1
|
Ferreira D, Przybelski SA, Lesnick TG, Diaz-Galvan P, Schwarz CG, Murray MM, Dickson DW, Nguyen A, Reichard RR, Senjem ML, Gunter JL, Jack CR, Min PH, Jain MK, Miyagawa T, Forsberg LK, Fields JA, Savica R, Graff-Radford J, Ramanan VK, Jones DT, Botha H, St. Louis EK, Knopman DS, Graff-Radford NR, Day GS, Ferman TJ, Kremers WK, Petersen RC, Boeve BF, Lowe VJ, Kantarci K. Longitudinal FDG-PET Metabolic Change Along the Lewy Body Continuum. JAMA Neurol 2025; 82:285-294. [PMID: 39804619 PMCID: PMC11894489 DOI: 10.1001/jamaneurol.2024.4643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/11/2024] [Indexed: 03/11/2025]
Abstract
Importance Although 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established cross-sectional biomarker of brain metabolism in dementia with Lewy bodies (DLB), the longitudinal change in FDG-PET has not been characterized. Objective To investigate longitudinal FDG-PET in prodromal DLB and DLB, including a subsample with autopsy data, and report estimated sample sizes for a hypothetical clinical trial in DLB. Design, Setting, and Participants Longitudinal case-control study with mean (SD) follow-up of 3.8 (2.3) years. Cases were recruited consecutively between 2007 and 2022 at a referral center and among the population. Patients with probable DLB or mild cognitive impairment with Lewy bodies (MCI-LB) were included. Individuals without cognitive impairment were included from a population-based cohort balanced on age and sex for comparison. All participants completed at least 1 follow-up assessment by design. Exposure Patients with MCI-LB and DLB. Main Outcomes and Measures Rate of change in FDG-PET was assessed as standardized uptake value ratios (SUVr). Clinical progression was assessed with the Clinical Dementia Rating Sum of Boxes (CDR-SB) score. Results Thirty-five patients with probable DLB, 37 patients with MCI-LB, and 100 individuals without cognitive impairment were included. The mean (SD) age of the DLB and MCI-LB groups combined (n = 72) was 69.6 (8.2) years; 66 patients (92%) were men and 6 (8%) were women. At follow-up, 18 participants (49%) with MCI-LB had progressed to probable DLB. Patients with MCI-LB had a faster decline in FDG-SUVr, compared with that of participants without cognitive impairment, in the posterior cingulate, occipital, parietal, temporal, and lateral frontal cortices. The same regions showed greater metabolic decline in patients with DLB than in participants without cognitive impairment, with the addition of anterior-middle cingulate, insula, and medial frontal orbital cortices. Rates of change in FDG-PET in these brain regions were combined into a region of interest (ROI) labeled longitudinal FDG-PET LB meta-ROI. The rate of change in FDG-SUVr in the meta-ROI correlated with the rate of change in CDR-SB, and sample size estimates were reported for potential clinical trials in DLB. Findings were confirmed in the subsample with neuropathologic confirmation (n = 20). Conclusions and Relevance This study found that brain hypometabolism begins to evolve during the prodromal stages of DLB with changes paralleling symptomatic progression. These data may inform clinical practice and trials planning to use FDG-PET for biologic staging, monitoring disease progression, and potentially assessing treatment response.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer’s Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Santa María de Guía, Las Palmas, España
| | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ross R. Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Matthew L. Senjem
- Department of Information Technology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Paul H. Min
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Manoj K. Jain
- Department of Radiology, Mayo Clinic, Jacksonville, Florida
| | - Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Tanis J. Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida
| | - Walter K. Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Kiersnowski OC, Mattioli P, Argenti L, Avanzino L, Calizzano F, Diociasi A, Falcitano L, Liu C, Losa M, Massa F, Morbelli S, Orso B, Pelosin E, Raffa S, Pardini M, Arnaldi D, Roccatagliata L, Costagli M. Magnetic susceptibility components reveal different aspects of neurodegeneration in alpha-synucleinopathies. Sci Rep 2025; 15:4186. [PMID: 39905067 PMCID: PMC11794440 DOI: 10.1038/s41598-024-83593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Nigrostriatal dopaminergic degeneration in alpha-synucleinopathies is indirectly reflected by low dopamine transporter (DaT) uptake through [123I]FP-CIT-SPECT. Bulk magnetic susceptibility (χ) in the substantia nigra, from MRI-based quantitative susceptibility mapping (QSM), is a potential biomarker of nigrostriatal degeneration, however, QSM cannot disentangle paramagnetic (e.g. iron) and diamagnetic (e.g. myelin) sources. Using the susceptibility source-separation technique DECOMPOSE, paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) were studied in prodromal and overt alpha-synucleinopathies, and their relationships with DaT-SPECT specific binding ratio (SBR) and clinical scores. 78 participants were included (23 controls, 30 prodromal and 25 overt alpha-synucleinopathies). Prodromal patients were subdivided into groups with positive or negative DaT-SPECT (SBR Z-scores below or above -1, respectively). Correlations of putamen and caudate SBR Z-scores with PCS and DCS in the substantia nigra, putamen, and caudate were investigated. Increased PCS was observed in the substantia nigra of prodromal alpha-synucleinopathy patients with positive DaT-SPECT compared to controls and prodromal patients with negative DaT-SPECT. SBR Z-scores in the putamen correlated with increased PCS in the substantia nigra and reduced |DCS| in the putamen, which may reflect dopaminergic degeneration ascribable to iron accumulation and nigrostriatal neuron axonal loss, respectively.
Collapse
Affiliation(s)
| | - Pietro Mattioli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | | | - Chunlei Liu
- University of California Berkeley, Berkeley, United States of America
| | - Mattia Losa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Federico Massa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Silvia Morbelli
- Department of Nuclear Medicine, University of Turin, Turin, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences, University of Genova, Genova, Italy.
| | - Mauro Costagli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
3
|
Yoo J, Lee J, Ahn B, Han J, Lim MH. Multi-target-directed therapeutic strategies for Alzheimer's disease: controlling amyloid-β aggregation, metal ion homeostasis, and enzyme inhibition. Chem Sci 2025; 16:2105-2135. [PMID: 39810997 PMCID: PMC11726323 DOI: 10.1039/d4sc06762b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia, marked by progressive cognitive decline and memory impairment. Despite advances in therapeutic research, single-target-directed treatments often fall short in addressing the complex, multifactorial nature of AD. This arises from various pathological features, including amyloid-β (Aβ) aggregate deposition, metal ion dysregulation, oxidative stress, impaired neurotransmission, neuroinflammation, mitochondrial dysfunction, and neuronal cell death. This review illustrates their interrelationships, with a particular emphasis on the interplay among Aβ, metal ions, and AD-related enzymes, such as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), matrix metalloproteinase 9 (MMP9), lysyl oxidase-like 2 (LOXL2), acetylcholinesterase (AChE), and monoamine oxidase B (MAOB). We further underscore the potential of therapeutic strategies that simultaneously inhibit Aβ aggregation and address other pathogenic mechanisms. These approaches offer a more comprehensive and effective method for combating AD, overcoming the limitations of conventional therapies.
Collapse
Affiliation(s)
- Jeasang Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jimin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Byeongha Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Jiyeon Han
- Department of Applied Chemistry, University of Seoul Seoul 02504 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
4
|
Gabriel V, Bousiges O, Mondino M, Cretin B, Philippi N, Muller C, Anthony P, Demuynck C, de Sousa PL, Botzung A, Sanna L, Chabran E, Blanc F. Aβ42 biomarker linked to insula, striatum, thalamus and claustrum in dementia with Lewy bodies. GeroScience 2025:10.1007/s11357-025-01513-z. [PMID: 39821801 DOI: 10.1007/s11357-025-01513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
The differential mechanisms between proteinopathies and neurodegeneration in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) remain unclear. To address this issue, we conducted a voxel-based morphometry and cerebrospinal fluid biomarker (α-synuclein, Aβ42, t-Tau and p-Tau181) level correlation study in patients with DLB, AD and mixed cases (AD + DLB). Cerebrospinal fluid samples obtained by lumbar puncture and whole-brain T1-weighted images were collected in the AlphaLewyMA cohort. Within the cohort, 65 DLB patients, 18 AD patients, 24 AD + DLB patients and 16 neurological control subjects (NC) were clinically diagnosed. Correlation analyses were performed between cerebrospinal fluid biomarker levels and gray matter volumes using a voxel-based morphometry approach. A mediation analysis was performed to explore the role of gray matter volumes in the relationship between Aβ42 levels and clinical severity (MMSE scores). We observed a significant positive correlation between gray matter volumes and cerebrospinal fluid Aβ42 levels in the insula, the striatal regions, the right thalamus, and the claustrum in DLB patients (pFDR < 0.05). Mediation analysis revealed that gray matter volumes significantly mediated the relationship between Aβ42 levels and MMSE scores in DLB patients. We found no significant correlation with gray matter volumes for α-synuclein, p-Tau181 or t-Tau in DLB patients (pFDR < 0.05). We found no significant correlations in the AD, AD + DLB and NC groups for any of the biomarkers (pFDR < 0.05). The specific correlation between a reduced cerebrospinal fluid Aβ42 level and lower gray matter volumes in insula, striatum, thalamus, and claustrum in DLB patients suggests a prominent role for amyloidopathy in promoting brain atrophy in key regions of the disease.
