1
|
Ampuero E, Luarte A, Flores FS, Soto AI, Pino C, Silva V, Erlandsen M, Concha T, Wyneken U. The multifaceted effects of fluoxetine treatment on cognitive functions. Front Pharmacol 2024; 15:1412420. [PMID: 39081952 PMCID: PMC11286485 DOI: 10.3389/fphar.2024.1412420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Fluoxetine, the prototypical selective serotonin reuptake inhibitor (SSRI), is widely used to treat major depressive disorder (MDD) and a variety of other central nervous system conditions, primarily due to its established clinical safety profile. Although its efficacy in treating depression is well-recognized, the impact of fluoxetine on cognitive functions remains inconsistent and elusive. In this review, we first examine the well-substantiated biological mechanisms underlying fluoxetine's antidepressant effects, which include serotonin reuptake inhibition and activation of TrkB receptors-key to brain-derived neurotrophic factor (BDNF) signaling. Subsequently, we delve into the cognitive side effects observed in both preclinical and clinical studies, affecting domains such as memory, attention, and executive functions. While certain studies indicate cognitive improvements in patients with underlying disorders, there is also evidence of negative effects, influenced by variables like gender, duration of treatment, age, disease pathology, and the specifics of cognitive testing. Significantly, the negative cognitive outcomes reported in preclinical research often involve healthy, non-diseased animals. This review underscores the necessity for heightened caution in fluoxetine prescription and further investigation into its potentially detrimental cognitive effects, even when used prophylactically.
Collapse
Affiliation(s)
- Estíbaliz Ampuero
- Laboratorio Neurofarmacología del Comportamiento, Facultad de Química y Biología, Universidad de Santiago, Santiago, Chile
| | - Alejandro Luarte
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Francisca Sofia Flores
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Antonia Ignacia Soto
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Catalina Pino
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Viviana Silva
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Macarena Erlandsen
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Teresita Concha
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ursula Wyneken
- Laboratorio Neurociencias, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
2
|
Jetsonen E, Didio G, Winkel F, Llach Pou M, Boj C, Kuczynski-Noyau L, Võikar V, Guirado R, Taira T, Lauri SE, Castrén E, Umemori J. Activation of TrkB in Parvalbumin interneurons is required for the promotion of reversal learning in spatial and fear memory by antidepressants. Neuropsychopharmacology 2023; 48:1021-1030. [PMID: 36944718 PMCID: PMC10209093 DOI: 10.1038/s41386-023-01562-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Critical period-like plasticity (iPlasticity) can be reinstated in the adult brain by several interventions, including drugs and optogenetic modifications. We have demonstrated that a combination of iPlasticity with optimal training improves behaviors related to neuropsychiatric disorders. In this context, the activation of TrkB, a receptor for BDNF, in Parvalbumin-positive (PV+) interneurons has a pivotal role in cortical network changes. However, it is unknown if the activation of TrkB in PV+ interneurons is important for other plasticity-related behaviors, especially for learning and memory. Here, using mice with heterozygous conditional TrkB deletion in PV+ interneurons (PV-TrkB hCKO) in IntelliCage and fear erasure paradigms, we show that chronic treatment with fluoxetine, a widely prescribed antidepressant drug that is known to promote the activation of TrkB, enhances behavioral flexibility in spatial and fear memory, largely depending on the expression of the TrkB receptor in PV+ interneurons. In addition, hippocampal long-term potentiation was enhanced by chronic treatment with fluoxetine in wild-type mice, but not in PV-TrkB hCKO mice. Transcriptomic analysis of PV+ interneurons after fluoxetine treatment indicated intrinsic changes in synaptic formation and downregulation of enzymes involved in perineuronal net formation. Consistently, immunohistochemistry has shown that the fluoxetine treatment alters PV expression and reduces PNNs in PV+ interneurons, and here we show that TrkB expression in PV+ interneurons is required for these effects. Together, our results provide molecular and network mechanisms for the induction of critical period-like plasticity in adulthood.
Collapse
Affiliation(s)
- Elias Jetsonen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Giuliano Didio
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Maria Llach Pou
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Integrative Neurobiology of Cholinergic Systems, Neuroscience Department, Institut Pasteur, Paris, France
| | - Chloe Boj
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Laura Kuczynski-Noyau
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Vootele Võikar
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ramon Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de Valencia, Valencia, Spain
| | - Tomi Taira
- Department of Veterinary Biosciences and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Juzoh Umemori
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
- Gene and Cell Technology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol 2022; 42:1671-1692. [PMID: 33651238 PMCID: PMC11421740 DOI: 10.1007/s10571-021-01064-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
The serotonergic system extends throughout the central nervous system (CNS) and the gastrointestinal (GI) tract. In the CNS, serotonin (5-HT, 5-hydroxytryptamine) modulates a broad spectrum of functions, including mood, cognition, anxiety, learning, memory, reward processing, and sleep. These processes are mediated through 5-HT binding to 5-HT receptors (5-HTRs), are classified into seven distinct groups. Deficits in the serotonergic system can result in various pathological conditions, particularly depression, schizophrenia, mood disorders, and autism. In this review, we outlined the complexity of serotonergic modulation of physiologic and pathologic processes. Moreover, we provided experimental and clinical evidence of 5-HT's involvement in neuropsychiatric disorders and discussed the molecular mechanisms that underlie these illnesses and contribute to the new therapies.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ghasemi Moravej
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Arabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Radiology and Medical Physics, Faculty of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Shahriari
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Soraya Mehrabi
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Richard Ward
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taghi Joghataei
- Division of Neuroscience, Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Serotonergic modulation of effective connectivity in an associative relearning network during task and rest. Neuroimage 2022; 249:118887. [PMID: 34999203 DOI: 10.1016/j.neuroimage.2022.118887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.
