1
|
Woźnicki P, Bartusik-Aebisher D, Przygórzewska A, Aebisher D. Molecular mechanisms of the effects of photodynamic therapy on the brain: A review of the literature. Photodiagnosis Photodyn Ther 2025; 52:104536. [PMID: 40023269 DOI: 10.1016/j.pdpdt.2025.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Malignant gliomas are the most common primary brain tumors in adults. These tumors have a diverse molecular origin and a very poor prognosis. There is a lack of effective treatment at WHO grade IV glioma, and all glioblastomas progress or recur. Current treatments including surgical intervention, radiation therapy, and chemotherapy are insufficient and can cause damage to healthy brain tissue and neurological deficits. The preservation of healthy brain tissue during therapeutic intervention is made extremely difficult by the ability of malignant gliomas to diffusely infiltrate the surrounding brain parenchyma. Photodynamic therapy (PDT) is a treatment modality for glioma that can possibly overcome the inherent shortcommings of traditional therapies. Photodynamic therapy involves the use of a photosensitizer (PS) which, upon absorption of light by photosensitized tissue, triggers photochemical reactions generating reactive oxygen species (ROS) leading to the killing of tumor cells. Research focusing on the effective use of PDT in the treatment of glioma is already underway with promising results. Clinical studies on PDT for the treatment of gliomas have shown it to be a safe therapeutic modality with acceptable levels of side effects. However, some adverse sequelae have been observed during PDT of these tumours, such as increased photosensitivity, increased intracranial pressure or transient aphasia and worsening of pre-existing neurological deficits. Although the clinical sequelae of PDT are well described, the molecular mechanisms of PDT's effects on the healthy brain have not yet been thoroughly characterized. In our work, we attempt to summarize the molecular mechanisms of the effects of photosensitization on neural tissue, brain vasculature and the blood-brain barrier (BBB). We also point to findings presenting molecular approaches to protect the healthy brain from the adverse effects of photodynamic damage.
Collapse
Affiliation(s)
- Paweł Woźnicki
- Doctoral School, Medical College of the University of Rzeszów, Rzeszów 35-310, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland.
| |
Collapse
|
2
|
Guttman LC, Yang L, Liu M, Dawson VL, Dawson TM. Targeting PAAN/MIF nuclease activity in parthanatos-associated brain diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2025; 102:1-26. [PMID: 39929577 DOI: 10.1016/bs.apha.2024.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Current FDA-approved drugs for neurodegenerative diseases primarily aim to reduce pathological protein aggregation or alleviate symptoms by enhancing neurotransmitter signaling. However, outcomes remain suboptimal and often fail to modify the course of neurodegenerative diseases. Acute neurologic injury that occurs in stroke and traumatic brain injury (TBI) also suffer from inadequate therapies to prevent neuronal cell death, resulting from both the acute insult and the subsequent reperfusion injury following recanalization of the occlusion in stroke. Approaches to prevent neuronal loss in neurodegenerative disease and acute neurologic injury hold significant therapeutic promise. Parthanatos is a cell death pathway that is activated and plays an integral role in these neurologic disorders. Parthanatos-associated apoptosis-inducing factor nuclease (PAAN), also known as macrophage migration inhibitory factor (MIF) nuclease, is the final executioner in the parthanatic cell death cascade. We posit that inhibiting parthanatos by blocking MIF nuclease activity offers a promising and precise strategy to prevent neuronal cell death in both chronic neurodegenerative disease and acute neurologic injury. In this chapter, we discuss the role of MIF's nuclease activity - distinct from its other enzymatic activities - in driving cell death that occurs in various neurological diseases. We also delve into the discovery, screening, structure, and function of MIF nuclease inhibitors, which have demonstrated neuroprotection in Parkinson's disease (PD) cell and mouse models. This analysis includes essential future research directions and queries that need to be considered to advance the clinical development of MIF nuclease inhibitors. Ultimately, our discussion aims to inspire drug development centered around inhibiting MIF's nuclease activity, potentially resulting in transformative, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Lauren C Guttman
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liu Yang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meilian Liu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Valina L Dawson
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Marziali LN, Hwang Y, Palmisano M, Cuenda A, Sim FJ, Gonzalez A, Volsko C, Dutta R, Trapp BD, Wrabetz L, Feltri ML. p38γ MAPK delays myelination and remyelination and is abundant in multiple sclerosis lesions. Brain 2024; 147:1871-1886. [PMID: 38128553 PMCID: PMC11068213 DOI: 10.1093/brain/awad421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/05/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023] Open
Abstract
Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.
Collapse
Affiliation(s)
- Leandro N Marziali
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Yoonchan Hwang
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Marilena Palmisano
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ana Cuenda
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid 28049, Spain
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Alberto Gonzalez
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Christina Volsko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lawrence Wrabetz
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Maria L Feltri
- Institute for Myelin and Glia Exploration, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
- Università degli studi di Milano, Biometra department and IRCcs Carlo Besta, Milano 20133, Italy
| |
Collapse
|
4
|
Chapman TW, Kamen Y, Piedra ET, Hill RA. Oligodendrocyte Maturation Alters the Cell Death Mechanisms That Cause Demyelination. J Neurosci 2024; 44:e1794232024. [PMID: 38395617 PMCID: PMC10977033 DOI: 10.1523/jneurosci.1794-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Myelinating oligodendrocytes die in human disease and early in aging. Despite this, the mechanisms that underly oligodendrocyte death are not resolved and it is also not clear whether these mechanisms change as oligodendrocyte lineage cells are undergoing differentiation and maturation. Here, we used a combination of intravital imaging, single-cell ablation, and cuprizone-mediated demyelination, in both female and male mice, to discover that oligodendrocyte maturation dictates the dynamics and mechanisms of cell death. After single-cell phototoxic damage, oligodendrocyte precursor cells underwent programmed cell death within hours, differentiating oligodendrocytes died over several days, while mature oligodendrocytes took weeks to die. Importantly cells at each maturation stage all eventually died but did so with drastically different temporal dynamics and morphological features. Consistent with this, cuprizone treatment initiated a caspase-3-dependent form of rapid cell death in differentiating oligodendrocytes, while mature oligodendrocytes never activated this executioner caspase. Instead, mature oligodendrocytes exhibited delayed cell death which was marked by DNA damage and disruption in poly-ADP-ribose subcellular localization. Thus, oligodendrocyte maturation plays a key role in determining the mechanism of death a cell undergoes in response to the same insult. This means that oligodendrocyte maturation is important to consider when designing strategies for preventing cell death and preserving myelin while also enhancing the survival of new oligodendrocytes in demyelinating conditions.
Collapse
Affiliation(s)
- Timothy W Chapman
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Yasmine Kamen
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Enrique T Piedra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
5
|
Ladakis DC, Reyes-Mantilla MI, Gadani SP, Mace JW, Dominguez-Penuela SC, Appiah MJ, Smith MD, Bhargava P, Fox RJ, Saidha S, Calabresi PA. Serum macrophage migration inhibitory factor levels predict brain atrophy in people with primary progressive multiple sclerosis. Mult Scler 2024; 30:35-43. [PMID: 37982154 DOI: 10.1177/13524585231213164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is a cytokine linked to multiple sclerosis (MS) progression that is thought to be inhibited by ibudilast. SPRINT-MS was a phase 2 placebo-controlled trial of ibudilast in progressive multiple sclerosis (PMS). OBJECTIVE To determine whether baseline MIF levels predict imaging outcomes and assess the effects of ibudilast on serum and cerebrospinal fluid (CSF) MIF levels in people with PMS treated with ibudilast. METHODS Participants in the SPRINT-MS trial were treated with either ibudilast or placebo and underwent brain magnetic resonance imaging (MRI) every 24 weeks over a duration of 96 weeks. MIF was measured in serum and CSF. RESULTS MIF levels were compared with imaging outcomes in 223 participants from the SPRINT-MS study. In the primary progressive multiple sclerosis (PPMS) cohort, males had higher serum (p < 0.001) and CSF (p = 0.01) MIF levels, as compared with females. Higher baseline serum MIF levels in PPMS were associated with faster brain atrophy (beta = -0.113%, 95% confidence interval (CI): -0.204% to -0.021%; p = 0.016). These findings were not observed in secondary progressive multiple sclerosis (SPMS). Ibudilast did not affect either serum or CSF MIF levels. CONCLUSIONS Serum MIF levels were associated with male sex and predicted brain atrophy in PPMS, but not SPMS. Ibudilast did not demonstrate an effect on MIF levels, as compared with placebo, although we cannot exclude a functional effect.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria I Reyes-Mantilla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jackson W Mace
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Mayaa J Appiah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Kaffe D, Kaplanis SI, Karagogeos D. The Roles of Caloric Restriction Mimetics in Central Nervous System Demyelination and Remyelination. Curr Issues Mol Biol 2023; 45:9526-9548. [PMID: 38132442 PMCID: PMC10742427 DOI: 10.3390/cimb45120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The dysfunction of myelinating glial cells, the oligodendrocytes, within the central nervous system (CNS) can result in the disruption of myelin, the lipid-rich multi-layered membrane structure that surrounds most vertebrate axons. This leads to axonal degeneration and motor/cognitive impairments. In response to demyelination in the CNS, the formation of new myelin sheaths occurs through the homeostatic process of remyelination, facilitated by the differentiation of newly formed oligodendrocytes. Apart from oligodendrocytes, the two other main glial cell types of the CNS, microglia and astrocytes, play a pivotal role in remyelination. Following a demyelination insult, microglia can phagocytose myelin debris, thus permitting remyelination, while the developing neuroinflammation in the demyelinated region triggers the activation of astrocytes. Modulating the profile of glial cells can enhance the likelihood of successful remyelination. In this context, recent studies have implicated autophagy as a pivotal pathway in glial cells, playing a significant role in both their maturation and the maintenance of myelin. In this Review, we examine the role of substances capable of modulating the autophagic machinery within the myelinating glial cells of the CNS. Such substances, called caloric restriction mimetics, have been shown to decelerate the aging process by mitigating age-related ailments, with their mechanisms of action intricately linked to the induction of autophagic processes.