Collapse
Affiliation(s)
- Vincent Gabriel
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France.
| | - Olivier Bousiges
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Mary Mondino
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
| | - Benjamin Cretin
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Pierre Anthony
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
- CM2R, Geriatric Day Hospital, Geriatrics Division, Civil Hospitals of Colmar, Colmar, France
| | - Catherine Demuynck
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Paulo Loureiro de Sousa
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Anne Botzung
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Léa Sanna
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| | - Eléna Chabran
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
| | - Frédéric Blanc
- ICube Laboratory UMR-7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), IMIS Team and IRIS Platform, University of Strasbourg and CNRS, Strasbourg, France
- CM2R (Centre de Mémoire Ressources Et Recherche), Geriatric Day Hospital and Neuropsychological Unit, Geriatrics Department and Neurology Service, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Kuo PH, Cella P, Chou YH, Arkhipenko A, Fisher JM. Optimal DaTQUANT Thresholds for Diagnostic Accuracy of Dementia with Lewy Bodies (DLB) and Parkinson's Disease (PD). Tomography 2024; 10:1608-1621. [PMID: 39453036 PMCID: PMC11511568 DOI: 10.3390/tomography10100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Quantitative thresholds are helpful to define an abnormal DaT SPECT in patients with suspected nigrostriatal degenerative diseases (NSDD). The optimal DaTQUANT threshold for diagnostic accuracy of DaT SPECT across combined movement and cognitive disorder populations has been previously described. Methods: We established optimal DaTQUANT thresholds that enhance the discrimination between dementia with Lewy bodies (DLB) and non-DLB dementia types, as well as between Parkinsonian syndromes (PS) and conditions not characterized by nigrostriatal degeneration (non-PS). Results: Data from a total of 303 patients were used in this retrospective analysis. Posterior putamen of the more affected hemisphere (MAH) was shown to be an accurate single-variable predictor for both DLB and PS and was comparable to the most accurate multi-variable models. Conclusions: Automated quantification with DaTQUANT can accurately aid in the differentiation of DLB from non-DLB dementias and PS from non-PS. Optimal thresholds for assisting a diagnosis of DLB are striatal binding ratio (SBR) ≤ 0.65, z-score ≤ -2.36, and a percent deviation ≤ -0.54 for the posterior putamen of the MAH. Optimal posterior putamen thresholds for assisting a diagnosis of PS are SBR ≤ 0.92, z-score ≤ -1.53, and a percent deviation ≤ -0.33, which are similar to our previously reported posterior putamen threshold values using a blended patient pool from multiple study populations.
Collapse
Affiliation(s)
- Phillip H. Kuo
- Department of Radiology, City of Hope National Medical Center, Duarte, CA 91010, USA;
- Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, AZ 85724, USA
| | - Patrick Cella
- GE HealthCare, Life Sciences, Imaging R&D, Marlborough, MA 01752, USA;
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA;
| | | | - Julia M. Fisher
- Statistics Consulting Laboratory, BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
6
|
Li L, Zhang W, Cao H, Fang L, Wang W, Li C, He Q, Jiao J, Zheng R. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater Sci 2024; 12:4519-4545. [PMID: 39083017 DOI: 10.1039/d4bm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.
Collapse
Affiliation(s)
- Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Hengyi Cao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Leming Fang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenjing Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianwei Jiao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
7
|
Camerucci E, Mullan AF, Turcano P, Stang CD, Bower J, Benarroch EE, Boeve BF, Savica R. A Population-Based Approach to the Argument on Brain-First and Body-First Pathogenesis of Lewy Body Disease. Ann Neurol 2024; 96:551-559. [PMID: 38860478 DOI: 10.1002/ana.27006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
OBJECTIVE To explore the clinical progression of the brain-/body-first categories within Lewy body disease (LBD): Parkinson's disease (PD), dementia with Lewy bodies (DLB), and PD dementia. METHODS We used of the Rochester Epidemiology Project to establish a population-based cohort of clinically diagnosed LBD. We used two definitions for differentiating between brain- and body-first LBD: a previously hypothesized body-first presentation in patients with rapid eye movement sleep behavior onset before motor symptoms onset; and an expanded definition of body-first LBD when a patient had at least 2 premotor symptoms between constipation, erectile dysfunction, rapid eye movement sleep behavior, anosmia, or neurogenic bladder. RESULTS Brain-first patients were more likely to be diagnosed with PD (RR = 1.43, p = 0.003), whereas body-first patients were more likely to be diagnosed with DLB (RR = 3.15, p < 0.001). Under the expanded definition, there was no difference in LBD diagnosis between brain-first and body-first patients (PD: RR = 1.03, p = 0.10; DLB: RR = 0.88, p = 0.58) There were no patterns between brain- or body-first presentation, PD dementia under either definition (original: p = 0.09, expanded: p = 0.97), and no significant difference in motor symptoms between brain-first and body-first. INTERPRETATION Our findings do not support the dichotomous classification of body-first and brain-first LBD with the currently proposed definition. Biological exposures resulting in PD and DLB are unlikely to converge on a binary classification of top-down or bottom-up synuclein pathology. ANN NEUROL 2024;96:551-559.
Collapse
Affiliation(s)
- Emanuele Camerucci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Kansas University Medical Center (KUMC), Kansas City, KS, USA
| | - Aidan F Mullan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Cole D Stang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - James Bower
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Sainsily-Cesarus A, Schmitt E, Landre L, Botzung A, Rauch L, Demuynck C, Philippi N, de Sousa PL, Mutter C, Cretin B, Martin-Hunyadi C, Blanc F. Dementia with Lewy bodies and gait neural basis: a cross-sectional study. Alzheimers Res Ther 2024; 16:170. [PMID: 39080741 PMCID: PMC11287986 DOI: 10.1186/s13195-024-01539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Dementia with Lewy Bodies (DLB) is responsible for cognitive-behavioural disorders but also for gait disorders. The latter are thought to be related to parkinsonism, but the neural bases of these disorders are not well known, especially in the early stages. The aim of this study was to investigate by volumetric Magnetic Resonance Imaging the neuronal basis of gait disorders in DLB patients, compared to Healthy Elderly Controls and Alzheimer's Disease patients. METHODS Clinical examination with motor assessment including 10-meter walking speed, one-leg balance and Timed Up and Go test, a comprehensive neuropsychological evaluation and 3D brain Magnetic Resonance Imaging were performed on 84 DLB patients, 39 Alzheimer's Disease patients and 22 Healthy Elderly Controls. We used Statistical Parametric Mapping 12 to perform a one-sample t-test to investigate the correlation between each gait score and gray matter volume (P ≤ 0.05 corrected for family-wise error). RESULTS We found a correlation for DLB patients between walking speed and gray matter decrease (P < 0.05, corrected for family-wise error) in caudate nuclei, anterior cingulate cortex, mid-cingulate cortex, hippocampi, supplementary motor area, right cerebellar cortex and left parietal operculum. We found no correlation with Timed Up and Go test and one-leg balance. CONCLUSION Gait disorders are underpinned by certain classical regions such as the cerebellum and the supplementary motor area. Our results suggest there may be a motivational and emotional component of voluntary gait in DLB subjects, underpinned by the cingulate cortex, a spatial orientation component, underpinned by hippocampi and suggest the involvement of brain processing speed and parkinsonism, underpinned by the caudate nuclei. TRIAL REGISTRATION The study protocol has been registered on ClinicalTrials.gov. (NCT01876459) on June 12, 2013.
Collapse
Affiliation(s)
- Adele Sainsily-Cesarus
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
- University of Strasbourg, CNRS, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS, ICube laboratory, Strasbourg, France
| | - Elise Schmitt
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France.
- Faculty of Medicine, University of Strasbourg, Strasbourg, EA-3072, France.
| | - Lionel Landre
- University of Strasbourg, CNRS, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS, ICube laboratory, Strasbourg, France
| | - Anne Botzung
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
| | - Lucie Rauch
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
| | - Catherine Demuynck
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
| | - Nathalie Philippi
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
- University of Strasbourg, CNRS, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS, ICube laboratory, Strasbourg, France
| | - Paulo Loureiro de Sousa
- University of Strasbourg, CNRS, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS, ICube laboratory, Strasbourg, France
| | - Catherine Mutter
- University Hospital of Strasbourg, CIC INSERM 1434, Strasbourg, France
| | - Benjamin Cretin
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
- University of Strasbourg, CNRS, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS, ICube laboratory, Strasbourg, France
| | - Catherine Martin-Hunyadi
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
- University of Strasbourg, CNRS, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS, ICube laboratory, Strasbourg, France
| | - Frederic Blanc
- Geriatrics Department, University Hospital of Strasbourg, CM2R (Memory Resource and Research Centre), Strasbourg, France
- University of Strasbourg, CNRS, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS, ICube laboratory, Strasbourg, France
| |
Collapse
|
9
|
Hastings A, Cullinane P, Wrigley S, Revesz T, Morris HR, Dickson JC, Jaunmuktane Z, Warner TT, De Pablo-Fernández E. Neuropathologic Validation and Diagnostic Accuracy of Presynaptic Dopaminergic Imaging in the Diagnosis of Parkinsonism. Neurology 2024; 102:e209453. [PMID: 38759132 DOI: 10.1212/wnl.0000000000209453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.
Collapse
Affiliation(s)
- Alexandra Hastings
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Patrick Cullinane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Sarah Wrigley
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Tamas Revesz
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Huw R Morris
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - John C Dickson
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Zane Jaunmuktane
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Thomas T Warner
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| | - Eduardo De Pablo-Fernández
- From the Queen Square Brain Bank for Neurological Disorders (A.H., P.C., S.W., T.R., Z.J., T.T.W., E.D.P.-F.) and Department of Clinical and Movement Neurosciences (H.R.M.), University College London Queen Square Institute of Neurology; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals NHS Trust, UK
| |
Collapse
|
10
|
Ferschmann C, Messerschmidt K, Gnörich J, Barthel H, Marek K, Palleis C, Katzdobler S, Stockbauer A, Fietzek U, Finze A, Biechele G, Rumpf JJ, Saur D, Schroeter ML, Rullmann M, Beyer L, Eckenweber F, Wall S, Schildan A, Patt M, Stephens A, Classen J, Bartenstein P, Seibyl J, Franzmeier N, Levin J, Höglinger GU, Sabri O, Brendel M, Scheifele M. Tau accumulation is associated with dopamine deficiency in vivo in four-repeat tauopathies. Eur J Nucl Med Mol Imaging 2024; 51:1909-1922. [PMID: 38366196 PMCID: PMC11139736 DOI: 10.1007/s00259-024-06637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (β = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (β = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (β = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.