Collapse
|
5
|
Escitalopram modulates learning content-specific neuroplasticity of functional brain networks. Neuroimage 2021; 247:118829. [PMID: 34923134 DOI: 10.1016/j.neuroimage.2021.118829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.
Collapse
|
6
|
Zaben M, Haan N, Sharouf F, Ahmed A, Sundstrom LE, Gray WP. IL-1β and HMGB1 are anti-neurogenic to endogenous neural stem cells in the sclerotic epileptic human hippocampus. J Neuroinflammation 2021; 18:218. [PMID: 34548070 PMCID: PMC8454003 DOI: 10.1186/s12974-021-02265-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The dentate gyrus exhibits life-long neurogenesis of granule-cell neurons, supporting hippocampal dependent learning and memory. Both temporal lobe epilepsy patients and animal models frequently have hippocampal-dependent learning and memory difficulties and show evidence of reduced neurogenesis. Animal and human temporal lobe epilepsy studies have also shown strong innate immune system activation, which in animal models reduces hippocampal neurogenesis. We sought to determine if and how neuroinflammation signals reduced neurogenesis in the epileptic human hippocampus and its potential reversibility. METHODS We isolated endogenous neural stem cells from surgically resected hippocampal tissue in 15 patients with unilateral hippocampal sclerosis. We examined resultant neurogenesis after growing them either as neurospheres in an ideal environment, in 3D cultures which preserved the inflammatory microenvironment and/or in 2D cultures which mimicked it. RESULTS 3D human hippocampal cultures largely replicated the cellular composition and inflammatory environment of the epileptic hippocampus. The microenvironment of sclerotic human epileptic hippocampal tissue is strongly anti-neurogenic, with sustained release of the proinflammatory proteins HMGB1 and IL-1β. IL-1β and HMGB1 significantly reduce human hippocampal neurogenesis and blockade of their IL-1R and TLR 2/4 receptors by IL1Ra and Box-A respectively, significantly restores neurogenesis in 2D and 3D culture. CONCLUSION Our results demonstrate a HMGB1 and IL-1β-mediated environmental anti-neurogenic effect in human TLE, identifying both the IL-1R and TLR 2/4 receptors as potential drug targets for restoring human hippocampal neurogenesis in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Malik Zaben
- Brain Repair and Intracranial Neurotherapeutics (BRAIN), Biomedical Research Unit, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- Institute of Psychological Medicine and Clinical Neurosciences, National Institute for Neuroscience and Mental Health Research, Cardiff University, Cardiff, UK
| | - Niels Haan
- Institute of Psychological Medicine and Clinical Neurosciences, National Institute for Neuroscience and Mental Health Research, Cardiff University, Cardiff, UK
| | - Feras Sharouf
- Brain Repair and Intracranial Neurotherapeutics (BRAIN), Biomedical Research Unit, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- Institute of Psychological Medicine and Clinical Neurosciences, National Institute for Neuroscience and Mental Health Research, Cardiff University, Cardiff, UK
| | - Aminul Ahmed
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Lars E Sundstrom
- Sundstrom Innovation Limited, 14 Marine Parade, Clevedon, BS21 7QS, UK
| | - William P Gray
- Brain Repair and Intracranial Neurotherapeutics (BRAIN), Biomedical Research Unit, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
- Institute of Psychological Medicine and Clinical Neurosciences, National Institute for Neuroscience and Mental Health Research, Cardiff University, Cardiff, UK.
| |
Collapse
|
7
|
A Review of Accelerated Long-Term Forgetting in Epilepsy. Brain Sci 2020; 10:brainsci10120945. [PMID: 33297371 PMCID: PMC7762289 DOI: 10.3390/brainsci10120945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Accelerated long-term forgetting (ALF) is a memory disorder that manifests by a distinct pattern of normal memory for up to an hour after learning, but an increased rate of forgetting during the subsequent hours and days. The topic of ALF has gained much attention in group studies with epilepsy patients and the phenomenon has been shown to have contradictory associations with seizures, epileptiform activity, imaging data, sleep, and antiepileptic medication. The aim of this review was to explore how clinical and imaging data could help determine the topographic and physiological substrate of ALF, and what is the possible use of this information in the clinical setting. We have reviewed 51 group studies in English to provide a synthesis of the existing findings concerning ALF in epilepsy. Analysis of recently reported data among patients with temporal lobe epilepsy, transient epileptic amnesia, and generalized and extratemporal epilepsies provided further indication that ALF is likely a disorder of late memory consolidation. The spatial substrate of ALF might be located along the parts of the hippocampal-neocortical network and novel studies reveal the increasingly possible importance of damage in extrahippocampal sites. Further research is needed to explore the mechanisms of cellular impairment in ALF and to develop effective methods of care for patients with the disorder.
