studied. Ultimately, we hope to obtain a better understanding of the role of these receptors, identify the gaps in knowledge, and explore the possibility of repurposing such drugs for AD, given their long history of use and safety.
Collapse
Affiliation(s)
- Androulla N. Miliotou
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
| | - Andria Kotsoni
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
| | - Lefteris C. Zacharia
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus; (A.N.M.)
- Bioactive Molecules Research Center, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, 2417 Nicosia, Cyprus
| |
Collapse
|
12
|
Bhattacharjee D, Surakshitha Poornima H.K., Chakraborty A. Methylphenidate in COVID-19 Related Brain Fog: A Case Series. Indian J Psychol Med 2025; 47:86-88. [PMID: 39564317 PMCID: PMC11572663 DOI: 10.1177/02537176231222572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Affiliation(s)
| | | | - Avik Chakraborty
- Dept. of Psychiatry, ESI-PGIMSR, ESIC Medical College and Hospital and Occupational Disease Center, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Aljohani Y, Payne W, Yasuda RP, Olson T, Kellar KJ, Dezfuli G. Pharmacological target sites for restoration of age-associated deficits in NMDA receptor-mediated norepinephrine release in brain. J Neurochem 2025; 169:e16280. [PMID: 39655655 PMCID: PMC11629444 DOI: 10.1111/jnc.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Aging affects virtually all organs of the body, but perhaps it has the most profound effects on the brain and its neurotransmitter systems, which influence a wide range of crucial functions, such as attention, focus, mood, neuroendocrine and autonomic functions, and sleep cycles. All of these essential functions, as well as fundamental cognitive processes such as memory, recall, and processing speed, utilize neuronal circuits that depend on neurotransmitter signaling between neurons. Glutamate (Glu), the main excitatory neurotransmitter in the CNS, is involved in most neuronal excitatory functions, including release of the neurotransmitter norepinephrine (NE). Previous studies from our lab demonstrated that the age-associated decline in Glu-stimulated NE release in rat cerebral cortex and hippocampus mediated by NMDA glutamate receptors, as well as deficits in dendritic spines, and cognitive functions are fully rescued by the CNS stimulant amphetamine. Here we further investigated Glu-stimulated NE release in the cerebral cortex to identify additional novel target sites for restoration of Glu-stimulated NE release. We found that blockade of alpha-2 adrenergic receptors fully restores Glu-stimulated NE release to the levels of young controls. In addition, we investigated the density and responsiveness of NMDA receptors as a potential underlying neuronal mechanism that could account for the observed age-associated decline in Glu-stimulated NE release. In the basal state of the receptor (no added glutamate and glycine) the density of NMDA receptors in the cortex from young and aged rats was similar. However, in contrast, in the presence of 10 μM added glutamate, which opens the receptor channel and increases the number of available [3H]-MK-801 binding sites within the channel, the density of [3H]-MK-801 binding sites was significantly less in the cortex from aged rats.
Collapse
Affiliation(s)
- Yousef Aljohani
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - William Payne
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Robert P. Yasuda
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Thao Olson
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Kenneth J. Kellar
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Ghazaul Dezfuli
- Department of Pharmacology and PhysiologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
14
|
Sönmez Ö, Holstein E, Puschmann S, Schmitt T, Witt K, Thiel CM. The impact of transcutaneous vagus nerve stimulation on anterior cingulate cortex activity in a cognitive control task. Psychophysiology 2025; 62:e14739. [PMID: 39780300 PMCID: PMC11711293 DOI: 10.1111/psyp.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner. The tasks were executed using a randomized within-subject design, with participants undergoing auricular tVNS and sham stimulation in separate sessions. tVNS significantly changed performance in the simple control task reflected in a greater propensity to respond. Furthermore, we observed a significant increase in neural activity in the anterior cingulate cortex during the simple cognitive control task under tVNS. Functional connectivity analyses revealed positive coupling between neural activity in the locus coeruleus and anterior cingulate cortex, however, this was not modulated by tVNS. The findings suggest that non-invasive stimulation of the vagus nerve can modulate neural activity in the anterior cingulate cortex. While these neural effects suggest an impact of tVNS in a key region involved in conflict monitoring and cognitive control, the behavioral effects are more indicative of a shift in response bias rather than enhanced cognitive control.
Collapse
Affiliation(s)
- Özde Sönmez
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Department of PsychiatryUniversity Medical Center GroningenGroningenThe Netherlands
| | - Elfriede Holstein
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- DIPF | Leibniz Institute for Research and Information in EducationFrankfurt am MainGermany
| | - Sebastian Puschmann
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Tina Schmitt
- Neuroimaging Unit, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health SciencesCarl von Ossietzky Universität OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| | - Christiane M. Thiel
- Biological Psychology Lab, Department of Psychology, School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
- Cluster of Excellence “Hearing4all”Carl von Ossietzky University OldenburgOldenburgGermany
- Research Center Neurosensory ScienceCarl von Ossietzky University OldenburgOldenburgGermany
| |
Collapse
|
15
|
Sun J, Du X, Chen Y. Current Progress on Postoperative Cognitive Dysfunction: An Update. J Integr Neurosci 2024; 23:224. [PMID: 39735960 DOI: 10.31083/j.jin2312224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 12/31/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) represents a significant clinical concern, particularly among elderly surgical patients. It is characterized by a decline in cognitive performance, affecting memory, attention, coordination, orientation, verbal fluency, and executive function. This decline in cognitive abilities leads to longer hospital stays and increased mortality. This review provides a comprehensive overview of the current progress in understanding the relevant pathogenic factors, possible pathogenic mechanisms, diagnosing, prevention and treatment of POCD, as well as suggesting future research directions. It discusses neuronal damage, susceptible genes, central cholinergic system, central nervous system (CNS) inflammation, stress response and glucocorticoids, and oxidative stress in the development of POCD, aiming to uncover the pathological mechanism and develop effective treatment strategies for POCD.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Xiaohong Du
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
| | - Yong Chen
- Department of Anesthesia and Perioperative Medicine, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiangxi, China
- Jiangxi Province Key of Laboratory of Anesthesiology, 330006 Nanchang, Jiangxi, China
- Department of Anesthesia and Perioperative Care, University of California San Francisco (UCSF), San Francisco, CA 94158, USA
| |
Collapse
|
16
|
AboTaleb HA, Alghamdi BS. Metformin and fibromyalgia pathophysiology: current insights and promising future therapeutic strategies. Mol Biol Rep 2024; 52:60. [PMID: 39692938 DOI: 10.1007/s11033-024-10159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Fibromyalgia (FM) is a complex, chronic pain syndrome characterized by widespread musculoskeletal pain, fatigue, and cognitive disturbances. Despite its prevalence, the pathophysiology of FM remains poorly understood, with current treatments often providing limited relief. Recent studies have suggested that metformin, a widely used antidiabetic drug, may have potential therapeutic benefits for chronic pain conditions, including FM. This review aims to provide current insights into the role of metformin in FM pathophysiology, focusing on its neurotransmitter-modulating and anti-inflammatory effects. Metformin has been shown to mitigate neuroinflammation, protect neural tissues, and modulate key neurotransmitters involved in pain and mood regulation. These effects are particularly evident in animal models, where metformin has been observed to reduce pain sensitivity, improve mood-related behaviors, and decrease levels of pro-inflammatory cytokines like interleukin 1-beta (IL-1β). Additionally, the ability of metformin to influence serotonin, norepinephrine, and glutamate levels suggests a potential mechanism for its analgesic and mood-stabilizing effects. However, the current evidence is largely preclinical, and further research is needed to confirm these findings in human studies. This review aims to encourage researchers to explore the association between metformin and FM more deeply, with the hope of uncovering new therapeutic strategies that could offer relief to FM patients.
Collapse
Affiliation(s)
- Hanin Abdulbaset AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
18
|
Testai FD, Gorelick PB, Chuang PY, Dai X, Furie KL, Gottesman RF, Iturrizaga JC, Lazar RM, Russo AM, Seshadri S, Wan EY. Cardiac Contributions to Brain Health: A Scientific Statement From the American Heart Association. Stroke 2024; 55:e425-e438. [PMID: 39387123 DOI: 10.1161/str.0000000000000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The burden of neurologic diseases, including stroke and dementia, is expected to grow substantially in the coming decades. Thus, achieving optimal brain health has been identified as a public health priority and a major challenge. Cardiovascular diseases are the leading cause of death and disability in the United States and around the world. Emerging evidence shows that the heart and the brain, once considered unrelated organ systems, are interdependent and linked through shared risk factors. More recently, studies designed to unravel the intricate pathogenic mechanisms underpinning this association show that people with various cardiac conditions may have covert brain microstructural changes and cognitive impairment. These findings have given rise to the idea that by addressing cardiovascular health earlier in life, it may be possible to reduce the risk of stroke and deter the onset or progression of cognitive impairment later in life. Previous scientific statements have addressed the association between cardiac diseases and stroke. This scientific statement discusses the pathogenic mechanisms that link 3 prevalent cardiac diseases of adults (heart failure, atrial fibrillation, and coronary heart disease) to cognitive impairment.