Collapse
Affiliation(s)
- Christian Ferschmann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Ken Marek
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Urban Fietzek
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Dorothee Saur
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Wall
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Schildan
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - John Seibyl
- InviCRO, LLC, Boston, MA, USA
- Molecular Neuroimaging, A Division of inviCRO, New Haven, CT, USA
| | - Nicolai Franzmeier
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
11
|
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, Chowdhury S, Coffey C, Concha-Marambio L, Dam T, DiBiaso P, Foroud T, Frasier M, Gochanour C, Jennings D, Kieburtz K, Kopil CM, Merchant K, Mollenhauer B, Montine T, Nudelman K, Pagano G, Seibyl J, Sherer T, Singleton A, Stephenson D, Stern M, Soto C, Tanner CM, Tolosa E, Weintraub D, Xiao Y, Siderowf A, Dunn B, Marek K. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23:178-190. [PMID: 38267190 DOI: 10.1016/s1474-4422(23)00405-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 208.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Teresa Buracchio
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Campbell
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sohini Chowdhury
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | | | - Peter DiBiaso
- Patient Advisory Council, New York, NY, USA; Clinical Solutions and Strategic Partnerships, WCG Clinical, Princeton, NJ, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Gochanour
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Thomas Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Singleton
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diane Stephenson
- Critical Path for Parkinson's, Critical Path Institute, Tucson, AZ, USA
| | - Matthew Stern
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Soto
- Amprion, San Diego, CA, USA; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA; Parkinson's Disease Research Education and Clinical Center, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Weintraub
- University of Pennsylvania and the Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Yuge Xiao
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy Dunn
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
12
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Harvey J, Pishva E, Chouliaras L, Lunnon K. Elucidating distinct molecular signatures of Lewy body dementias. Neurobiol Dis 2023; 188:106337. [PMID: 37918758 DOI: 10.1016/j.nbd.2023.106337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Dementia with Lewy bodies and Parkinson's disease dementia are common neurodegenerative diseases that share similar neuropathological profiles and spectra of clinical symptoms but are primarily differentiated by the order in which symptoms manifest. The question of whether a distinct molecular pathological profile could distinguish these disorders is yet to be answered. However, in recent years, studies have begun to investigate genomic, epigenomic, transcriptomic and proteomic differences that may differentiate these disorders, providing novel insights in to disease etiology. In this review, we present an overview of the clinical and pathological hallmarks of Lewy body dementias before summarizing relevant research into genetic, epigenetic, transcriptional and protein signatures in these diseases, with a particular interest in those resolving "omic" level changes. We conclude by suggesting future research directions to address current gaps and questions present within the field.
Collapse
Affiliation(s)
- Joshua Harvey
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Ehsan Pishva
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Leonidas Chouliaras
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, Epping, UK
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
14
|
Ishizawa K, Fujita Y, Nagashima K, Nakamura T, Shibata M, Kasahara H, Makioka K, Taketomi-Takahashi A, Hirasawa H, Higuchi T, Tsushima Y, Ikeda Y. Striatal dopamine transporter binding differs between dementia with Lewy bodies and Parkinson's disease with dementia. J Neurol Sci 2023; 451:120713. [PMID: 37441875 DOI: 10.1016/j.jns.2023.120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
123I-ioflupane single-photon emission computed tomography (SPECT) is a highly sensitive and established neuroimaging technique for parkinsonian syndromes (PS). However, differentiating PS by visual inspection or analysis of regions of interest is challenging. To date, image analysis has not been able to differentiate dementia with Lewy bodies (DLB) from Parkinson's disease with dementia (PDD). This study aimed to differentiate PS based on the characteristics of striatal dopamine transporter (DAT) binding using voxel-based analysis. We acquired 123I-ioflupane SPECT data from patients with DLB (n = 30), Parkinson's disease (PD; n = 122), PDD (n = 19), multiple system atrophy with predominant parkinsonism (MSA-P; n = 18), and progressive supranuclear palsy (PSP; n = 45). DAT binding was reduced in the posterior striatum of patients with PD and PDD, whereas it was similar in MSA-P, PSP, and DLB. Hippocampal atrophy, visually evaluated by cerebral magnetic resonance imaging, did not affect striatal DAT binding in DLB. DAT binding in the anterior striatum was inversely correlated with the severity of parkinsonism in PD and PDD but not in DLB. Thus, the appearance of striatal DAT binding might indicate different pathological processes in DLB and PDD.
Collapse
Affiliation(s)
- Kunihiko Ishizawa
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yukio Fujita
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuaki Nagashima
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayako Taketomi-Takahashi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiromi Hirasawa
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
15
|
Lee YG, Jeon S, Baik K, Kang SW, Ye BS. Substantia nigral dopamine transporter uptake in dementia with Lewy bodies. NPJ Parkinsons Dis 2023; 9:88. [PMID: 37296236 PMCID: PMC10256694 DOI: 10.1038/s41531-023-00534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Nigrostriatal dopaminergic degeneration is a pathological hallmark of dementia with Lewy bodies (DLB). To identify the subregional dopamine transporter (DAT) uptake patterns that improve the diagnostic accuracy of DLB, we analyzed N-(3-[18F] fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)-nortropane (FP-CIT) PET in 51 patients with DLB, in 36 patients with mild cognitive impairment with Lewy body (MCI-LB), and in 40 healthy controls (HCs). In addition to a high affinity for DAT, FP-CIT show a modest affinity to serotonin or norepinephrine transporters. Specific binding ratios (SBRs) of the nigrostriatal subregions were transformed to age-adjusted z-scores (zSBR) based on HCs. The diagnostic accuracy of subregional zSBRs were tested using receiver operating characteristic (ROC) curve analyses separately for MCI-LB and DLB versus HCs. Then, the effect of subregional zSBRs on the presence of clinical features and gray matter (GM) density were evaluated in all patients with MCI-LB or DLB as a group. ROC curve analyses showed that the diagnostic accuracy of DLB based on the zSBR of substantia nigra (area under the curve [AUC], 0.90) or those for MCI-LB (AUC, 0.87) were significantly higher than that based on the zSBR of posterior putamen for DLB (AUC, 0.72) or MCI-LB (AUC, 0.65). Lower zSBRs in nigrostriatal regions were associated with visual hallucination, severe parkinsonism, and cognitive dysfunction, while lower zSBR of substantia nigra was associated with widespread GM atrophy in DLB and MCI-LB patients. Taken together, our results suggest that evaluation of nigral DAT uptake may increase the diagnostic accuracy of DLB and MCI-LB than other striatal regions.
Collapse
Affiliation(s)
- Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, South Korea
| | - Seun Jeon
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
Chahine LM, Merchant K, Siderowf A, Sherer T, Tanner C, Marek K, Simuni T. Proposal for a Biologic Staging System of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:297-309. [PMID: 37066922 DOI: 10.3233/jpd-225111] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Parkinson's disease (PD) research field has seen the advent of several promising biomarkers and a deeper understanding of the clinical features of the disease from the earliest stages of pathology to manifest disease. Despite progress, a biologically based PD staging system does not exist. Such staging would be a useful framework within which to model the disease, develop and validate biomarkers, guide therapeutic development, and inform clinical trials design. We propose that the presence of aggregated neuronal α-synuclein, dopaminergic neuron dysfunction/degeneration, and clinical signs and symptoms identifies a group of individuals that have Lewy body pathology, which in early stages manifests with what is now referred to as prodromal non-motor features and later stages with the manifestations of PD and related Lewy body diseases as defined by clinical diagnostic criteria. Based on the state of the field, we herein propose a definition and staging of PD based on biology. We present the biologic basis for such a staging system and review key assumptions and evidence that support the proposed approach. We identify gaps in knowledge and delineate crucial research priorities that will inform the ultimate integrated biologic staging system for PD.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalpana Merchant
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | | | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
17
|
Schmitz M, Candelise N, Canaslan S, Altmeppen HC, Matschke J, Glatzel M, Younas N, Zafar S, Hermann P, Zerr I. α-Synuclein conformers reveal link to clinical heterogeneity of α-synucleinopathies. Transl Neurodegener 2023; 12:12. [PMID: 36915212 PMCID: PMC10012698 DOI: 10.1186/s40035-023-00342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/15/2023] Open
Abstract
α-Synucleinopathies, such as Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, are a class of neurodegenerative diseases exhibiting intracellular inclusions of misfolded α-synuclein (αSyn), referred to as Lewy bodies or oligodendroglial cytoplasmic inclusions (Papp-Lantos bodies). Even though the specific cellular distribution of aggregated αSyn differs in PD and DLB patients, both groups show a significant pathological overlap, raising the discussion of whether PD and DLB are the same or different diseases. Besides clinical investigation, we will focus in addition on methodologies, such as protein seeding assays (real-time quaking-induced conversion), to discriminate between different types of α-synucleinopathies. This approach relies on the seeding conversion properties of misfolded αSyn, supporting the hypothesis that different conformers of misfolded αSyn may occur in different types of α-synucleinopathies. Understanding the pathological processes influencing the disease progression and phenotype, provoked by different αSyn conformers, will be important for a personalized medical treatment in future.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany.
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Institute Superiore di Sanità, Rome, Italy
| | - Sezgi Canaslan
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Neelam Younas
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Saima Zafar
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Peter Hermann
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, National Reference Center for TSE, The German Center for Neurodegenerative Diseases (DZNE), Georg-August-University, University Medicine Gottingen, Goettingen, Germany
| |
Collapse
|
18
|
Correlations between cerebrospinal fluid homovanillic acid and dopamine transporter SPECT in degenerative parkinsonian syndromes. J Neural Transm (Vienna) 2023; 130:513-520. [PMID: 36871130 PMCID: PMC10050014 DOI: 10.1007/s00702-023-02611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Both cerebrospinal fluid (CSF) homovanillic acid (HVA) and striatal dopamine transporter (DAT) binding on single-photon emission computed tomography (SPECT) reflect nigrostriatal dopaminergic function, but studies on the relationship between the two have been limited. It is also unknown whether the reported variance in striatal DAT binding among diseases reflects the pathophysiology or characteristics of the subjects. We included 70 patients with Parkinson's disease (PD), 12 with progressive supranuclear palsy (PSP), 12 with multiple system atrophy, six with corticobasal syndrome, and nine with Alzheimer's disease as disease control, who underwent both CSF analysis and 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (123I-ioflupane) SPECT. We evaluated the correlation between CSF HVA concentration and the specific binding ratio (SBR) of striatal DAT binding. We also compared the SBR for each diagnosis, controlling for CSF HVA concentration. The correlations between the two were significant in patients with PD (r = 0.34, p = 0.004) and PSP (r = 0.77, p = 0.004). The mean SBR value was the lowest in patients with PSP and was significantly lower in patients with PSP than in those with PD (p = 0.037) after adjusting for CSF HVA concentration. Our study demonstrates that striatal DAT binding correlates with CSF HVA concentration in both PD and PSP, and striatal DAT reduction would be more advanced in PSP than in PD at an equivalent dopamine level. Striatal DAT binding may correlate with dopamine levels in the brain. The pathophysiology of each diagnosis may explain this difference.