Collapse
|
8
|
Pottoo FH, Tabassum N, Javed MN, Nigar S, Sharma S, Barkat MA, Harshita, Alam MS, Ansari MA, Barreto GE, Ashraf GM. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur J Pharm Sci 2020; 146:105261. [PMID: 32061655 DOI: 10.1016/j.ejps.2020.105261] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 01/17/2023]
Abstract
The evidence to guide clinicians regarding rationale polytherapy with current antiepileptic drugs (AEDs) is lacking, and current practice recommendations are largely empirical. The excessive drug loading with combinatorial therapies of existing AEDs are associated with escalated neurotoxicity, and that emergence of pharmacoresistant seizures couldn't be averted. In pursuit of judicious selection of novel AEDs in combinatorial therapies with mechanism based evidences, standardized dose of raloxifene, fluoxetine, bromocriptine and their low dose combinations, were experimentally tested for their impact on maximal electroshock (MES) induced tonic hind limb extension (THLE) in mice. Hippocampal neuropeptide Y (NPY) levels, oxidative stress and histopathological studies were undertaken. The results suggest the potentiating effect of 4 mg/kg raloxifene on 14 mg/kg fluoxetine against MES induced THLE, as otherwise monotherapy with 4 mg/kg raloxifene was unable to produce an effect. The results also depicted better efficacy than carbamazepine (20 mg/kg), standard AED. Most profoundly, MES-induced significant (P < 0.001) reduction in hippocampal NPY levels, that were escalated insignificantly with the duo-drug combination, suggesting some other mechanism in mitigation of electroshock induced seizures. These results were later corroborated with assays to assess oxidative stress and neuronal damage. In conclusion, the results demonstrated the propitious therapeutic benefit of duo-drug low dose combination of drugs; raloxifene and fluoxetine, with diverse mode of actions fetching greater effectiveness in the management of generalized tonic clonic seizures (GTCS).
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia.
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Shah Nigar
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Drew CJG, Postans M, Petralia C, McNamara R, Pallmann P, Gillespie D, Evans LH, Muhlert N, Winter M, Hamandi K, Gray WP. A protocol for a randomised controlled, double-blind feasibility trial investigating fluoxetine treatment in improving memory and learning impairments in patients with mesial temporal lobe epilepsy: Fluoxetine, Learning and Memory in Epilepsy (FLAME trial). Pilot Feasibility Stud 2019; 5:87. [PMID: 31321071 PMCID: PMC6612194 DOI: 10.1186/s40814-019-0474-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND People with temporal lobe epilepsy (TLE) report significant problems with learning and memory. There are no effective therapies for combatting these problems in people with TLE, resulting in an unmet therapeutic need. The lack of treatment is, in part, due to a poor understanding of the neurobiology underlying these memory deficits. We know that hippocampal neurogenesis, a process believed to be important in learning and memory formation, is permanently reduced in chronic TLE, and this may go some way to explain the learning and memory impairments seen in people with TLE.The common anti-depressant drug fluoxetine has been shown to stimulate neurogenesis both in the healthy brain and in neurological diseases where neurogenesis is impaired. In an animal model of TLE, administration of fluoxetine was found to restore neurogenesis and improve learning on a complex spatial navigational task. We now want to test this effect in humans by investigating whether administration of fluoxetine to people with TLE can improve learning and memory. METHODS This is a single-centre randomised controlled, double-blind feasibility trial. We plan to recruit 20 participants with a diagnosis of TLE and uni-lateral hippocampal sclerosis, confirmed by 3T MRI. Eligible participants will undergo baseline assessments of learning and memory prior to being randomised to either 20 mg/day fluoxetine or matching placebo for 60 days. Follow-up assessments will be conducted after 60 days of trial medication and then again at 60 days after cessation of trial medication. Feasibility will be assessed on measures of recruitment, retention and adherence against pre-determined criteria. DISCUSSION This trial is designed to determine the feasibility of conducting a double-blind randomised controlled trial of fluoxetine for the treatment of learning and memory impairments in people with TLE. Data collected in this trial will inform the design and utility of any future efficacy trial involving fluoxetine for the treatment of learning and memory in people with TLE. TRIAL REGISTRATION EudraCT 2014-005088-34, registered on May 18, 2015.
