1
|
Bencker C, Gschwandtner L, Nayman S, Grikšienė R, Nguyen B, Nater UM, Guennoun R, Sundström-Poromaa I, Pletzer B, Bixo M, Comasco E. Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females. Front Neuroendocrinol 2025; 76:101160. [PMID: 39515587 DOI: 10.1016/j.yfrne.2024.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated with increased susceptibility to mental conditions. This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens. Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor modulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion processing. The interaction between progestagens and the systems involved in the regulation of stress seems to influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins used for contraception can influence neural processes as myelination and neuroprotection, exerting protective effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown. Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intracellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of progestagens from those of estrogens.
Collapse
Affiliation(s)
- Celine Bencker
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Laura Gschwandtner
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | - Sibel Nayman
- Research Group Longitudinal and Intervention Research, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Ramunė Grikšienė
- Department of Neurobiology and Biophysics, Life Science Center, Vilnius University, Lithuania
| | | | - Urs M Nater
- Department of Clinical and Health Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; University Research Platform "Stress of Life (SOLE) - Processes and Mechanisms underlying Everyday Life Stress", University of Vienna, Vienna, Austria
| | | | | | - Belinda Pletzer
- Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Marie Bixo
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Sweden
| | - Erika Comasco
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Sweden.
| |
Collapse
|
2
|
Tanaka M, Sokabe M, Asai M. Progesterone Receptor Agonist, Nestorone, Exerts Long-Term Neuroprotective Effects Against Permanent Focal Cerebral Ischemia in Adult and Aged Male Rats. Transl Stroke Res 2024:10.1007/s12975-024-01288-z. [PMID: 39172309 DOI: 10.1007/s12975-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Stroke is a leading cause of death and disability worldwide. Tissue plasminogen activator (tPA) is currently the most effective medicine for stroke; however, it has a narrow therapeutic time window (4.5 h after symptom onset). We demonstrated that nestorone, a progesterone (P4) receptor agonist, exerted neuroprotective effects against transient focal cerebral ischemia 6 h post-ischemic administration in adult male rats. This study examines its effects on permanent focal cerebral ischemia in adult and aged male rats, which are better models for evaluating treatment outcomes in typical stroke patients. Adult (6-month-old) or aged (18-month-old) male rats subjected to permanent middle cerebral artery occlusion (pMCAO) were continuously administered nestorone (10µg/day) or its vehicle (30% hydroxypropyl-β-cyclodextrin) for 7 days via an osmotic pump subcutaneously implanted, starting at 18 h post-pMCAO. Nestorone-treated adult male rats showed marked improvements in behavioral outcomes in the adhesive removal and rotarod tests and a significant reduction in infarct size compared to vehicle-treated rats 9 and 30 days post-pMCAO. The same administration of nestorone resulted in apparently comparable neuroprotective effects in aged male rats. The inflammatory mediator NF-κB/p65 was increased in Iba-1 positive cells 24 h post-pMCAO, but was significantly suppressed by subcutaneous injection of nestorone. These results suggested that nestorone exerts long-term neuroprotective effects against permanent focal cerebral ischemia in adult and aged male rats. Nestorone is thus a promising agent for post-stroke treatment owing to its wide age-independent therapeutic time window (18 h after symptom onset), which is longer than that of tPA therapy.
Collapse
Affiliation(s)
- Motoki Tanaka
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-Cho, Kasugai, 480-0392, Japan.
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kagiya-Cho, Kasugai, 480-0392, Japan
| |
Collapse
|
3
|
Kropp AE, Nishihori M, Izumi T, Goto S, Yokoyama K, Saito R. Hormone Concentration Measurement in Intracranial Dural Arteriovenous Fistulae. World Neurosurg 2024; 185:e451-e460. [PMID: 38367858 DOI: 10.1016/j.wneu.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE Intracranial dural arteriovenous fistulae (DAVFs) represent a subset of cerebral vascular malformations associated with significant morbidity and mortality. In Japan, DAVF exhibits sex-based differences in anatomical distribution, with female predominance in the cavernous sinus (CS) and male predominance in the transverse sinus (TS). Nevertheless, the pathophysiology of DAVF is not fully understood, and hormonal influences are hypothesized to play a role in its development. This study aimed to investigate changes in the concentrations of sex steroid hormones between intracranial and peripheral sampling sites in patients with CS- and TS-DAVF. METHODS We recruited 19 patients with CS-DAVF (n = 12) and TS-DAVF (n = 7) in this study. Blood hormone measurements were obtained from peripheral and jugular bulb samples during endovascular intervention. Hormone concentrations were analyzed using enzyme-linked immunosorbent assay kits, and statistical analyses were performed. RESULTS Our study revealed a higher prevalence of CS-DAVF in females and TS-DAVF in males, which is consistent with previous studies. Estradiol concentration was significantly lower in the jugular bulb compared with in the periphery in both patients with CS- and TS-DAVF. This decrease in estradiol was observed irrespective of the patient's sex and independent of follicle-stimulating hormone levels. CONCLUSIONS These findings indicate a local decrease in estradiol levels within the intracranial vasculature of patients with DAVF. This suggests a potential multifactorial role of estradiol in the pathomechanism of DAVFs, warranting further investigation to understand its influence on DAVF formation and potential targeted therapies, thereby enhancing patient outcomes.
Collapse
Affiliation(s)
- Asuka Elisabeth Kropp
- Department of Neurosurgery, Nagoya University of Graduate School of Medicine, Showa-ku, Nagoya Aichi, Japan
| | - Masahiro Nishihori
- Department of Neurosurgery, Nagoya University of Graduate School of Medicine, Showa-ku, Nagoya Aichi, Japan.
| | - Takashi Izumi
- Department of Neurosurgery, Nagoya University of Graduate School of Medicine, Showa-ku, Nagoya Aichi, Japan
| | - Shunsaku Goto
- Department of Neurosurgery, Nagoya University of Graduate School of Medicine, Showa-ku, Nagoya Aichi, Japan
| | - Kinya Yokoyama
- Department of Neurosurgery, Nagoya University of Graduate School of Medicine, Showa-ku, Nagoya Aichi, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University of Graduate School of Medicine, Showa-ku, Nagoya Aichi, Japan
| |
Collapse
|
4
|
Singh M, Krishnamoorthy VR, Kim S, Khurana S, LaPorte HM. Brain-derived neuerotrophic factor and related mechanisms that mediate and influence progesterone-induced neuroprotection. Front Endocrinol (Lausanne) 2024; 15:1286066. [PMID: 38469139 PMCID: PMC10925611 DOI: 10.3389/fendo.2024.1286066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Historically, progesterone has been studied significantly within the context of reproductive biology. However, there is now an abundance of evidence for its role in regions of the central nervous system (CNS) associated with such non-reproductive functions that include cognition and affect. Here, we describe mechanisms of progesterone action that support its brain-protective effects, and focus particularly on the role of neurotrophins (such as brain-derived neurotrophic factor, BDNF), the receptors that are critical for their regulation, and the role of certain microRNA in influencing the brain-protective effects of progesterone. In addition, we describe evidence to support the particular importance of glia in mediating the neuroprotective effects of progesterone. Through this review of these mechanisms and our own prior published work, we offer insight into why the effects of a progestin on brain protection may be dependent on the type of progestin (e.g., progesterone versus the synthetic, medroxyprogesterone acetate) used, and age, and as such, we offer insight into the future clinical implication of progesterone treatment for such disorders that include Alzheimer's disease, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | | | | | | | | |
Collapse
|
5
|
Wright ME, Murphy K. A mini-review of the evidence for cerebrovascular changes following gender-affirming hormone replacement therapy and a call for increased focus on cerebrovascular transgender health. Front Hum Neurosci 2023; 17:1303871. [PMID: 38077183 PMCID: PMC10702528 DOI: 10.3389/fnhum.2023.1303871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 02/12/2024] Open
Abstract
Gender-affirming hormone replacement therapy (gaHRT) is an important step for many in the gender diverse community, associated with increased quality-of-life and lower self-reported scores of depression and anxiety. However, considering the interactions that the involved sex hormones have on vasculature (with oestrogen and testosterone demonstrating vasodilatory and vasoconstricting properties, respectively), it is important for transgender healthcare research to examine how the manipulation of these hormones interact with cerebrovascular structure and functioning. There is a stark lack of research in this area. This mini-review outlines the research suggesting a vascular impact of these sex hormones using evidence from a range of cohorts (e.g., menopause, polycystic ovary syndrome) and discusses the work that has been done into cerebrovascular changes following gaHRT. Finally, recommendations for future research into cerebrovascular health in transgender cohorts following gaHRT are outlined.