Collapse
|
19
|
Klimek A, Kletkiewicz H, Siejka A, Wyszkowska J, Maliszewska J, Klimiuk M, Jankowska M, Rogalska J. The extremely low-frequency electromagnetic field (50 Hz) can establish a new "set-point" for the activity of the locus coeruleus-noradrenergic (LC-NA) system in rat. Brain Res Bull 2024; 219:111111. [PMID: 39486464 DOI: 10.1016/j.brainresbull.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Exposure of organisms to extremely low-frequency electromagnetic field (ELF-EMF; 50 Hz) has been increasing in recent decades, which is connected with dynamic technological development. ELF-EMF is considered a stress factor and its effects on organisms are still being investigated. We aimed to determine its impact on the locus coeruleus-noradrenergic (LC-NA) system enabling adaptation to stressful conditions. For this purpose, we exposed rats to 50 Hz ELF-EMF of 1 and 7 mT, 1 h/day for 7 days. The procedure was repeated three times to examine the organism's adaptive capabilities. Subsequently, the concentration of adrenaline, noradrenaline and its metabolite MHPG as well as the expression of the β2-adrenergic receptor was assessed. After the end of each exposure, part of the animals were subjected to a behavioural test to assess the influence of repeated ELF-EMF exposure on stress response to subsequent stress factors. Our research proved that mechanisms underlying the effects of ELF-EMF on stress response include the LC-NA system. ELF-EMF of 1 mT induced adaptive changes in the NA-LC system. However, exposure to 7 mT caused increased activity of the stress system which resulted in sensitization to subsequent, heterotypic (different from the one previously acting) stress factor. As ELF-EMF of 7 mT caused a profound decrease in β2-AR level would strongly inhibit the potential for neuroplastic processes in the hippocampus. Moreover, rats exposed to ELF-EMF of 7 mT showed moderately increased anxiety-related behaviour. Disturbances in NA-LC transmission may underlie the development of some neurodegenerative and psychiatric diseases which indicates the possible involvement of ELF-EMF in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Angelika Klimek
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-077, Poland.
| | - Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Agnieszka Siejka
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Joanna Wyszkowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Justyna Maliszewska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Maciej Klimiuk
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Milena Jankowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland.
| |
Collapse
|
20
|
Neațu M, Ioniță I, Jugurt A, Davidescu EI, Popescu BO. Exploring the Complex Relationship Between Antidepressants, Depression and Neurocognitive Disorders. Biomedicines 2024; 12:2747. [PMID: 39767653 PMCID: PMC11727177 DOI: 10.3390/biomedicines12122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
The coexistence of dementia and depression in older populations presents a complex clinical challenge, with each condition often exacerbating the other. Cognitive decline can intensify mood disturbances, and untreated or recurring depression accelerates neurodegenerative processes. As depression is a recognized risk factor for dementia, it is crucial to address both conditions concurrently to prevent further deterioration. Antidepressants are frequently used to manage depression in dementia patients, with some studies suggesting they offer neuroprotective benefits. These benefits include promoting neurogenesis, enhancing synaptic plasticity, and reducing neuroinflammation, potentially slowing cognitive decline. Additionally, antidepressants have shown promise in addressing Alzheimer's-related pathologies by reducing amyloid-beta accumulation and tau hyperphosphorylation. However, treatment-resistant depression remains a significant challenge, particularly in older adults with cognitive impairment. Many do not respond well to standard antidepressant therapies due to advanced neurodegenerative changes. Conflicting findings from studies add to the uncertainty, with some research suggesting that antidepressants may increase dementia risk, especially when used in patients with undiagnosed early-stage dementia. This article aims to explore the intricate relationship between depression and dementia, examining the benefits and risks of antidepressant use. We highlight the urgent need for personalized, comprehensive treatment strategies that balance mental health improvement with cognitive protection.
Collapse
Affiliation(s)
- Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Iulia Ioniță
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Jugurt
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
21
|
Wei F, Jiang H, Zhu C, Zhong L, Lin Z, Wu Y, Song L. The co-fermentation of whole-grain black barley and quinoa improves murine cognitive impairment induced by a high-fat diet via altering gut microbial ecology and suppressing neuroinflammation. Food Funct 2024; 15:11667-11685. [PMID: 39526896 DOI: 10.1039/d4fo02704c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A high-fat diet (HFD) is associated with various adverse health outcomes, including cognitive impairment and an elevated risk of neurodegenerative conditions. This relationship is partially attributed to the influence of an HFD on the gut microbiota. The objective of this research was to evaluate the neuroprotective benefits of co-fermented black barley and quinoa with Lactobacillus (FG) against cognitive impairments triggered by an HFD and to investigate the microbiota-gut-brain axis mechanisms involved. C57BL/6J mice were randomized into four groups: the normal control group (NC, n = 10), the high-fat diet group (HFD, n = 10), the high-fat diet group supplemented with FG (HFG, 10 mL per kg BW, n = 10), and the high-fat diet group supplemented with Lactobacillus (HFL, 10 mL per kg BW, n = 10). Our results showed that the FG intervention enhanced the behavioral and locomotor skills of the mice, elevated the levels of dopamine (DA) and norepinephrine (NPI) in brain tissues, and alleviated synaptic ultrastructural damage in the hippocampus. Furthermore, FG intervention was observed to exert a protective effect on both the blood-brain barrier and the colonic barrier, as evidenced by an increase in the mRNA levels of Zona occludens-1 (ZO-1), Claudin-4, and Occludin in the hippocampus and colon. These beneficial effects may be attributed to FG's regulation of gut microbiota dysbiosis, which involves the restoration of intestinal flora diversity, reduction of the Firmicutes/Bacteroidetes (F/B) ratio, and a decrease in the levels of pro-inflammatory bacteria such as s_Escherichia coli E and g_Escherichia; moreover, there was an increase in the abundances of anti-inflammatory bacteria, such as s_Bacteroides thetaiotaomicron and s_Parabacteroides goldsteinii. Metagenomic analysis revealed that the FG treatment downregulated the lipopolysaccharide (LPS) pathway and upregulated neurotransmitter biosynthetic pathways. These probiotic effects of FG resulted in reduced production and "leakage" of LPS and decreased mRNA expression of Toll-like receptor 4 (Tlr4), cluster of differentiation 14 (CD14), and myeloid differentiation factor 88 (Myd88) in hippocampal and colon tissues. Consequently, a reduction was observed in the levels of inflammatory cytokines in the serum, hippocampus, and colon, along with suppression of the immunoreactivity of microglia and astrocytes. Our results suggest that FG may serve as an intervention strategy for preventing cognitive impairments caused by an HFD.
Collapse
Affiliation(s)
- Fenfen Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chuang Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Fekih-Romdhane F, Kerbage G, Hachem N, El Murr M, Haddad G, Loch AA, Abou Khalil R, El Hayek E, Hallit S. The moderating role of COMT gene rs4680 polymorphism between maladaptive metacognitive beliefs and negative symptoms in patients with schizophrenia. BMC Psychiatry 2024; 24:831. [PMID: 39567927 PMCID: PMC11577635 DOI: 10.1186/s12888-024-06275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Although the positive association between impairments in metacognitive capacity and negative symptoms in people with schizophrenia spectrum disorders is widely evidenced in the literature, the explaining mechanisms of this association are still less known and poorly understood. This study aims to bridge this knowledge gap by testing the hypothesis that COMT rs4680 variants will act as moderators in the relationship between certain metacognitive domains and negative symptoms' severity. METHOD A cross-sectional study was carried-out during the period between February and March 2024. A total of 115 biologically unrelated Arab (Lebanese) patients with schizophrenia were included. RESULTS After controlling for sex and duration of illness as a potential confounder, moderation analyses showed that the AG genotype of the COMT rs4680 served as a significant moderator between maladaptive metacognitive beliefs about cognitive confidence (i.e. lack of confidence in memory) and negative symptoms. In non-carriers of the COMT rs4680 AG genotype, lower cognitive confidence (i.e., more "lack of cognitive confidence") is significantly associated with greater negative symptoms. CONCLUSION Findings suggest that metacognition may be a relevant treatment target in the management of negative symptoms particularly in non-carriers of the COMT rs4680 AG genotype. Therefore, genetic testing could potentially be used to match patients with metacognitive interventions that are more likely to be effective in supporting recovery from negative symptoms.