Collapse
Affiliation(s)
- Despoina Kaffe
- Department of Biology, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
| | - Stefanos Ioannis Kaplanis
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| | - Domna Karagogeos
- Department of Basic Science, School of Medicine, University of Crete, Vassilika Vouton, 70013 Heraklion, Greece;
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton, 70013 Heraklion, Greece
| |
Collapse
|
7
|
Elkjaer ML, Waede MR, Kingo C, Damsbo K, Illes Z. Expression of Bruton´s tyrosine kinase in different type of brain lesions of multiple sclerosis patients and during experimental demyelination. Front Immunol 2023; 14:1264128. [PMID: 38022591 PMCID: PMC10679451 DOI: 10.3389/fimmu.2023.1264128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inhibition of Bruton's tyrosine kinase (BTK) is an emerging multiple sclerosis (MS) therapy. BTK inhibitors (BTKi) cross the blood-brain barrier and modulate B cells and microglia, major cellular players in active and chronic active lesions. Objective To assess potential lesional and cellular targets of BTKi, we examined BTK expression in different type of MS white matter (WM) lesions, in unmanipulated CNS resident cells, and in a degenerative MS model associated with microglia activation in vivo. Methods We examined BTK expression by next-generation RNA-sequencing in postmortem 25 control WM, 19 NAWM, 6 remyelinating, 18 active, 13 inactive and 17 chronic active lesions. Presence of B cells and microglia were examined by immunohistochemistry. CNS resident cells were isolated from the mouse brain by magnetic sorting. BTK expression was examined by quantitative PCR in isolated cells and dissected corpus callosum from mice treated with cuprizone (CPZ). Results BTK expression was significantly increased in active and chronic active lesions with upregulated complement receptors and Fcγ receptors. Active lesions contained high number of perivascular B cells, microglia, and macrophages. Chronic active lesions were characterized by microglia/macrophages in the rim. Microglia expressed BTK at high level (120-fold) in contrast to other CNS cell types (2-4-fold). BTK expression was increasing during CPZ treatment reaching significance after stopping CPZ. Conclusion Considering BTK expression in MS lesions and resident cells, BTKi may exert effect on B cells, microglia/macrophages in active lesions, and limit microglia activation in chronic active lesions, where tissue damage propagates.
Collapse
Affiliation(s)
- Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie R. Waede
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Christina Kingo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Karina Damsbo
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- BRIDGE – Brain Research Interdisciplinary Guided Ecxellence, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Yuan D, Huang B, Gu M, Qin BE, Su Z, Dai K, Peng FH, Jiang Y. Exploring Shared Genetic Signatures of Alzheimer's Disease and Multiple Sclerosis: A Bioinformatic Analysis Study. Eur Neurol 2023; 86:363-376. [PMID: 37848007 PMCID: PMC10733940 DOI: 10.1159/000533397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/31/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Many clinical studies reported the coexistence of Alzheimer's disease (AD) and multiple sclerosis (MS), but the common molecular signature between AD and MS remains elusive. The purpose of our study was to explore the genetic linkage between AD and MS through bioinformatic analysis, providing new insights into the shared signatures and possible pathogenesis of two diseases. METHODS The common differentially expressed genes (DEGs) were determined between AD and MS from datasets obtained from Gene Expression Omnibus (GEO) database. Further, functional and pathway enrichment analysis, protein-protein interaction network construction, and identification of hub genes were carried out. The expression level of hub genes was validated in two other external AD and MS datasets. Transcription factor (TF)-gene interactions and gene-miRNA interactions were performed in NetworkAnalyst. Finally, receiver operating characteristic (ROC) curve analysis was applied to evaluate the predictive value of hub genes. RESULTS A total of 75 common DEGs were identified between AD and MS. Functional and pathway enrichment analysis emphasized the importance of exocytosis and synaptic vesicle cycle, respectively. Six significant hub genes, including CCL2, CD44, GFAP, NEFM, STXBP1, and TCEAL6, were identified and verified as common hub genes shared by AD and MS. FOXC1 and hsa-mir-16-5p are the most common TF and miRNA in regulating hub genes, respectively. In the ROC curve analysis, all hub genes showed good efficiency in helping distinguish patients from controls. CONCLUSION Our study first identified a common genetic signature between AD and MS, paving the road for investigating shared mechanism of AD and MS.
Collapse
Affiliation(s)
- Dasen Yuan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Bihui Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, PR China
| | - Meifeng Gu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Bang-e Qin
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhihui Su
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Kai Dai
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Fu-hua Peng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
9
|
Xu X, Sun B, Zhao C. Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 2023; 187:106314. [PMID: 37783233 DOI: 10.1016/j.nbd.2023.106314] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) is the most extensively studied member of the PARP superfamily, with its primary function being the facilitation of DNA damage repair processes. Parthanatos is a type of regulated cell death cascade initiated by PARP-1 hyperactivation, which involves multiple subroutines, including the accumulation of ADP-ribose polymers (PAR), binding of PAR and apoptosis-inducing factor (AIF), release of AIF from the mitochondria, the translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and massive MIF-mediated DNA fragmentation. Over the past few decades, the role of PARP-1 in central nervous system health and disease has received increasing attention. In this review, we discuss the biological functions of PARP-1 in neural cell proliferation and differentiation, memory formation, brain ageing, and epigenetic regulation. We then elaborate on the involvement of PARP-1 and PARP-1-dependant parthanatos in various neuropathological processes, such as oxidative stress, neuroinflammation, mitochondrial dysfunction, excitotoxicity, autophagy damage, and endoplasmic reticulum (ER) stress. Additional highlight contains PARP-1's implications in the initiation, progression, and therapeutic opportunities for different neurological illnesses, including neurodegenerative diseases, stroke, autism spectrum disorder (ASD), multiple sclerosis (MS), epilepsy, and neuropathic pain (NP). Finally, emerging insights into the repurposing of PARP inhibitors for the management of neurological diseases are provided. This review aims to summarize the exciting advancements in the critical role of PARP-1 in neurological disorders, which may open new avenues for therapeutic options targeting PARP-1 or parthanatos.
Collapse
Affiliation(s)
- Xiaoxue Xu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| | - Bowen Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China; Key Laboratory of Neurological Disease Big Data of Liaoning Province, Shenyang, China.
| |
Collapse
|
10
|
Sun W, Wen M, Liu M, Wang Q, Liu Q, Li L, Siebert HC, Loers G, Zhang R, Zhang N. Effect of β-hydroxybutyrate on behavioral alterations, molecular and morphological changes in CNS of multiple sclerosis mouse model. Front Aging Neurosci 2022; 14:1075161. [PMID: 36533180 PMCID: PMC9752847 DOI: 10.3389/fnagi.2022.1075161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of central nervous system (CNS). Aging is the most significant risk factor for the progression of MS. Dietary modulation (such as ketogenic diet) and caloric restriction, can increase ketone bodies, especially β-hydroxybutyrate (BHB). Increased BHB has been reported to prevent or improve age-related disease. The present studies were performed to understand the therapeutic effect and potential mechanisms of exogenous BHB in cuprizone (CPZ)-induced demyelinating model. In this study, a continuous 35 days CPZ mouse model with or without BHB was established. The changes of behavior function, pathological hallmarks of CPZ, and intracellular signal pathways in mice were detected by Open feld test, Morris water maze, RT-PCR, immuno-histochemistry, and western blot. The results showed that BHB treatment improved behavioral performance, prevented myelin loss, decreased the activation of astrocyte as well as microglia, and up-regulated the neurotrophin brain-derived neurotrophic factor in both the corpus callosum and hippocampus. Meanwhile, BHB treatment increased the number of MCT1+ cells and APC+ oligodendrocytes. Furthermore, the treatment decreased the expression of HDAC3, PARP1, AIF and TRPA1 which is related to oligodendrocyte (OL) apoptosis in the corpus callosum, accompanied by increased expression of TrkB. This leads to an increased density of doublecortin (DCX)+ neuronal precursor cells and mature NeuN+ neuronal cells in the hippocampus. As a result, BHB treatment effectively promotes the generation of PDGF-Ra+ (oligodendrocyte precursor cells, OPCs), Sox2+ cells and GFAP+ (astrocytes), and decreased the production of GFAP+ TRAP1+ cells, and Oligo2+ TRAP1+ cells in the corpus callosum of mouse brain. Thus, our results demonstrate that BHB treatment efficiently supports OPC differentiation and decreases the OLs apoptosis in CPZ-intoxicated mice, partly by down-regulating the expression of TRPA1 and PARP, which is associated with the inhibition of the p38-MAPK/JNK/JUN pathway and the activation of ERK1/2, PI3K/AKT/mTOR signaling, supporting BHB treatment adjunctive nutritional therapy for the treatment of chronic demyelinating diseases, such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Quiqin Liu
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Lanjie Li
- Shandong Donkey Industry, Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, China
| | - Hans-Christian Siebert
- Schauenburgerstr, RI-B-NT - Research Institute of Bioinformatics and Nanotechnology, Kiel University, Kiel, Germany
| | - Gabriele Loers
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
- Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
12
|
Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int J Mol Sci 2022; 23:ijms23095162. [PMID: 35563559 PMCID: PMC9100097 DOI: 10.3390/ijms23095162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.
Collapse
|
13
|
Gharagozloo M, Bannon R, Calabresi PA. Breaking the barriers to remyelination in multiple sclerosis. Curr Opin Pharmacol 2022; 63:102194. [PMID: 35255453 PMCID: PMC8995341 DOI: 10.1016/j.coph.2022.102194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022]
Abstract
Chronically demyelinated axons are rendered susceptible to degeneration through loss of trophic support from oligodendrocytes and myelin, and this process underlies disability progression in multiple sclerosis. Promoting remyelination is a promising neuroprotective therapeutic strategy, but to date, has not been achieved through simply promoting oligodendrocyte precursor cell differentiation, and it is clear that a detailed understanding of the molecular mechanisms underlying failed remyelination is required to guide future therapeutic approaches. In multiple sclerosis, remyelination is impaired by extrinsic inhibitory cues in the lesion microenvironment including secreted effector molecules released from compartmentalized immune cells and reactive glia, as well as by intrinsic defects in oligodendrocyte lineage cells, most notably increased metabolic demands causing oxidative stress and accelerated cellular senescence. Promising advances in our understanding of the cellular and molecular mechanisms underlying these processes offers hope for strategically designed interventions to facilitate remyelination thereby resulting in robust clinical benefits.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Riley Bannon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Wang Y, Pleasure D, Deng W, Guo F. Therapeutic Potentials of Poly (ADP-Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and Animal Models: Concept Revisiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102853. [PMID: 34935305 PMCID: PMC8844485 DOI: 10.1002/advs.202102853] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Indexed: 05/05/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays a fundamental role in DNA repair and gene expression. Excessive PARP1 hyperactivation, however, has been associated with cell death. PARP1 and/or its activity are dysregulated in the immune and central nervous system of multiple sclerosis (MS) patients and animal models. Pharmacological PARP1 inhibition is shown to be protective against immune activation and disease severity in MS animal models while genetic PARP1 deficiency studies reported discrepant results. The inconsistency suggests that the function of PARP1 and PARP1-mediated PARylation may be complex and context-dependent. The article reviews PARP1 functions, discusses experimental findings and possible interpretations of PARP1 in inflammation, neuronal/axonal degeneration, and oligodendrogliopathy, three major pathological components cooperatively determining MS disease course and neurological progression, and points out future research directions. Cell type specific PARP1 manipulations are necessary for revisiting the role of PARP1 in the three pathological components prior to moving PARP1 inhibition into clinical trials for MS therapy.