Collapse
Affiliation(s)
- Melissa Emily Wright
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
6
|
Amirkhosravi L, khaksari M, Amiresmaili S, Sanjari M, Khorasani P, Hashemian M. Evaluating the neuroprotective effects of progesterone receptors on experimental traumatic brain injury: The PI3K/Akt pathway. Brain Behav 2023; 13:e3244. [PMID: 37661235 PMCID: PMC10636406 DOI: 10.1002/brb3.3244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Studies have confirmed the salutary effects of progesterone (P4) on traumatic brain injury (TBI). This study investigated the beneficial effects of P4 via its receptors on TBI, and also whether progesterone receptors (PRs) can modulate TBI through PI3K/Akt pathway. MATERIAL AND METHODS Marmarou method was utilized to induce diffuse TBI in ovariectomized rats. P4 (1.7 mg/kg) or the vehicle (oil) was administered 30 min after TBI induction. Moreover, RU486 (PR antagonist) and its vehicle (DMSO) were injected before TBI induction and P4 injection. Brain Evans blue content, brain water content (WC), various oxidative stress parameters, IL-1β levels, tumor necrosis factor-α (TNF-α), histopathological alterations, and also phosphorylated Akt (p-Akt) and PI3K expressions in the brain were assessed 24 h after TBI. The veterinary comma scale (VCS) was measured before and after TBI at different times. RESULTS The findings revealed that P4 caused an increase in VCS and a decrease in brain WC, oxidative stress, TNF-α and IL-1β levels. RU486 inhibited the beneficial effects of P4 on these indices. Moreover, RU486 prevented the reduction of brain edema, inflammation, and apoptosis caused by P4. Moreover, P4 following TBI increased the expression of PI3K/p-Akt protein in the brain. RU486 eliminated the effects of P4 on PI3K/p-Akt expression. CONCLUSION According to these findings, PRs are acting as critical mediators for the neuroprotective properties of P4 on oxidative stress, pro-inflammatory cytokine levels, and neurological outcomes. PRs also play an important role in regulating the PI3K/p-Akt expression and nongenomic function of P4.
Collapse
Affiliation(s)
- Ladan Amirkhosravi
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Mohammad khaksari
- Physiology Research CenterInstitute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| | | | - Mojgan Sanjari
- Endocrinology and Metabolism Research CenterInstitute of Basic and Clinical Physiology SciencesKerman University of Medical SciencesKermanIran
| | - Parisa Khorasani
- Department of Pathology, Pathology, and Stem Cells Research Center, Afzalipour Medical FacultyKerman University of Medical SciencesKermanIran
| | - Morteza Hashemian
- Neuroscience Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
| |
Collapse
|
7
|
Jia C, Lovins C, Malone HM, Keasey MP, Hagg T. Female-specific neuroprotection after ischemic stroke by vitronectin-focal adhesion kinase inhibition. J Cereb Blood Flow Metab 2022; 42:1961-1974. [PMID: 35702047 PMCID: PMC9536130 DOI: 10.1177/0271678x221107871] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We found that blood vitronectin (VTN) leaks into the brain and exacerbates tissue loss after stroke by increasing pro-inflammatory IL-6 expression in female, but not male, mice. VTN signals through integrins and downstream focal adhesion kinase (FAK). Here, a two day systemic treatment with a small molecule FAK inhibitor starting 6 h after middle cerebral artery occlusion reduced ipsilateral brain injury size by ∼40-45% at 7 and 14 d, as well as inflammation and motor dysfunction in wild-type female, but not male, mice. FAK inhibition also reduced IL-6 expression in the injured female striatum at 24 h by 62%. Inducible selective gene deletion of FAK in astrocytes also reduced acute IL-6 expression by 72% only in females, and mitigated infarct size by ∼80% and inflammation at 14 d after stroke. Lastly, VTN-/- females had better outcomes, but FAK inhibitor treatment had no additional protective or anti-inflammatory effects. Altogether, this suggests that VTN is detrimental in females primarily through FAK and that FAK inhibition provides neuroprotection (cerebroprotection) by reducing VTN-induced IL-6 expression in astrocytes. Thus, VTN signaling can be targeted to mitigate harmful inflammation with relevance to treatments for women with ischemic stroke, who often have worse outcomes than men.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Hannah M Malone
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Matthew P Keasey
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| | - Theo Hagg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Tennessee, USA
| |
Collapse
|
8
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
9
|
Ginsberg Y, Gutzeit O, Hadad S, Divon MY, Khatib N, Fainaru O, Weiner Z, Beloosesky R. Maternal Progesterone Treatment Reduces Maternal Inflammation-Induced Fetal Brain Injury in a Mouse Model of Preterm Birth. Reprod Sci 2021; 28:166-176. [PMID: 32833191 DOI: 10.1007/s43032-020-00272-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023]
Abstract
Maternal natural vaginal progesterone (nVP) administration has been shown to reduce the risk of preterm birth (PTB). The largest randomized trial of nVP for PTB (OPPTIMUM) noted a sonographic reduction in neonatal brain injury following nVP treatment. We investigated the neuroinflammatory protective effect of maternal nVP in a mouse model for maternal inflammation. Pregnant mice (n = 24) were randomized to nVP (1 mg/day) or vehicle from days 13-16 of gestation. At days 15 and 16, lipopolysaccharide (30 μg) or saline were administered. Mice were sacrificed 4 h following the last injection. Fetal brains and placentas were collected. Levels of NF-κB, nNOS, IL-6, and TNFα were determined by Western blot. Maternal lipopolysaccharide significantly increased fetal brain levels of IL-6 (0.33 ± 0.02 vs. 0.11 ± 0.01 u), TNFα (0.3 ± 0.02 vs. 0.10 ± 0.01 u), NF-κB (0.32 ± 0.01 vs. 0.17 ± 0.01 u), and nNOS (0.24 ± 0.04 vs. 0.08 ± 0.01 u), and reduced the total glutathione levels (0.014 ± 0.001 vs. 0.026 ± 0.001 pmol/μl; p < 0.01) compared with control. Maternal nVP significantly reduced fetal brain levels of IL-6 (0.14 ± 0.01 vs. 0.33 ± 0.02 u), TNFα (0.2 ± 0.06 vs. 0.3 ± 0.02 u), NF-κB (0.16 ± 0.01 vs 0.32 ± 0.01 u), and nNOS (0.14 ± 0.01 vs 0.24 ± 0.04 u), and prevented the reduction of fetal brain total glutathione levels (0.022 ± 0.001 vs. 0.014 ± 0.001 pmol/μl; p < 0.01) to levels similar to controls. A similar pattern was demonstrated in the placenta. Maternal nVP for PTB may protect the fetal brain from inflammation-induced brain injury by inhibiting specific inflammatory and oxidative pathways in both brain and placenta.
Collapse
Affiliation(s)
- Yuval Ginsberg
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel.
| | - Ola Gutzeit
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Salim Hadad
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Michael Y Divon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Lenox Hill Hospital, Northwell Health, New York City, NY, USA
| | - Nizar Khatib
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Ofer Fainaru
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology,Rambam Health Care Campus, 8 Ha'alya St., 38302, Haifa, Israel
| |
Collapse
|
10
|
Sitruk-Ware R, Bonsack B, Brinton R, Schumacher M, Kumar N, Lee JY, Castelli V, Corey S, Coats A, Sadanandan N, Gonzales-Portillo B, Heyck M, Shear A, Blaise C, Zhang H, Sheyner M, García-Sánchez J, Navarro L, El-Etr M, De Nicola AF, Borlongan CV. Progress in progestin-based therapies for neurological disorders. Neurosci Biobehav Rev 2020; 122:38-65. [PMID: 33359391 DOI: 10.1016/j.neubiorev.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.
Collapse
Affiliation(s)
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alexandreya Coats
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cozene Blaise
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
11
|
Lan C, Cao N, Chen C, Qu S, Fan C, Luo H, Zeng A, Yu C, Xue Y, Ren H, Li L, Wang H, Jose PA, Xu Z, Zeng C. Progesterone, via yes-associated protein, promotes cardiomyocyte proliferation and cardiac repair. Cell Prolif 2020; 53:e12910. [PMID: 33047378 PMCID: PMC7653240 DOI: 10.1111/cpr.12910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives The mechanisms responsible for the postnatal loss of mammalian cardiac regenerative capacity are not fully elucidated. The aim of the present study is to investigate the role of progesterone in cardiac regeneration and explore underlying mechanism. Materials and Methods Effect of progesterone on cardiomyocyte proliferation was analysed by immunofluorescent staining. RNA sequencing was performed to screen key target genes of progesterone, and yes‐associated protein (YAP) was knocked down to demonstrate its role in pro‐proliferative effect of progesterone. Effect of progesterone on activity of YAP promoter was measured by luciferase assay and interaction between progesterone receptor and YAP promoter by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Adult mice were subjected to myocardial infarction, and then, effects of progesterone on adult cardiac regeneration were analysed. Results Progesterone supplementation enhanced cardiomyocyte proliferation in a progesterone receptor‐dependent manner. Progesterone up‐regulated YAP expression and knockdown of YAP by small interfering RNA reduced progesterone‐mediated cardiomyocyte proliferative effect. Progesterone receptor interacted with the YAP promoter, determined by ChIP and EMSA; progesterone increased luciferase activity of YAP promoter and up‐regulated YAP target genes. Progesterone administration also promoted adult cardiomyocyte proliferation and improved cardiac function in myocardial infarction. Conclusion Our data uncover a role of circulating progesterone withdrawal as a novel mechanism for the postnatal loss of mammalian cardiac regenerative potential. Progesterone promotes both neonatal and adult cardiomyocyte proliferation by up‐regulating YAP expression.