Collapse
Affiliation(s)
- Feten Fekih-Romdhane
- The Tunisian Center of Early Intervention in Psychosis, Department of Psychiatry "Ibn Omrane", Razi Hospital, Manouba, 2010, Tunisia.
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunis, Tunisia.
| | - Georges Kerbage
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Nagham Hachem
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Michelle El Murr
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Georges Haddad
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
- Psychiatry Department, Psychiatric Hospital of the Cross, Jal Eddib, Lebanon
| | - Alexandre Andrade Loch
- Laboratorio de Neurociencias (LIM 27), Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico, Sao Paulo, Brazil
| | - Rony Abou Khalil
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Elissar El Hayek
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon.
- Department of Psychology, College of Humanities, Effat University, Jeddah, 21478, Saudi Arabia.
- Applied Science Research Center, Applied Science Private University, Amman, 11937, Jordan.
| |
Collapse
|
23
|
Hassani SA, Tiesinga P, Womelsdorf T. Noradrenergic alpha-2a receptor stimulation enhances prediction error signaling and updating of attention sets in anterior cingulate cortex and striatum. Nat Commun 2024; 15:9905. [PMID: 39548091 PMCID: PMC11568163 DOI: 10.1038/s41467-024-54395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The noradrenergic system is believed to support behavioral flexibility. A possible source mediating improved flexibility are α2A adrenoceptors (α2AR) in prefrontal cortex (PFC) or the anterior cingulate cortex (ACC). We tested this hypothesis by stimulating α2ARs using Guanfacine during attentional set shifting in male nonhuman primates. We found that α2AR stimulation improved learning from errors and updating attention sets. Neural recordings in the ACC, dorsolateral PFC, and the striatum showed that α2AR stimulation selectively enhanced neural signaling of prediction errors in neurons of the ACC and the striatum, but not in dlPFC. This modulation was accompanied by enhanced encoding of attended target features and particularly apparent in putative fast-spiking interneurons, pointing to an interneuron mediated mechanism of α2AR action. These results reveal that α2A receptors are part of the causal chain of flexibly updating attention sets through an enhancement of outcomes and prediction error signaling in ACC and striatum.
Collapse
Affiliation(s)
- Seyed A Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Zhang X, Qiao Y, Wang M, Liang X, Wei L, Zhang M, Bi H, Gao T. Study of the immune disorder and metabolic dysregulation underlying mental abnormalities caused by exposure to narrow confined spaces. Brain Res 2024; 1842:149101. [PMID: 38945470 DOI: 10.1016/j.brainres.2024.149101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Prolonged confinement in cramped spaces can lead to derangements in brain function/structure, yet the underlying mechanisms remain unclear. To investigate, we subjected mice to restraint stress to simulate long-term narrow and enclosed space confinement, assessing their mental state through behavioral tests. Stressed mice showed reduced center travel and dwell time in the Open Field Test and increased immobility in the Tail Suspension Test. We measured lower hippocampal brain-derived neurotrophic factor levels and cortical monoamine neurotransmitters (5-HT and NE) in the stressed group. Further examination of the body's immune levels and serum metabolism revealed immune dysregulation and metabolic imbalance in the stressed group. The results of the metabolic network regulation analysis indicate that the targets affected by these differential metabolites are involved in several metabolic pathways that the metabolites themselves participate in, such as the "long-term depression" and "purine metabolism" pathways. Additionally, these targets are also associated with numerous immune-related pathways, such as the TNF, NF-κB, and IL-17 signaling pathways, and these findings were validated using GEO dataset analysis. Molecular docking results suggest that differential metabolites may regulate specific immune factors such as TNF-α, IL-1β, and IL-6, and these results were confirmed in experiments. Our research findings suggest that long-term exposure to confined and narrow spaces can lead to the development of psychopathologies, possibly mediated by immune system dysregulation and metabolic disruption.
Collapse
Affiliation(s)
- Xingfang Zhang
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining 810001, China; School of Psychology, Chengdu Medical College, Chengdu 610500, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Yajun Qiao
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining 810001, China; School of Psychology, Chengdu Medical College, Chengdu 610500, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Mengyuan Wang
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining 810001, China
| | - Xinxin Liang
- School of Psychology, Chengdu Medical College, Chengdu 610500, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Hongtao Bi
- Department of Pharmacy, Faculty of Medicine, Qinghai University, Xining 810001, China; Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China.
| | - Tingting Gao
- School of Psychology, Chengdu Medical College, Chengdu 610500, China; Department of Psychiatry, the People's Hospital of Jiangmen, Southern Medical University, Jiangmen 529000, China.
| |
Collapse
|
25
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
26
|
Sinakevitch IT, McDermott KE, Gray DT, Barnes CA. A combined MRI, histological and immunohistochemical rendering of the rhesus macaque locus coeruleus (LC) enables the differentiation of three distinct LC subcompartments. J Chem Neuroanat 2024; 140:102449. [PMID: 39084478 PMCID: PMC11392618 DOI: 10.1016/j.jchemneu.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Locus coeruleus (LC) neurons send their noradrenergic axons across multiple brain regions, including neocortex, subcortical regions, and spinal cord. Many aspects of cognition are known to be dependent on the noradrenergic system, and it has been suggested that dysfunction in this system may play central roles in cognitive decline associated with both normative aging and neurodegenerative disease. While basic anatomical and biochemical features of the LC have been examined in many species, detailed characterizations of the structure and function of the LC across the lifespan are not currently available. This includes the rhesus macaque, which is an important model of human brain function because of their striking similarities in brain architecture and behavioral capacities. In the present study, we describe a method to combine structural MRI, Nissl, and immunofluorescent histology from individual monkeys to reconstruct, in 3 dimensions, the entire macaque LC nucleus. Using these combined methods, a standardized volume of the LC was determined, and high-resolution confocal images of tyrosine hydroxylase-positive neurons were mapped into this volume. This detailed representation of the LC allows definitions to be proposed for three distinct subnuclei, including a medial region and a lateral region (based on location with respect to the central gray, inside or outside, respectively), and a compact region (defined by densely packed neurons within the medial compartment). This enabled the volume to be estimated and cell density to be calculated independently in each LC subnucleus for the first time. This combination of methods should allow precise characterization of the LC and has the potential to do the same for other nuclei with distinct molecular features.
Collapse
Affiliation(s)
- Irina T Sinakevitch
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Kelsey E McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States.
| | - Daniel T Gray
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States.
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States; Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
27
|
Jandackova VK, Scholes S, Britton A, Steptoe A. Midlife heart rate variability and cognitive decline: A large longitudinal cohort study. Int J Clin Health Psychol 2024; 24:100518. [PMID: 39639946 PMCID: PMC11617396 DOI: 10.1016/j.ijchp.2024.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Autonomic dysfunction is common in dementia, yet its contribution to neurocognitive changes remains unknown. We investigated whether midlife cardiac vagal modulation, indexed by heart rate variability, associates with subsequent cognitive decline in adults without prior coronary heart disease or stroke. Methods The sample comprised 2702 (1924 men) individuals initially aged 44-69 years from the UK Whitehall II cohort. Data from the fifth (1997-1999), seventh (2002-2004) and ninth (2007-2009) phases were analysed. Global cognitive function was ascertained from tests assessing memory, reasoning, vocabulary, and fluency. We used 12-lead-ECG-based heart rate variability measures, that primarily reflect vagal modulation (i.e. RMSSD and HF-HRV). Linear mixed-effects models and logistic regression were employed. Results Results showed consistent associations between both vagally-mediated HRV measures and faster decline in global cognitive function. Specifically, low RMSSD and HF-HRV (lowest versus upper four quintiles) were associated with 0.07 SD (95% CI: -0.13, -0.01) and 0.06 SD (95% CI: -0.12, -0.004) accelerated 10-year cognitive decline after sociodemographic adjustments and faster decline in older ages. Further adjustments for lifestyle factors, medication use and other cardiometabolic conditions did not change the findings. Cognitive decline in individuals with low RMSSD and HF-HRV was estimated to progress 3 and 3.5 years faster per decade, respectively, compared to their counterparts. Additionally, participants with low RMSSD had 37% higher odds of low cognitive function (lowest quintile) at follow-up (OR 1.37: 95% CI,1.03, 1.80). Conclusion Our findings support the aetiological significance of the autonomic nervous system, specifically vagal modulation, in the processes of cognitive decline and neurodegeneration. Low heart rate variability emerges as a potential biomarker indicative of acclerated cognitive decline that may extend over decades.