Collapse
Affiliation(s)
- Yan Wang
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - David Pleasure
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510006China
| | - Fuzheng Guo
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| |
Collapse
|
15
|
Mekhaeil M, Dev KK, Conroy MJ. Existing Evidence for the Repurposing of PARP-1 Inhibitors in Rare Demyelinating Diseases. Cancers (Basel) 2022; 14:cancers14030687. [PMID: 35158955 PMCID: PMC8833351 DOI: 10.3390/cancers14030687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors are successful cancer therapeutics that impair DNA repair machinery, leading to an accumulation of DNA damage and consequently cell death. The shared underlying mechanisms driving malignancy and demyelinating disease, together with the success of anticancer drugs as repurposed therapeutics, makes the repurposing of PARP-1 inhibitors for demyelinating diseases a worthy concept to consider. In addition, PARP-1 inhibitors demonstrate notable neuroprotective effects in demyelinating disorders, including multiple sclerosis which is considered the archetypical demyelinating disease. Abstract Over the past decade, Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have arisen as a novel and promising targeted therapy for breast cancer gene (BRCA)-mutated ovarian and breast cancer patients. Therapies targeting the enzyme, PARP-1, have since established their place as maintenance drugs for cancer. Here, we present existing evidence that implicates PARP-1 as a player in the development and progression of both malignancy and demyelinating disease. These findings, together with the proven clinical efficacy and marketed success of PARP-1 inhibitors in cancer, present the repurposing of these drugs for demyelinating diseases as a desirable therapeutic concept. Indeed, PARP-1 inhibitors are noted to demonstrate neuroprotective effects in demyelinating disorders such as multiple sclerosis and Parkinson’s disease, further supporting the use of these drugs in demyelinating, neuroinflammatory, and neurodegenerative diseases. In this review, we discuss the potential for repurposing PARP-1 inhibitors, with a focus on rare demyelinating diseases. In particular, we address the possible use of PARP-1 inhibitors in examples of rare leukodystrophies, for which there are a paucity of treatment options and an urgent need for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marianna Mekhaeil
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland; (M.M.); (K.K.D.)
- Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland
| | - Kumlesh Kumar Dev
- Drug Development Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland; (M.M.); (K.K.D.)
| | - Melissa Jane Conroy
- Cancer Immunology Research Group, Department of Physiology, School of Medicine, Trinity College Dublin, D18 DH50 Dublin, Ireland
- Correspondence:
| |
Collapse
|
16
|
Gutierrez-Quintana R, Walker DJ, Williams KJ, Forster DM, Chalmers AJ. Radiation-induced neuroinflammation: a potential protective role for poly(ADP-ribose) polymerase inhibitors? Neurooncol Adv 2022; 4:vdab190. [PMID: 35118383 PMCID: PMC8807076 DOI: 10.1093/noajnl/vdab190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy (RT) plays a fundamental role in the treatment of glioblastoma (GBM). GBM are notoriously invasive and harbor a subpopulation of cells with stem-like features which exhibit upregulation of the DNA damage response (DDR) and are radioresistant. High radiation doses are therefore delivered to large brain volumes and are known to extend survival but also cause delayed toxicity with 50%-90% of patients developing neurocognitive dysfunction. Emerging evidence identifies neuroinflammation as a critical mediator of the adverse effects of RT on cognitive function. In addition to its well-established role in promoting repair of radiation-induced DNA damage, activation of poly(ADP-ribose) polymerase (PARP) can exacerbate neuroinflammation by promoting secretion of inflammatory mediators. Therefore, PARP represents an intriguing mechanistic link between radiation-induced activation of the DDR and subsequent neuroinflammation. PARP inhibitors (PARPi) have emerged as promising new agents for GBM when given in combination with RT, with multiple preclinical studies demonstrating radiosensitizing effects and at least 3 compounds being evaluated in clinical trials. We propose that concomitant use of PARPi could reduce radiation-induced neuroinflammation and reduce the severity of radiation-induced cognitive dysfunction while at the same time improving tumor control by enhancing radiosensitivity.
Collapse
Affiliation(s)
- Rodrigo Gutierrez-Quintana
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David J Walker
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Duncan M Forster
- Division of Informatics, Imaging and Data Sciences, Manchester Molecular Imaging Centre, The University of Manchester, Manchester, UK
| | - Anthony J Chalmers
- Institute of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Recent advances in clinical trials targeting the kynurenine pathway. Pharmacol Ther 2021; 236:108055. [PMID: 34929198 DOI: 10.1016/j.pharmthera.2021.108055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway (KP) is the major catabolic pathway for the essential amino acid tryptophan leading to the production of nicotinamide adenine dinucleotide. In inflammatory conditions, the activation of the KP leads to the production of several bioactive metabolites including kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, kynurenic acid and quinolinic acid. These metabolites can have redox and immune suppressive activity, be neurotoxic or neuroprotective. While the activity of the pathway is tightly regulated under normal physiological condition, it can be upregulated by immunological activation and inflammation. The dysregulation of the KP has been implicated in wide range of neurological diseases and psychiatric disorders. In this review, we discuss the mechanisms involved in KP-mediated neurotoxicity and immune suppression, and its role in diseases of our expertise including cancer, chronic pain and multiple sclerosis. We also provide updates on the clinical trials evaluating the efficacy of KP inhibitors and/or analogues in each respective disease.
Collapse
|
18
|
Wang Y, Zhang Y, Zhang S, Kim B, Hull VL, Xu J, Prabhu P, Gregory M, Martinez-Cerdeno V, Zhan X, Deng W, Guo F. PARP1-mediated PARylation activity is essential for oligodendroglial differentiation and CNS myelination. Cell Rep 2021; 37:109695. [PMID: 34610310 PMCID: PMC9586836 DOI: 10.1016/j.celrep.2021.109695] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
The function of poly(ADP-ribosyl) polymerase 1 (PARP1) in myelination and remyelination of the central nervous system (CNS) remains enigmatic. Here, we report that PARP1 is an intrinsic driver for oligodendroglial development and myelination. Genetic PARP1 depletion impairs the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and impedes CNS myelination. Mechanistically, PARP1-mediated PARylation activity is not only necessary but also sufficient for OPC differentiation. At the molecular level, we identify the RNA-binding protein Myef2 as a PARylated target, which controls OPC differentiation through the PARylation-modulated derepression of myelin protein expression. Furthermore, PARP1’s enzymatic activity is necessary for oligodendrocyte and myelin regeneration after demyelination. Together, our findings suggest that PARP1-mediated PARylation activity may be a potential therapeutic target for promoting OPC differentiation and remyelination in neurological disorders characterized by arrested OPC differentiation and remyelination failure such as multiple sclerosis. Wang et al. show that PARP1-mediated PARylation promotes oligodendroglial differentiation and regeneration. They demonstrate that PARP1 PARylates proteins relating to RNA metabolism under physiological conditions and that Myef2 is identified as one of the potential targets that mediates PARP1-regulated myelin gene expression at the posttranscriptional level during oligodendroglial development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Yanhong Zhang
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Sheng Zhang
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Bokyung Kim
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Vanessa L Hull
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Jie Xu
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Preeti Prabhu
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Maria Gregory
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Xinhua Zhan
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA
| | - Wenbin Deng
- Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA
| | - Fuzheng Guo
- Department of Neurology, School of Medicine, University of California, Davis, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
19
|
Upadhayay S, Mehan S. Targeting Nrf2/HO-1 anti-oxidant signaling pathway in the progression of multiple sclerosis and influences on neurological dysfunctions. BRAIN DISORDERS 2021. [DOI: 10.1016/j.dscb.2021.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
20
|
Sandi D, Fricska-Nagy Z, Bencsik K, Vécsei L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression, Biomarkers and Neuroprotective Therapy-Kynurenines Are Important Players. Molecules 2021; 26:molecules26113423. [PMID: 34198750 PMCID: PMC8201043 DOI: 10.3390/molecules26113423] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegeneration is one of the driving forces behind the pathogenesis of multiple sclerosis (MS). Progression without activity, pathopsychological disturbances (cognitive impairment, depression, fatigue) and even optic neuropathy seems to be mainly routed in this mechanism. In this article, we aim to give a comprehensive review of the clinical aspects and symptomology, radiological and molecular markers and potential therapeutic targets of neurodegeneration in connection with MS. As the kynurenine pathway (KP) was evidenced to play an important role in the pathogenesis of other neurodegenerative conditions (even implied to have a causative role in some of these diseases) and more and more recent evidence suggest the same central role in the neurodegenerative processes of MS as well, we pay special attention to the KP. Metabolites of the pathway are researched as biomarkers of the disease and new, promising data arising from clinical evaluations show the possible therapeutic capability of KP metabolites as neuroprotective drugs in MS. Our conclusion is that the kynurenine pathway is a highly important route of research both for diagnostic and for therapeutic values and is expected to yield concrete results for everyday medicine in the future.