Collapse
Affiliation(s)
- Cong Lan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Nian Cao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Chao Fan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Andi Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Cheng Yu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Yuanzheng Xue
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Departments of Medicine and Pharmacology/Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.,Chongqing Institute of Cardiology, Chongqing, China.,Cardiovascular Research Center, Chongqing College, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
12
|
Jia C, Malone HM, Keasey MP, Lovins C, Elam J, Hagg T. Blood Vitronectin Induces Detrimental Brain Interleukin-6 and Correlates With Outcomes After Stroke Only in Female Mice. Stroke 2020; 51:1587-1595. [PMID: 32312218 DOI: 10.1161/strokeaha.120.029036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Purpose- Women have worse stroke outcomes than men, especially after menopause. Few studies have focused on female-specific mechanisms, other than hormones. We investigated the role of the blood protein VTN (vitronectin) after ischemic stroke in mice. Methods- Adult male and female VTN knockout and wild-type littermates and C57BL/6 mice received a middle cerebral artery occlusion and the injured brain tissue analyzed 24 hours to 3 weeks later for cell loss and inflammation, as well as neurological function. Blood VTN levels were measured before and after stroke. Results- Intravenously injected VTN leaked extensively from bloodstream into brain infarct and penumbra by 24 hours after stroke. Strikingly, VTN was detrimental in female, but not male, mice, as shown by reduced brain injury (26.2±2.6% versus 13.4±3.8%; P=0.018; n=6 and 5) and forelimb dysfunction in female VTN knockout mice. Stroke increased plasma VTN 2- to 8-fold at 24 hours in females (36±4 versus 145±24 μg/mL; P<0.0001; n=10 and 7), but not males (62±8 versus 68±6; P>0.99; n=10 and 7), and returned to control levels by 7 days. Individually variable VTN levels at 24 hours correlated with stroke-induced brain injury at 7 days only in females. VTN promoted stroke-induced microglia/macrophage activation and leukocyte infiltration in females. Proinflammatory IL (interleukin)-6 greatly increased in the striatum at 24 hours in wild-type mice but was increased ≈60% less in female (739±159 versus 268±111; P=0.02; n=7 and 6), but not male (889±178 versus 1179±295; P=0.73; n=10 and 11), knockout mice. In individual wild-type females, plasma VTN levels correlated with striatal IL-6 expression at 24 hours. The female-specific effect of VTN-induced IL-6 expression following stroke was not due to gonadal hormones, as shown by ovariectomy and castration. Lastly, intrastriatal injection of IL-6 in female mice immediately before stroke reversed the VTN knockout phenotypes of reduced brain injury and microglia/macrophage activation. Conclusions- VTN plays a novel sexually dimorphic detrimental pathophysiological role in females and might ultimately be a therapeutic target to improve stroke outcomes in women.
Collapse
Affiliation(s)
- Cuihong Jia
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Hannah M Malone
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Matthew P Keasey
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Chiharu Lovins
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Jacob Elam
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| | - Theo Hagg
- From the Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City
| |
Collapse
|
13
|
Fréchou M, Zhu X, Liere P, Pianos A, Schumacher M, Mattern C, Guennoun R. Dose-dependent and long-term cerebroprotective effects of intranasal delivery of progesterone after ischemic stroke in male mice. Neuropharmacology 2020; 170:108038. [PMID: 32151648 DOI: 10.1016/j.neuropharm.2020.108038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
Abstract
Intranasal administration is emerging as a very promising route to deliver therapeutics to the brain. We have recently shown that the intranasal delivery of progesterone at 8 mg/kg is neuroprotective after stroke in male mice. To explore the translational potential of intranasal progesterone treatment, we performed a dose-response study and analyzed outcomes at 48 h after middle cerebral artery occlusion (MCAO). The effects on functional outcomes at long-term were examined by using the optimal dose. In the first experiment, male C57BL/6JRj mice were treated with progesterone at 8, 16 or 24 mg/kg, or with placebo at 1, 6 and 24 h post-MCAO. Our results show that the dose of 8 mg/kg was optimal in counteracting the early histopathological impairments as well as in improving functional recovery. Steroid profiling in plasma showed that the dose of 8 mg/kg is the one that leads to sustained high levels of progesterone and its neuroactive metabolites. In the second experiment, the dose of 8 mg/kg was used and analyzes were performed at 2, 7 and 21 days post-MCAO. Progesterone increased survival, glycemia and body weight. Furthermore, progesterone decreased neurological deficits and improved performances of mice on the rotarod and pole as early as 2 days and up to 21 days post-MCAO. These findings show that intranasal administration of progesterone has a significant translational potential as a cerebroprotective treatment after stroke that can be effective to reduce mortality, to limit tissue and cell damage at the acute phase; and to confer a long-term functional recovery.
Collapse
Affiliation(s)
- Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Antoine Pianos
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Claudia Mattern
- M et P Pharma AG, Schynweg 7, P.O.Box 138, 6376, Emmetten, Switzerland.
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| |
Collapse
|
14
|
Altaee R, Gibson CL. Sexual dimorphism following in vitro ischemia in the response to neurosteroids and mechanisms of injury. BMC Neurosci 2020; 21:5. [PMID: 31996121 PMCID: PMC6988201 DOI: 10.1186/s12868-020-0553-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Background Cerebral ischemic stroke is a significant cause of morbidity and mortality. Sex differences exist following stroke in terms of incidence, symptoms, outcomes and response to some treatments. Importantly, molecular mechanisms of injury, activated following ischemia may differ between the sexes and if so may account, at least in part, for sex differences seen in treatment response. Here we aimed to determine, using single-sex organotypic hippocampal slice cultures, whether the effectiveness of a potential treatment option, i.e. sex steroids, exhibited any sexual dimorphism and whether sex affected the mechanisms of apoptosis activated following ischemia. Results Following exposure to ischemia, male-derived tissue exhibited higher levels of cell death than female-derived tissue. Various sex steroid hormones, i.e. progesterone, allopregnanolone, and estradiol, were protective in terms of reducing the amount of cell death in male- and female-derived tissue whereas medoxyprogesterone acetate (MPA) was only protective in female-derived tissue. The protective effect of progesterone was abolished in the presence of finasteride, a 5α-reductase inhibitor, suggesting it was largely mediated via its conversion to allopregnanolone. To test the hypothesis that sex differences exist in the activation of specific elements of the apoptotic pathway activated following ischemia we administered Q-VD-OPH, a caspase inhibitor, or PJ34, an inhibitor of poly (ADP ribose) polymerase (PARP). Caspase inhibition was only effective, in terms of reducing cell death, in female-derived tissue, whereas PARP inhibition was only protective in male-derived tissue. However, in both sexes, the protective effects of progesterone and estradiol were not observed in the presence of either caspase or PARP inhibition. Conclusions Sex differences exist in both the amount of cell death produced and those elements of the cell death pathway activated following an ischemic insult. There are also some sex differences in the effectiveness of steroid hormones to provide neuroprotection following an ischemic insult—namely MPA was only protective in female-derived tissue. This adds further support to the notion sex is an important factor to consider when investigating future drug targets for CNS disorders, such as ischemic stroke.
Collapse
Affiliation(s)
- Raeed Altaee
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, UK.,Department of Physiology and Pharmacology, University of Karbala, Karbala, Iraq
| | - Claire L Gibson
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, UK. .,School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2UH, UK.
| |
Collapse
|
15
|
Guennoun R, Zhu X, Fréchou M, Gaignard P, Slama A, Liere P, Schumacher M. Steroids in Stroke with Special Reference to Progesterone. Cell Mol Neurobiol 2019; 39:551-568. [PMID: 30302630 PMCID: PMC11469871 DOI: 10.1007/s10571-018-0627-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France.
| | - Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
16
|
Zhu X, Fréchou M, Schumacher M, Guennoun R. Cerebroprotection by progesterone following ischemic stroke: Multiple effects and role of the neural progesterone receptors. J Steroid Biochem Mol Biol 2019; 185:90-102. [PMID: 30031789 DOI: 10.1016/j.jsbmb.2018.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
Treatment with progesterone limits brain damage after stroke. However, the cellular bases of the cerebroprotective effects of progesterone are not well documented. The aims of this study were to determine neural cells and functions that are affected by progesterone treatment and the role of neural progesterone receptors (PR) after stroke. Adult male PRNesCre mice, selectively lacking PR in the central nervous system, and their control PRloxP/loxP littermates were subjected to transient ischemia by middle cerebral artery occlusion (MCAO) for 30 min. Mice received either progesterone (8 mg/kg) or vehicle at 1-, 6- and 24- hrs post-MCAO and outcomes were analyzed at 48 h post-MCAO. In PRloxP/loxP mice, progesterone exerted multiple effects on different neural cell types, improved motor functional outcomes and reduced total infarct volumes. In the peri-infarct, progesterone increased the density of neurons (NeuN+ cells), of cells of the oligodendroglial lineage (Olig2+ cells) and of oligodendrocyte progenitors (OP, NG2+ cells). Progesterone decreased the density of activated astrocytes (GFAP+ cells) and reactive microglia (Iba1+ cells) coexpressing the mannose receptor type 1 CD206 marker. Progesterone also reduced the expression of aquaporin 4 (AQP4), the water channel involved in both edema formation and resorption. The beneficial effects of progesterone were not observed in PRNesCre mice. Our findings show that progesterone treatment exerts beneficial effects on neurons, oligodendroglial cells and neuroinflammatory responses via PR. These findings demonstrate that progesterone is a pleiotropic cerebroprotective agent and that neural PR represent a therapeutic target for stroke cerebroprotection.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| |
Collapse
|
17
|
Robison LS, Gannon OJ, Salinero AE, Zuloaga KL. Contributions of sex to cerebrovascular function and pathology. Brain Res 2018; 1710:43-60. [PMID: 30580011 DOI: 10.1016/j.brainres.2018.12.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Sex differences exist in how cerebral blood vessels function under both physiological and pathological conditions, contributing to observed sex differences in risk and outcomes of cerebrovascular diseases (CBVDs), such as vascular contributions to cognitive impairment and dementia (VCID) and stroke. Throughout most of the lifespan, women are protected from CBVDs; however, risk increases following menopause, suggesting sex hormones may play a significant role in this protection. The cerebrovasculature is a target for sex hormones, including estrogens, progestins, and androgens, where they can influence numerous vascular functions and pathologies. While there is a plethora of information on estrogen, the effects of progestins and androgens on the cerebrovasculature are less well-defined. Estrogen decreases cerebral tone and increases cerebral blood flow, while androgens increase tone. Both estrogens and androgens enhance angiogenesis/cerebrovascular remodeling. While both estrogens and androgens attenuate cerebrovascular inflammation, pro-inflammatory effects of androgens under physiological conditions have also been demonstrated. Sex hormones exert additional neuroprotective effects by attenuating oxidative stress and maintaining integrity and function of the blood brain barrier. Most animal studies utilize young, healthy, gonadectomized animals, which do not mimic the clinical conditions of aging individuals likely to get CBVDs. This is also concerning, as sex hormones appear to mediate cerebrovascular function differently based on age and disease state (e.g. metabolic syndrome). Through this review, we hope to inspire others to consider sex as a key biological variable in cerebrovascular research, as greater understanding of sex differences in cerebrovascular function will assist in developing personalized approaches to prevent and treat CBVDs.
Collapse
Affiliation(s)
- Lisa S Robison
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Olivia J Gannon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Abigail E Salinero
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, United States.
| |
Collapse
|
18
|
Progesterone improves functional outcomes after transient focal cerebral ischemia in both aged male and female rats. Exp Gerontol 2018; 113:29-35. [DOI: 10.1016/j.exger.2018.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022]
|
19
|
Sayeed I, Wali B, Guthrie DB, Saindane MT, Natchus MG, Liotta DC, Stein DG. Development of a novel progesterone analog in the treatment of traumatic brain injury. Neuropharmacology 2018; 145:292-298. [PMID: 30222982 DOI: 10.1016/j.neuropharm.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
Although systemic progesterone (PROG) treatment has been shown to be neuroprotective by many laboratories and in multiple animal models of brain injury including traumatic brain injury (TBI), PROG's poor aqueous solubility limits its potential for use as a therapeutic agent. The problem of solubility presents challenges for an acute intervention for neural injury, when getting a neuroprotectant to the brain quickly is crucial. Native PROG (nPROG) is hydrophobic and does not readily dissolve in an aqueous-based medium, so this makes it harder to give under emergency field conditions. An agent with properties similar to those of PROG but easier to store, transport, formulate, and administer early in emergency trauma situations could lead to better and more consistent clinical outcomes following TBI. At the same time, the engineering of a new molecule designed to treat a complex systemic injury must anticipate a range of translational issues including solubility and bioavailability. Here we describe the development of EIDD-1723, a novel, highly stable PROG analog with >104-fold higher aqueous solubility than that of nPROG. We think that, with further testing, EIDD-1723 could become an attractive candidate use as a field-ready treatment for TBI patients. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - Bushra Wali
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - David B Guthrie
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Manohar T Saindane
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Michael G Natchus
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Dennis C Liotta
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Guennoun R, Fréchou M, Gaignard P, Liere P, Slama A, Schumacher M, Denier C, Mattern C. Intranasal administration of progesterone: A potential efficient route of delivery for cerebroprotection after acute brain injuries. Neuropharmacology 2018; 145:283-291. [PMID: 29885423 DOI: 10.1016/j.neuropharm.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023]
Abstract
Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm, University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Kremlin-Bicêtre, France; Department of Neurology and Stroke Center, Bicêtre Hospital, 94276, Kremlin-Bicêtre, France
| | - Claudia Mattern
- M et P Pharma AG, Schynweg 7, P.O. Box 138, 6376, Emmetten, Switzerland; Nova Southeastern University, Fort Lauderdale, FL, 33314, USA
| |
Collapse
|
21
|
Abstract
Progesterone is a steroid hormone that is essential for the regulation of reproductive function. Progesterone has been approved for several indications including the treatment of anovulatory menstrual cycles, assisted reproductive technology, contraception during lactation and, when combined with estrogen, for the prevention of endometrial hyperplasia in postmenopausal hormonal therapy. In addition to its role in reproduction, progesterone regulates a number of biologically distinct processes in other tissues, particularly in the nervous system. This physiological hormone is poorly absorbed when administered in a crystalline form and is not active when given orally, unless in micronized form, or from different non-oral delivery systems that allow a more constant delivery rate. A limited number of preclinical studies have been conducted to document the toxicity, carcinogenicity and overall animal safety of progesterone delivered from different formulations, and these rather old studies showed no safety concern. More recently, it has been shown in animal experiments that progesterone, its metabolite allopregnanolone and structurally related progestins have positive effects on neuroregeneration and repair of brain damage, as well as myelin repair. These recent preclinical findings have the potential to accelerate therapeutic translation for multiple unmet neurological needs.
Collapse
Affiliation(s)
- R Sitruk-Ware
- a Center for Biomedical Research , Population Council , New York , NY , USA
| |
Collapse
|
22
|
Korobtsov AV, Kalinichenko SG. [The experimental strategies in the study of ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:38-44. [PMID: 29411744 DOI: 10.17116/jnevro201711712238-44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Literature data and own experience in the studies of experimental stroke methodology are reviewed. Advantages and disadvantages of the common models of focal ischemia used in the laboratory practice are discussed in details. The advantages of the filament occlusion of the middle cerebral artery in rats as the most adequate model of human stroke are substantiated. The authors suggest a modification of this variant using an additional coagulation of the pterygopalatine artery that allows the exclusion of the retrograde and collateral blood flow into the inner carotid artery after ligation of the common and external carotid arteries.
Collapse
Affiliation(s)
- A V Korobtsov
- Pacific State Medical University, Vladivostok, Russia
| | | |
Collapse
|
23
|
Gaignard P, Fréchou M, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Sex differences in brain mitochondrial metabolism: influence of endogenous steroids and stroke. J Neuroendocrinol 2018. [PMID: 28650095 DOI: 10.1111/jne.12497] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Steroids are neuroprotective and a growing body of evidence indicates that mitochondria are a potential target of their effects. The mitochondria are the site of cellular energy synthesis, regulate oxidative stress and play a key role in cell death after brain injury and neurodegenerative diseases. After providing a summary of the literature on the general functions of mitochondria and the effects of sex steroid administrations on mitochondrial metabolism, we summarise and discuss our recent findings concerning sex differences in brain mitochondrial function under physiological and pathological conditions. To analyse the influence of endogenous sex steroids, the oxidative phosphorylation system, mitochondrial oxidative stress and brain steroid levels were compared between male and female mice, either intact or gonadectomised. The results obtained show that females have higher a mitochondrial respiration and lower oxidative stress compared to males and also that these differences were suppressed by ovariectomy but not orchidectomy. We have also shown that the decrease in brain mitochondrial respiration induced by ischaemia/reperfusion is different according to sex. In both sexes, treatment with progesterone reduced the ischaemia/reperfusion-induced mitochondrial alterations. Our findings indicate sex differences in brain mitochondrial function under physiological conditions, as well as after stroke, and identify mitochondria as a target of the neuroprotective properties of progesterone. Thus, it is necessary to investigate sex specificity in brain physiopathological mechanisms, especially when mitochondria impairment is involved.