Collapse
|
19
|
Park S, Sung YH, Kim WR, Noh Y, Kim EY. Correlation Between Neuromelanin-Sensitive MRI and 18F-FP-CIT PET in Early-Stage Parkinson's Disease: Utility of a Voxel-Wise Analysis by Using High-Spatial-Resolution MRI. J Clin Neurol 2023; 19:156-164. [PMID: 36854333 PMCID: PMC9982185 DOI: 10.3988/jcn.2022.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The correlation between dopamine transporter (DAT) imaging and neuromelanin-sensitive magnetic resonance imaging (NM-MRI) in early-stage Parkinson's disease (PD) has not yet been established. This study aimed to determine the correlation between NM-MRI and DAT positron-emission tomography (PET) in patients with early-stage PD. METHODS Fifty drug-naïve patients with early-stage PD who underwent both 0.8-mm isovoxel NM-MRI and DAT PET were enrolled retrospectively. Using four regions of interest (nigrosome 1 and nigrosome 2 [N1 and N2] regions) from a previous study, the contrast ratios (CRs) of 12 regions were measured: N1, N2, flipped N1, flipped N2, combined N1 and N2, and whole substantia nigra pars compacta [SNpc] (all on both sides). The clinically more affected side was separately assessed. The standardized uptake value ratios (SUVRs) were measured in the striatum using DAT PET. A partial correlation analysis was performed between the SUVR and CR measurements. RESULTS CR of the flipped left N1 region was significantly correlated with SUVR of the right posterior putamen (p=0.047), and CR values of the left N1 region, left N2 region, flipped right N1 region, and combined left N1 and N2 regions were significantly correlated with SUVR of the left posterior putamen (p=0.011, 0.038, 0.020, and 0.010, respectively). SUVR of the left anterior putamen was significantly correlated with CR of the left N2 region (p=0.027). On the clinically more affected side, the CR values of the N1 region, combined N1 and N2 regions, and the whole SNpc were significantly correlated with SUVR of the posterior putamen (p=0.001, 0.024, and 0.021, respectively). There were significant correlations between the SUVR of the anterior putamen and the CR values of the N1 region, combined N1 and N2 regions, and whole SNpc (p=0.027, 0.001, and 0.036, respectively). CONCLUSIONS This study found that there were significant correlations between CR values in the SNpc on NM-MRI and striatal SUVR values on DAT PET on both sides in early-stage PD.
Collapse
Affiliation(s)
| | - Young Hee Sung
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Woo Ram Kim
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Eung Yeop Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Jeong SH, Park CW, Lee HS, Kim YJ, Yun M, Lee PH, Sohn YH, Chung SJ. Patterns of striatal dopamine depletion and motor deficits in de novo Parkinson's disease. J Neural Transm (Vienna) 2023; 130:19-28. [PMID: 36462096 DOI: 10.1007/s00702-022-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022]
Abstract
The background of this study is to investigate whether striatal dopamine depletion patterns (selective involvement in the sensorimotor striatum or asymmetry) are associated with motor deficits in Parkinson's disease (PD). We enrolled 404 drug-naïve patients with early stage PD who underwent dopamine transporter (DAT) imaging. After quantifying DAT availability in each striatal sub-region, principal component (PC) analysis was conducted to yield PCs representing the spatial patterns of striatal dopamine depletion. Subsequently, multivariate linear regression analysis was conducted to investigate the relationship between striatal dopamine depletion patterns and motor deficits assessed using the Unified PD Rating Scale Part III (UPDRS-III). Mediation analyses were used to evaluate whether dopamine deficiency in the posterior putamen mediated the association between striatal dopamine depletion patterns and parkinsonian motor deficits. Three PCs indicated patterns of striatal dopamine depletion: PC1 (overall striatal dopamine deficiency), PC2 (selective dopamine loss in the sensorimotor striatum), and PC3 (symmetric dopamine loss in the striatum). Multivariate linear regression analysis revealed that PC1 (β = - 1.605, p < 0.001) and PC2 (β = 3.201, p < 0.001) were associated with motor deficits (i.e., higher UPDRS-III scores in subjects with severe dopamine depletion throughout the whole striatum or more selective dopamine loss in the sensorimotor striatum), whereas PC3 was not (β = - 0.016, p = 0.992). Mediation analyses demonstrated that the effects of PC1 and PC2 on UPDRS-III scores were indirectly mediated by DAT availability in the posterior putamen, with a non-significant direct effect. Dopamine deficiency in the posterior putamen was most relevant to the severity of motor deficits in patients with PD, while the spatial patterns of striatal dopamine depletion were not a key determinant.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, South Korea.,Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea.,YONSEI BEYOND LAB, Yongin, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea. .,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, 363 Dongbaekjukjeon-daero Giheung-gu, Yongin-si, Gyeonggi-do, 16995, South Korea. .,YONSEI BEYOND LAB, Yongin, South Korea.
| |
Collapse
|
21
|
Wang J, Battioui C, McCarthy A, Dang X, Zhang H, Man A, Zou J, Kyle J, Munsie L, Pugh M, Biglan K. Evaluating the Use of Digital Biomarkers to Test Treatment Effects on Cognition and Movement in Patients with Lewy Body Dementia. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1991-2004. [PMID: 35694933 PMCID: PMC9535589 DOI: 10.3233/jpd-213126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: PRESENCE was a Phase 2 trial assessing mevidalen for symptomatic treatment of Lewy body dementia (LBD). Participants received daily doses (10, 30, or 75 mg) of mevidalen (LY3154207) or placebo for 12 weeks. Objective: To evaluate if frequent cognitive and motor tests using an iPad app and wrist-worn actigraphy to track activity and sleep could detect mevidalen treatment effects in LBD. Methods: Of 340 participants enrolled in PRESENCE, 238 wore actigraphy for three 2-week periods: pre-, during, and post-intervention. A subset of participants (n = 160) enrolled in a sub-study using an iPad trial app with 3 tests: digital symbol substitution (DSST), spatial working memory (SWM), and finger-tapping. Compliance was defined as daily test completion or watch-wearing ≥23 h/day. Change from baseline to week 12 (app) or week 8 (actigraphy) was used to assess treatment effects using Mixed Model Repeated Measures analysis. Pearson correlations between sensor-derived features and clinical endpoints were assessed. Results: Actigraphy and trial app compliance was > 90% and > 60%, respectively. At baseline, daytime sleep positively correlated with Epworth Sleepiness Scale score (p < 0.01). Physical activity correlated with improvement on Movement Disorder Society –Unified Parkinson Disease Rating Scale (MDS-UPDRS) part II (p < 0.001). Better scores of DSST and SWM correlated with lower Alzheimer Disease Assessment Scale –Cognitive 13-Item Scale (ADAS-Cog13) (p < 0.001). Mevidalen treatment (30 mg) improved SWM (p < 0.01), while dose-dependent decreases in daytime sleep (10 mg: p < 0.01, 30 mg: p < 0.05, 75 mg: p < 0.001), and an increase in walking minutes (75 mg dose: p < 0.001) were observed, returning to baseline post-intervention. Conclusion: Devices used in the LBD population achieved adequate compliance and digital metrics detected statistically significant treatment effects.
Collapse
Affiliation(s)
- Jian Wang
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Hui Zhang
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Albert Man
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jasmine Zou
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
22
|
Pathogenesis and Personalized Interventions for Pharmacological Treatment-Resistant Neuropsychiatric Symptoms in Alzheimer’s Disease. J Pers Med 2022; 12:jpm12091365. [PMID: 36143150 PMCID: PMC9501542 DOI: 10.3390/jpm12091365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, with cognitive impairment as a core symptom. Neuropsychiatric symptoms (NPSs) also occur as non-cognitive symptoms during the disease course, worsening the prognosis. Recent treatment guidelines for NPSs have recommended non-pharmacological treatments as the first line of therapy, followed by pharmacological treatments. However, pharmacological treatment for urgent NPSs can be difficult because of a lack of efficacy or an intolerance, requiring multiple changes in psychotropic prescriptions. One biological factor that might be partly responsible for this difficulty is structural deterioration in elderly people with dementia, which may cause a functional vulnerability affecting the pharmacological response. Other causative factors might include awkward psychosocial interpersonal relations between patients and their caregiver, resulting in distressful vicious circles. Overlapping NPS sub-symptoms can also blur the prioritization of targeted symptoms. Furthermore, consistent neurocognitive reductions cause a primary apathy state and a secondary distorted ideation or perception of present objects, leading to reactions that cannot be treated pharmacologically. The present review defines treatment-resistant NPSs in AD; it may be necessary and helpful for clinicians to discuss the pathogenesis and comprehensive solutions based on three major hypothetical pathophysiological viewpoints: (1) biology, (2) psychosociology, and (3) neurocognition.
Collapse
|
23
|
Role of Dopamine Transporter in the Relationship Between Plasma Cortisol and Cognition. Psychosom Med 2022; 84:685-694. [PMID: 35472074 DOI: 10.1097/psy.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cortisol is associated with cognition in both healthy individuals and patients with neuropsychiatric disorders. Regarding the effects of cortisol on the dopamine system and the association between dopamine transporter (DAT) and cognition, DAT might be a central target linking cortisol and cognition. This study explored the role of striatal DAT in the cortisol-cognition relationship. METHODS We recruited 33 patients with carbon monoxide poisoning and 33 age- and sex-matched healthy controls. All participants underwent cognitive assessments of attention, memory, and executive function. Single-photon emission computed tomography with 99mTc-TRODAT was used to determine striatal DAT availability. Plasma cortisol, tumor necrosis factor α, and interleukin-10 levels were measured using enzyme-linked immunosorbent assays. RESULTS Compared with healthy controls, patients with carbon monoxide poisoning had lower cognitive performance, bilateral striatal DAT availability, and plasma tumor necrosis factor-α levels and higher cortisol and interleukin-10 levels. In all participants, plasma cortisol level and bilateral striatal DAT availability were negatively and positively related to cognition, respectively, including memory and executive function with β from -0.361 (95% confidence interval [CI] = -0.633 to -0.090) to 0.588 (95% CI = 0.319 to 0.858). Moreover, bilateral striatal DAT mediated the cortisol-cognition relationship with indirect effects from -0.067 (95% CI = -0.179 to -0.001) to -0.135 (95% CI = -0.295 to -0.024). The cytokine levels did not influence the mediation effects. CONCLUSIONS This is the first study to demonstrate that striatal DAT mediates the cortisol-cognition relationship. Future studies are needed to comprehensively evaluate the role of the dopamine system in cortisol-cognition associations and treatment implications.