Collapse
Affiliation(s)
- Cheney J. G. Drew
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Mark Postans
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff, CF24 4HQ UK
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
| | - Cateno Petralia
- Division of Psychological Medicine and Clinical Neurosciences, University Hospital Wales, Cardiff and Vale University Health Board, Heath Park, Cardiff, CF14 4XW UK
| | - Rachel McNamara
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Philip Pallmann
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Dave Gillespie
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Lisa H. Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff, CF24 4HQ UK
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
| | - Nils Muhlert
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
- Division of Neuroscience and Experimental Psychology, Manchester University, Manchester, UK
| | - Mia Winter
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
- Department of Clinical Neuropsychology, University Hospital Wales, Cardiff, CF14 4XW UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff, CF24 4HQ UK
- The Alan Richens Welsh Epilepsy Centre, University Hospital Wales, Cardiff, CF144XW UK
| | - William P. Gray
- Division of Psychological Medicine and Clinical Neurosciences, University Hospital Wales, Cardiff and Vale University Health Board, Heath Park, Cardiff, CF14 4XW UK
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
10
|
Buckley MG, Bast T. A new human delayed-matching-to-place test in a virtual environment reverse-translated from the rodent watermaze paradigm: Characterization of performance measures and sex differences. Hippocampus 2018; 28:796-812. [PMID: 30451330 DOI: 10.1002/hipo.22992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Accepted: 05/27/2018] [Indexed: 11/09/2022]
Abstract
Watermaze tests of place learning and memory in rodents and corresponding reverse-translated human paradigms in real or virtual environments are key tools to study hippocampal function. In common variants, the animal or human participant has to find a hidden goal that remains in the same place over many trials, allowing for incremental learning of the place with reference to distal cues surrounding the circular, featureless maze. Although the hippocampus is involved in incremental place learning, rodent studies have shown that the delayed-matching-to-place (DMP) watermaze test is a more sensitive assay of hippocampal function. On the DMP test, the goal location changes every four trials, requiring the rapid updating of place memory. Here, we developed a virtual DMP test reverse-translated from the rat watermaze DMP paradigm. In two replications, participants showed 1-trial place learning, evidenced by marked latency and path length savings between Trials 1 and 2 to the same goal location, and by search preference for the vicinity of the goal when Trial 2 was run as probe trial (during which the goal was removed). The performance was remarkably similar to rats' performance on the watermaze DMP test. In both replications, male participants showed greater savings and search preferences compared to female participants. Male participants also showed better mental rotation performance, although mental rotation scores did not consistently correlate with DMP performance measures, pointing to distinct neurocognitive mechanisms. The remarkable similarity between rodent and human DMP performance suggests similar underlying neuro-psychological mechanisms, including hippocampus dependence. The new virtual DMP test may, therefore, provide a sensitive tool to probe human hippocampal function.
Collapse
Affiliation(s)
| | - Tobias Bast
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Shtaya A, Sadek AR, Zaben M, Seifert G, Pringle A, Steinhäuser C, Gray WP. AMPA receptors and seizures mediate hippocampal radial glia-like stem cell proliferation. Glia 2018; 66:2397-2413. [PMID: 30357924 DOI: 10.1002/glia.23479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
Neurogenesis is sustained throughout life in the mammalian brain, supporting hippocampus-dependent learning and memory. Its permanent alteration by status epilepticus (SE) is associated with learning and cognitive impairments. The mechanisms underlying the initiation of altered neurogenesis after SE are not understood. Glial fibrillary acidic protein-positive radial glia (RG)-like cells proliferate early after SE, but their proliferation dynamics and signaling are largely unclear. We have previously reported a polarized distribution of AMPA receptors (AMPARs) on RG-like cells in vivo and postulated that these may signal their proliferation. Here, we examined the acute effects of kainate on hippocampal precursor cells in vitro and in kainate-induced SE on proliferating and quiescent clones of 5-bromo-2-deoxyuridine prelabeled hippocampal precursors in vivo. In vitro, we found that 5 μM kainate shortened the cell cycle time of RG-like cells via AMPAR activation and accelerated cell cycle re-entry of their progeny. It also shifted their fate choice expanding the population of RG-like cells and reducing the population of downstream amplifying neural progenitors. Kainate enhanced the survival of all precursor cell subtypes. Pharmacologically, kainate's proliferative and survival effects were abolished by AMPAR blockade. Functional AMPAR expression was confirmed on RG-like cells in vitro. In agreement with these observations, kainate/seizures enhanced the proliferation and expansion predominantly of constitutively cycling RG-like cell clones in vivo. Our results identify AMPARs as key potential players in initiating the proliferation of dentate RG-like cells and unravel a possible receptor target for modifying the radial glia-like cell response to SE.