Collapse
Affiliation(s)
- P Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - P Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - M Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - A Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, Kremlin-Bicêtre, France
| | - R Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
24
|
Zhu X, Fréchou M, Liere P, Zhang S, Pianos A, Fernandez N, Denier C, Mattern C, Schumacher M, Guennoun R. A Role of Endogenous Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion of Its Intracellular Receptors. J Neurosci 2017; 37:10998-11020. [PMID: 28986464 PMCID: PMC6596486 DOI: 10.1523/jneurosci.3874-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes.SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Shaodong Zhang
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Antoine Pianos
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Neïké Fernandez
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Department of Neurology and Stroke Center, Bicêtre Hospital, 94276 Kremlin-Bicêtre, France, and
| | | | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| |
Collapse
|
25
|
Wali B, Stein DG, Sayeed I. Intralipid Vehicle Does Not Interfere with the Efficacy of Progesterone in Attenuating Edema following Traumatic Brain Injury. J Neurotrauma 2017; 34:2183-2186. [DOI: 10.1089/neu.2016.4845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Emory University, Atlanta, Georgia
| | - Donald G. Stein
- Department of Emergency Medicine, Emory University, Atlanta, Georgia
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
26
|
Yang Y, Liu H, Zhang H, Ye Q, Wang J, Yang B, Mao L, Zhu W, Leak RK, Xiao B, Lu B, Chen J, Hu X. ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury. J Neurosci 2017; 37:4692-4704. [PMID: 28389473 PMCID: PMC5426564 DOI: 10.1523/jneurosci.3233-16.2017] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
ST2, a member of the interleukin (IL) 1 receptor family, and its ligand IL-33 play critical roles in immune regulation and inflammatory responses. This study explores the roles of endogenous IL-33/ST2 signaling in ischemic brain injury and elucidates the underlying mechanisms of action. The expression of IL-33 rapidly increased in oligodendrocytes and astrocytes after 60 min transient middle cerebral artery occlusion (tMCAO). ST2 receptor deficiency exacerbated brain infarction 3 d after tMCAO as well as distal permanent MCAO. ST2 deficiency also aggravated neurological deficits up to 7 d after tMCAO. Conversely, intracerebroventricular infusions of IL-33 after tMCAO attenuated brain infarction. Flow cytometry analyses demonstrated high levels of ST2 expression on microglia, and this expression was dramatically enhanced after tMCAO. The absence of ST2 enhanced the expression of M1 polarization markers on microglia/macrophages, and impaired the expression of M2 polarization markers after tMCAO. In vitro studies on various types of cultures and coculture systems confirmed that IL-33/ST2 signaling potentiated expression of IL-10 and other M2 genes in primary microglia. The activation of ST2 on microglia led to a protective phenotype that enhanced neuronal survival against oxygen glucose deprivation. Further in vitro studies revealed that IL-33-activated microglia released IL-10, and that this was critical for their neuroprotective effects. Similarly, intracerebroventricular infusions of IL-33 into IL-10 knock-out mice failed to provide neuroprotection against tMCAO in vivo These results shed new light on the IL-33/ST2 axis as an immune regulatory mechanism that serves as a natural brake on the progression of ischemic brain injury.SIGNIFICANCE STATEMENT This is the first study to identify the function of interleukin (IL) 33/ST2 signaling in poststroke microglial responses and neuroprotection against ischemia. Using two models of ischemic stroke, we demonstrate here that ST2 deficiency shifted microglia/macrophages toward a M1-like phenotype, thereby expanding brain infarcts and exacerbating long-term behavioral deficits after stroke. Using stroke models and various in vitro culture and coculture systems, we further characterized a previously undefined mechanism whereby IL-33/ST2 engagement stimulates the production of IL-10 from microglia, which, in turn, enhances neuronal survival upon ischemic challenge. These results shed light on endogenous IL-33/ST2 signaling as a potential immune regulatory mechanism that serves to promote beneficial microglial responses and mitigate ischemic brain injury after stroke.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
- Xiangya Third Hospital, Central South University, Changsha, Hunan 410013, China
- Department of Neurology, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Huan Liu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
- Xiangya Third Hospital, Central South University, Changsha, Hunan 410013, China
| | - Haiyue Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
- Xiangya Third Hospital, Central South University, Changsha, Hunan 410013, China
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
| | - Jianyi Wang
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
- Xiangya Third Hospital, Central South University, Changsha, Hunan 410013, China
| | - Boyu Yang
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
| | - Leilei Mao
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
| | - Wen Zhu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, and
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology and
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
27
|
Hainsworth AH, Allan SM, Boltze J, Cunningham C, Farris C, Head E, Ihara M, Isaacs JD, Kalaria RN, Lesnik Oberstein SAMJ, Moss MB, Nitzsche B, Rosenberg GA, Rutten JW, Salkovic-Petrisic M, Troen AM. Translational models for vascular cognitive impairment: a review including larger species. BMC Med 2017; 15:16. [PMID: 28118831 PMCID: PMC5264492 DOI: 10.1186/s12916-017-0793-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, University of Lübeck, Lübeck, Germany.,Neurovascular Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Chad Farris
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jeremy D Isaacs
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Raj N Kalaria
- Institute of Neuroscience, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | | | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Björn Nitzsche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Clinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute for Anatomy, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gary A Rosenberg
- Department of Neurology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aron M Troen
- Institute of Biochemistry Food and Nutrition Science, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
28
|
Arbo BD, Benetti F, Ribeiro MF. Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol 2016; 144:27-47. [DOI: 10.1016/j.pneurobio.2016.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|
29
|
Schumacher M, Denier C, Oudinet JP, Adams D, Guennoun R. Progesterone neuroprotection: The background of clinical trial failure. J Steroid Biochem Mol Biol 2016; 160:53-66. [PMID: 26598278 DOI: 10.1016/j.jsbmb.2015.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/08/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
Since the first pioneering studies in the 1990s, a large number of experimental animal studies have demonstrated the neuroprotective efficacy of progesterone for brain disorders, including traumatic brain injury (TBI). In addition, this steroid has major assets: it easily crosses the blood-brain-barrier, rapidly diffuses throughout the brain and exerts multiple beneficial effects by acting on many molecular and cellular targets. Moreover, progesterone therapies are well tolerated. Notably, increased brain levels of progesterone are part of endogenous neuroprotective responses to injury. The hormone thus emerged as a particularly promising protective candidate for TBI and stroke patients. The positive outcomes of small Phase 2 trials aimed at testing the safety and potential protective efficacy of progesterone in TBI patients then provided support and guidance for two large, multicenter, randomized and placebo-controlled Phase 3 trials, with more than 2000 TBI patients enrolled. The negative outcomes of both trials, named ProTECT III and SyNAPSE, came as a big disappointment. If these trials were successful, progesterone would have become the first efficient neuroprotective drug for brain-injured patients. Thus, progesterone has joined the numerous neuroprotective candidates that have failed in clinical trials. The aim of this review is a reappraisal of the preclinical animal studies, which provided the proof of concept for the clinical trials, and we critically examine the design of the clinical studies. We made efforts to present a balanced view of the strengths and limitations of the translational studies and of some serious issues with the clinical trials. We place particular emphasis on the translational value of animal studies and the relevance of TBI biomarkers. The probability of failure of ProTECT III and SyNAPSE was very high, and we present them within the broader context of other unsuccessful trials.
Collapse
Affiliation(s)
- Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Christian Denier
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; Department of Neurology, CHU Bicêtre, 78 rue du Général Leclerc, 94275 Kremlin-Bicêtre, France
| | - Jean-Paul Oudinet
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - David Adams
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France; Department of Neurology, CHU Bicêtre, 78 rue du Général Leclerc, 94275 Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| |
Collapse
|
30
|
Hsieh JT, Ang BT, Ng YP, Allen JC, King NKK. Comparison of Gender Differences in Intracerebral Hemorrhage in a Multi-Ethnic Asian Population. PLoS One 2016; 11:e0152945. [PMID: 27050549 PMCID: PMC4822850 DOI: 10.1371/journal.pone.0152945] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/20/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) accounts for 10-15% of all first time strokes and with incidence twice as high in the Asian compared to Western population. This study aims to investigate gender differences in ICH patient outcomes in a multi-ethnic Asian population. METHOD Data for 1,192 patients admitted for ICH were collected over a four-year period. Multivariate logistic regression was used to identify independent predictors and odds ratios were computed for 30-day mortality and Glasgow Outcome Scale (GOS) comparing males and females. RESULT Males suffered ICH at a younger age than females (62.2 ± 13.2 years vs. 66.3 ± 15.3 years; P<0.001). The occurrence of ICH was higher among males than females at all ages until 80 years old, beyond which the trend was reversed. Females exhibited increased severity on admission as measured by Glasgow Coma Scale compared to males (10.9 ± 4.03 vs. 11.4 ± 4.04; P = 0.030). No difference was found in 30-day mortality between females and males (F: 30.5% [155/508] vs. M: 27.0% [186/688]), with unadjusted and adjusted odds ratio (F/M) of 1.19 (P = 0.188) and 1.21 (P = 0.300). At discharge, there was a non-statistically significant but potentially clinically relevant morbidity difference between the genders as measured by GOS (dichotomized GOS of 4-5: F: 23.7% [119/503] vs. M: 28.7% [194/677]), with unadjusted and adjusted odds ratio (F/M) of 0.77 (P = 0.055) and 0.87 (P = 0.434). CONCLUSION In our multi-ethnic Asian population, males developed ICH at a younger age and were more susceptible to ICH than women at all ages other than the beyond 80-year old age group. In contrast to the Western population, neurological status of female ICH patients at admission was poorer and their 30-day mortality was not reduced. Although the study was not powered to detect significance, female showed a trend toward worse 30-day morbidity at discharge.