Collapse
Affiliation(s)
- Vera K. Jandackova
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, City Campus Cerna Louka; Moravska Ostrava 3397, 702 00 Ostrava, Czech Republic
| | - Shaun Scholes
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, United Kingdom
| | - Annie Britton
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, United Kingdom
| | - Andrew Steptoe
- Department of Epidemiology and Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, United Kingdom
- Department of Behavioural Science and Health, University College London, 1-19 Torrington Place, London WC1E 7HB, United Kingdom
| |
Collapse
|
28
|
Xie Z, He Z, Yuan Z, Wang M, Zhou F. The Regulation of Cerebral Lymphatic Drainage in the Transverse Sinus Region of the Mouse Brain. JOURNAL OF BIOPHOTONICS 2024:e202400250. [PMID: 39289863 DOI: 10.1002/jbio.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Cerebral lymphatic drainage is an important pathway for metabolic waste clearance in the brain, which plays a crucial role in the progression of central nervous system diseases. Recent studies have shown that norepinephrine (NE) is involved in the regulation of cerebral lymphatic drainage function, but the modulation mechanism remains unknown. In this study, we confirmed that NE rapidly reduced glymphatic influx and enhanced meningeal lymphatic clearance. Moreover, the transverse sinus (TS) was the vital region of cerebral lymphatic drainage regulation by NE. Further analysis revealed that NE inhibition could simultaneously enhance glymphatic drainage and dorsal meningeal lymphatic drainage, mainly acting on the TS region. This study demonstrated that the cerebral lymphatic drainage system can be regulated by NE, with the TS region serving as the primary modulating site. The findings provide a potential regulatory target for the amelioration of neurological diseases associated with cerebral lymphatic drainage function.
Collapse
Affiliation(s)
- Zengjun Xie
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Zhihui He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Zhen Yuan
- Faculty of Health Sciences, Center for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Miao Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| | - Feifan Zhou
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China
| |
Collapse
|
29
|
Zhao T, Luo J, Liu T, Xie K, Tang M. Secondary analysis of neurotransmitter metabolism and cognitive function in first-diagnosed, drug-naïve adult patients with major depressive disorder. Behav Brain Res 2024; 473:115193. [PMID: 39122091 DOI: 10.1016/j.bbr.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND & AIMS Growing evidence suggests that neurotransmitters may be associated with cognitive decline in MDD. This study primarily investigated the differences in cognitive functions between MDD patients and healthy controls, and explored the potential association between neurotransmitters and cognitive function of MDD patients. METHODS This cross-sectional study enrolled 87 first-diagnosed and drug-naïve patients with MDD and 50 healthy controls. Neurotransmitters (glutamine, glutamic acid, γ-2Aminobutiric acid, kainate, vanillylmandelic acid (VMA), 3-methoxy 4-hydroxyphenyl ethylene glycol (MHPG), noradrenaline (NE), homovanillic acid, dihydroxy-phenyl acetic acid (DOPAC), dopamine (DA), tryptophane, kynurenine, 5-HT, 5-hydroxyindoleacetic acid) were measured using LC-MS/MS and cognitive functions were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Then associative analyses with adjustment (female, age, BMI, education) by multiple linear regression between neurotransmitters and cognitive functions especially in MDD patients were performed. RESULTS MDD patients had lower RBANS scores in immediate memory, delayed memory and RBANS scores after adjustment. Neurotransmitters were associated with the cognitive levels of MDD patients after adjustment: DOPAC and DOPAC/DA had positive association with immediate memory score; DOPAC, DOPAC/DA and (VMA+MHPG)/NE were positively associated with attention score; NE was negatively associated with language score; DOPAC/DA was positively associated with both delayed memory and RBANS scores. CONCLUSION Patients had greater cognitive impairment especially in memory. Furthermore, plasma neurotransmitter may be related to MDD and play an important role in cognitive impairment in MDD, especially in memory and attention.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Junhao Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
30
|
Orlando IF, Hezemans FH, Ye R, Murley AG, Holland N, Regenthal R, Barker RA, Williams-Gray CH, Passamonti L, Robbins TW, Rowe JB, O’Callaghan C. Noradrenergic modulation of saccades in Parkinson's disease. Brain Commun 2024; 6:fcae297. [PMID: 39464213 PMCID: PMC11503952 DOI: 10.1093/braincomms/fcae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024] Open
Abstract
Noradrenaline is a powerful modulator of cognitive processes, including action decisions underlying saccadic control. Changes in saccadic eye movements are common across neurodegenerative diseases of ageing, including Parkinson's disease. With growing interest in noradrenergic treatment potential for non-motor symptoms in Parkinson's disease, the temporal precision of oculomotor function is advantageous to assess the effects of this modulation. Here, we studied the effect of 40 mg atomoxetine, a noradrenaline reuptake inhibitor, in 19 people with idiopathic Parkinson's disease using a single dose, randomized double-blind, crossover, placebo-controlled design. Twenty-five healthy adult participants completed the assessments to provide normative data. Participants performed prosaccade and antisaccade tasks. The latency, velocity and accuracy of saccades, and resting pupil diameter, were measured. Increased pupil diameter on the drug confirmed its expected effect on the locus coeruleus ascending arousal system. Atomoxetine altered key aspects of saccade performance: prosaccade latencies were faster and the saccadic main sequence was normalized. These changes were accompanied by increased antisaccade error rates on the drug. Together, these findings suggest a shift in the speed-accuracy trade-off for visuomotor decisions in response to noradrenergic treatment. Our results provide new evidence to substantiate a role for noradrenergic modulation of saccades, and based on known circuitry, we advance the hypothesis that this reflects modulation at the level of the locus coeruleus-superior colliculus pathway. Given the potential for noradrenergic treatment of non-motor symptoms of Parkinson's disease and related conditions, the oculomotor system can support the assessment of cognitive effects without limb-motor confounds on task performance.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of CambridgeCB2 3EA, CambridgeUK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
31
|
Wilhelm E, Derosiere G, Quoilin C, Cakiroglu I, Paço S, Raftopoulos C, Nuttin B, Duque J. Subthalamic DBS does not restore deficits in corticospinal suppression during movement preparation in Parkinson's disease. Clin Neurophysiol 2024; 165:107-116. [PMID: 38996612 DOI: 10.1016/j.clinph.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE Parkinson's disease (PD) patients exhibit changes in mechanisms underlying movement preparation, particularly the suppression of corticospinal excitability - termed "preparatory suppression" - which is thought to facilitate movement execution in healthy individuals. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) being an attractive treatment for advanced PD, we aimed to study the potential contribution of this nucleus to PD-related changes in such corticospinal dynamics. METHODS On two consecutive days, we applied single-pulse transcranial magnetic stimulation to the primary motor cortex of 20 advanced PD patients treated with bilateral STN-DBS (ON vs. OFF), as well as 20 healthy control subjects. Motor-evoked potentials (MEPs) were elicited at rest or during movement preparation in an instructed-delay choice reaction time task including left- or right-hand responses. Preparatory suppression was assessed by expressing MEPs during movement preparation relative to rest. RESULTS PD patients exhibited a deficit in preparatory suppression when it was probed on the responding hand side, particularly when this corresponded to their most-affected hand, regardless of their STN-DBS status. CONCLUSIONS Advanced PD patients displayed a reduction in preparatory suppression which was not restored by STN-DBS. SIGNIFICANCE The current findings confirm that PD patients lack preparatory suppression, as previously reported. Yet, the fact that this deficit was not responsive to STN-DBS calls for future studies on the neural source of this regulatory mechanism during movement preparation.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium; Department of Adult Neurology, Saint-Luc University Hospital, 1200 Brussels, Belgium.