Collapse
Affiliation(s)
- Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, H-6725 Szeged, Hungary; (D.S.); (Z.F.-N.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Centre, University of Szeged, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-384; Fax: +36-62-545-597
| |
Collapse
|
21
|
Amarsanaa K, Kim HJ, Ko EA, Jo J, Jung SC. Nobiletin Exhibits Neuroprotective Effects against Mitochondrial Complex I Inhibition via Regulating Apoptotic Signaling. Exp Neurobiol 2021; 30:73-86. [PMID: 33424017 PMCID: PMC7926044 DOI: 10.5607/en20051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/10/2020] [Accepted: 12/25/2020] [Indexed: 12/27/2022] Open
Abstract
Nobiletin, a polymethoxylated flavonoid found in citrus, has been studied because of its modulatory functions in cellular signaling cascades, and effects to prevent mitochondrial calcium overload and neuronal cell death. Particularly, we previously reported that nobiletin induced changes in the mitochondrial membrane potential through K+ channel regulation, suggesting that nobiletin might exert neuroprotective effects via regulating mitochondrial functions associated with the electron transport chain (ETC) system. This study investigated whether nobiletin regulated mitochondrial dysfunction mediated by ETC system downregulation by inhibiting complex I (CI) and complex III (CIII) in pure mitochondria and the cortical neurons of rats. The results showed that nobiletin significantly reduced mitochondrial reactive oxygen species (ROS) production, inhibited apoptotic signaling, enhanced ATP production and then restored neuronal viability under conditions of CI inhibition, but not CIII inhibition. These effects were attributed to the downregulation of translocation of apoptosis-induced factor (AIF), and the upregulation of CI activity and the expression of antioxidant enzymes such as Nrf2 and HO-1. Together with our previous study, these results indicate that the neuroprotective effects of nobiletin under mitochondrial dysfunction may be associated with its function to activate antioxidant signaling cascades. Our findings suggest the possibility that nobiletin has therapeutic potential in treating oxidative neurological and neurodegenerative diseases mediated by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Khulan Amarsanaa
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Hye-Ji Kim
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Jaemin Jo
- Department of Internal Medicine, School of Medicine, Jeju National University, Jeju 63243, Korea
| | - Sung-Cherl Jung
- Department of Physiology, School of Medicine, Jeju National University, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
22
|
Abdel-Maged AES, Gad AM, Rashed LA, Azab SS, Mohamed EA, Awad AS. Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 2020; 57:3291-3306. [PMID: 32514862 DOI: 10.1007/s12035-020-01972-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS. Graphical abstract.
Collapse
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Mohamed
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
23
|
Jørgensen LØ, Hyrlov KH, Elkjaer ML, Weber AB, Pedersen AE, Svenningsen ÅF, Illes Z. Cladribine modifies functional properties of microglia. Clin Exp Immunol 2020; 201:328-340. [PMID: 32492189 PMCID: PMC7419928 DOI: 10.1111/cei.13473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
Cladribine (CdA), an oral prodrug approved for the treatment of relapsing multiple sclerosis, selectively depletes lymphocytes. CdA passes the blood–brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. We examined if CdA modifies the phenotype and function of naive and activated primary mouse microglia, when applied in the concentrations 0·1–1 μM that putatively overlap human cerebrospinal fluid (CSF) concentrations. Primary microglia cultures without stimulation or in the presence of proinflammatory lipopolysaccharide (LPS) or anti‐inflammatory interleukin (IL)‐4 were treated with different concentrations of CdA for 24 h. Viability was assessed by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay. Phagocytotic ability and morphology were examined by flow cytometry and random migration using IncuCyte Zoom and TrackMate. Change in gene expression was examined by quantitative polymerase chain reaction (qPCR) and protein secretion by Meso Scale Discovery. We found that LPS and IL‐4 up‐regulated deoxycytidine kinase (DCK) expression. Only activated microglia were affected by CdA, and this was unrelated to viability. CdA 0·1–1 μM significantly reduced granularity, phagocytotic ability and random migration of activated microglia. CdA 10 μM increased the IL‐4‐induced gene expression of arginase 1 (Arg1) and LPS‐induced expression of IL‐1β, tumor necrosis factor (TNF), inducible nitric oxide synthase (iNOS) and Arg1, but protein secretion remained unaffected. CdA 10 μM potentiated the increased expression of anti‐inflammatory TNF receptor 2 (TNF‐R2) but not TNF‐R1 induced by LPS. This suggests that microglia acquire a less activated phenotype when treated with 0·1–1 μM CdA that putatively overlaps human CSF concentrations. This may be related to the up‐regulated gene expression of DCK upon activation, and suggests a potential alternative mechanism of CdA with direct effect on CNS resident cells.
Collapse
Affiliation(s)
- L Ø Jørgensen
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Neurobiology Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - K H Hyrlov
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Neurobiology Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - M L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Neurobiology Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - A B Weber
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Neurobiology Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - A E Pedersen
- Merck A/S, Søborg, Denmark.,Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Å Fex Svenningsen
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Neurobiology Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Z Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Neurobiology Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
25
|
Martin NA, Hyrlov KH, Elkjaer ML, Thygesen EK, Wlodarczyk A, Elbaek KJ, Aboo C, Okarmus J, Benedikz E, Reynolds R, Hegedus Z, Stensballe A, Svenningsen ÅF, Owens T, Illes Z. Absence of miRNA-146a Differentially Alters Microglia Function and Proteome. Front Immunol 2020; 11:1110. [PMID: 32582192 PMCID: PMC7292149 DOI: 10.3389/fimmu.2020.01110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background: MiR-146a is an important regulator of innate inflammatory responses and is also implicated in cell death and survival. Methods: By sorting CNS resident cells, microglia were the main cellular source of miR-146a. Therefore, we investigated microglia function and phenotype in miR-146a knock-out (KO) mice, analyzed the proteome of KO and wild-type (WT) microglia by LC-MS/MS, and examined miR-146a expression in different brain lesions of patients with multiple sclerosis (MS). Results: When stimulated with LPS or myelin in vitro, microglia from KO mice expressed higher levels of IL-1β, TNF, IL-6, IL-10, CCL3, and CCL2 compared to WT. Stimulation increased migration and phagocytosis of WT but not KO microglia. CD11c+ microglia were induced by cuprizone (CPZ) in the WT mice but less in the KO. The proteome of ex vivo microglia was not different in miR-146a KO compared to WT mice, but CPZ treatment induced differential and reduced protein responses in the KO: GOT1, COX5b, CRYL1, and cystatin-C were specifically changed in KO microglia. We explored discriminative features of microglia proteomes: sparse Partial Least Squares-Discriminant Analysis showed the best discrimination when control and CPZ-treated conditions were compared. Cluster of ten proteins separated WT and miR-146a KO microglia after CPZ: among them were sensomes allowing to perceive the environment, Atp1a3 that belongs to the signature of CD11c+ microglia, and proteins related to inflammatory responses (S100A9, Ppm1g). Finally, we examined the expression of miR-146a and its validated target genes in different brain lesions of MS patients. MiR-146 was upregulated in all lesion types, and the highest expression was in active lesions. Nineteen of 88 validated target genes were significantly changed in active lesions, while none were changed in NAWM. Conclusion: Our data indicated that microglia is the major source of miR-146a in the CNS. The absence of miR-146a differentially affected microglia function and proteome, and miR-146a may play an important role in gene regulation of active MS lesions.
Collapse
Affiliation(s)
- Nellie A Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Kirsten H Hyrlov
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Institute of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
| | - Kirstine J Elbaek
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Christopher Aboo
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Justyna Okarmus
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eirikur Benedikz
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary.,Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Åsa Fex Svenningsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Institute of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Institute of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
26
|
Szilagyi GT, Nawrocki AM, Eros K, Schmidt J, Fekete K, Elkjaer ML, Hyrlov KH, Larsen MR, Illes Z, Gallyas F. Proteomic changes during experimental de- and remyelination in the corpus callosum. PLoS One 2020; 15:e0230249. [PMID: 32272486 PMCID: PMC7145428 DOI: 10.1371/journal.pone.0230249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In the cuprizone model of multiple sclerosis, de- and remyelination can be studied without major interference from the adaptive immune responses. Since previous proteomic studies did not focus on the corpus callosum, where cuprizone causes the most pronounced demyelination, we performed a bottom up proteomic analysis on this brain region. METHODS Eight week-old mice treated with 0.2% cuprizone, for 4 weeks and controls (C) were sacrificed after termination of the treatment (4wD), and 2 (2dR) or 14 (2wR) days later. Homogenates of dissected corpus callosum were analysed by quantitative proteomics. For data processing, clustering, gene ontology analysis, and regulatory network prediction, we used Perseus, PANTHER and Ingenuity Pathway Analysis softwares, respectively. RESULTS We identified 4886 unmodified, single- or multi phosphorylated and/or gycosylated (PTM) proteins. Out of them, 191 proteins were differentially regulated in at least one experimental group. We found 57 proteins specific for demyelination, 27 for early- and 57 for late remyelinationwhile 36 proteins were affected in two, and 23 proteins in all three groups. Phosphorylation represented 92% of the post translational modifications among differentially regulated modified (PTM) proteins with decreased level, while it was only 30% of the PTM proteins with increased level. Gene ontology analysis could not classify the demyelination specific proteins into any biological process category, while allocated the remyelination specific ones to nervous system development and myelination as the most specific subcategory. We also identified a protein network in experimental remyelination, and the gene orthologues of the network were differentially expressed in remyelinating multiple sclerosis brain lesions consistent with an early remyelination pattern. CONCLUSION Proteomic analysis seems more informative for remyelination than demyelination in the cuprizone model.
Collapse
Affiliation(s)
- Gabor T. Szilagyi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Arkadiusz M. Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Krisztian Eros
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Schmidt
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Kirsten H. Hyrlov
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, BRIDGE University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
27
|
Almuslehi MSM, Sen MK, Shortland PJ, Mahns DA, Coorssen JR. CD8 T-cell Recruitment Into the Central Nervous System of Cuprizone-Fed Mice: Relevance to Modeling the Etiology of Multiple Sclerosis. Front Cell Neurosci 2020; 14:43. [PMID: 32210765 PMCID: PMC7076139 DOI: 10.3389/fncel.2020.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cuprizone (CPZ)-feeding in mice induces atrophy of peripheral immune organs (thymus and spleen) and suppresses T-cell levels, thereby limiting its use as a model for studying the effects of the immune system in demyelinating diseases such as Multiple Sclerosis (MS). To investigate whether castration (Cx) can protect the peripheral immune organs from CPZ-induced atrophy and enable T-cell recruitment into the central nervous system (CNS) following a breach of the blood-brain barrier (BBB), three related studies were carried out. In Study 1, Cx prevented the dose-dependent reductions (0.1% < 0.2% CPZ) in thymic and splenic weight, size of the thymic medulla and splenic white pulp, and CD4 and CD8 (CD4/8) levels remained comparable to gonadally intact (Gi) control males. Importantly, 0.1% and 0.2% CPZ were equipotent at inducing central demyelination and glial activation. In Study 2, combining Cx with 0.1% CPZ-feeding and BBB disruption with pertussis toxin (PT) enhanced CD8+ T-cell recruitment into the CNS. The increased CD8+ T-cell level observed in the parenchyma of the cerebrum, cerebellum, brainstem and spinal cord were confirmed by flow cytometry and western blot analyses of CNS tissue. In Study 3, PT+0.1% CPZ-feeding to Gi female mice resulted in similar effects on the peripheral immune organs, CNS demyelination, and gliosis comparable to Gi males, indicating that testosterone levels alone were not responsible for the immune response seen in Study 2. The combination of Cx+0.1% CPZ-feeding+PT indicates that CPZ-induced demyelination can trigger an “inside-out” immune response when the peripheral immune system is spared and may provide a better model to study the initiating events in demyelinating conditions such as MS.