Collapse
Affiliation(s)
- Justin T. Hsieh
- School of Medicine, Duke-National University of Singapore Medical School, Singapore, Singapore
- * E-mail:
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Yew Poh Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - John C. Allen
- Center for Quantitative Medicine, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nicolas K. K. King
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
31
|
Gaignard P, Fréchou M, Schumacher M, Thérond P, Mattern C, Slama A, Guennoun R. Progesterone reduces brain mitochondrial dysfunction after transient focal ischemia in male and female mice. J Cereb Blood Flow Metab 2016; 36:562-8. [PMID: 26661198 PMCID: PMC4794096 DOI: 10.1177/0271678x15610338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/21/2015] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of intranasal administration of progesterone on the early brain mitochondrial respiratory chain dysfunction and oxidative damage after transient middle cerebral occlusion in male and female mice. We showed that progesterone (8 mg/kg at 1 h post-middle cerebral occlusion) restored the mitochondrial reduced glutathione pool and the nicotinamide adenine dinucleotide-linked respiration in both sexes. Progesterone also reversed the decrease of the flavin adenine dinucleotide-linked respiration, which was only observed in females. Our findings point to a sex difference in stroke effects on the brain respiratory chain and suggest that the actions of progesterone on mitochondrial function may participate in its neuroprotective properties.
Collapse
Affiliation(s)
- Pauline Gaignard
- U1195 Inserm and University Paris-Sud, Le Kremlin-Bicêtre, France Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, University Paris-Sud, Le Kremlin-Bicêtre Cedex, France
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Patrice Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, University Paris-Sud, Le Kremlin-Bicêtre Cedex, France
| | | | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance-Publique Hôpitaux de Paris, University Paris-Sud, Le Kremlin-Bicêtre Cedex, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Gibson CL, Bath PM. Feasibility of progesterone treatment for ischaemic stroke. J Cereb Blood Flow Metab 2016; 36:487-91. [PMID: 26661235 PMCID: PMC4776310 DOI: 10.1177/0271678x15616782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/11/2015] [Indexed: 11/18/2022]
Abstract
Two multi-centre phase III clinical trials examining the protective potential of progesterone following traumatic brain injury have recently failed to demonstrate any improvement in outcome. Thus, it is timely to consider how this impacts on the translational potential of progesterone treatment for ischaemic stroke. A wealth of experimental evidence supports the neuroprotective properties of progesterone, and associated metabolites, following various types of central nervous system injury. In particular, for ischaemic stroke, studies have also begun to reveal possible mechanisms of such neuroprotection. However, the results in traumatic brain injury now question whether further clinical development of progesterone for ischaemic stroke is relevant.
Collapse
Affiliation(s)
- Claire L Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Philip M Bath
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| |
Collapse
|
33
|
Wali B, Ishrat T, Stein DG, Sayeed I. Progesterone improves long-term functional and histological outcomes after permanent stroke in older rats. Behav Brain Res 2016; 305:46-56. [PMID: 26921692 DOI: 10.1016/j.bbr.2016.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/22/2022]
Abstract
Previous studies have shown progesterone to be beneficial in animal models of central nervous system injury, but less is known about its longer-term sustained effects on recovery of function following stroke. We evaluated progesterone's effects on a panel of behavioral tests up to 8 weeks after permanent middle cerebral artery occlusion (pMCAO). Male Sprague-Dawley rats 12m.o. were subjected to pMCAO and, beginning 3h post-pMCAO, given intraperitoneal injections of progesterone (8mg/kg) or vehicle, followed by subcutaneous injections at 8h and then every 24h for 7 days, with tapering of the last 2 treatments. The rats were then tested on functional recovery at 3, 6 and 8 weeks post-stroke. We observed that progesterone-treated animals showed attenuation of infarct volume and improved functional outcomes at 8 weeks after stroke on grip strength, sensory neglect, motor coordination and spatial navigation tests. Progesterone treatments significantly improved motor deficits in the affected limb on a number of gait parameters. Glial fibrillary acidic protein expression was increased in the vehicle group and considerably lowered in the progesterone group at 8 weeks post-stroke. With repeated post-stroke testing, sensory neglect and some aspects of spatial learning performance showed spontaneous recovery, but on gait and grip-strength measres progesterone given only in the acute stage of stroke (first 7 days) showed sustained beneficial effects on all other measures of functional recovery up to 8 weeks post-stroke.
Collapse
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Tauheed Ishrat
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Method parameters' impact on mortality and variability in mouse stroke experiments: a meta-analysis. Sci Rep 2016; 6:21086. [PMID: 26876353 PMCID: PMC4753409 DOI: 10.1038/srep21086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
Although hundreds of promising substances have been tested in clinical trials,
thrombolysis currently remains the only specific pharmacological treatment for
ischemic stroke. Poor quality, e.g. low statistical power, in the preclinical
studies has been suggested to play an important role in these failures. Therefore,
it would be attractive to use animal models optimized to minimize unnecessary
mortality and outcome variability, or at least to be able to power studies more
exactly by predicting variability and mortality given a certain experimental setup.
The possible combinations of methodological parameters are innumerous, and an
experimental comparison of them all is therefore not feasible. As an alternative
approach, we extracted data from 334 experimental mouse stroke articles and, using a
hypothesis-driven meta-analysis, investigated the method parameters’
impact on infarct size variability and mortality. The use of Swiss and C57BL6 mice
as well as permanent occlusion of the middle cerebral artery rendered the lowest
variability of the infarct size while the emboli methods increased variability. The
use of Swiss mice increased mortality. Our study offers guidance for researchers
striving to optimize mouse stroke models.
Collapse
Affiliation(s)
- Edvin Ingberg
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Hua Dock
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Elvar Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden
| | - Annette Theodorsson
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Department of Neurosurgery, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Sweden
| | - Jakob O Ström
- Division of Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Department of Clinical Chemistry, Center for Diagnostics, Region Östergötland, Sweden.,Vårdvetenskapligt Forskningscentrum/Centre for Health Sciences, Örebro University Hospital, County Council of Örebro, Örebro, Sweden.,School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
35
|
Ahnstedt H, McCullough LD, Cipolla MJ. The Importance of Considering Sex Differences in Translational Stroke Research. Transl Stroke Res 2016; 7:261-73. [PMID: 26830778 DOI: 10.1007/s12975-016-0450-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 12/30/2022]
Abstract
Stroke is the second leading cause of death worldwide, and differences between men and women have been documented in incidence, prevalence, and outcome. Here, we reviewed the literature on sex differences in stroke severity, mortality, functional outcome, and response to therapies after ischemic stroke. Many of the sex differences in stroke severity and mortality are explained by differences in baseline demographics such as older age in women. However, women account for more stroke deaths, consistently suffer from worse stroke outcomes, and are more often institutionalized and permanently disabled than men. These sex differences in functional outcome are equalized after treatment with tissue plasminogen activator (tPA) and women may benefit more from treatment than men. However, this may depend on race, as African-American women have less of a response to tPA than other groups. Regarding endovascular treatments, the few existing studies that have investigated sex differences in stroke outcome point to equal benefit in both sexes; however, many clinical trials are relatively underpowered to detect sex differences. Further, we considered sex-specific effects in animal models of stroke and present recommendations for the performance of stroke studies in female animals. The male-biased use of research animals is distinguished from the clinical situation where there is a disproportionate and growing female stroke population. Stroke in women is greatly understudied, and including both sexes is especially important in both preclinical and clinical studies that evaluate potential stroke therapies.
Collapse
Affiliation(s)
- Hilda Ahnstedt
- Department of Neurological Sciences, University of Vermont, 149 Beaumont Ave., HSRF 416A, Burlington, VT, 05405, USA
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont, 149 Beaumont Ave., HSRF 416A, Burlington, VT, 05405, USA. .,Department of Pharmacology, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
36
|
Jiang C, Zuo F, Wang Y, Lu H, Yang Q, Wang J. Progesterone Changes VEGF and BDNF Expression and Promotes Neurogenesis After Ischemic Stroke. Mol Neurobiol 2016. [PMID: 26746666 DOI: 10.1007/s12035-015-9651-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies have shown that progesterone enhances functional recovery after ischemic stroke, but the underlying mechanisms are not completely understood. Therefore, we investigated the effect of progesterone on vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and neurogenesis in a rodent stroke model. Rats underwent permanent middle cerebral artery occlusion (pMCAO) and then received intraperitoneal injections of progesterone (15 mg/kg) or vehicle at 1 h followed by subcutaneous injections at 6, 24, and 48 h. We examined VEGF and BDNF expression by Western blotting and/or immunostaining and microvessel density by lectin immunostaining. Neurogenesis in the subventricular zone was determined by immunostaining of Ki67 and doublecortin, and double BrdU/Nestin immunostaining. We calculated brain water content with the wet-dry weight method on day 3 and assessed neurologic deficits with the modified neurological severity score on days 1, 3, 7, and 14. Progesterone-treated rats showed a significant decrease in VEGF expression, but an increase in BDNF expression, compared with that of vehicle-treated pMCAO rats on day 3 post-occlusion. Progesterone did not alter the microvessel density, but it reduced brain water content compared with that in vehicle-treated rats on day 3 post-occlusion. Progesterone treatment increased the numbers of newly generated neurons in the subventricular zone and doublecortin-positive cells in the peri-infarct region on day 7 post-occlusion. In addition, progesterone improved neurologic function on days 7 and 14 post-occlusion. Our data suggest that the enhancement of endogenous BDNF and subsequent neurogenesis could partially underlie the neuroprotective effects of progesterone.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China.