| | - Gerard Derosiere
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Caroline Quoilin
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Inci Cakiroglu
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| | - Susana Paço
- NOVA IMS, Universidade Nova de Lisboa, 1070-312 Lisbon, Portugal
| | | | - Bart Nuttin
- Department of Neurosurgery, UZ Leuven, 3000 Leuven, Belgium
| | - Julie Duque
- Institute of Neuroscience, Catholic University of Louvain, 1200 Brussels, Belgium
| |
Collapse
|
32
|
Peng L, Wei R, Lu Y. Effect of a Nurse-Led Exercise Program on Depression in Elderly Patients with Diabetes: A Retrospective Study. ACTAS ESPANOLAS DE PSIQUIATRIA 2024; 52:437-444. [PMID: 39129702 PMCID: PMC11319739 DOI: 10.62641/aep.v52i4.1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
BACKGROUND Patients with diabetes often face psychological challenges, particularly depression. The coexistence of these two conditions can significantly impact both the mental and physical health of individuals. This study aims to investigate the effects of nurse-led exercise training on elderly patients diagnosed with type 2 diabetes mellitus and comorbid depression through experimental research. By selecting appropriate exercise programs for patients, the study seeks to identify effective strategies for improving both their physical health and depressive symptoms. Additionally, it aims to offer tailored exercise recommendations to enhance the overall well-being of these patients. METHOD The observation group (n = 53) and the control group (n = 53) were selected based on the interventions documented in the patients' medical records, with eligible patients identified as research participants. The control group received standard medication, while the observation group engaged in intensive exercise training in addition to their standard treatment, dedicating 60-90 min per day to exercise. Prior to and following the intervention, blood glucose indices, levels of 5-hydroxytryptamine (5-HT) and norepinephrine (NE), self-rating depression scale (SDS), Self-Rating Anxiety Scale (SAS), Pittsburgh Sleep Quality Index (PSQI), and Generic Quality of Life Inventory (GQOLI-74) scores were assessed to evaluate the impact of the exercise training intervention. RESULT Following the intervention, levels of fasting blood glucose (FBG), 2-h postprandial blood glucose (PBG), and Hemoglobin A1c (HbA1c) were reduced compared to pre-intervention levels, with the exercise group exhibiting lower levels than the control group (p < 0.05). Additionally, post-intervention, patients' levels of 5-HT and NE increased, with the exercise group demonstrating higher levels than the control group (p < 0.05). Moreover, post-intervention, SDS and SAS scores decreased, with more significant improvements observed in the observation group (p < 0.05). Furthermore, the intervention improved sleep quality and quality of life among patients in the exercise group compared to those in the control group (p < 0.05). CONCLUSION Nurse-guided exercise training demonstrates a significant capacity to ameliorate glycemic indexes among patients with diabetes mellitus comorbid with depression. It not only diminishes depression and anxiety levels but also enhances the expression of 5-HT and NE. Furthermore, it effectively elevates patients' sleep quality and quality of life. These findings underscore the potential of nurse-led exercise interventions for clinical promotion and widespread application.
Collapse
Affiliation(s)
- Li Peng
- Department of Endocrinology, Xingtai People's Hospital, 054000 Xingtai, Hebei, China
| | - Ran Wei
- Department of Endocrinology, Xingtai People's Hospital, 054000 Xingtai, Hebei, China
| | - Yi Lu
- Department of Endocrinology, Xingtai People's Hospital, 054000 Xingtai, Hebei, China
| |
Collapse
|
33
|
Messanvi F, Visocky V, Senneca C, Berkun K, Taori M, Bradley SP, Wang H, Tejeda H, Chudasama Y. Galanin receptor 1 expressing neurons in hippocampal-prefrontal circuitry modulate goal directed attention and impulse control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605653. [PMID: 39131306 PMCID: PMC11312591 DOI: 10.1101/2024.07.29.605653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
While amino acid neurotransmitters are the main chemical messengers in the brain, they are co-expressed with neuropeptides which are increasingly recognized as modulators of cognitive pathways. For example, the neuropeptide galanin has been implicated in a wide range of pathological conditions in which frontal and temporal structures are compromised. In a recent study in rats, we discovered that direct pharmacological stimulation of galanin receptor type 1 (GalR1) in the ventral prefrontal cortex (vPFC) and ventral hippocampus (vHC) led to opposing effects on attention and impulse control behavior. In the present study, we investigate how subtypes of neurons expressing GalR1 in these two areas differentially contribute to these behaviors. We first establish that GalR1 is predominantly expressed in glutamatergic neurons in both the vPFC and HC. We develop a novel viral approach to gain genetic access to GalR1-expressing neurons and demonstrate that optogenetic excitation of GalR1 expressing neurons in the vPFC, but not vHC, selectively disrupts attention in a complex behavioral task. Finally, using fiber photometry, we measure the bulk calcium dynamics in GalR1-expressing neurons during the same task to demonstrate opposing activity in vPFC and vHC. These results are consistent with our previous work demonstrating differential behavioral effects induced by GalR1 activating in vPFC and vHC. These results indicate the distinct neuromodulatory and behavioral contributions of galanin mediated by subclasses of neurons in the hippocampal and prefrontal circuitry.
Collapse
Affiliation(s)
- Fany Messanvi
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Vladimir Visocky
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Carolyn Senneca
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Kathleen Berkun
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Maansi Taori
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Sean P Bradley
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Hugo Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, MD, USA
| | - Yogita Chudasama
- Section on Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
- Rodent Behavioral Core, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Statz M, Weber H, Weis F, Kober M, Bathel H, Plocksties F, van Rienen U, Timmermann D, Storch A, Fauser M. Subthalamic nucleus deep brain stimulation induces functional deficits in norepinephrinergic neurotransmission in a Parkinson's disease model. Brain Res 2024; 1841:149128. [PMID: 39053685 DOI: 10.1016/j.brainres.2024.149128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.
Collapse
Affiliation(s)
- Meike Statz
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Hanna Weber
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Frederike Weis
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Henning Bathel
- Institute of General Electrical Engineering, University of Rostock, 18059 Rostock, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18059 Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18059 Rostock, Germany; Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany; Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18059 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| |
Collapse
|
35
|
Yan Y, Zhang M, Ren W, Zheng X, Chang Y. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson's disease. Eur J Neurosci 2024; 59:2616-2627. [PMID: 38441250 DOI: 10.1111/ejn.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is an age-related progressive neurodegenerative disorder characterized by both motor and non-motor symptoms resulting from the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and noradrenergic neurons in the locus coeruleus (LC). The current diagnosis of PD primarily relies on motor symptoms, often leading to diagnoses in advanced stages, where a significant portion of SNpc dopamine neurons has already succumbed. Therefore, the identification of imaging biomarkers for early-stage PD diagnosis and disease progression monitoring is imperative. Recent studies propose that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) holds promise as an imaging biomarker. In this review, we summarize the latest findings concerning NM-MRI characteristics at various stages in patients with PD and those with atypical parkinsonism. In conclusion, alterations in neuromelanin within the LC are associated with non-motor symptoms and prove to be a reliable imaging biomarker in the prodromal phase of PD. Furthermore, NM-MRI demonstrates efficacy in differentiating progressive supranuclear palsy (PSP) from PD and multiple system atrophy with predominant parkinsonism. The spatial patterns of changes in the SNpc can be indicative of PD progression and aid in distinguishing between PSP and synucleinopathies. We recommend that patients with PD and individuals at risk for PD undergo regular NM-MRI examinations. This technology holds the potential for widespread use in PD diagnosis.
Collapse
Affiliation(s)
- Yayun Yan
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Wenhua Ren
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaoqi Zheng
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ying Chang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
36
|
Laurencin C, Lancelot S, Brosse S, Mérida I, Redouté J, Greusard E, Lamberet L, Liotier V, Le Bars D, Costes N, Thobois S, Boulinguez P, Ballanger B. Noradrenergic alterations in Parkinson's disease: a combined 11C-yohimbine PET/neuromelanin MRI study. Brain 2024; 147:1377-1388. [PMID: 37787503 PMCID: PMC10994534 DOI: 10.1093/brain/awad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chloé Laurencin
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Sarah Brosse
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Inés Mérida
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Jérôme Redouté
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Elise Greusard
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Ludovic Lamberet
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Nicolas Costes
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Stéphane Thobois
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 69500 Bron, France
| | - Philippe Boulinguez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Bénédicte Ballanger
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| |
Collapse
|
37
|
Moloney RA, Palliser HK, Dyson RM, Pavy CL, Berry M, Hirst JJ, Shaw JC. Ongoing effects of preterm birth on the dopaminergic and noradrenergic pathways in the frontal cortex and hippocampus of guinea pigs. Dev Neurobiol 2024; 84:93-110. [PMID: 38526217 DOI: 10.1002/dneu.22937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Children born preterm have an increased likelihood of developing neurobehavioral disorders such as attention-deficit hyperactivity disorder (ADHD) and anxiety. These disorders have a sex bias, with males having a higher incidence of ADHD, whereas anxiety disorder tends to be more prevalent in females. Both disorders are underpinned by imbalances to key neurotransmitter systems, with dopamine and noradrenaline in particular having major roles in attention regulation and stress modulation. Preterm birth disturbances to neurodevelopment may affect this neurotransmission in a sexually dimorphic manner. Time-mated guinea pig dams were allocated to deliver by preterm induction of labor (gestational age 62 [GA62]) or spontaneously at term (GA69). The resultant offspring were randomized to endpoints as neonates (24 h after term-equivalence age) or juveniles (corrected postnatal day 40, childhood equivalence). Relative mRNA expressions of key dopamine and noradrenaline pathway genes were examined in the frontal cortex and hippocampus and quantified with real-time PCR. Myelin basic protein and neuronal nuclei immunostaining were performed to characterize the impact of preterm birth. Within the frontal cortex, there were persisting reductions in the expression of dopaminergic pathway components that occurred in preterm males only. Conversely, preterm-born females had increased expression of key noradrenergic receptors and a reduction of the noradrenergic transporter within the hippocampus. This study demonstrated that preterm birth results in major changes in dopaminergic and noradrenergic receptor, transporter, and synthesis enzyme gene expression in a sex- and region-based manner that may contribute to the sex differences in susceptibility to neurobehavioral disorders. These findings highlight the need for the development of sex-based treatments for improving these conditions.