Collapse
Affiliation(s)
- Anan Shtaya
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom.,University of Southampton School of Medicine, Southampton, United Kingdom
| | | | - Malik Zaben
- University of Southampton School of Medicine, Southampton, United Kingdom.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,B.R.A.I.N. Biomedical Research Unit, Cardiff University, Cardiff, United Kingdom
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ashley Pringle
- University of Southampton School of Medicine, Southampton, United Kingdom
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - William Peter Gray
- University of Southampton School of Medicine, Southampton, United Kingdom.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,B.R.A.I.N. Biomedical Research Unit, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
12
|
Soler JE, Robison AJ, Núñez AA, Yan L. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus). Hippocampus 2017; 28:189-200. [PMID: 29251803 DOI: 10.1002/hipo.22822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 01/05/2023]
Abstract
The effects of light on cognitive function have been well-documented in human studies, with brighter illumination improving cognitive performance in school children, healthy adults, and patients in early stages of dementia. However, the underlying neural mechanisms are not well understood. The present study examined how ambient light affects hippocampal function using the diurnal Nile grass rats (Arvicanthis niloticus) as the animal model. Grass rats were housed in either a 12:12 h bright light-dark (brLD, 1,000 lux) or dim light-dark (dimLD, 50 lux) cycle. After 4 weeks, the dimLD group showed impaired spatial memory in the Morris Water Maze (MWM) task. The impairment in their MWM performance were reversed when the dimLD group were transferred to the brLD condition for another 4 weeks. The results suggest that lighting conditions influence cognitive function of grass rats in a way similar to that observed in humans, such that bright light is beneficial over dim light for cognitive performance. In addition to the behavioral changes, grass rats in the dimLD condition exhibited reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, most notably in the CA1 subregion. There was also a reduction in dendritic spine density in CA1 apical dendrites in dimLD as compared to the brLD group, and the reduction was mostly in the number of mushroom and stubby spines. When dimLD animals were transferred to the brLD condition for 4 weeks, the hippocampal BDNF and dendritic spine density significantly increased. The results illustrate that not only does light intensity affect cognitive performance, but that it also impacts hippocampal structural plasticity. These studies serve as a starting point to further understand how ambient light modulates neuronal and cognitive functions in diurnal species. A mechanistic understanding of the effects of light on cognition can help to identify risk factors for cognitive decline and contribute to the development of more effective prevention and treatment of cognitive impairment in clinical populations.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan
- Neuroscience Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
13
|
Redhead ES, Chan W. Conditioned inhibition in the spatial domain in humans and rats. LEARNING AND MOTIVATION 2017. [DOI: 10.1016/j.lmot.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Khan D, Khan M, Runesson J, Zaben M, Gray WP. GalR3 mediates galanin proliferative effects on postnatal hippocampal precursors. Neuropeptides 2017; 63:14-17. [PMID: 28431685 DOI: 10.1016/j.npep.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022]
Abstract
Galanin, a neuropeptide co-released from noradrenergic and serotonergic projection neurons to the dentate gyrus, has recently emerged as an important mediator for signaling neuronal activity to the subgranular neurogenic stem cell niche supporting adult hippocampal neurogenesis. Galanin and its receptors appear to play key roles in depression-like behavior, and effects on hippocampal neurogenesis are relevant to pharmacological strategies for treating depression, which in part appear to rely on restoring altered neurogenesis. We previously demonstrated that the GalR2/3 receptor agonist Gal 2-11 is proliferative and proneurogenic for postnatal hippocampal progenitor cells; however, the specific receptor mediation remained to be identified. With the recent availability of M1145 (a specific GalR2 agonist), and SNAP 37889 (GalR3 specific antagonist), we extend our previous studies and show that while M1145 has no proliferative effect, the co-treatment of postnatal rat hippocampal progenitors with Gal 2-11 and SNAP 37889 completely abolished the Gal 2-11 proliferative effects. Taken together, these results clearly demonstrate that GalR3 and not GalR2 is the specific receptor subtype that mediates the proliferative effects of galanin on hippocampal progenitor cells. These results implicate GALR3 in the mediation of galanin neurogenic effects and, potentially, its neurogenic anti-depressant effects.
Collapse
Affiliation(s)
- D Khan
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - M Khan
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - Johan Runesson
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - M Zaben
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom
| | - W P Gray
- Institute of Psychological Medicine and Clinical Neurosciences, Neurosciences and Mental Health Research Institute NMHRI, Room 3.33, Hadyn Ellis Building, Cardiff CF24 4HQ, United Kingdom.
| |
Collapse
|
15
|
Vezzani A, Pascente R, Ravizza T. Biomarkers of Epileptogenesis: The Focus on Glia and Cognitive Dysfunctions. Neurochem Res 2017; 42:2089-2098. [PMID: 28434163 DOI: 10.1007/s11064-017-2271-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022]
Abstract
The need to find measures that reliably predict the onset of epilepsy after injurious events or how the patient will respond to anti-seizure drugs led to intensive pre-clinical and clinical research to discover non-invasive biomarkers that could increase the sensitivity of existing clinical indicators. The use of experimental models of epileptogenesis and of drug-resistance is instrumental to select the most promising approaches to explore such biomarkers in the pre-clinical setting for further clinical validation. The approaches most frequently used to find clinically useful biomarkers of epileptogenesis include molecular brain imaging, EEG signal analysis and the measure of soluble molecules in biofluids which may reflect brain intrinsic events involved in epilepsy development. Among those, we focused our attention on proton magnetic resonance imaging (1H-MRS)-based analysis of astrocytic activation, and related blood biomarkers, since this cell population appears to be pivotally involved in various epileptogenesis processes triggered by differing insults. Moreover, we also investigated behavioral biomarkers by focusing on cognitive dysfunctions since this deficit represents a typical co-morbidity in epilepsy which may manifest even before the onset of spontaneous seizures. In this review article, we will report our recently published evidence supporting the utility of measuring astrocyte activation, the soluble molecules they release, and the associated cognitive deficits during epileptogenesis for early stratification of animals developing epilepsy. We will discuss the potential clinical translation of our findings for enriching the patient population in preventive clinical trials designed to study anti-epileptogenic treatments.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy.
| | - Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto Di Ricerche Farmacologiche Mario Negri, Via G. La Masa, 19, 20156, Milan, Italy
| |
Collapse
|
16
|
Begeti F, Schwab LC, Mason SL, Barker RA. Hippocampal dysfunction defines disease onset in Huntington's disease. J Neurol Neurosurg Psychiatry 2016; 87:975-81. [PMID: 26833174 DOI: 10.1136/jnnp-2015-312413] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/03/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterised by a triad of motor, psychiatric and cognitive deficits with the latter classically attributed to disruption of frontostriatal networks. However, emerging evidence from animal models of HD suggests that some of the early cognitive deficits may have a hippocampal basis. The objective of this study was to link previous rodent findings in this area to clinical practice. METHODS In this study, 94 participants included patients with early HD, premanifest HD and age-matched controls underwent hippocampal-based cognitive assessments. These included a virtual reality version of the Morris water maze, a task involved participants having to swim through a virtual pool to find a submerged platform using a joystick, and the Cambridge Neuropsychological Test Automated Battery (CANTAB) paired associates learning task, a test also known to rely on hippocampal integrity. RESULTS Patients with early HD showed impaired performance in both the virtual Morris water maze and the CANTAB paired associates learning. Such deficits were also correlated with estimated years to diagnosis in premanifest participants. CONCLUSIONS This study highlights the merit of using analogous tests in the laboratory and clinic and demonstrates that hippocampal impairments are an early feature of HD in patients as previously shown in rodent models of the disease. As such, they could be used not only to assist in the diagnosis of disease onset, but may also be useful as an outcome measure in future therapeutic trials.
Collapse
Affiliation(s)
- Faye Begeti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Laetitia C Schwab
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Sarah L Mason
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK Department of Neurology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
17
|
Pascente R, Frigerio F, Rizzi M, Porcu L, Boido M, Davids J, Zaben M, Tolomeo D, Filibian M, Gray WP, Vezzani A, Ravizza T. Cognitive deficits and brain myo-Inositol are early biomarkers of epileptogenesis in a rat model of epilepsy. Neurobiol Dis 2016; 93:146-55. [PMID: 27173096 DOI: 10.1016/j.nbd.2016.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/26/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022] Open
Abstract
One major unmet clinical need in epilepsy is the identification of therapies to prevent or arrest epilepsy development in patients exposed to a potential epileptogenic insult. The development of such treatments has been hampered by the lack of non-invasive biomarkers that could be used to identify the patients at-risk, thereby allowing to design affordable clinical studies. Our goal was to test the predictive value of cognitive deficits and brain astrocyte activation for the development of epilepsy following a potential epileptogenic injury. We used a model of epilepsy induced by pilocarpine-evoked status epilepticus (SE) in 21-day old rats where 60-70% of animals develop spontaneous seizures after around 70days, although SE is similar in all rats. Learning was evaluated in the Morris water-maze at days 15 and 65 post-SE, each time followed by proton magnetic resonance spectroscopy for measuring hippocampal myo-Inositol levels, a marker of astrocyte activation. Rats were video-EEG monitored for two weeks at seven months post-SE to detect spontaneous seizures, then brain histology was done. Behavioral and imaging data were retrospectively analysed in epileptic rats and compared with non-epileptic and control animals. Rats displayed spatial learning deficits within three weeks from SE. However, only epilepsy-prone rats showed accelerated forgetting and reduced learning rate compared to both rats not developing epilepsy and controls. These deficits were associated with reduced hippocampal neurogenesis. myo-Inositol levels increased transiently in the hippocampus of SE-rats not developing epilepsy while this increase persisted until spontaneous seizures onset in epilepsy-prone rats, being associated with a local increase in S100β-positive astrocytes. Neuronal cell loss was similar in all SE-rats. Our data show that behavioral deficits, together with a non-invasive marker of astrocyte activation, predict which rats develop epilepsy after an acute injury. These measures have potential clinical relevance for identifying individuals at-risk for developing epilepsy following exposure to epileptogenic insults, and consequently, for designing adequately powered antiepileptogenesis trials.