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| | - Fangfang Zuo
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Yuejuan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, People's Republic of China
| | - Hong Lu
- Department of Neurology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400044, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Chisholm NC, Sohrabji F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Neurobiol Dis 2016; 85:245-253. [PMID: 25843666 PMCID: PMC5636213 DOI: 10.1016/j.nbd.2015.03.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/16/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke occurs more often among the elderly, and within this demographic, women are at an increased risk for stroke and have poorer functional recovery than men. This is also well replicated in animal studies where aging females are shown to have more extensive brain tissue loss as compared to adult females. Astrocytes provide nutrients for neurons, regulate glutamate levels, and release neurotrophins and thus play a key role in the events that occur following ischemia. In addition, astrocytes express receptors for gonadal hormones and synthesize several neurosteroids suggesting that the sex differences in stroke outcome may be mediated through astrocytes. This review discusses key astrocytic responses to ischemia including, reactive gliosis, excitotoxicity, and neuroinflammation. In light of the age and sex differences in stroke outcomes, this review highlights how aging and gonadal hormones influence these responses. Lastly, astrocyte specific changes in gene expression and epigenetic modifications during aging and following ischemia are discussed as possible molecular mechanisms for impaired astrocytic functioning.
Collapse
Affiliation(s)
- Nioka C Chisholm
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Farida Sohrabji
- Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| |
Collapse
|
38
|
Hsieh JT, Lei B, Sheng H, Venkatraman T, Lascola CD, Warner DS, James ML. Sex-Specific Effects of Progesterone on Early Outcome of Intracerebral Hemorrhage. Neuroendocrinology 2016; 103:518-30. [PMID: 26356626 DOI: 10.1159/000440883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preclinical evidence suggests that progesterone improves recovery after intracerebral hemorrhage (ICH); however, gonadal hormones have sex-specific effects. Therefore, an experimental model of ICH was used to assess recovery after progesterone administration in male and female rats. METHODS ICH was induced in male and female Wistar rats via stereotactic intrastriatal injection of clostridial collagenase (0.5 U). Animals were randomized to receive vehicle or 8 mg/kg progesterone intraperitoneally at 2 h, then subcutaneously at 5, 24, 48, and 72 h after injury. Outcomes included relevant physiology during the first 3 h, hemorrhage and edema evolution over the first 24 h, proinflammatory transcription factor and cytokine regulation at 24 h, rotarod latency and neuroseverity score over the first 7 days, and microglial activation/macrophage recruitment at 7 days after injury. RESULTS Rotarod latency (p = 0.001) and neuroseverity score (p = 0.01) were improved in progesterone-treated males, but worsened in progesterone-treated females (p = 0.028 and p = 0.008, respectively). Progesterone decreased cerebral edema (p = 0.04), microglial activation/macrophage recruitment (p < 0.001), and proinflammatory transcription factor phosphorylated nuclear factor-x03BA;B p65 expression (p = 0.0038) in males but not females, independent of tumor necrosis factor-α, interleukin-6, and toll-like receptor-4 expression. Cerebral perfusion was increased in progesterone-treated males at 4 h (p = 0.043) but not 24 h after injury. Hemorrhage volume, arterial blood gases, glucose, and systolic blood pressure were not affected. CONCLUSIONS Progesterone administration improved early neurobehavioral recovery and decreased secondary neuroinflammation after ICH in male rats. Paradoxically, progesterone worsened neurobehavioral recovery and did not modify neuroinflammation in female rats. Future work should isolate mechanisms of sex-specific progesterone effects after ICH.
Collapse
|
39
|
Stanojlović M, Guševac I, Grković I, Zlatković J, Mitrović N, Zarić M, Horvat A, Drakulić D. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience 2015; 311:308-21. [DOI: 10.1016/j.neuroscience.2015.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
|
40
|
Physical Exercise as a Diagnostic, Rehabilitation, and Preventive Tool: Influence on Neuroplasticity and Motor Recovery after Stroke. Neural Plast 2015; 2015:608581. [PMID: 26682073 PMCID: PMC4670869 DOI: 10.1155/2015/608581] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/03/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023] Open
Abstract
Stroke remains a leading cause of adult motor disabilities in the world and accounts for the greatest number of hospitalizations for neurological disease. Stroke treatments/therapies need to promote neuroplasticity to improve motor function. Physical exercise is considered as a major candidate for ultimately promoting neural plasticity and could be used for different purposes in human and animal experiments. First, acute exercise could be used as a diagnostic tool to understand new neural mechanisms underlying stroke physiopathology. Indeed, better knowledge of stroke mechanisms that affect movements is crucial for enhancing treatment/rehabilitation effectiveness. Secondly, it is well established that physical exercise training is advised as an effective rehabilitation tool. Indeed, it reduces inflammatory processes and apoptotic marker expression, promotes brain angiogenesis and expression of some growth factors, and improves the activation of affected muscles during exercise. Nevertheless, exercise training might also aggravate sensorimotor deficits and brain injury depending on the chosen exercise parameters. For the last few years, physical training has been combined with pharmacological treatments to accentuate and/or accelerate beneficial neural and motor effects. Finally, physical exercise might also be considered as a major nonpharmacological preventive strategy that provides neuroprotective effects reducing adverse effects of brain ischemia. Therefore, prestroke regular physical activity may also decrease the motor outcome severity of stroke.
Collapse
|
41
|
Tulsulkar J, Glueck B, Hinds TD, Shah ZA. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway. Transl Stroke Res 2015; 7:120-31. [PMID: 26573919 DOI: 10.1007/s12975-015-0433-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/28/2015] [Accepted: 11/06/2015] [Indexed: 01/18/2023]
Abstract
It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Jatin Tulsulkar
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Bryan Glueck
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA. .,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA.
| |
Collapse
|
42
|
Fréchou M, Zhang S, Liere P, Delespierre B, Soyed N, Pianos A, Schumacher M, Mattern C, Guennoun R. Intranasal delivery of progesterone after transient ischemic stroke decreases mortality and provides neuroprotection. Neuropharmacology 2015; 97:394-403. [DOI: 10.1016/j.neuropharm.2015.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023]
|
43
|
Peterson BL, Won S, Geddes RI, Sayeed I, Stein DG. Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res 2015; 286:152-65. [PMID: 25746450 DOI: 10.1016/j.bbr.2015.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
There is no satisfactory therapeutic intervention for neonatal hypoxic-ischemic (HI) encephalopathy. Progesterone is known to be effective in treating traumatic brain injury in adult animals but its effects in neonatal brains have not been reported. Brain injuries were induced by a unilateral common carotid artery ligation plus hypoxia exposure. Progesterone was administered immediately after hypoxia and daily for 5 days at 8 mg/kg, followed by a tapered dose for two days. At six weeks post-injury, lesion size and inflammatory factors were evaluated. Progesterone-treated, HI-injured male animals, but not females, showed significant long-term tissue protection compared to vehicle, suggesting an important sex difference in neuroprotection. Progesterone-treated, HI-injured male rats had fewer activated microglia in the cortex and hippocampus compared to controls. The rats were tested for neurological reflexes, motor asymmetry, and cognitive performance at multiple time points. The injured animals exhibited few detectable motor deficits, suggesting a high level of age- and injury-related neuroplasticity. There were substantial sex differences on several behavioral tests, indicating that immature males and females should be analyzed separately. Progesterone-treated animals showed modest beneficial effects in both sexes compared to vehicle-treated injured animals. Sham animals given progesterone did not behave differently from vehicle-treated sham animals on any measures.
Collapse
Affiliation(s)
- Bethany L Peterson
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Soonmi Won
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rastafa I Geddes
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
44
|
Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015; 146:48-61. [PMID: 25196185 DOI: 10.1016/j.jsbmb.2014.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
Progesterone is a well-known steroid hormone, synthesized by ovaries and placenta in females, and by adrenal glands in both males and females. Several tissues are targets of progesterone and the nervous system is a major one. Progesterone is also locally synthesized by the nervous system and qualifies, therefore, as a neurosteroid. In addition, the nervous system has the capacity to bio-convert progesterone into its active metabolite allopregnanolone. The enzymes required for progesterone and allopregnanolone synthesis are widely distributed in brain and spinal cord. Increased local biosynthesis of pregnenolone, progesterone and 5α-dihydroprogesterone may be a part of an endogenous neuroprotective mechanism in response to nervous system injuries. Progesterone and allopregnanolone neuroprotective effects have been widely recognized. Multiple receptors or associated proteins may contribute to the progesterone effects: classical nuclear receptors (PR), membrane progesterone receptor component 1 (PGRMC1), membrane progesterone receptors (mPR), and γ-aminobutyric acid type A (GABAA) receptors after conversion to allopregnanolone. In this review, we will succinctly describe progesterone and allopregnanolone biosynthetic pathways and enzyme distribution in brain and spinal cord. Then, we will summarize our work on progesterone receptor distribution and cellular expression in brain and spinal cord; neurosteroid stimulation after nervous system injuries (spinal cord injury, traumatic brain injury, and stroke); and on progesterone and allopregnanolone neuroprotective effects in different experimental models including stroke and spinal cord injury. We will discuss in detail the neuroprotective effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABAA receptors.
Collapse
Affiliation(s)
- R Guennoun
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France.