Collapse
|
24
|
Prajapati KP, Anand BG, Ansari M, Temgire M, Tiku AB, Kar K. Amyloid-mimicking toxic nanofibers generated via self-assembly of dopamine. NANOSCALE 2022; 14:8649-8662. [PMID: 35667124 DOI: 10.1039/d1nr07741d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular self-assembly of biologically relevant aromatic metabolites is known to generate cytotoxic nanostructures and this unique property has opened up new concepts in the molecular mechanisms of metabolite-linked disorders. Because aromaticity is intrinsic to the chemical structure of some important neuromodulators, the question of whether this property can promote their self-assembly into toxic higher order structures is highly relevant to the advancement of both fundamental and applied research. We show here that dopamine, an aromatic neuromodulator of high significance, undergoes self-assembly, under physiological buffer conditions, yielding cytotoxic supramolecular nanostructures. The oxidation of dopamine seems crucial in driving the self-assembly, and substantial inhibition effect was observed in the presence of antioxidants and acidic buffers. Strong H-bonds and π-π interactions between optimally-oriented dopamine molecules were found to stabilize the dopamine nanostructure which displayed characteristic β-structure-patterns with hydrophobic exterior and hydrophilic interior moieties. Furthermore, dopamine nanostructures were found to be highly toxic to human neuroblastoma cells, revealing apoptosis and necrosis-mediated cytotoxicity. Abnormal fluctuation in the dopamine concentration is known to predispose a multitude of neuronal complications, hence, the new findings of this study on oxidation-driven buildup of amyloid-mimicking neurotoxic dopamine assemblies may have direct relevance to the molecular origin of several dopamine related disorders.
Collapse
Affiliation(s)
| | | | - Masihuzzaman Ansari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institution of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashu Bhan Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
25
|
Wong YY, Wu CY, Yu D, Kim E, Wong M, Elez R, Zebarth J, Ouk M, Tan J, Liao J, Haydarian E, Li S, Fang Y, Li P, Pakosh M, Tartaglia MC, Masellis M, Swardfager W. Biofluid markers of blood-brain barrier disruption and neurodegeneration in Lewy body spectrum diseases: A systematic review and meta-analysis. Parkinsonism Relat Disord 2022; 101:119-128. [PMID: 35760718 DOI: 10.1016/j.parkreldis.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mixed evidence supports blood-brain barrier (BBB) dysfunction in Lewy body spectrum diseases. METHODS We compare biofluid markers in people with idiopathic Parkinson's disease (PD) and people with PD dementia (PDD) and/or dementia with Lewy bodies (DLB), compared with healthy controls (HC). Seven databases were searched up to May 10, 2021. Outcomes included cerebrospinal fluid to blood albumin ratio (Qalb), and concentrations of 7 blood protein markers that also reflect BBB disruption and/or neurodegenerative co-pathology. We further explore differences between PD patients with and without evidence of dementia. Random-effects models were used to obtain standardized mean differences (SMD) with 95% confidence interval. RESULTS Of 13,949 unique records, 51 studies were meta-analyzed. Compared to HC, Qalb was higher in PD (NPD/NHC = 224/563; SMD = 0.960 [0.227-1.694], p = 0.010; I2 = 92.2%) and in PDD/DLB (NPDD/DLB/NHC = 265/670; SMD = 1.126 [0.358-1.893], p < 0.001; I2 = 78.2%). Blood neurofilament light chain (NfL) was higher in PD (NPD/NHC = 1848/1130; SMD = 0.747 [0.442-1.052], p < 0.001; I2 = 91.9%) and PDD/DLB (NPDD/DLB/NHC = 183/469; SMD = 1.051 [0.678-1.423], p = 0.004; I2 = 92.7%) than in HC. p-tau 181 (NPD/NHC = 276/164; SMD = 0.698 [0.149-1.247], p = 0.013; I2 = 82.7%) was also higher in PD compared to HC. In exploratory analyses, blood NfL was higher in PD without dementia (NPDND/NHC = 1005/740; SMD = 0.252 [0.042-0.462], p = 0.018; I2 = 71.8%) and higher in PDD (NPDD/NHC = 100/111; SMD = 0.780 [0.347-1.214], p < 0.001; I2 = 46.7%) compared to HC. Qalb (NPDD/NPDND = 63/191; SMD = 0.482 [0.189-0.774], p = 0.010; I2<0.001%) and NfL (NPDD/NPDND = 100/223; SMD = 0.595 [0.346-0.844], p < 0.001; I2 = 3.4%) were higher in PDD than in PD without dementia. CONCLUSIONS Biofluid markers suggest BBB disruption and neurodegenerative co-pathology involvement in common Lewy body diseases. Greater evidence of BBB breakdown was seen in Lewy body disease with cognitive impairment.
Collapse
Affiliation(s)
- Yuen Yan Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Che-Yuan Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Di Yu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Esther Kim
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Wong
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Renata Elez
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Julia Zebarth
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ouk
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jocelyn Tan
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Jiamin Liao
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Eileen Haydarian
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Siming Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Yaolu Fang
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Peihao Li
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maureen Pakosh
- Library & Information Services, UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Mario Masellis
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Walter Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Dr. Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; KITE UHN Toronto Rehabilitation Institute, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Bousiges O, Blanc F. Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23126371. [PMID: 35742814 PMCID: PMC9223587 DOI: 10.3390/ijms23126371] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. Only one third of patients are correctly diagnosed due to the clinical similarity mainly with Alzheimer’s disease (AD). In this review, we evaluate the interest of different biomarkers: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage (i.e., MCI). MIBG SPECT with decreased cardiac sympathetic activity, perfusion SPECT with occipital hypoperfusion, FDG PET with occipital hypometabolism and cingulate island signs are of interest at the dementia stage but with a lower validity. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routines is not demonstrated. Concerning CSF biomarkers, many studies have already examined the relevance of AD biomarkers but also alpha-synuclein assays in DLB, so we will focus as comprehensively as possible on other biomarkers (especially those that do not appear to be directly related to synucleinopathy) that may be of interest in the differential diagnosis between AD and DLB. Furthermore, we would like to highlight the growing interest in CSF synuclein RT-QuIC, which seems to be an excellent discrimination tool but its application in clinical routine remains to be demonstrated, given the non-automation of the process.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
- Correspondence:
| | - Frédéric Blanc
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
27
|
Wallert ED, van de Giessen E, Knol RJJ, Beudel M, de Bie RMA, Booij J. Imaging Dopaminergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:27S-32S. [PMID: 35649651 PMCID: PMC9165729 DOI: 10.2967/jnumed.121.263197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Imaging of dopaminergic transmission in neurodegenerative disorders such as Parkinson disease (PD) or dementia with Lewy bodies plays a major role in clinical practice and in clinical research. We here review the role of imaging of the nigrostriatal pathway, as well as of striatal receptors and dopamine release, in common neurodegenerative disorders in clinical practice and research. Imaging of the nigrostriatal pathway has a high diagnostic accuracy to detect nigrostriatal degeneration in disorders characterized by nigrostriatal degeneration, such as PD and dementia with Lewy bodies, and disorders of more clinical importance, namely in patients with clinically uncertain parkinsonism. Imaging of striatal dopamine D2/3 receptors is not recommended for the differential diagnosis of parkinsonian disorders in clinical practice anymore. Regarding research, recently the European Medicines Agency has qualified dopamine transporter imaging as an enrichment biomarker for clinical trials in early PD, which underlines the high diagnostic accuracy of this imaging tool and will be implemented in future trials. Also, imaging of the presynaptic dopaminergic system plays a major role in, for example, examining the extent of nigrostriatal degeneration in preclinical and premotor phases of neurodegenerative disorders and to examine subtypes of PD. Also, imaging of postsynaptic dopamine D2/3 receptors plays a role in studying, for example, the neuronal substrate of impulse control disorders in PD, as well as in measuring endogenous dopamine release to examine, for example, motor complications in the treatment of PD. Finally, novel MRI sequences as neuromelanin-sensitive MRI are promising new tools to study nigrostriatal degeneration in vivo.
Collapse
Affiliation(s)
- Elon D Wallert
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Remco J J Knol
- Department of Nuclear Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands; and
| | - Martijn Beudel
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
28
|
Blanc F, Bousiges O. Biomarkers and diagnosis of dementia with Lewy bodies including prodromal: Practical aspects. Rev Neurol (Paris) 2022; 178:472-483. [PMID: 35491246 DOI: 10.1016/j.neurol.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. More than half of the patients affected are not or misdiagnosed because of the clinical similarity with Alzheimer's disease (AD), Parkinson's disease but also psychiatric diseases such as depression or psychosis. In this review, we evaluate the interest of different biomarkers in the diagnostic process: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, perfusion SPECT, FDG-PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routine is not demonstrated. Among the AD biomarkers (t-Tau, phospho-Tau181, Aβ42 and Aβ40) used routinely, t-Tau and phospho-Tau181 have shown excellent discrimination whatever the clinical stages severity. CSF Alpha-synuclein assay in the CSF has also an interest in the discrimination between DLB and AD but not in segregation between DLB and healthy elderly subjects. CSF synuclein RT-QuIC seems to be an excellent biomarker but its application in clinical routine remains to be demonstrated, given the non-automation of the process.
Collapse
Affiliation(s)
- F Blanc
- Hôpitaux Universitaire de Strasbourg, CM2R (Centre Mémoire de Ressource et de Recherche), Hôpital de jour, pôle de Gériatrie, Strasbourg, France; CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France.
| | - O Bousiges
- CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France; Hôpitaux Universitaire de Strasbourg, Laboratoire de Biochimie et Biologie Moléculaire, Strasbourg, France
| |
Collapse
|
29
|
Cerebrospinal fluid catecholamines in Alzheimer's disease patients with and without biological disease. Transl Psychiatry 2022; 12:151. [PMID: 35397615 PMCID: PMC8994756 DOI: 10.1038/s41398-022-01901-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Noradrenergic and dopaminergic neurons are involved in cognitive functions, relate to behavioral and psychological symptoms in dementia and are affected in Alzheimer's disease (AD). Amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N) hallmarks the AD neuropathology. Today, the AT(N) pathophysiology can be assessed through biomarkers. Previous studies report cerebrospinal fluid (CSF) catecholamine concentrations in AD patients without biomarker refinement. We explored if CSF catecholamines relate to AD clinical presentation or neuropathology as reflected by CSF biomarkers. CSF catecholamines were analyzed in AD patients at the mild cognitive impairment (MCI; n = 54) or dementia stage (n = 240) and in cognitively unimpaired (n = 113). CSF biomarkers determined AT status and indicated synaptic damage (neurogranin). The AD patients (n = 294) had higher CSF noradrenaline and adrenaline concentrations, but lower dopamine concentrations compared to the cognitively unimpaired (n = 113). AD patients in the MCI and dementia stage of the disease had similar CSF catecholamine concentrations. In the CSF neurogranin positively associated with noradrenaline and adrenaline but not with dopamine. Adjusted regression analyses including AT status, CSF neurogranin, age, gender, and APOEε4 status verified the findings. In restricted analyses comparing A+T+ patients to A-T- cognitively unimpaired, the findings for CSF adrenaline remained significant (p < 0.001) but not for CSF noradrenaline (p = 0.07) and CSF dopamine (p = 0.33). There were no differences between A+T+ and A-T- cognitively unimpaired. Thus, we find alterations in CSF catecholamines in symptomatic AD and the CSF adrenergic transmitters to increase simultaneously with synaptic damage as indexed by CSF neurogranin.