Collapse
Affiliation(s)
- Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Max Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Jonathon J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
38
|
Van Egroo M, van Someren EJ, Grinberg LT, Bennett DA, Jacobs HI. Associations of 24-Hour Rest-Activity Rhythm Fragmentation, Cognitive Decline, and Postmortem Locus Coeruleus Hypopigmentation in Alzheimer's Disease. Ann Neurol 2024; 95:653-664. [PMID: 38407546 PMCID: PMC11875531 DOI: 10.1002/ana.26880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE While studies suggested that locus coeruleus (LC) neurodegeneration contributes to sleep-wake dysregulation in Alzheimer's disease (AD), the association between LC integrity and circadian rest-activity patterns remains unknown. Here, we investigated the relationships between 24-hour rest-activity rhythms, cognitive trajectories, and autopsy-derived LC integrity in older adults with and without cortical AD neuropathology. METHODS This retrospective study leveraged multi-modal data from participants of the longitudinal clinical-pathological Rush Memory and Aging Project. Indices of 24-hour rest-activity rhythm fragmentation (intradaily variability) and stability (interdaily stability) were extracted from annual actigraphic recordings, and cognitive trajectories were computed from annual cognitive evaluations. At autopsy, LC neurodegeneration was determined by the presence of hypopigmentation, and cortical AD neuropathology was assessed. Contributions of comorbid pathologies (Lewy bodies, cerebrovascular pathology) were evaluated. RESULTS Among the 388 cases included in the study sample (age at death = 92.1 ± 5.9 years; 273 women), 98 (25.3%) displayed LC hypopigmentation, and 251 (64.7%) exhibited cortical AD neuropathology. Logistic regression models showed that higher rest-activity rhythm fragmentation, measured up to ~7.1 years before death, was associated with increased risk to display LC neurodegeneration at autopsy (odds ratio [OR] = 1.46, 95% confidence interval [CI95%]: 1.16-1.84, pBONF = 0.004), particularly in individuals with cortical AD neuropathology (OR = 1.56, CI95%: 1.15-2.15, pBONF = 0.03) and independently of comorbid pathologies. In addition, longitudinal increases in rest-activity rhythm fragmentation partially mediated the association between LC neurodegeneration and cognitive decline (estimate = -0.011, CI95%: -0.023--0.002, pBONF = 0.03). INTERPRETATION These findings highlight the LC as a neurobiological correlate of sleep-wake dysregulation in AD, and further underscore the clinical relevance of monitoring rest-activity patterns for improved detection of at-risk individuals. ANN NEUROL 2024;95:653-664.
Collapse
Affiliation(s)
- Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Eus J.W. van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HJ, Amsterdam, The Netherlands
| | - Lea T. Grinberg
- Department of Pathology, LIM-22, University of São Paulo Medical School, 01246-903, São Paulo, SP, Brazil
- Memory and Aging Center, Department of Neurology, and Pathology, University of California, San Francisco, 94143, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, 94143, San Francisco, CA, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, 60612, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, 60612, Chicago, IL, USA
| | - Heidi I.L. Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, 6200 MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 02129, Boston, MA, USA
| |
Collapse
|
39
|
Naderi S, Tamaddonfard E, Nafisi S, Soltanalinejad-Taghiabad F. Effect of thymoquinone on acetic acid-induced visceral nociception in rats: role of central cannabinoid and α 2-adrenergic receptors. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:131-138. [PMID: 38770373 PMCID: PMC11102585 DOI: 10.30466/vrf.2023.2005364.3922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/16/2023] [Indexed: 05/22/2024]
Abstract
Thymoquinone (TQ) is the main biologically active substance of Nigella sativa (black seeds). It has anti-cancer, anti-inflammatory, anti-diabetic, anti-oxidative and anti-nociceptive properties. This study was aimed to explore the effect of TQ on acetic acid-induced visceral nociception. The central mechanisms of the effect of TQ were investigated using cannabinergic (AM251) and α2-adrenergic (yohimbine [Yoh]) antagonists. The lateral ventricle of the brain was cannulated for intracerebroventricular (ICV) injections. Visceral nociception was induced by intra-peritoneal (IP) injection of acetic acid (1.00% in a volume of 1.00 mL). Measuring the latency time to the first writhing appearance and counting the number of writhing in 5-min intervals for a period of 60 min were performed. Locomotor activity was determined using an open-field test. Oral administration (PO) of 2.50 and 10.00 mg kg-1 TQ increased the latency time to the first writhing appearance and decreased the number of writhing. The AM251 (5.00 µg per rat; ICV) and Yoh (5.00 µg per rat; ICV) partially prevented TQ (10.00 mg kg-1; PO)-induced anti-nociception. Locomotor activity was not altered by these treatments. The results of the present study showed that TQ had the ability to reduce visceral nociception caused by IP injection of acetic acid. The central mechanisms of this action of TQ might be partially mediated by cannabinergic and α2-adrenegic receptors.
Collapse
Affiliation(s)
- Somayyeh Naderi
- PhD Candidate, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Saeid Nafisi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | |
Collapse
|
40
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
41
|
Lin CP, Frigerio I, Bol JGJM, Bouwman MMA, Wesseling AJ, Dahl MJ, Rozemuller AJM, van der Werf YD, Pouwels PJW, van de Berg WDJ, Jonkman LE. Microstructural integrity of the locus coeruleus and its tracts reflect noradrenergic degeneration in Alzheimer's disease and Parkinson's disease. Transl Neurodegener 2024; 13:9. [PMID: 38336865 PMCID: PMC10854137 DOI: 10.1186/s40035-024-00400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Degeneration of the locus coeruleus (LC) noradrenergic system contributes to clinical symptoms in Alzheimer's disease (AD) and Parkinson's disease (PD). Diffusion magnetic resonance imaging (MRI) has the potential to evaluate the integrity of the LC noradrenergic system. The aim of the current study was to determine whether the diffusion MRI-measured integrity of the LC and its tracts are sensitive to noradrenergic degeneration in AD and PD. METHODS Post-mortem in situ T1-weighted and multi-shell diffusion MRI was performed for 9 AD, 14 PD, and 8 control brain donors. Fractional anisotropy (FA) and mean diffusivity were derived from the LC, and from tracts between the LC and the anterior cingulate cortex, the dorsolateral prefrontal cortex (DLPFC), the primary motor cortex (M1) or the hippocampus. Brain tissue sections of the LC and cortical regions were obtained and immunostained for dopamine-beta hydroxylase (DBH) to quantify noradrenergic cell density and fiber load. Group comparisons and correlations between outcome measures were performed using linear regression and partial correlations. RESULTS The AD and PD cases showed loss of LC noradrenergic cells and fibers. In the cortex, the AD cases showed increased DBH + immunoreactivity in the DLPFC compared to PD cases and controls, while PD cases showed reduced DBH + immunoreactivity in the M1 compared to controls. Higher FA within the LC was found for AD, which was correlated with loss of noradrenergic cells and fibers in the LC. Increased FA of the LC-DLPFC tract was correlated with LC noradrenergic fiber loss in the combined AD and control group, whereas the increased FA of the LC-M1 tract was correlated with LC noradrenergic neuronal loss in the combined PD and control group. The tract alterations were not correlated with cortical DBH + immunoreactivity. CONCLUSIONS In AD and PD, the diffusion MRI-detected alterations within the LC and its tracts to the DLPFC and the M1 were associated with local noradrenergic neuronal loss within the LC, rather than noradrenergic changes in the cortex.