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | | | - P Liere
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - M Schumacher
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
45
|
Wong R, Gibson CL, Kendall DA, Bath PMW. Evaluating the translational potential of progesterone treatment following transient cerebral ischaemia in male mice. BMC Neurosci 2014; 15:131. [PMID: 25471043 PMCID: PMC4255926 DOI: 10.1186/s12868-014-0131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022] Open
Abstract
Background Progesterone is neuroprotective in numerous preclinical CNS injury models including cerebral ischaemia. The aim of this study was two-fold; firstly, we aimed to determine whether progesterone delivery via osmotic mini-pump would confer neuroprotective effects and whether such neuroprotection could be produced in co-morbid animals. Results Animals underwent transient middle cerebral artery occlusion. At the onset of reperfusion, mice were injected intraperitoneally with progesterone (8 mg/kg in dimethylsulfoxide). Adult and aged C57 Bl/6 mice were dosed additionally with subcutaneous infusion (1.0 μl/h of a 50 mg/ml progesterone solution) via implanted osmotic minipumps. Mice were allowed to survive for up to 7 days post-ischaemia and assessed for general well-being (mass loss and survival), neurological score, foot fault and t-maze performance. Progesterone reduced neurological deficit [F(1,2) = 5.38, P = 0.027] and number of contralateral foot-faults [F(1,2) = 7.36, P = 0.0108] in adult, but not aged animals, following ischaemia. In hypertensive animals, progesterone treatment lowered neurological deficit [F(1,6) = 18.31, P = 0.0001], reduced contralateral/ipsilateral alternation ratio % [F(1,2) = 17.05, P = 0.0006] and time taken to complete trials [F(1,2) = 15.92, P = 0.0009] for t-maze. Conclusion Post-ischemic progesterone administration via mini-pump delivery is effective in conferring functional improvement in a transient MCAO model in adult mice. Preliminary data suggests such a treatment regimen was not effective in producing a protective effect in aged mice. However, in hypertensive mice, who received post-ischemic progesterone intraperitoneally at the onset of reperfusion had better functional outcomes than control hypertensive mice.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Leicester, Henry Wellcome Building, Leicester LE1 9HN, UK.
| | | | | |
Collapse
|
46
|
Mannix R, Berglass J, Berkner J, Moleus P, Qiu J, Jantzie LL, Meehan WP, Stanley RM, Robinson S. Sex differences in the effect of progesterone after controlled cortical impact in adolescent mice: a preliminary study. J Neurosurg 2014; 121:1337-41. [PMID: 25280093 DOI: 10.3171/2014.8.jns14715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT While progesterone has been well studied in experimental models of adult traumatic brain injury (TBI), it has not been evaluated in pediatric models. The study of promising interventions in pediatric TBI is important because children have the highest public health burden of such injuries. Therapies that are beneficial in adults may not necessarily be effective in the pediatric population. The purpose of this study was to evaluate whether progesterone treatment improves outcomes in an experimental model of pediatric TBI. METHODS The authors determined whether progesterone administered after controlled cortical impact (CCI) improves functional and histopathological outcomes in 4-week-old mice. Both male and female mice (58 mice total) were included in this study, as the majority of prior studies have used only male and/or reproductively senescent females. Mice were randomized to treatment with progesterone or vehicle and to CCI injury or sham injury. Motor (wire grip test) and memory (Morris water maze) testing were performed to determine the effect of progesterone on TBI. Lesion volume was also assessed. RESULTS Compared with their vehicle-treated counterparts, the progesterone-treated CCI-injured male mice had improved motor performance (p < 0.001). In contrast, progesterone-treated CCI-injured female mice had a worse performance than their vehicle-treated counterparts (p = 0.001). Progesterone treatment had no effect on spatial memory performance or lesion volume in injured male or female mice. CONCLUSIONS These data suggest a sex-specific effect of progesterone treatment after CCI in adolescent mice and could inform clinical trials in children.
Collapse
|
47
|
Yousuf S, Atif F, Sayeed I, Tang H, Stein DG. Progesterone in transient ischemic stroke: a dose-response study. Psychopharmacology (Berl) 2014; 231:3313-23. [PMID: 24752655 PMCID: PMC4134953 DOI: 10.1007/s00213-014-3556-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/20/2014] [Indexed: 02/06/2023]
Abstract
RATIONALE Previous studies demonstrate the neuroprotective effects of progesterone in numerous animal injury models, but a systematic dose-response study in a transient ischemic stroke model is lacking. OBJECTIVES We investigated the effects of progesterone at different doses on post-stroke brain infarction and functional deficits in middle-aged rats. METHODS Cerebral ischemia was induced in 13-month-old male Sprague-Dawley rats by right middle cerebral artery occlusion for 2 h followed by reperfusion. Rats received intraperitoneal injections of 8, 16, or 32 mg/kg of progesterone (P8, P16, P32) or vehicle at 2 h post-occlusion followed by subcutaneous injections at 6 h and every 24 h post-injury for 7 days. Functional recovery was evaluated at intervals over 22 days using motor, sensory, and cognitive tests. Infarct size was evaluated at 22 days post-stroke. RESULTS Repeated-measures ANOVA showed significant group effects on grip strength, rotarod, and sensory neglect. All progesterone-treated groups had improved (p < 0.05) spatial memory performance. The P8 and P16 groups showed maximum improvement in long-term memory compared to vehicle. Significant (p < 0.05) gait impairments were observed in the vehicle group compared to shams. Animals receiving the P8 dose showed maximum gait improvement compared to vehicle. Post hoc analysis revealed that the P8 and P16 groups showed significant attenuation in infarct volume compared to vehicle. Animals receiving the P32 dose did not show any effect on infarct volume. CONCLUSIONS Although all doses were somewhat effective, progesterone given at 8 mg/kg led to the most consistent improvements across a panel of behavioral/functional tests and reduced the severity of ischemic infarct injury.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Gait Disorders, Neurologic/drug therapy
- Hand Strength
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/psychology
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/pathology
- Ischemic Attack, Transient/psychology
- Male
- Maze Learning/drug effects
- Memory/drug effects
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/therapeutic use
- Perceptual Disorders/drug therapy
- Perceptual Disorders/psychology
- Postural Balance/drug effects
- Progesterone/administration & dosage
- Progesterone/therapeutic use
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Seema Yousuf
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, 1365B Clifton Road NE, Suite 5100, Atlanta, GA, 30322, USA,
| | | | | | | | | |
Collapse
|
48
|
Lei B, Mace B, Dawson HN, Warner DS, Laskowitz DT, James ML. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia. PLoS One 2014; 9:e103969. [PMID: 25080336 PMCID: PMC4117574 DOI: 10.1371/journal.pone.0103969] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/08/2014] [Indexed: 12/29/2022] Open
Abstract
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.
Collapse
Affiliation(s)
- Beilei Lei
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brian Mace
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hana N. Dawson
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David S. Warner
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel T. Laskowitz
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael L. James
- Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Gibson CL, Srivastava K, Sprigg N, Bath PMW, Bayraktutan U. Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J Neurochem 2014; 129:816-26. [PMID: 24528233 DOI: 10.1111/jnc.12681] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/20/2014] [Accepted: 02/07/2014] [Indexed: 12/22/2022]
Abstract
Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.
Collapse
Affiliation(s)
- Claire L Gibson
- School of Psychology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
50
|
Tyagi E, Agrawal R, Ying Z, Gomez-Pinilla F. TBI and sex: crucial role of progesterone protecting the brain in an omega-3 deficient condition. Exp Neurol 2014; 253:41-51. [PMID: 24361060 PMCID: PMC4005409 DOI: 10.1016/j.expneurol.2013.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/03/2023]
Abstract
We assessed whether the protective action of progesterone on traumatic brain injury (TBI) could be influenced by the consumption of omega-3 fatty acids during early life. Pregnant Sprague-Dawley rats were fed on omega-3 adequate or deficient diet from 3rd day of pregnancy and their female offspring were kept on the same diets up to the age of 15 weeks. Ovariectomy was performed at the age of 12 weeks to deprive animals from endogenous steroids until the time of a fluid percussion injury (FPI). Dietary n-3 fatty acid deficiency increased anxiety in sham animals and TBI aggravated the effects of the deficiency. Progesterone replacement counteracted the effects of TBI on the animals reared under n-3 deficiency. A similar pattern was observed for markers of membrane homeostasis such as 4-Hydroxynonenal (HNE) and secreted phospholipases A2 (sPLA2), synaptic plasticity such as brain derived neurotrophic factor (BDNF), syntaxin (STX)-3 and growth associated protein (GAP)-43, and for growth inhibitory molecules such as myelin-associated glycoprotein (MAG) and Nogo-A. Results that progesterone had no effects on sham n-3 deficient animals suggest that the availability of progesterone is essential under injury conditions. Progesterone treatment counteracted several parameters related to synaptic plasticity and membrane stability reduced by FPI and n-3 deficiency suggest potential targets for therapeutic applications. These results reveal the importance of n-3 preconditioning during early life and the efficacy of progesterone therapy during adulthood to counteract weaknesses in neuronal and behavioral plasticity.
Collapse
Affiliation(s)
- Ethika Tyagi
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Rahul Agrawal
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA 90095, USA.
| |
Collapse
|