Collapse
Affiliation(s)
- Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, Diyala University, Diyala, Iraq
| | - Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences, St. Catharines, ON, Canada.,Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
28
|
Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers (Basel) 2020; 12:cancers12030532. [PMID: 32106627 PMCID: PMC7139751 DOI: 10.3390/cancers12030532] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have recently been introduced in the therapy of several types of cancers not responding to conventional treatments. However, de novo and acquired PARP inhibitor resistance is a significant limiting factor in the clinical therapy, and the underlying mechanisms are not fully understood. Activity of the cytoprotective phosphatidylinositol-3 kinase (PI3K)-Akt pathway is often increased in human cancer that could result from mutation, expressional change, or amplification of upstream growth-related factor signaling elements or elements of the Akt pathway itself. However, PARP-inhibitor-induced activation of the cytoprotective PI3K-Akt pathway is overlooked, although it likely contributes to the development of PARP inhibitor resistance. Here, we briefly summarize the biological role of the PI3K-Akt pathway. Next, we overview the significance of the PARP-Akt interplay in shock, inflammation, cardiac and cerebral reperfusion, and cancer. We also discuss a recently discovered molecular mechanism that explains how PARP inhibition induces Akt activation and may account for apoptosis resistance and mitochondrial protection in oxidative stress and in cancer.
Collapse
|
29
|
White Matter and Neuroprotection in Alzheimer's Dementia. Molecules 2020; 25:molecules25030503. [PMID: 31979414 PMCID: PMC7038211 DOI: 10.3390/molecules25030503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin is the main component of the white matter of the central nervous system (CNS), allowing the proper electrical function of the neurons by ensheathing and insulating the axons. The extensive use of magnetic resonance imaging has highlighted the white matter alterations in Alzheimer’s dementia (AD) and other neurodegenerative diseases, alterations which are early, extended, and regionally selective. Given that the white matter turnover is considerable in the adulthood, and that myelin repair is currently recognized as being the only true reparative capability of the mature CNS, oligodendrocyte precursor cells (OPCs), the cells that differentiate in oligodendrocyte, responsible for myelin formation and repair, are regarded as a potential target for neuroprotection. In this review, several aspects of the OPC biology are reviewed. The histology and functional role of OPCs in the neurovascular-neuroglial unit as described in preclinical and clinical studies on AD is discussed, such as the OPC vulnerability to hypoxia-ischemia, neuroinflammation, and amyloid deposition. Finally, the position of OPCs in drug discovery strategies for dementia is discussed.
Collapse
|
30
|
Meira M, Sievers C, Hoffmann F, Bodmer H, Derfuss T, Kuhle J, Haghikia A, Kappos L, Lindberg RL. PARP-1 deregulation in multiple sclerosis. Mult Scler J Exp Transl Clin 2019; 5:2055217319894604. [PMID: 31897308 PMCID: PMC6918498 DOI: 10.1177/2055217319894604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/29/2022] Open
Abstract
Background Poly (ADP-ribose) polymerase 1 (PARP-1) plays pivotal roles in immune and inflammatory responses. Accumulating evidence suggests PARP-1 as a promising target for immunomodulation in multiple sclerosis and natalizumab-associated progressive multifocal leukoencephalopathy. Objective This study explores expression of PARP-1 and downstream effectors in multiple sclerosis and during natalizumab treatment. Methods Transcriptional expressions were studied by real-time reverse transcriptase polymerase chain reaction on CD4+T/CD8+T/CD14+/B cells and peripheral blood mononuclear cells from healthy volunteers, untreated and natalizumab-treated non-progressive multifocal leukoencephalopathy and progressive multifocal leukoencephalopathy multiple sclerosis patients. Results PARP-1 expression was higher in CD4+T, CD8+T and B cells from untreated patients compared to healthy volunteers. Natalizumab treatment restored deregulated PARP-1 expression in T cells but not in B cells. Sustained upregulation of PARP-1 was associated with decreased expression of downstream PARP-1 factors such as TGFBR1/TGFBR2/BCL6 in B cells. Notably, a higher expression of PARP-1 was detected in progressive multifocal leukoencephalopathy patients. Conclusions Given the importance of PARP-1 in inflammatory processes, its upregulation in multiple sclerosis lymphocyte populations suggests a potential role in the immune pathogenesis of multiple sclerosis. Strikingly higher PARP-1 expression in progressive multifocal leukoencephalopathy cases suggests its involvement in progressive multifocal leukoencephalopathy disease pathomechanisms. These results further support the value of PARP-1 inhibitors as a potential novel therapeutic strategy for multiple sclerosis and natalizumab-associated progressive multifocal leukoencephalopathy.
Collapse
Affiliation(s)
- Maria Meira
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Claudia Sievers
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Francine Hoffmann
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Heidi Bodmer
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Tobias Derfuss
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Jens Kuhle
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Germany
| | - Ludwig Kappos
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| | - Raija Lp Lindberg
- Departments of Biomedicine and Neurology, University Hospital Basel, Switzerland
| |
Collapse
|
31
|
Wang MR, Zhang XJ, Liu HC, Ma WD, Zhang ML, Zhang Y, Li X, Dou MM, Jing YL, Chu YJ, Zhu L. Matrine protects oligodendrocytes by inhibiting their apoptosis and enhancing mitochondrial autophagy. Brain Res Bull 2019; 153:30-38. [DOI: 10.1016/j.brainresbull.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
|
32
|
Thomas L, Pasquini LA. Galectin-3 Exerts a Pro-differentiating and Pro-myelinating Effect Within a Temporal Window Spanning Precursors and Pre-oligodendrocytes: Insights into the Mechanisms of Action. Mol Neurobiol 2019; 57:976-987. [PMID: 31654317 DOI: 10.1007/s12035-019-01787-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes (OLG) are the cells resident in the CNS responsible for myelination. OLG undergo a succession of morphological and molecular changes along several maturational stages. Galectin-3 (Gal-3) is a 25- to 35-KDa protein belonging to the family of carbohydrate-binding galectins, which bind to glycoconjugates containing β-galactosides. Gal-3 lacks a specific receptor and its binding is thus rather unspecific, as it depends on the cellular environment and the repertoire of glycomolecules at the time when Gal-3 is present. Our previous work revealed that recombinant Gal-3 (rGal-3)-treated OLG showed accelerated differentiation, evidenced by an increase in the number of mature cells to the detriment of immature ones and accelerated actin cytoskeleton dynamics. These changes were a consequence of rGal-3 influence on Akt, Erk 1/2, and β-catenin signaling pathways. Considering this previous evidence, the aim of this study was to identify the temporal window of rGal-3 action on the OLG lineage to induce OLG maturation by using specific single pulses of rGal-3 over the different maturational stages of OLG, and to unravel its main direct targets promoting OLG differentiation by mass spectrometry analysis. Our results reveal a key temporal window spanning between OPC and pre-OLG states in which rGal-3 action promotes OLG differentiation, and identify several targets for rGal-3 binding including proteins related to the cytoskeleton, signaling pathways, metabolism and intracellular trafficking, among others. These results highlight the relevance of Gal-3 in signaling pathways regulating oligodendroglial differentiation and support a potential therapeutic role for rGal-3 in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|
34
|
Khodanovich MY, Pishchelko AO, Glazacheva VY, Pan ES, Krutenkova EP, Trusov VB, Yarnykh VL. Plant polyprenols reduce demyelination and recover impaired oligodendrogenesis and neurogenesis in the cuprizone murine model of multiple sclerosis. Phytother Res 2019; 33:1363-1373. [PMID: 30864249 PMCID: PMC6594192 DOI: 10.1002/ptr.6327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/11/2019] [Accepted: 02/09/2019] [Indexed: 11/07/2022]
Abstract
Recent studies showed hepatoprotective, neuroprotective, and immunomodulatory properties of polyprenols isolated from the green verdure of Picea abies (L.) Karst. This study aimed to investigate effects of polyprenols on oligodendrogenesis, neurogenesis, and myelin content in the cuprizone demyelination model. Demyelination was induced by 0.5% cuprizone in CD-1 mice during 10 weeks. Nine cuprizone-treated animals received daily injections of polyprenols intraperitoneally at a dose of 12-mg/kg body weight during Weeks 6-10. Nine control animals and other nine cuprizone-treated received sham oil injections. At Week 10, brain sections were stained for myelin basic protein, neuro-glial antigen-2, and doublecortin to evaluate demyelination, oligodendrogenesis, and neurogenesis. Cuprizone administration caused a decrease in myelin basic protein in the corpus callosum, cortex, hippocampus, and the caudate putamen compared with the controls. Oligodendrogenesis was increased, and neurogenesis in the subventricular zone and the dentate gyrus of the hippocampus was decreased in the cuprizone-treated group compared with the controls. Mice treated with cuprizone and polyprenols did not show significant demyelination and differences in oligodendrogenesis and neurogenesis as compared with the controls. Our results suggest that polyprenols can halt demyelination, restore impaired neurogenesis, and mitigate reactive overproduction of oligodendrocytes caused by cuprizone neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - Edgar S. Pan
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
| | | | - Vladimir B. Trusov
- Prenolica Limited (formerly Solagran Limited), Biotechnology CompanyMelbourneVictoriaAustralia
| | - Vasily L. Yarnykh
- Laboratory of NeurobiologyTomsk State UniversityTomskRussian Federation
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
35
|
Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Z. Unique RNA signature of different lesion types in the brain white matter in progressive multiple sclerosis. Acta Neuropathol Commun 2019; 7:58. [PMID: 31023379 PMCID: PMC6482546 DOI: 10.1186/s40478-019-0709-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023] Open
Abstract
The heterogeneity of multiple sclerosis is reflected by dynamic changes of different lesion types in the brain white matter (WM). To identify potential drivers of this process, we RNA-sequenced 73 WM areas from patients with progressive MS (PMS) and 25 control WM. Lesion endophenotypes were described by a computational systems medicine analysis combined with RNAscope, immunohistochemistry, and immunofluorescence. The signature of the normal-appearing WM (NAWM) was more similar to control WM than to lesions: one of the six upregulated genes in NAWM was CD26/DPP4 expressed by microglia. Chronic active lesions that become prominent in PMS had a signature that were different from all other lesion types, and were differentiated from them by two clusters of 62 differentially expressed genes (DEGs). An upcoming MS biomarker, CHI3L1 was among the top ten upregulated genes in chronic active lesions expressed by astrocytes in the rim. TGFβ-R2 was the central hub in a remyelination-related protein interaction network, and was expressed there by astrocytes. We used de novo networks enriched by unique DEGs to determine lesion-specific pathway regulation, i.e. cellular trafficking and activation in active lesions; healing and immune responses in remyelinating lesions characterized by the most heterogeneous immunoglobulin gene expression; coagulation and ion balance in inactive lesions; and metabolic changes in chronic active lesions. Because we found inverse differential regulation of particular genes among different lesion types, our data emphasize that omics related to MS lesions should be interpreted in the context of lesion pathology. Our data indicate that the impact of molecular pathways is substantially changing as different lesions develop. This was also reflected by the high number of unique DEGs that were more common than shared signatures. A special microglia subset characterized by CD26 may play a role in early lesion development, while astrocyte-derived TGFβ-R2 and TGFβ pathways may be drivers of repair in contrast to chronic tissue damage. The highly specific mechanistic signature of chronic active lesions indicates that as these lesions develop in PMS, the molecular changes are substantially skewed: the unique mitochondrial/metabolic changes and specific downregulation of molecules involved in tissue repair may reflect a stage of exhaustion.