Collapse
|
30
|
Kim S, Nam Y, Kim HS, Jung H, Jeon SG, Hong SB, Moon M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040845. [PMID: 35453595 PMCID: PMC9025507 DOI: 10.3390/biomedicines10040845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease accompanied by cognitive and behavioral symptoms. These AD-related manifestations result from the alteration of neural circuitry by aggregated forms of amyloid-β (Aβ) and hyperphosphorylated tau, which are neurotoxic. From a neuroscience perspective, identifying neural circuits that integrate various inputs and outputs to determine behaviors can provide insight into the principles of behavior. Therefore, it is crucial to understand the alterations in the neural circuits associated with AD-related behavioral and psychological symptoms. Interestingly, it is well known that the alteration of neural circuitry is prominent in the brains of patients with AD. Here, we selected specific regions in the AD brain that are associated with AD-related behavioral and psychological symptoms, and reviewed studies of healthy and altered efferent pathways to the target regions. Moreover, we propose that specific neural circuits that are altered in the AD brain can be potential targets for AD treatment. Furthermore, we provide therapeutic implications for targeting neuronal circuits through various therapeutic approaches and the appropriate timing of treatment for AD.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Hyeon soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Haram Jung
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea; (S.K.); (Y.N.); (H.s.K.); (H.J.); (S.G.J.); (S.B.H.)
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
- Correspondence:
| |
Collapse
|
31
|
Oldehinkel M, Llera A, Faber M, Huertas I, Buitelaar JK, Bloem BR, Marquand AF, Helmich R, Haak KV, Beckmann CF. Mapping dopaminergic projections in the human brain with resting-state fMRI. eLife 2022; 11:71846. [PMID: 35113016 PMCID: PMC8843090 DOI: 10.7554/elife.71846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
The striatum receives dense dopaminergic projections, making it a key region of the dopaminergic system. Its dysfunction has been implicated in various conditions including Parkinson’s disease (PD) and substance use disorder. However, the investigation of dopamine-specific functioning in humans is problematic as current MRI approaches are unable to differentiate between dopaminergic and other projections. Here, we demonstrate that ‘connectopic mapping’ – a novel approach for characterizing fine-grained, overlapping modes of functional connectivity – can be used to map dopaminergic projections in striatum. We applied connectopic mapping to resting-state functional MRI data of the Human Connectome Project (population cohort; N = 839) and selected the second-order striatal connectivity mode for further analyses. We first validated its specificity to dopaminergic projections by demonstrating a high spatial correlation (r = 0.884) with dopamine transporter availability – a marker of dopaminergic projections – derived from DaT SPECT scans of 209 healthy controls. Next, we obtained the subject-specific second-order modes from 20 controls and 39 PD patients scanned under placebo and under dopamine replacement therapy (L-DOPA), and show that our proposed dopaminergic marker tracks PD diagnosis, symptom severity, and sensitivity to L-DOPA. Finally, across 30 daily alcohol users and 38 daily smokers, we establish strong associations with self-reported alcohol and nicotine use. Our findings provide evidence that the second-order mode of functional connectivity in striatum maps onto dopaminergic projections, tracks inter-individual differences in PD symptom severity and L-DOPA sensitivity, and exhibits strong associations with levels of nicotine and alcohol use, thereby offering a new biomarker for dopamine-related (dys)function in the human brain.
Collapse
Affiliation(s)
- Marianne Oldehinkel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Myrthe Faber
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ismael Huertas
- Institute of Biomedicine of Seville (IBiS), Seville, Spain
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Rick Helmich
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Koen V Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Christian F Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
32
|
Neill M, Fisher JM, Brand C, Lei H, Sherman SJ, Chou YH, Kuo PH. Practical Application of DaTQUANT with Optimal Threshold for Diagnostic Accuracy of Dopamine Transporter SPECT. Tomography 2021; 7:980-989. [PMID: 34941653 PMCID: PMC8706562 DOI: 10.3390/tomography7040081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Evaluation of Parkinsonian Syndromes (PS) with Ioflupane iodine-123 dopamine transporter single photon emission computed tomography (DaT-SPECT), in conjunction with history and clinical examination, aids in diagnosis. FDA-approved, semi-quantitative software, DaTQUANTTM (GE Healthcare, Chicago, IL, USA) is available to assist in interpretation. This study aims to evaluate the optimal variables and thresholds of DaTQUANT to yield the optimal diagnostic accuracy. It is a retrospective review with three different patient populations. DaT-SPECT images from all three study groups were evaluated using DaTQUANTTM software, and both single and multi-variable logistic regression were used to model PS status. The optimal models were chosen via accuracy, sensitivity, and specificity, then evaluated on the other study groups. Among single variable models, the posterior putamen yielded the highest accuracy (84% to 95%), while balancing sensitivity and specificity. Multi-variable models did not substantially improve the accuracy. When the optimal single variable models for each group were used to evaluate the remaining two groups, comparable results were achieved. In typical utilization of DaT-SPECT for differentiation between nigrostriatal degenerative disease (NSDD) and non-NSDD, the posterior putamen was the single variable that yielded the highest accuracy across three different patient populations. The posterior putamen’s recommended thresholds for DaTQUANT are SBR ≤ 1.0, z-score of ≤−1.8 and percent deviation ≤ −0.34.
Collapse
Affiliation(s)
- Matthew Neill
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85724, USA;
| | - Julia M. Fisher
- Statistics Consulting Laboratory, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA;
| | | | - Hong Lei
- Department of Neurology, University of Arizona, Tucson, AZ 85724, USA; (H.L.); (S.J.S.)
| | - Scott J. Sherman
- Department of Neurology, University of Arizona, Tucson, AZ 85724, USA; (H.L.); (S.J.S.)
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ 85721, USA;
| | - Phillip H. Kuo
- Departments of Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, AZ 85724, USA
- Correspondence:
| |
Collapse
|
33
|
Brücke T, Brücke C. Dopamine transporter (DAT) imaging in Parkinson's disease and related disorders. J Neural Transm (Vienna) 2021; 129:581-594. [PMID: 34910248 DOI: 10.1007/s00702-021-02452-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
This review gives an insight into the beginnings of dopamine transporter (DAT) imaging in the early 1990s, focussing on single photon emission tomography (SPECT). The development of the method and its consolidation as a now widely used clinical tool is described. The role of DAT-SPECT in the diagnosis and differential diagnosis of PD, atypical parkinsonian syndromes and several other different neurological disorders is reviewed. Finally the clinical research using DAT-SPECT as a biomarker for the progression of PD, for the detection of a preclinical dopaminergic lesion and its correlation with neuropathological findings is outlined.
Collapse
Affiliation(s)
- Thomas Brücke
- Ottakring Clinic, Neurological Department, Verein zur Förderung der Wissenschaftlichen Forschung am Wilhelminenspital (FWFW), Montleartstrasse 37, 1160, Vienna, Austria.
- , Linke Wienzeile 12, 1060, Vienna, Austria.
| | - Christof Brücke
- Department for Neurology, Medical University Vienna, Währingergürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
34
|
Biglan K, Munsie L, Svensson KA, Ardayfio P, Pugh M, Sims J, Brys M. Safety and Efficacy of Mevidalen in Lewy Body Dementia: A Phase 2, Randomized, Placebo-Controlled Trial. Mov Disord 2021; 37:513-524. [PMID: 34859493 PMCID: PMC9300146 DOI: 10.1002/mds.28879] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mevidalen is a selective positive allosteric modulator (PAM) of the dopamine D1 receptor subtype. OBJECTIVE To assess the safety and efficacy of mevidalen for treatment of cognition in patients with Lewy body dementia (LBD). METHODS PRESENCE was a phase 2, 12-week study in participants with LBD (N = 344) randomly assigned (1:1:1:1) to daily doses of mevidalen (10, 30, or 75 mg) or placebo. The primary outcome measure was change from baseline on Cognitive Drug Research Continuity of Attention (CoA) composite score. Secondary outcomes included Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-cog13 ), Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), and Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change (ADCS-CGIC). Numerous safety measures were collected. RESULTS Mevidalen failed to meet primary or secondary cognition endpoints. Mevidalen resulted in significant, dose-dependent improvements of MDS-UPDRS total score (sum of Parts I-III, 10 mg P < 0.05, 30 mg P < 0.05, 75 mg P < 0.01, compared to placebo). The 30 mg and 75 mg mevidalen doses significantly improved ADCS-CGIC scores compared to placebo (minimal or better improvement: 30 mg P < 0.01, 75 mg P < 0.01; moderate or better improvement: 30 mg P < 0.05, 75 mg P < 0.001). Increases in blood pressure, adverse events, and cardiovascular serious adverse events were most pronounced at the 75 mg dose. CONCLUSIONS Mevidalen harnesses a novel mechanism of action that improves motor symptoms associated with LBD on top of standard of care while improving or not worsening non-motor symptoms associated with traditional dopaminergic therapy. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kevin Biglan
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | | | - Melissa Pugh
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - John Sims
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | |
Collapse
|
35
|
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine Transporter Imaging, Current Status of a Potential Biomarker: A Comprehensive Review. Int J Mol Sci 2021; 22:11234. [PMID: 34681899 PMCID: PMC8538800 DOI: 10.3390/ijms222011234] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
A major goal of current clinical research in Parkinson's disease (PD) is the validation and standardization of biomarkers enabling early diagnosis, predicting outcomes, understanding PD pathophysiology, and demonstrating target engagement in clinical trials. Molecular imaging with specific dopamine-related tracers offers a practical indirect imaging biomarker of PD, serving as a powerful tool to assess the status of presynaptic nigrostriatal terminals. In this review we provide an update on the dopamine transporter (DAT) imaging in PD and translate recent findings to potentially valuable clinical practice applications. The role of DAT imaging as diagnostic, preclinical and predictive biomarker is discussed, especially in view of recent evidence questioning the incontrovertible correlation between striatal DAT binding and nigral cell or axon counts.