Collapse
Affiliation(s)
- Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Federica Frigerio
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Massimo Rizzi
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Luca Porcu
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Marina Boido
- Neuroscience Institute "Cavalieri Ottolenghi", Department of Neuroscience, University of Torino, Torino, Italy
| | - Joe Davids
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniele Tolomeo
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Marta Filibian
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - William P Gray
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy.
| |
Collapse
|
18
|
Study of the effect of antidepressant drugs and donepezil on aluminum-induced memory impairment and biochemical alterations in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1994-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Nunan R, Sivasathiaseelan H, Khan D, Zaben M, Gray W. Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release. Glia 2014; 62:1313-27. [PMID: 24801739 PMCID: PMC4336555 DOI: 10.1002/glia.22682] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 01/23/2023]
Abstract
Neurogenesis, the production of new neurons from neural stem/progenitor cells (NSPCs), occurs throughout adulthood in the dentate gyrus of the hippocampus, where it supports learning and memory. The innate and adaptive immune systems are increasingly recognized as important modulators of hippocampal neurogenesis under both physiological and pathological conditions. However, the mechanisms by which the immune system regulates hippocampal neurogenesis are incompletely understood. In particular, the role of microglia, the brains resident immune cell is complex, as they have been reported to both positively and negatively regulate neurogenesis. Interestingly, neuronal activity can also regulate the function of the immune system. Here, we show that depleting microglia from hippocampal cultures reduces NSPC survival and proliferation. Furthermore, addition of purified hippocampal microglia, or their conditioned media, is trophic and proliferative to NSPCs. VIP, a neuropeptide released by dentate gyrus interneurons, enhances the proliferative and pro-neurogenic effect of microglia via the VPAC1 receptor. This VIP-induced enhancement is mediated by IL-4 release, which directly targets NSPCs. This demonstrates a potential neuro-immuno-neurogenic pathway, disruption of which may have significant implications in conditions where combined cognitive impairments, interneuron loss, and immune system activation occurs, such as temporal lobe epilepsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Nunan
- Division of Clinical Neurosciences, University of Southampton, Southampton, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Maia GH, Quesado JL, Soares JI, do Carmo JM, Andrade PA, Andrade JP, Lukoyanov NV. Loss of hippocampal neurons after kainate treatment correlates with behavioral deficits. PLoS One 2014; 9:e84722. [PMID: 24409306 PMCID: PMC3883667 DOI: 10.1371/journal.pone.0084722] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022] Open
Abstract
Treating rats with kainic acid induces status epilepticus (SE) and leads to the development of behavioral deficits and spontaneous recurrent seizures later in life. However, in a subset of rats, kainic acid treatment does not induce overt behaviorally obvious acute SE. The goal of this study was to compare the neuroanatomical and behavioral changes induced by kainate in rats that developed convulsive SE to those who did not. Adult male Wistar rats were treated with kainic acid and tested behaviorally 5 months later. Rats that had experienced convulsive SE showed impaired performance on the spatial water maze and passive avoidance tasks, and on the context and tone retention tests following fear conditioning. In addition, they exhibited less anxiety-like behaviors than controls on the open-field and elevated plus-maze tests. Histologically, convulsive SE was associated with marked neuron loss in the hippocampal CA3 and CA1 fields, and in the dentate hilus. Rats that had not experienced convulsive SE after kainate treatment showed less severe, but significant impairments on the spatial water maze and passive avoidance tasks. These rats had fewer neurons than control rats in the dentate hilus, but not in the hippocampal CA3 and CA1 fields. Correlational analyses revealed significant relationships between spatial memory indices of rats and neuronal numbers in the dentate hilus and CA3 pyramidal field. These results show that a part of the animals that do not display intense behavioral seizures (convulsive SE) immediately after an epileptogenic treatment, later in life, they may still have noticeable structural and functional changes in the brain.
Collapse
Affiliation(s)
- Gisela H. Maia
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Neural Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - José L. Quesado
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Joana I. Soares
- Neural Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Joana M. do Carmo
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Pedro A. Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - José P. Andrade
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Nikolai V. Lukoyanov
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Neural Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Rotheneichner P, Marschallinger J, Couillard-Despres S, Aigner L. Neurogenesis and neuronal regeneration in status epilepticus. Epilepsia 2013; 54 Suppl 6:40-2. [PMID: 24001070 DOI: 10.1111/epi.12274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neurogenesis in the adult central nervous system has been well documented in several mammals including humans. By now, a plethora of data has been generated with the aim of understanding the molecular and cellular events governing neurogenesis. This growing comprehension will provide the basis for modulation of neurogenesis for therapeutic purposes, in particular in neurodegenerative diseases. Herein, we review the current knowledge on neurogenesis, in particular in the frame of epilepsy, since seizures have massive effects on neurogenesis. Conversely, some studies have suggested that aberrant neurogenesis might contribute to the development or manifestation of epilepsy and, moreover, chronic inhibition of neurogenesis in epilepsy might contribute to comorbidities of epilepsy such as cognitive deficits. Therefore, a better understanding of neurogenesis in the context of epilepsy is still required for future therapeutic purposes.