Collapse
|
36
|
Vega-Riquer JM, Mendez-Victoriano G, Morales-Luckie RA, Gonzalez-Perez O. Five Decades of Cuprizone, an Updated Model to Replicate Demyelinating Diseases. Curr Neuropharmacol 2019; 17:129-141. [PMID: 28714395 PMCID: PMC6343207 DOI: 10.2174/1570159x15666170717120343] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Demyelinating diseases of the central nervous system (CNS) comprise a group of neurological disorders characterized by progressive (and eventually irreversible) loss of oligodendrocytes and myelin sheaths in the white matter tracts. Some of myelin disorders include: Multiple sclerosis, Guillain-Barré syndrome, peripheral nerve polyneuropathy and others. To date, the etiology of these disorders is not well known and no effective treatments are currently available against them. Therefore, further research is needed to gain a better understand and treat these patients. To accomplish this goal, it is necessary to have appropriate animal models that closely resemble the pathophysiology and clinical signs of these diseases. Herein, we describe the model of toxic demyelination induced by cuprizone (CPZ), a copper chelator that reduces the cytochrome and monoamine oxidase activity into the brain, produces mitochondrial stress and triggers the local immune response. These biochemical and cellular responses ultimately result in selective loss of oligodendrocytes and microglia accumulation, which conveys to extensive areas of demyelination and gliosis in corpus callosum, superior cerebellar peduncles and cerebral cortex. Remarkably, some aspects of the histological pattern induced by CPZ are similar to those found in multiple sclerosis. CPZ exposure provokes behavioral changes, impairs motor skills and affects mood as that observed in several demyelinating diseases. Upon CPZ removal, the pathological and histological changes gradually revert. Therefore, some authors have postulated that the CPZ model allows to partially mimic the disease relapses observed in some demyelinating diseases. CONCLUSION for five decades, the model of CPZ-induced demyelination is a good experimental approach to study demyelinating diseases that has maintained its validity, and is a suitable pharmacological model for reproducing some key features of demyelinating diseases, including multiple sclerosis.
Collapse
Affiliation(s)
| | | | | | - Oscar Gonzalez-Perez
- Address correspondence to this author at the Facultad de Psicologia, Universidad de Colima, Colima, COL 28040, Mexico; Tel: +52 (312) 3161091; E-mail: :
| |
Collapse
|
37
|
Fischbach F, Nedelcu J, Leopold P, Zhan J, Clarner T, Nellessen L, Beißel C, van Heuvel Y, Goswami A, Weis J, Denecke B, Schmitz C, Hochstrasser T, Nyamoya S, Victor M, Beyer C, Kipp M. Cuprizone-induced graded oligodendrocyte vulnerability is regulated by the transcription factor DNA damage-inducible transcript 3. Glia 2018; 67:263-276. [PMID: 30511355 DOI: 10.1002/glia.23538] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022]
Abstract
Oligodendrocytes are integral to efficient neuronal signaling. Loss of myelinating oligodendrocytes is a central feature of many neurological diseases, including multiple sclerosis (MS). The results of neuropathological studies suggest that oligodendrocytes react with differing sensitivity to toxic insults, with some cells dying early during lesion development and some cells being resistant for weeks. This proposed graded vulnerability has never been demonstrated but provides an attractive window for therapeutic interventions. Furthermore, the biochemical pathways associated with graded oligodendrocyte vulnerability have not been well explored. We used immunohistochemistry and serial block-face scanning electron microscopy (3D-SEM) to show that cuprizone-induced metabolic stress results in an "out of phase" degeneration of oligodendrocytes. Although expression induction of stress response transcription factors in oligodendrocytes occurs within days, subsequent oligodendrocyte apoptosis continues for weeks. In line with the idea of an out of phase degeneration of oligodendrocytes, detailed ultrastructural reconstructions of the axon-myelin unit demonstrate demyelination of single internodes. In parallel, genome wide array analyses revealed an active unfolded protein response early after initiation of the cuprizone intoxication. In addition to the cytoprotective pathways, the pro-apoptotic transcription factor DNA damage-inducible transcript 3 (DDIT3) was induced early in oligodendrocytes. In advanced lesions, DDIT3 was as well expressed by activated astrocytes. Toxin-induced oligodendrocyte apoptosis, demyelination, microgliosis, astrocytosis, and acute axonal damage were less intense in the Ddit3-null mutants. This study identifies DDIT3 as an important regulator of graded oligodendrocyte vulnerability in a MS animal model. Interference with this stress cascade might offer a promising therapeutic approach for demyelinating disorders.
Collapse
Affiliation(s)
- Felix Fischbach
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Julia Nedelcu
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Patrizia Leopold
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Jiangshan Zhan
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tim Clarner
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Lara Nellessen
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Christian Beißel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Yasemin van Heuvel
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Tanja Hochstrasser
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany
| | - Stella Nyamoya
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Marion Victor
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Cordian Beyer
- Faculty of Medicine, RWTH Aachen University, Institute of Neuroanatomy, Aachen, Germany
| | - Markus Kipp
- Faculty of Medicine, LMU Munich, Chair of Neuroanatomy, Institute of Anatomy, Munich, Germany.,Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
38
|
Tapodi A, Bognar Z, Szabo C, Gallyas F, Sumegi B, Hocsak E. PARP inhibition induces Akt-mediated cytoprotective effects through the formation of a mitochondria-targeted phospho-ATM-NEMO-Akt-mTOR signalosome. Biochem Pharmacol 2018; 162:98-108. [PMID: 30296409 DOI: 10.1016/j.bcp.2018.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE The cytoprotective effect of poly(ADP-ribose) polymerase 1 (PARP1) inhibition is well documented in various cell types subjected to oxidative stress. Previously, we have demonstrated that PARP1 inhibition activates Akt, and showed that this response plays a critical role in the maintenance of mitochondrial integrity and in cell survival. However, it has not yet been defined how nuclear PARP1 signals to cytoplasmic Akt. METHODS WRL 68, HeLa and MCF7 cells were grown in culture. Oxidative stress was induced with hydrogen peroxide. PARP was inhibited with the PARP inhibitor PJ34. ATM, mTOR- and NEMO were silenced using specific siRNAs. Cell viability assays were based on the MTT assay. PARP-ATM pulldown experiments were conducted; each protein was visualized by Western blotting. Immunoprecipitation of ATM, phospho-ATM and NEMO was performed from cytoplasmic and mitochondrial cell fractions and proteins were detected by Western blotting. In some experiments, a continually active Akt construct was introduced. Nuclear to cytoplasmic and mitochondrial translocation of phospho-Akt was visualized by confocal microscopy. RESULTS Here we present evidence for a PARP1 mediated, PARylation-dependent interaction between ATM and NEMO, which is responsible for the cytoplasmic transport of phosphorylated (thus, activated) ATM kinase. In turn, the cytoplasmic p-ATM and NEMO forms complex with mTOR and Akt, yielding the phospho-ATM-NEMO-Akt-mTOR signalosome, which is responsible for the PARP-inhibition induced Akt activation. The phospho-ATM-NEMO-Akt-mTOR signalosome localizes to the mitochondria and is essential for the PARP-inhibition-mediated cytoprotective effects in oxidatively stressed cells. When the formation of the signalosome is prevented, the cytoprotective effects diminish, but cells can be rescued by constantly active Akt1, further confirming the critical role of Akt activation in cytoprotection. CONCLUSIONS Taken together, the data presented in the current paper are consistent with the hypothesis that PARP inhibition suppresses the PARylation of ATM, which, in turn, forms an ATM-NEMO complex, which exits the nucleus, and combines in the cytosol with mTOR and Act, resulting in Act phosphorylation (i.e. activation), which, in turn, produces the cytoprotective action via the induction of Akt-mediated survival pathways. This mechanism can be important in the protective effect of PARP inhibitor in various diseases associated with oxidative stress. Moreover, disruption of the formation or action of the phospho-ATM-NEMO-Akt-mTOR signalosome may offer potential future experimental therapeutic checkpoints.