Collapse
Affiliation(s)
- Chen-Pei Lin
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
| | - Irene Frigerio
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - John G J M Bol
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maud M A Bouwman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Alex J Wesseling
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Annemieke J M Rozemuller
- Amsterdam UMC, Department of Pathology, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity and Attention Program, Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam UMC, Department of Radiology and Nuclear Medicine, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Amsterdam UMC, Department of Anatomy and Neurosciences, Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Zhang M, Zhang Z, Li H, Xia Y, Xing M, Xiao C, Cai W, Bu L, Li Y, Park TE, Tang Y, Ye X, Lin WJ. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer's disease. Transl Neurodegener 2024; 13:1. [PMID: 38173017 PMCID: PMC10763201 DOI: 10.1186/s40035-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the predominant type of dementia worldwide. It is characterized by the progressive and irreversible decline of cognitive functions. In addition to the pathological beta-amyloid (Aβ) deposition, glial activation, and neuronal injury in the postmortem brains of AD patients, increasing evidence suggests that the often overlooked vascular dysfunction is an important early event in AD pathophysiology. Vascular endothelial growth factor (VEGF) plays a critical role in regulating physiological functions and pathological changes in blood vessels, but whether VEGF is involved in the early stage of vascular pathology in AD remains unclear. METHODS We used an antiangiogenic agent for clinical cancer treatment, the humanized monoclonal anti-VEGF antibody bevacizumab, to block VEGF binding to its receptors in the 5×FAD mouse model at an early age. After treatment, memory performance was evaluated by a novel object recognition test, and cerebral vascular permeability and perfusion were examined by an Evans blue assay and blood flow scanning imaging analysis. Immunofluorescence staining was used to measure glial activation and Aβ deposits. VEGF and its receptors were analyzed by enzyme-linked immunosorbent assay and immunoblotting. RNA sequencing was performed to elucidate bevacizumab-associated transcriptional signatures in the hippocampus of 5×FAD mice. RESULTS Bevacizumab treatment administered from 4 months of age dramatically improved cerebrovascular functions, reduced glial activation, and restored long-term memory in both sexes of 5×FAD mice. Notably, a sex-specific change in different VEGF receptors was identified in the cortex and hippocampus of 5×FAD mice. Soluble VEGFR1 was decreased in female mice, while full-length VEGFR2 was increased in male mice. Bevacizumab treatment reversed the altered expression of receptors to be comparable to the level in the wild-type mice. Gene Set Enrichment Analysis of transcriptomic changes revealed that bevacizumab effectively reversed the changes in the gene sets associated with blood-brain barrier integrity and vascular smooth muscle contraction in 5×FAD mice. CONCLUSIONS Our study demonstrated the mechanistic roles of VEGF at the early stage of amyloidopathy and the protective effects of bevacizumab on cerebrovascular function and memory performance in 5×FAD mice. These findings also suggest the therapeutic potential of bevacizumab for the early intervention of AD.
Collapse
Affiliation(s)
- Min Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Honghong Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuting Xia
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Mengdan Xing
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lulu Bu
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yamei Tang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
43
|
Kostenko A, Prezzavento O, de Leo G, D'Arco D, Gulino R, Caccamo A, Leanza G. Cognitive and Histopathological Alterations in Rat Models of Early- and Late-Phase Memory Dysfunction: Effects of Sigma-1 Receptor Activation. J Alzheimers Dis 2024; 101:797-811. [PMID: 39240642 DOI: 10.3233/jad-240618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Sigma-1 receptors are highly expressed in brain areas related to cognitive function and are a promising target for anti-amnesic treatments. We previously showed that activation of sigma-1 receptors by the selective agonist compound methyl(1 R,2 S/1 S,2 R)-2-[4-hydroxy-4-phenylpiperidin-1-yl)methyl]-1-(4-methylphenyl) cyclopropane carboxylate [(±)-PPCC] promotes a remarkable recovery in rat models of memory loss associated to cholinergic dysfunction. Objective In this study, we sought to assess the role of (±)-PPCC on working memory deficits caused by noradrenergic depletion. Methods Animals with a mild or severe working memory deficits associated to varying degrees of noradrenergic neuronal depletion were treated with the sigma-1 agonist just prior to the beginning of each behavioral testing session. Results While (±)-PPCC alone at a dose of 1 mg/kg/day failed to affect working memory in lesioned animals, its association with the α2 adrenergic receptor agonist clonidine, completely blocked noradrenaline release, significantly improving rat performance. This effect, distinct from noradrenaline activity, is likely to result from a direct action of the (±)-PPCC compound onto sigma-1 receptors, as pre-treatment with the selective sigma-1 receptor antagonist BD-1047 reversed the improved working memory performance. Despite such clear functional effects, the treatment did not affect noradrenergic neuron survival or terminal fiber proliferation. Conclusions Future studies are thus necessary to address the effects of long-lasting (±)-PPCC treatment, with or without clonidine, on cognitive abilities and Alzheimer's disease-like histopathology. Considering the already established involvement of sigma-1 receptors in endogenous cell plasticity mechanisms, their activation by selective agonist compounds holds promises as possibly positive contributor to disease-modifying events in neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Kostenko
- Department of Life Sciences, B.R.A.I.N. (Basic Research and Integrative Neuroscience), Laboratory for Neurogenesis and Repair, University of Trieste, Trieste, Italy
| | - Orazio Prezzavento
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Gioacchino de Leo
- Department of Life Sciences, B.R.A.I.N. (Basic Research and Integrative Neuroscience), Laboratory for Neurogenesis and Repair, University of Trieste, Trieste, Italy
- SISSA, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - David D'Arco
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, Catania, Italy
| |
Collapse
|
44
|
Li L, Rana AN, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. Cell Rep 2023; 42:113566. [PMID: 38100349 PMCID: PMC11090260 DOI: 10.1016/j.celrep.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together, these findings provide a more complete understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Akshay N Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Latagliata EC, Orsini C, Cabib S, Biagioni F, Fornai F, Puglisi-Allegra S. Prefrontal Dopamine in Flexible Adaptation to Environmental Changes: A Game for Two Players. Biomedicines 2023; 11:3189. [PMID: 38137410 PMCID: PMC10740496 DOI: 10.3390/biomedicines11123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.
Collapse
Affiliation(s)
| | - Cristina Orsini
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Cabib
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
46
|
Meng Q, Chao Y, Zhang S, Ding X, Feng H, Zhang C, Liu B, Zhu W, Li Y, Zhang Q, Tong H, Wu L, Bian H. Attenuation of estrogen and its receptors in the post-menopausal stage exacerbates dyslipidemia and leads to cognitive impairment. Mol Brain 2023; 16:80. [PMID: 37986006 PMCID: PMC10662842 DOI: 10.1186/s13041-023-01068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Cognitive dysfunction increases as menopause progresses. We previously found that estrogen receptors (ERs) contribute to dyslipidemia, but the specific relationship between ERs, dyslipidemia and cognitive dysfunction remains poorly understood. In the present study, we analyzed sequencing data from female hippocampus and normal breast aspirate samples from normal and Alzheimer's disease (AD) women, and the results suggest that abnormal ERs signaling is associated with dyslipidemia and cognitive dysfunction. We replicated a mouse model of dyslipidemia and postmenopausal status in LDLR-/- mice and treated them with β-estradiol or simvastatin, and found that ovariectomy in LDLR-/- mice led to an exacerbation of dyslipidemia and increased hippocampal apoptosis and cognitive impairment, which were associated with reduced estradiol levels and ERα, ERβ and GPER expression. In vitro, a lipid overload model of SH-SY-5Y cells was established and treated with inhibitors of ERs. β-estradiol or simvastatin effectively attenuated dyslipidemia-induced neuronal apoptosis via upregulation of ERs, whereas ERα, ERβ and GPER inhibitors together abolished the protective effect of simvastatin on lipid-induced neuronal apoptosis. We conclude that decreased estrogen and its receptor function in the postmenopausal stage promote neuronal damage and cognitive impairment by exacerbating dyslipidemia, and that estrogen supplementation or lipid lowering is an effective way to ameliorate hippocampal damage and cognitive dysfunction via upregulation of ERs.
Collapse
Affiliation(s)
- Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Chao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shurui Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Han Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenyan Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bowen Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijie Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huangjin Tong
- Department of Pharmacy, Jiangsu Province Hospital of Integrated of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Lixing Wu
- Department of Cardiovascular, Jiangsu Province Hospital of Integrated of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
47
|
Devigili G, Straccia G, Cereda E, Garavaglia B, Fedeli A, Elia AE, Piacentini SHMJ, Prioni S, Amami P, Invernizzi F, Andreasi NG, Romito LM, Eleopra R, Cilia R. Unraveling Autonomic Dysfunction in GBA-Related Parkinson's Disease. Mov Disord Clin Pract 2023; 10:1620-1638. [PMID: 38026514 PMCID: PMC10654845 DOI: 10.1002/mdc3.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023] Open
Abstract
Background Patients with Parkinson's disease (PD) and GBA gene mutations (GBA-PD) develop nonmotor complications more frequently than noncarriers. However, an objective characterization of both cardiovascular and sudomotor autonomic dysfunction using extensive clinical and instrumental measures has never been provided so far. Survival is reduced in GBA-PD regardless of age and dementia, suggesting that other hitherto unrecognized factors are involved. Objectives To provide instrumental measures of pattern and severity of autonomic dysfunction in GBA-PD and explore their correlation with other non-motor symptoms and implications for clinical practice. Methods In this cross-sectional study, 21 GBA-PD and 24 matched PD noncarriers underwent extensive assessment of motor and non-motor features, including neuropsychological testing. Cardiovascular autonomic function was explored through a comprehensive battery of indexes, including power spectral analysis of the R-R intervals and blood pressure short-term variability during resting state and active maneuvers. Dynamic Sweat Test was used to assess post-ganglionic sudomotor dysfunction. Results Despite minimal or absent clinical correlates, cardiovagal and sympathetic indexes, heart rate variability parameters and sudomotor postganglionic function were more severely impaired in GBA-PD than noncarriers (overcoming relatively preserved compensatory peripheral sympathetic function), suggesting more prominent cardiac sympatho-vagal demodulation, efferent baroreflex failure and peripheral sympathetic dysfunction in GBA-PD. Cardiovascular dysautonomia showed marginal correlations with cognitive impairment. Conclusions Compared to PD noncarriers, GBA-PD display more severe instrumental autonomic abnormalities, which may be underestimated by purely clinical measures, despite their relevance on morbidity and mortality. This supports the necessity of implementing instrumental autonomic assessment in all GBA-PD, regardless of clinically overt symptoms.