Collapse
Affiliation(s)
- Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Sara Giannoni
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Unit of Neurology, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson’s Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
36
|
Impaired age-dependent increases in phosphoglycerate kinase activity in red blood cells of Parkinson's disease patients. Parkinsonism Relat Disord 2021; 91:128-134. [PMID: 34607089 DOI: 10.1016/j.parkreldis.2021.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Impaired bioenergetics are partially involved in the pathogenesis of Parkinson's disease (PD). Phosphoglycerate kinase (PGK), an essential enzyme for glycolysis, has recently attracted attention due to its pathogenic role in PD and as a target for disease-modifying therapies. This study is aimed to evaluate the profiles of PGK activity in red blood cells (RBCs) of PD patients and controls. METHODS Sixty-eight PD patients and thirty-four age-matched unrelated controls were enrolled. PGK activities of RBCs were measured by the established colorimetric assay and standardized by the same RBC samples. RESULTS PGK activity of the PD group was significantly higher than that of the control group in participants aged sixty-five years or younger, whereas it was not significantly different between the two groups at any age. PGK activity was positively correlated with aging in the control group, but this was not noted in the PD group. On multivariable analysis by partial correlation in the PD group, PGK activity was negatively correlated with the specific binding ratio of dopamine transporter scintigraphy in the striatum. The levodopa-equivalent daily dose was not significantly correlated with the enzyme activity. CONCLUSION The results support the following: 1) elevation of PGK activities in RBCs can be detected in relatively young PD patients and with normal aging; 2) the degree of striatonigral degeneration is associated with elevated PGK activities. These are important considerations when the PGK assay is applied as a diagnostic biomarker of PD and to therapeutically monitor PGK-enhancing treatments.
Collapse
|
37
|
Roberta B, Paolo B, Massimo F, Roberto E. Unexpected ( 123I)FP-CIT SPECT findings: SWIDD, SWEDD and all DAT. J Neurol 2021; 269:758-770. [PMID: 34537866 DOI: 10.1007/s00415-021-10809-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
Although the diagnosis of Parkinson's disease (PD) is essentially clinical, the implementation of imaging techniques can improve diagnostic accuracy. While some techniques (e.g. magnetic resonance imaging-MRI, computerized tomography-CT) are used to exclude secondary syndromes, presynaptic dopaminergic imaging including imaging of dopamine transporter (DAT)-can help the Neurologist in the differential diagnosis between neurodegenerative parkinsonian syndromes and parkinsonism without dopamine deficiency. DAT imaging can be useful in cases in which the clinical picture is not univocal, as in case of overlapping clinical features in patients with early disease, atypical syndromes or unsatisfying response to therapy. Currently, (123I)FP-CIT ([123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane) (trade name DaTSCAN) is the only agent approved by international regulatory agencies for this purpose. With the increasing use of this technique, some unexpected findings have been reported, including patients clinically diagnosed with PD with a normal SPECT scan [e.g. Scans Without Evidence of Dopaminergic Deficit (SWEDD)]; PD patients with a greater dopaminergic deficit in the striatum ipsilateral to the clinically more affected side [e.g. Scans With Ipsilateral Dopaminergic Deficit (SWIDD)]; as well as some artifacts. Moreover, the neurologist must remember that structural lesions and administration of some drugs might alter the result of DAT imaging. Unexpected findings, artifacts, and misinterpretation of imaging findings can lead to an erroneous diagnosis and inappropriate therapy, neglect of other medical conditions that might explain the clinical picture, and undermine the selection phase in clinical trials. The aim of the present review is to bring clarity on these controversial (and sometimes erroneous) results, in order to inform of these possibilities the clinicians requesting a DaTSCAN in clinical practice.
Collapse
Affiliation(s)
- Balestrino Roberta
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Barone Paolo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, SA, Italy
| | - Filippi Massimo
- Neurology Unit, Neurorehabilitation Unit, and Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy. .,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Erro Roberto
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, SA, Italy
| |
Collapse
|
38
|
Doppler CEJ, Kinnerup MB, Brune C, Farrher E, Betts M, Fedorova TD, Schaldemose JL, Knudsen K, Ismail R, Seger AD, Hansen AK, Stær K, Fink GR, Brooks DJ, Nahimi A, Borghammer P, Sommerauer M. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson's disease. Brain 2021; 144:2732-2744. [PMID: 34196700 DOI: 10.1093/brain/awab236] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/06/2021] [Indexed: 11/13/2022] Open
Abstract
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Parkinson's disease patients showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: p < 0.0001, p < 0.001; probabilistic map: p < 0.05), specifically on the clinically-defined most affected side (p < 0.05), and reduced locus coeruleus volume (p < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach-rostral: p = 0.48, middle: p < 0.0001, and caudal: p < 0.05; probabilistic map-rostral: p = 0.90, middle: p < 0.01, and caudal: p < 0.05). The noradrenaline transporter density was lower in Parkinson's disease patients in all examined regions (group effect p < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect p < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research toward potential novel treatment approaches.
Collapse
Affiliation(s)
- Christopher E J Doppler
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Martin B Kinnerup
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Corinna Brune
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Matthew Betts
- German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany.,Center for Behavioral Brain Sciences, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Jeppe L Schaldemose
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Aline D Seger
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Kristian Stær
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany
| | - David J Brooks
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark.,Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK.,Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
| | - Adjmal Nahimi
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Michael Sommerauer
- Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, D-50937 Köln, Germany.,Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| |
Collapse
|
39
|
Gupta HV, Beach TG, Mehta SH, Shill HA, Driver-Dunckley E, Sabbagh MN, Belden CM, Liebsack C, Dugger BN, Serrano GE, Sue LI, Siderowf A, Pontecorvo MJ, Mintun MA, Joshi AD, Adler CH. Clinicopathological Correlation: Dopamine and Amyloid PET Imaging with Neuropathology in Three Subjects Clinically Diagnosed with Alzheimer's Disease or Dementia with Lewy Bodies. J Alzheimers Dis 2021; 80:1603-1612. [PMID: 33720879 PMCID: PMC10109539 DOI: 10.3233/jad-200323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Imaging biomarkers have the potential to distinguish between different brain pathologies based on the type of ligand used with PET. AV-45 PET (florbetapir, Amyvid™) is selective for the neuritic plaque amyloid of Alzheimer's disease (AD), while AV-133 PET (florbenazine) is selective for VMAT2, which is a dopaminergic marker. OBJECTIVE To report the clinical, AV-133 PET, AV-45 PET, and neuropathological findings of three clinically diagnosed dementia patients who were part of the Avid Radiopharmaceuticals AV133-B03 study as well as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). METHODS Three subjects who had PET imaging with both AV-133 and AV-45 as well as a standardized neuropathological assessment were included. The final clinical, PET scan, and neuropathological diagnoses were compared. RESULTS The clinical and neuropathological diagnoses were made blinded to PET scan results. The first subject had a clinical diagnosis of dementia with Lewy bodies (DLB); AV-133 PET showed bilateral striatal dopaminergic degeneration, and AV-45 PET was positive for amyloid. The final clinicopathological diagnosis was DLB and AD. The second subject was diagnosed clinically with probable AD; AV-45 PET was positive for amyloid, while striatal AV-133 PET was normal. The final clinicopathological diagnosis was DLB and AD. The third subject had a clinical diagnosis of DLB. Her AV-45 PET was positive for amyloid and striatal AV-133 showed dopaminergic degeneration. The final clinicopathological diagnosis was multiple system atrophy and AD. CONCLUSION PET imaging using AV-133 for the assessment of striatal VMAT2 density may help distinguish between AD and DLB. However, some cases of DLB with less-pronounced nigrostriatal dopaminergic neuronal loss may be missed.
Collapse
Affiliation(s)
- Harsh V Gupta
- Department of Neurology, The University of Kansas Health System, Kansas City, KS, USA
| | | | - Shyamal H Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | | | | | | | - Brittany N Dugger
- Department of Pathology and Laboratory Medicine, University of California-Davis School of Medicine, Sacramento, CA, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| |
Collapse
|
40
|
Chen Q, Lowe VJ, Boeve BF, Przybelski SA, Miyagawa T, Senjem ML, Jack CR, Lesnick TG, Kremers WK, Fields JA, Min HK, Schwarz CG, Gunter JL, Graff-Radford J, Savica R, Knopman DS, Jones D, Ferman TJ, Graff-Radford NR, Petersen RC, Kantarci K. β-Amyloid PET and 123I-FP-CIT SPECT in Mild Cognitive Impairment at Risk for Lewy Body Dementia. Neurology 2021; 96:e1180-e1189. [PMID: 33408148 PMCID: PMC8055344 DOI: 10.1212/wnl.0000000000011454] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To determine the clinical phenotypes associated with the β-amyloid PET and dopamine transporter imaging (123I-FP-CIT SPECT) findings in mild cognitive impairment (MCI) with the core clinical features of dementia with Lewy bodies (DLB; MCI-LB). METHODS Patients with MCI who had at least 1 core clinical feature of DLB (n = 34) were grouped into β-amyloid A+ or A- and 123I-FP-CIT SPECT D+ or D- groups based on previously established abnormality cut points for A+ with Pittsburgh compound B PET standardized uptake value ratio (PiB SUVR) ≥1.48 and D+ with putamen z score with DaTQUANT <-0.82 on 123I-FP-CIT SPECT. Individual patients with MCI-LB fell into 1 of 4 groups: A+D+, A+D-, A-D+, or A-D-. Log-transformed PiB SUVR and putamen z score were tested for associations with patient characteristics. RESULTS The A-D+ biomarker profile was most common (38.2%), followed by A+D+ (26.5%) and A-D- (26.5%). The least common was the A+D- biomarker profile (8.8%). The A+ group was older, had a higher frequency of APOE ε4 carriers, and had a lower Mini-Mental State Examination score than the A- group. The D+ group was more likely to have probable REM sleep behavior disorder. Lower putamen DaTQUANT z scores and lower PiB SUVRs were independently associated with higher Unified Parkinson's Disease Rating Scale-III scores. CONCLUSIONS A majority of patients with MCI-LB are characterized by low β-amyloid deposition and reduced dopaminergic activity. β-Amyloid PET and 123I-FP-CIT SPECT are complementary in characterizing clinical phenotypes of patients with MCI-LB.