Collapse
Affiliation(s)
- Antal Tapodi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Zita Bognar
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Csaba Szabo
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary; Department of Medicine, University of Fribourg, Switzerland
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Enikő Hocsak
- Department of Biochemistry and Medical Chemistry, University of Pécs, Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| |
Collapse
|
39
|
Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR, Illes Z. Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 2018; 13:e0202530. [PMID: 30114292 PMCID: PMC6095600 DOI: 10.1371/journal.pone.0202530] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, we applied a multi-omics approach (i) to examine molecular pathways related to de- and remyelination in multiple sclerosis (MS) lesions; and (ii) to translate these findings to the CSF proteome in order to identify molecules that are differentially expressed among MS subtypes. METHODS To relate differentially expressed genes in MS lesions to de- and remyelination, we compared transcriptome of MS lesions to transcriptome of cuprizone (CPZ)-induced de- and remyelination. Protein products of the overlapping orthologous genes were measured within the CSF by quantitative proteomics, parallel reaction monitoring (PRM). Differentially regulated proteins were correlated with molecular markers of inflammation by using MesoScale multiplex immunoassay. Expression kinetics of differentially regulated orthologous genes and proteins were examined in the CPZ model. RESULTS In the demyelinated and remyelinated corpus callosum, we detected 1239 differentially expressed genes; 91 orthologues were also differentially expressed in MS lesions. Pathway analysis of these orthologues suggested that the TYROBP (DAP12)-TREM2 pathway, TNF-receptor 1, CYBA and the proteasome subunit PSMB9 were related to de- and remyelination. We designed 129 peptides representing 51 orthologous proteins, measured them by PRM in 97 individual CSF, and compared their levels between relapsing (n = 40) and progressive MS (n = 57). Four proteins were differentially regulated among relapsing and progressive MS: tyrosine protein kinase receptor UFO (UFO), TIMP-1, apolipoprotein C-II (APOC2), and beta-2-microglobulin (B2M). The orthologous genes/proteins in the mouse brain peaked during acute remyelination. UFO, TIMP-1 and B2M levels correlated inversely with inflammation in the CSF (IL-6, MCP-1/CCL2, TARC/CCL17). APOC2 showed positive correlation with IL-2, IL-16 and eotaxin-3/CCL26. CONCLUSIONS Pathology-based multi-omics identified four CSF markers that were differentially expressed in MS subtypes. Upregulated TIMP-1, UFO and B2M orthologues in relapsing MS were associated with reduced inflammation and reflected reparatory processes, in contrast to the upregulated orthologue APOC2 in progressive MS that reflected changes in lipid metabolism associated with increased inflammation.
Collapse
Affiliation(s)
- Nellie A. Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K. Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank/Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Eudes G. V. Barbosa
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asa F. Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurology, University of Pecs, Pecs, Hungary
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
40
|
Catalpol Inhibits Ischemia-Induced Premyelinating Oligodendrocyte Damage through Regulation of Intercellular Calcium Homeostasis via Na⁺/Ca 2+ Exchanger 3. Int J Mol Sci 2018; 19:ijms19071925. [PMID: 29966349 PMCID: PMC6073132 DOI: 10.3390/ijms19071925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The heightened vulnerability of premyelinating oligodendrocytes (PreOLs) in response to hypoxia⁻ischemia may contribute to perinatal white matter injury and subsequent neurobehavioral dysfunction. Intracellular Ca2+ overload is considered a crucial mechanism predisposing PreOLs to ischemic injury. We previously reported that catalpol, an iridoid glycoside extracted from Rehmannia root, inhibits intracellular Ca2+ overload of PreOLs in an in vitro ischemia model. However, the exact underlying mechanisms remain elusive. In the present study, we aimed to investigate the protective effects of catalpol on PreOLs and to explore the underlying mechanisms involved in the modulation of intracellular Ca2+ homeostasis. Postnatal day 2 (P2) Sprague-Dawley (SD) rats subjected to bilateral common carotid artery ligation followed by exposure to 8% oxygen for 10 min were used as a rat model of neonatal hypoxia⁻ischemia. We found that catalpol significantly improved behavioral functions and prevented PreOL loss and myelination deficit after hypoxia⁻ischemia. Our in vitro studies also confirmed the direct effects of catalpol on oxygen-glucose deprivation (OGD)-induced cell death and arrested maturation of PreOLs. Moreover, we demonstrated that catalpol significantly inhibited intracellular Ca2+ overload and promoted the expression of Na⁺/Ca2+ exchanger 3 (NCX3). Finally, we found that catalpol significantly reduced mitochondrial damage and subsequent extracellular signal-regulated kinase 1/2 (ERK1/2) and poly-ADP-ribose polymerase-1 (PARP-1) activation. Treatment with NCX3-preferring inhibitor 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea (KB-R7943) significantly reversed the protective effects of catalpol on PreOLs under OGD. Overall, our data suggest that catalpol protects PreOLs from ischemic injury through regulation of intercellular Ca2+ homeostasis via upregulation of NCX3 activity.
Collapse
|
41
|
Cseh AM, Fábián Z, Sümegi B, Scorrano L. Poly(adenosine diphosphate-ribose) polymerase as therapeutic target: lessons learned from its inhibitors. Oncotarget 2018; 8:50221-50239. [PMID: 28430591 PMCID: PMC5564845 DOI: 10.18632/oncotarget.16859] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/28/2017] [Indexed: 01/27/2023] Open
Abstract
Poly(ADP-ribose) polymerases are a family of DNA-dependent nuclear enzymes catalyzing the transfer of ADP-ribose moieties from cellular nicotinamide-adenine-dinucleotide to a variety of target proteins. Although they have been considered as resident nuclear elements of the DNA repair machinery, recent works revealed a more intricate physiologic role of poly(ADP-ribose) polymerases with numerous extranuclear activities. Indeed, poly(ADP-ribose) polymerases participate in fundamental cellular processes like chromatin remodelling, transcription or regulation of the cell-cycle. These new insight into the physiologic roles of poly(ADP-ribose) polymerases widens the range of human pathologies in which pharmacologic inhibition of these enzymes might have a therapeutic potential. Here, we overview our current knowledge on extranuclear functions of poly(ADP-ribose) polymerases with a particular focus on the mitochondrial ones and discuss potential fields of future clinical applications.
Collapse
Affiliation(s)
- Anna Mária Cseh
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary.,Department of Biology, University of Padova, Padova, Italy
| | - Zsolt Fábián
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Balázs Sümegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
42
|
Xing B, Brink LE, Maers K, Sullivan ML, Bodnar RJ, Stolz DB, Cambi F. Conditional depletion of GSK3b protects oligodendrocytes from apoptosis and lessens demyelination in the acute cuprizone model. Glia 2018; 66:1999-2012. [PMID: 29761559 DOI: 10.1002/glia.23453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 02/04/2023]
Abstract
Apoptosis is recognized as the main mechanism of oligodendrocyte loss in Multiple Sclerosis caused either by immune mediated injury (Barnett & Prineas, ) or a direct degenerative process (oligodendrogliapathy; Lucchinetti et al., ). Cuprizone induced demyelination is the result of non-immune mediated apoptosis of oligodendrocytes (OL) and represents a model of oligodendrogliapathy (Simmons, Pierson, Lee, & Goverman, ). Glycogen Synthase Kinase (GSK) 3b has been shown to be pro-apoptotic for cells other than OL. Here, we sought to investigate whether GSK3b plays a role in cuprizone-induced apoptosis of OL by using a novel inducible conditional knockout (cKO) of GSK3b in mature OL. While depletion of GSK3b has no effect on survival of uninjured OL, it increases survival of mature OL exposed to cuprizone. We show that GSK3b-deficient OLs are protected against caspase-dependent, but not against caspase-independent apoptosis. Active GSK3b is present in the nuclei of OL at peak of caspase-dependent apoptosis. Significant preservation of myelinated axons is associated with GSK3b depletion and glial cell activation is markedly reduced. Collectively, the data show that GSK3b is pro-apoptotic for caspase-dependent cell death, likely through activation of nuclear GSK3b and its depletion promotes survival of oligodendrocytes and attenuates myelin loss.
Collapse
Affiliation(s)
- Bin Xing
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Lauren E Brink
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Kelly Maers
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Mara L Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard J Bodnar
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Franca Cambi
- Veterans Administration Pittsburgh, University Drive C Bldg 30, Pittsburgh, Pennsylvania.,Department of Neurology/PIND, University of Pittsburgh, 3501 5th Avenue, Pittsburgh, Pennsylvania.,Department of Neurology, University of Kentucky, 800 Rose St, Lexington, Kentucky
| |
Collapse
|
43
|
Baldassarro VA, Marchesini A, Giardino L, Calzà L. PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation. Stem Cell Res 2017; 22:54-60. [PMID: 28600955 DOI: 10.1016/j.scr.2017.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 01/18/2023] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) family members are ubiquitously expressed and play a key role in cellular processes, including DNA repair and cell death/survival balance. Accordingly, PARP inhibition is an emerging pharmacological strategy for cancer and neurodegenerative diseases. Consistent evidences support the critical involvement of PARP family members in cell differentiation and phenotype maturation. In this study we used an oligodendrocyte precursor cells (OPCs) enriched system derived from fetal and adult brain to investigate the role of PARP in OPCs proliferation, survival, and differentiation. The PARP inhibitors PJ34, TIQ-A and Olaparib were used as pharmacological tools. The main results of the study are: (i) PARP mRNA expression and PARP activity are much higher in fetal than in adult-derived OPCs; (ii) the culture treatment with PARP inhibitors is cytotoxic for OPCs derived from fetal, but not from adult, brain; (iii) PARP inhibition reduces cell number, according to the inhibitory potency of the compounds; (iv) PARP inhibition effect on fetal OPCs is a slow process; (v) PARP inhibition impairs OPCs maturation into myelinating OL in fetal, but not in adult cultures, according to the inhibitory potency of the compounds. These results have implications for PARP-inhibition therapies for diseases and lesions of the central nervous system, in particular for neonatal hypoxic/ischemic encephalopathy.