Collapse
Affiliation(s)
- Peter Rotheneichner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Strubergasse 21, Salzburg, Austria
| | | | | | | |
Collapse
|
22
|
The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One 2013; 8:e68208. [PMID: 23840835 PMCID: PMC3695928 DOI: 10.1371/journal.pone.0068208] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/27/2013] [Indexed: 11/29/2022] Open
Abstract
Postnatal neurogenesis of granule cells (GCs) in the dentate gyrus (DG) produces GCs that normally migrate from the subgranular zone to the GC layer. However, GCs can mismigrate into the hilus, the opposite direction. Previous descriptions of these hilar ectopic GCs (hEGCs) suggest that they are rare unless there are severe seizures. However, it is not clear if severe seizures are required, and it also is unclear if severe seizures are responsible for the abnormalities of hEGCs, which include atypical dendrites and electrophysiological properties. Here we show that large numbers of hEGCs develop in a transgenic mouse without severe seizures. The mice have a deletion of BAX, which normally regulates apoptosis. Surprisingly, we show that hEGCs in the BAX-/- mouse have similar abnormalities as hEGCs that arise after severe seizures. We next asked if there are selective effects of hEGCs, i.e., whether a robust population of hEGCs would have any effect on the DG if they were induced without severe seizures. Indeed, this appears to be true, because it has been reported that BAX-/- mice have defects in a behavior that tests pattern separation, which depends on the DG. However, inferring functional effects of hEGCs is difficult in mice with a constitutive BAX deletion because there is decreased apoptosis in and outside the DG. Therefore, a computational model of the normal DG and hippocampal subfield CA3 was used. Adding a small population of hEGCs (5% of all GCs), with characteristics defined empirically, was sufficient to disrupt a simulation of pattern separation and completion. Modeling results also showed that effects of hEGCs were due primarily to “backprojections” of CA3 pyramidal cell axons to the hilus. The results suggest that hEGCs can develop for diverse reasons, do not depend on severe seizures, and a small population of hEGCs may impair DG-dependent function.
Collapse
|
23
|
Jiruska P, Shtaya AB, Bodansky DM, Chang WC, Gray WP, Jefferys JG. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Neurobiol Dis 2013; 54:492-8. [PMID: 23439313 PMCID: PMC3635088 DOI: 10.1016/j.nbd.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 12/20/2022] Open
Abstract
Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models induced by an initial prolonged status epilepticus associated with substantial cell death. In these models, neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase, we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not cause status or, in most cases, detectable neuronal loss. We found a 4.5 times increase in BrdU labeling (estimating precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7days) in dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the rats experienced 112±24 seizures, lasting 88±11s each, over a period of 8.6±1.3days from the first electrographic seizure. On the first day of seizures, their duration was a median of 103s, and the median interictal period was 23min, confirming the absence of experimentally defined status epilepticus. The total increase in cell proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I; 7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are sufficient to promote increased hippocampal neurogenesis in the absence of status epilepticus.
Collapse
Affiliation(s)
- Premysl Jiruska
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of Czech Republic, Prague, CZ-14220, Czech Republic
- Department of Neurology, Charles University, 2nd School of Medicine, University Hospital Motol, Prague, CZ-15006, Czech Republic
| | - Anan B.Y. Shtaya
- Wessex Neurological Centre, Southampton University Hospital Trust, Southampton, SO16 6YD, UK
- School of Medicine (Clinical Neurosciences), Faculty of Medicine, Health and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - David M.S. Bodansky
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Wei-Chih Chang
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - William P. Gray
- School of Medicine (Clinical Neurosciences), Faculty of Medicine, Health and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
- National Institute of Neuroscience and Mental Health Research, LGF — Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - John G.R. Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
24
|
Di Poi C, Darmaillacq AS, Dickel L, Boulouard M, Bellanger C. Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:84-91. [PMID: 23474317 DOI: 10.1016/j.aquatox.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 02/09/2013] [Indexed: 05/27/2023]
Abstract
Recent ecotoxicological studies highlight the increasing presence of pharmaceuticals discharged in the aquatic environment. Amongst them is the antidepressant fluoxetine (FLX), a selective serotonin reuptake inhibitor, primarily indicated for treatment of depression. The effect of chronic exposure to FLX on memory processing in 1-month-old cuttlefish Sepia officinalis was evaluated. Three groups of new-borns were reared in different conditions: one control group (no FLX) and two groups exposed to environmental concentrations of FLX (1 and 100ng/L) from 15 days pre-hatching to 1 month post-hatching. Acquisition and retention performances were assessed using the 'prawn-in-the-tube' procedure. Perinatal exposure to fluoxetine led to significant changes in memory processing of the animals. The lowest observed effect concentration of this antidepressant on learning and retention was 1ng/L which is under the range of environmental contamination. Cuttlefish exposed at low FLX concentration had impaired acquisition capabilities and animals exposed at high FLX concentration displayed a deficit of memory retention compared to the control group that had nonimpaired initial acquisition and retention performances. The results subsequently suggested that FLX-induced changes in cognitive capacities could potentially lead to inappropriate predatory behaviors in the natural environment. The study provides the basis for future studies on how pharmaceutical contaminants disrupt cognition in ecologically and economically relevant marine invertebrates.
Collapse
Affiliation(s)
- Carole Di Poi
- Université de Caen Basse-Normandie, Groupe Mémoire et Plasticité comportementale, EA 4259, 14032 Caen cedex, France
| | | | | | | | | |
Collapse
|