Collapse
Affiliation(s)
- Grazia Devigili
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders UnitMilanItaly
| | - Giulia Straccia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders UnitMilanItaly
- Neurology and Stroke UnitC.T.O. Hospital, A.O.R.N Ospedali dei ColliNaplesItaly
| | - Emanuele Cereda
- Clinical Nutrition and Dietetics UnitFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Barbara Garavaglia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and NeurogeneticsMilanItaly
| | - Alessandro Fedeli
- Neuropsychology UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Antonio Emanuele Elia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders UnitMilanItaly
| | | | - Sara Prioni
- Neuropsychology UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Paolo Amami
- Neuropsychology UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Federica Invernizzi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Medical Genetics and NeurogeneticsMilanItaly
| | - Nico Golfrè Andreasi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders UnitMilanItaly
| | - Luigi Michele Romito
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders UnitMilanItaly
| | - Roberto Eleopra
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders UnitMilanItaly
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders UnitMilanItaly
| |
Collapse
|
48
|
Hassani SA, Womelsdorf T. Noradrenergic alpha-2a Receptor Stimulation Enhances Prediction Error Signaling in Anterior Cingulate Cortex and Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564052. [PMID: 37961384 PMCID: PMC10634832 DOI: 10.1101/2023.10.25.564052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The noradrenergic system is implicated to support behavioral flexibility by increasing exploration during periods of uncertainty and by enhancing working memory for goal-relevant stimuli. Possible sources mediating these pro-cognitive effects are α2A adrenoceptors (α2AR) in prefrontal cortex or the anterior cingulate cortex facilitating fronto-striatal learning processes. We tested this hypothesis by selectively stimulating α2ARs using Guanfacine during feature-based attentional set shifting in nonhuman primates. We found that α2A stimulation improved learning from errors and facilitates updating the target feature of an attentional set. Neural recordings in the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex (dlPFC), and the striatum showed that α2A stimulation selectively enhanced the neural representation of negative reward prediction errors in neurons of the ACC and of positive prediction errors in the striatum, but not in dlPFC. This modulation was accompanied by enhanced encoding of the feature and location of the attended target across the fronto-striatal network. Enhanced learning was paralleled by enhanced encoding of outcomes in putative fast-spiking interneurons in the ACC, dlPFC, and striatum but not in broad spiking cells, pointing to an interneuron mediated mechanism of α2AR action. These results illustrate that α2A receptors causally support the noradrenergic enhancement of updating attention sets through an enhancement of prediction error signaling in the ACC and the striatum.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 37240
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20824
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 37240
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
49
|
Prinzi C, Kostenko A, de Leo G, Gulino R, Leanza G, Caccamo A. Selective Noradrenaline Depletion in the Neocortex and Hippocampus Induces Working Memory Deficits and Regional Occurrence of Pathological Proteins. BIOLOGY 2023; 12:1264. [PMID: 37759663 PMCID: PMC10526041 DOI: 10.3390/biology12091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Noradrenaline (NA) depletion occurs in Alzheimer's disease (AD); however, its relationship with the pathological expression of Tau and transactive response DNA-binding protein 43 (TDP-43), two major hallmarks of AD, remains elusive. Here, increasing doses of a selective noradrenergic immunotoxin were injected into developing rats to generate a model of mild or severe NA loss. At about 12 weeks post-lesion, dose-dependent working memory deficits were detected in these animals, associated with a marked increase in cortical and hippocampal levels of TDP-43 phosphorylated at Ser 409/410 and Tau phosphorylated at Thr 217. Notably, the total levels of both proteins were largely unaffected, suggesting a direct relationship between neocortical/hippocampal NA depletion and the phosphorylation of pathological Tau and TDP-43 proteins. As pTD43 is present in 23% of AD cases and pTau Thr217 has been detected in patients with mild cognitive impairment that eventually would develop into AD, improvement of noradrenergic function in AD might represent a viable therapeutic approach with disease-modifying potential.
Collapse
Affiliation(s)
- Chiara Prinzi
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
| | - Anna Kostenko
- B.R.A.I.N. (Basic Research and Integrative Neuroscience) Laboratory for Neurogenesis and Repair, Department of Life Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Gioacchino de Leo
- SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136 Triste, Italy;
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| | - Giampiero Leanza
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Antonella Caccamo
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
50
|
Perez-Palomar B, Erdozain AM, Erkizia-Santamaría I, Ortega JE, Meana JJ. Maternal Immune Activation Induces Cortical Catecholaminergic Hypofunction and Cognitive Impairments in Offspring. J Neuroimmune Pharmacol 2023; 18:348-365. [PMID: 37208550 PMCID: PMC10577104 DOI: 10.1007/s11481-023-10070-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Impairment of specific cognitive domains in schizophrenia has been associated with prefrontal cortex (PFC) catecholaminergic deficits. Among other factors, prenatal exposure to infections represents an environmental risk factor for schizophrenia development in adulthood. However, it remains largely unknown whether the prenatal infection-induced changes in the brain may be associated with concrete switches in a particular neurochemical circuit, and therefore, if they could alter behavioral functions. METHODS In vitro and in vivo neurochemical evaluation of the PFC catecholaminergic systems was performed in offspring from mice undergoing maternal immune activation (MIA). The cognitive status was also evaluated. Prenatal viral infection was mimicked by polyriboinosinic-polyribocytidylic acid (poly(I:C)) administration to pregnant dams (7.5 mg/kg i.p., gestational day 9.5) and consequences were evaluated in adult offspring. RESULTS MIA-treated offspring showed disrupted recognition memory in the novel object recognition task (t = 2.30, p = 0.031). This poly(I:C)-based group displayed decreased extracellular dopamine (DA) concentrations compared to controls (t = 3.17, p = 0.0068). Potassium-evoked release of DA and noradrenaline (NA) were impaired in the poly(I:C) group (DA: Ft[10,90] = 43.33, p < 0.0001; Ftr[1,90] = 1.224, p = 0.2972; Fi[10,90] = 5.916, p < 0.0001; n = 11); (NA: Ft[10,90] = 36.27, p < 0.0001; Ftr[1,90] = 1.841, p = 0.208; Fi[10,90] = 8.686, p < 0.0001; n = 11). In the same way, amphetamine-evoked release of DA and NA were also impaired in the poly(I:C) group (DA: Ft[8,328] = 22.01, p < 0.0001; Ftr[1,328] = 4.507, p = 0.040; Fi[8,328] = 2.319, p = 0.020; n = 43); (NA: Ft[8,328] = 52.07; p < 0.0001; Ftr[1,328] = 4.322; p = 0.044; Fi[8,398] = 5.727; p < 0.0001; n = 43). This catecholamine imbalance was accompanied by increased dopamine D1 and D2 receptor expression (t = 2.64, p = 0.011 and t = 3.55, p = 0.0009; respectively), whereas tyrosine hydroxylase, DA and NA tissue content, DA and NA transporter (DAT/NET) expression and function were unaltered. CONCLUSIONS MIA induces in offspring a presynaptic catecholaminergic hypofunction in PFC with cognitive impairment. This poly(I:C)-based model reproduces catecholamine phenotypes reported in schizophrenia and represents an opportunity for the study of cognitive impairment associated to this disorder.
Collapse
Affiliation(s)
- Blanca Perez-Palomar
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, E-48940, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, 63110, USA
| | - Amaia M Erdozain
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, E-48940, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
| | - Ines Erkizia-Santamaría
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, E-48940, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, E-48940, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain.
- Biocruces Bizkaia Health Research Institute, Bizkaia, Spain.
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, E-48940, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, ISCIII, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| |
Collapse
|