Collapse
Affiliation(s)
- Vito A Baldassarro
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | | | - Luciana Giardino
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Italy; IRET Foundation, Ozzano Emilia, Italy; Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Italy; IRET Foundation, Ozzano Emilia, Italy.
| |
Collapse
|
44
|
Cai Q, Ma T, Li C, Tian Y, Li H. Catalpol Protects Pre-Myelinating Oligodendrocytes against Ischemia-induced Oxidative Injury through ERK1/2 Signaling Pathway. Int J Biol Sci 2016; 12:1415-1426. [PMID: 27994507 PMCID: PMC5166484 DOI: 10.7150/ijbs.16823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The vulnerability of pre-myelinating oligodendrocytes (PreOLs) to ischemic injury plays an important role in the pathogenesis and progression of perinatal white matter injury. Although oxidative stress is thought to be a major pathogenic mechanism predisposing the PreOLs to injury, no effective therapies have been identified to date. The present study aimed to investigate the direct protective effects of catalpol, a potent antioxidant and free radical scavenger, on ischemia-induced oxidative damage in PreOLs and to explore whether the ERK1/2 signaling pathway contributed to the protection provided by catalpol. Primary cultures of PreOLs exposed to oxygen-glucose deprivation (OGD) followed by reperfusion were used as an in vitro model of ischemia. Pretreatment with 0.5 mM catalpol for 1 h prior to OGD treatment significantly reversed ischemia-induced apoptosis in PreOLs and myelination deficits by inhibiting intracellular Ca2+ increase, reducing mitochondrial damage, and ameliorating overproduction of reactive oxygen species (ROS). The expression levels of phosphorylated ERK1/2 (p-ERK1/2) and activated poly-ADP-ribose polymerase-1 (PARP-1) were also markedly decreased by catalpol treatment. Blocking the ERK1/2 signaling pathway with the MEK inhibitor U0126 and catalpol significantly protected PreOLs from ROS-mediated apoptosis under OGD. Taken together, these results suggest that catalpol protects PreOLs against ischemia-induced oxidative injury through ERK1/2 signaling pathway. Catalpol may be a candidate for treating ischemic white matter damage.
Collapse
Affiliation(s)
- Qiyan Cai
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, College of Basic Medicine, The Third Military Medical University, Chongqing, China
| | - Teng Ma
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, College of Basic Medicine, The Third Military Medical University, Chongqing, China
| | - Chengren Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, College of Basic Medicine, The Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, College of Basic Medicine, The Third Military Medical University, Chongqing, China
| | - Hongli Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, College of Basic Medicine, The Third Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Sághy É, Sipos É, Ács P, Bölcskei K, Pohóczky K, Kemény Á, Sándor Z, Szőke É, Sétáló G, Komoly S, Pintér E. TRPA1 deficiency is protective in cuprizone-induced demyelination-A new target against oligodendrocyte apoptosis. Glia 2016; 64:2166-2180. [DOI: 10.1002/glia.23051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Éva Sághy
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Éva Sipos
- Department of Neurology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Péter Ács
- Department of Neurology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Department of Medical Biology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
- MTA-PTE Chronic Pain Research Group; Pécs Hungary
| | - György Sétáló
- Department of Medical Biology; Faculty of Medicine, University of Pécs; Pécs Hungary
- Signal Transduction Research Group, Szentágothai Research Center, University of Pécs; Pécs Hungary
| | - Sámuel Komoly
- Department of Neurology; Faculty of Medicine, University of Pécs; Pécs Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy; Faculty of Medicine, University of Pécs; Pécs Hungary
- Szentágothai Research Center, Molecular Pharmacology Research Group, University of Pécs; Pécs Hungary
| |
Collapse
|
46
|
Lan YL, Fang DY, Zhao J, Ma TH, Li S. A research update on the potential roles of aquaporin 4 in neuroinflammation. Acta Neurol Belg 2016; 116:127-34. [PMID: 26259614 DOI: 10.1007/s13760-015-0520-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 07/27/2015] [Indexed: 12/20/2022]
Abstract
The presence of aquaporins (AQPs) in the brain has led to intense research on the underlying roles of this family of proteins under both normal and pathological conditions. Aquaporin 4 (AQP4) is the major water-channel membrane protein expressed in the central nervous system (CNS), primarily in astrocytes. Emerging evidence suggests that AQP4 could play an important role in water and ion homeostasis in the brain, and it has been studied in various brain pathological conditions. However, far less is known about the potential for AQP4 to influence neuroinflammation and, furthermore, its potential role in neurodegenerative disorders such as Alzheimer's disease (AD). It has been suggested that the pathogenesis of many clinical diseases, such as neuromyelitis optica (NMO), multiple sclerosis (MS) and brain injuries, is related to the regulation of AQP4 expression. Investigating the effects of AQP4 on microglia and astrocytes could be important to understand its role in the pathogenesis of neuroinflammation. Although the exact roles of non-steroidal anti-inflammatory drugs (NSAIDs) in protection against the detrimental effects of neuroinflammation remain unclear, research into the possible neuroprotective effects of AQP4 against neuroinflammation regulation seems to be important for future investigations.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Deng-Yang Fang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Jie Zhao
- Liaoning Engineering Technology Centre of Target-based Nature Products for Prevention and Treatment of Ageing-related Neurodegeneration, Dalian, 116044, China
| | - Tong-Hui Ma
- Department of Physiology, Dalian Medical University, Dalian, 116044, China.
- College of Basic Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Shao Li
- Department of Physiology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
47
|
Höftberger R, Leisser M, Bauer J, Lassmann H. Autoimmune encephalitis in humans: how closely does it reflect multiple sclerosis ? Acta Neuropathol Commun 2015; 3:80. [PMID: 26637427 PMCID: PMC4670499 DOI: 10.1186/s40478-015-0260-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Immunological studies suggest that it is a T-cell mediated autoimmune disease, although an MS-specific target antigen for autoimmunity has so far not been identified. Models of experimental autoimmune encephalomyelitis in part reproduce features of MS, but none of the models so far covers the entire spectrum of pathology and immunology. Autoimmune disease of the nervous system has occasionally been observed in humans after active sensitization with brain tissue or brain cells, giving rise to acute demyelinating polyradiculoneuritis, acute disseminated encephalomyelitis and in rare cases reflecting an inflammatory demyelinating condition similar to acute multiple sclerosis. In this study we analyzed in detail the immunopathology in archival autopsy tissue of a patient who died with an MS like disease after repeated exposure to subcutaneous injections of lyophilized brain cells. RESULTS The pathology of this patient fulfilled all pathological diagnostic criteria of MS. Demyelination and tissue injury was associated with antibody (IgM) deposition at active lesion sites and complement activation. Major differences to classical EAE models were seen in the composition of inflammatory infiltrates, being dominated by B-cells, infiltration of IgM positive plasma cells, profound infiltration of the tissue by CD8(+) T-lymphocytes and a nearly complete absence of CD4(+) T-cells. CONCLUSIONS Our study shows that auto-sensitization of humans with brain tissue can induce a disease, which closely reflects the pathology of MS, but that the mechanisms leading to demyelination and tissue injury differ from those, generally implicated in the pathophysiology of MS through studies in experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marianne Leisser
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
48
|
Scutellarin Alleviates Behavioral Deficits in a Mouse Model of Multiple Sclerosis, Possibly Through Protecting Neural Stem Cells. J Mol Neurosci 2015; 58:210-20. [PMID: 26514969 DOI: 10.1007/s12031-015-0660-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 12/14/2022]
Abstract
Scutellarin, a flavonoid extracted from an herbal medication (Erigeron breviscapus Hand-Mazz), has been shown to protect neurons against damage and to promote neurogenesis, and thus has therapeutic potential in the treatment of a variety of neurodegenerative diseases. Since neural stem cells (NSCs) could differentiate into myelin-producing oligodendrocytes, we speculate that scutellarin could also be used to treat multiple sclerosis (MS). In the current study, we examined potential effects of scutellarin using a mouse model of MS. Briefly, adult C57BL/6 mice exposed to cuprizone (8 mg/day through diet, for 6 consecutive weeks) randomly received scutellarin (50 mg/kg/day) or vehicle for 10 consecutive days. In the scutellarin-treated group, rotarod testing at the end of the treatment showed significant improvement of motor function (increased time to fall); myelin basic protein (MBP) staining of the corpus callosum revealed decreased demyelination; TUNEL staining followed by Nestin or Sox2 staining revealed increased number of NSCs and decreased rate of NSC apoptosis in the subventricular zone (SVZ) of the lateral ventricles (LV). In a series of experiments using cultured NSCs subjected to cuprizone injury, we confirmed the protective effects of scutellarin. At 30 μM, scutellarin increased the commitment of NSCs to the oligodendrocyte and neuronal lineages, as evidenced by NG2 chondroitin sulfate proteoglycan (NG2) and doublecortin (DCX) staining. Differentiation into astrocytes (as revealed by glial fibrillary acidic protein (GFAP) staining) was decreased. Maturation of the NSCs committed to the oligodendrocyte lineage, as evidenced by oligodendrocyte marker O4 antibody (O4) staining and MBP staining, was also promoted by scutellarin. Further analysis revealed that scutellarin might suppress the phosphorylation of p38 in cuprizone-induced NSCs. In summary, scutellarin could alleviate motor deficits in a mouse model for MS, possibly by inhibiting NSC apoptosis and promoting differentiation of NSCs to myelin-producing oligodendrocytes.
Collapse
|
49
|
Macchi B, Marino-Merlo F, Nocentini U, Pisani V, Cuzzocrea S, Grelli S, Mastino A. Role of inflammation and apoptosis in multiple sclerosis: Comparative analysis between the periphery and the central nervous system. J Neuroimmunol 2015; 287:80-7. [PMID: 26439966 DOI: 10.1016/j.jneuroim.2015.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is a complex, multifactorial disease associated with damage to the axonal myelin sheaths and neuronal degeneration. The pathognomonic event in MS is oligodendrocyte loss accompanied by axonal damage, blood-brain barrier leakage, inflammation and infiltration of immune cells. The etiopathogenesis of MS is far from being elucidated. However, increasing evidence suggests that the inflammatory and apoptotic responses, occurring in patients either at the peripheral level or the central nervous system (CNS), can play a role. In this review, we give a comprehensive picture of general aspects of inflammation and apoptosis in MS, with special emphasis on the until now not well highlighted possible links between phenomena relevant to these aspects occurring in either the periphery or in the CNS during MS.
Collapse
Affiliation(s)
- Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Francesca Marino-Merlo
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Ugo Nocentini
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; I.R.C.C.S. "Santa Lucia" Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Valerio Pisani
- I.R.C.C.S. "Santa Lucia" Foundation, Via Ardeatina 306, 00179 Rome, Italy.
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Antonio Mastino
- Department of Biological and Environmental Sciences, University of Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy; The Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
50
|
Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta Mol Basis Dis 2015; 1862:506-10. [PMID: 26432481 DOI: 10.1016/j.bbadis.2015.09.018] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023]
|