Collapse
Affiliation(s)
- Qin Chen
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Val J Lowe
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Bradley F Boeve
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Scott A Przybelski
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Toji Miyagawa
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Matthew L Senjem
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Clifford R Jack
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Timothy G Lesnick
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Walter K Kremers
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Julie A Fields
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Hoon-Ki Min
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Christopher G Schwarz
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jeffrey L Gunter
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Rodolfo Savica
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David Jones
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Tanis J Ferman
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Neill R Graff-Radford
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Kejal Kantarci
- From the Department of Neurology (Q.C.), West China Hospital of Sichuan University, Chengdu; Departments of Radiology (Q.C., V.J.L., M.L.S., C.R.J., H.-K.M., C.G.S., J.L.G., K.K.), Neurology (B.F.B., T.M., J.G.-R., R.S., D.S.K., D.J., R.C.P.), Health Sciences Research (S.A.P., T.G.L., W.K.K.), and Psychology and Psychiatry (J.A.F.), Mayo Clinic, Rochester, MN; and Departments of Psychology and Psychiatry (T.J.F.) and Neurology (N.R.G.-R.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
41
|
Jeong SH, Lee HS, Jung JH, Baik K, Lee YH, Yoo HS, Sohn YH, Chung SJ, Lee PH. White Matter Hyperintensities, Dopamine Loss, and Motor Deficits in De Novo Parkinson's Disease. Mov Disord 2021; 36:1411-1419. [PMID: 33513293 DOI: 10.1002/mds.28510] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND White matter hyperintensities, prevalent in patients with Parkinson's disease (PD), significantly affect parkinsonian motor symptoms. The objective of this study was to investigate the relationship between white matter hyperintensities and nigrostriatal dopamine depletion and their interaction or mediating effects on motor symptoms in patients with drug-naive early-stage PD. METHODS This cross-sectional study enrolled 501 patients with de novo PD who initially underwent [18 F] N-(3-fluoropropyl)-2β-carbonethoxy-3β-(4-iodophenyl) nortropane positron emission tomography and brain magnetic resonance imaging scans between April 2009 and September 2015 in a tertiary-care university hospital. We quantified dopamine transporter availability in each striatal subregion and assessed the severity of periventricular and lobar white matter hyperintensities using the Scheltens scale. The relationship between white matter hyperintensities, dopamine transporter availability in the posterior putamen, and Unified Parkinson's Disease Rating Scale (UPDRS) motor scores was assessed using multivariate linear regression and mediation analyses. RESULTS Periventricular and frontal white matter hyperintensities were generally associated with dopamine transporter availability in striatal subregions after adjusting for age at symptom onset, sex, disease duration, and vascular risk factors. There was an interaction effect between periventricular white matter hyperintensities and dopamine transporter availability in the posterior putamen for the axial motor score. The effect of white matter hyperintensities on UPDRS total score and bradykinesia subscore was indirectly mediated by dopamine transporter availability in the posterior putamen, whereas the axial sub-score was directly affected by white matter hyperintensities. CONCLUSIONS This study suggests that the detrimental effect of white matter hyperintensities on parkinsonian motor symptoms is more relevant and independent for axial motor impairments in the status of mildly decreased striatal dopamine transporter availability. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
42
|
Duignan JA, Haughey A, Kinsella JA, Killeen RP. Molecular and Anatomical Imaging of Dementia With Lewy Bodies and Frontotemporal Lobar Degeneration. Semin Nucl Med 2021; 51:264-274. [PMID: 33402272 DOI: 10.1053/j.semnuclmed.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dementia with Lewy bodies (DLB) and frontotemporal lobar degeneration (FTLD) are common causes of dementia. Early diagnosis of both conditions is challenging due to clinical and radiological overlap with other forms of dementia, particularly Alzheimer's disease (AD). Structural and functional imaging combined can aid differential diagnosis and help to discriminate DLB or FTLD from other forms of dementia. Imaging of DLB involves the use of 123I-FP-CIT SPECT and 123I-metaiodobenzylguanidine (123I-MIBG), both of which have an established role distinguishing DLB from AD. AD is also characterised by more pronounced atrophy of the medial temporal lobe structures when compared to DLB and these can be assessed at MR using the Medial Temporal Atrophy Scale. 18F-FDG-PET is used as a supportive biomarker for the diagnoses of DLB and can distinguish DLB from AD with high accuracy. Polysomnography and electroencephalography also have established roles in the diagnoses of DLB. FTLD is a heterogenous group of neurodegenerative disorders characterised pathologically by abnormally aggregated proteins. Clinical subtypes include behavioral variant FTD (bvFTD), primary progressive aphasia (PPA), which can be subdivided into semantic variant PPA (svPPA) or nonfluent agrammatic PPA (nfaPPA) and FTD associated with motor neuron disease (FTD-MND). Structural imaging is often the first step in making an image supported diagnoses of FTLD. Regional patterns of atrophy can be assessed on MR and graded according to the global cortical atrophy scale. FTLD is typically associated with atrophy of the frontal and temporal lobes. The patterns of atrophy are associated with the specific clinical subtypes, underlying neuropathology and genetic mutations although there is significant overlap. 18F-FDG-PET is useful for distinguishing FTLD from other forms of dementia and focal areas of hypometabolism can often precede atrophy identified on structural MR imaging. There are currently no biomarkers with which to unambiguously diagnose DLB or FTLD and both conditions demonstrate a wide range of heterogeneity. A combined approach of structural and functional imaging improves diagnostic accuracy in both conditions.
Collapse
Affiliation(s)
- John A Duignan
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland; UCD - SVUH PET CT Research Centre, St Vincent's University Hospital, Dublin 4, Ireland
| | - Aoife Haughey
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland; UCD - SVUH PET CT Research Centre, St Vincent's University Hospital, Dublin 4, Ireland
| | - Justin A Kinsella
- Department of Neurology, St Vincent's University Hospital, UCD, Dublin 4, Ireland
| | - Ronan P Killeen
- Department of Radiology, St Vincent's University Hospital, Dublin 4, Ireland; UCD - SVUH PET CT Research Centre, St Vincent's University Hospital, Dublin 4, Ireland.
| |
Collapse
|
43
|
Chahine LM, Brumm MC, Caspell-Garcia C, Oertel W, Mollenhauer B, Amara A, Fernandez-Arcos A, Tolosa E, Simonet C, Hogl B, Videnovic A, Hutten SJ, Tanner C, Weintraub D, Burghardt E, Coffey C, Cho HR, Kieburtz K, Poston KL, Merchant K, Galasko D, Foroud T, Siderowf A, Marek K, Simuni T, Iranzo A. Dopamine transporter imaging predicts clinically-defined α-synucleinopathy in REM sleep behavior disorder. Ann Clin Transl Neurol 2020; 8:201-212. [PMID: 33321002 PMCID: PMC7818144 DOI: 10.1002/acn3.51269] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Individuals with idiopathic rapid eye movement sleep behavior disorder (iRBD) are at high risk for a clinical diagnosis of an α-synucleinopathy (aSN). They could serve as a key population for disease-modifying trials. Abnormal dopamine transporter (DAT) imaging is a strong candidate biomarker for risk of aSN diagnosis in iRBD. Our primary objective was to identify a quantitative measure of DAT imaging that predicts diagnosis of clinically-defined aSN in iRBD. METHODS The sample included individuals with iRBD, early Parkinson's Disease (PD), and healthy controls (HC) enrolled in the Parkinson Progression Marker Initiative, a longitudinal, observational, international, multicenter study. The iRBD cohort was enriched with individuals with abnormal DAT binding at baseline. Motor and nonmotor measures were compared across groups. DAT specific binding ratios (SBR) were used to calculate the percent of expected DAT binding for age and sex using normative data from HCs. Receiver operative characteristic analyses identified a baseline DAT binding cutoff that distinguishes iRBD participants diagnosed with an aSN in follow-up versus those not diagnosed. RESULTS The sample included 38 with iRBD, 205 with PD, and 92 HC who underwent DAT-SPECT at baseline. Over 4.7 years of mean follow-up, 14 (36.84%) with iRBD were clinically diagnosed with aSN. Risk of aSN diagnosis was significantly elevated among those with baseline putamen SBR ≤ 48% of that expected for age and sex, relative to those above this cutoff (hazard ratio = 17.8 [95%CI: 3.79-83.3], P = 0.0003). CONCLUSION We demonstrate the utility of DAT SBR to identify individuals with iRBD with increased short-term risk of an aSN diagnosis.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael C Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Wolfgang Oertel
- Department of Neurology, Philipps University, Marburg, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Amy Amara
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Eduardo Tolosa
- Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Cristina Simonet
- Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Birgit Hogl
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Caroline Tanner
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Daniel Weintraub
- Departments of Neurology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot Burghardt
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Hyunkeun R Cho
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, California, USA
| | - Tatiana Foroud
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Andrew Siderowf
- Departments of Neurology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex Iranzo
- Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Miyagawa T, Przybelski SA, Maltais D, Min HK, Jordan L, Lesnick TG, Chen Q, Graff-Radford J, Jones D, Savica R, Knopman D, Petersen R, Kremers WK, Forsberg LK, Fields JA, Ferman TJ, Allen L, Parisi J, Reichard RR, Murray M, Dickson D, Boeve BF, Kantarci K, Lowe VJ. The value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of dementia with Lewy bodies and Alzheimer's disease dementia. Neurobiol Aging 2020; 99:11-18. [PMID: 33422890 DOI: 10.1016/j.neurobiolaging.2020.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 11/17/2022]
Abstract
Reduced nigrostriatal uptake on N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-[123I]iodophenyl) nortropane (123I-FP-CIT) SPECT reflects dopamine dysfunction, while other imaging markers could be complementary when used together. We assessed how well 123I-FP-CIT SPECT differentiates dementia with Lewy bodies (DLBs) from Alzheimer's disease dementia (ADem) and whether multimodal imaging provides additional value. 123I-FP-CIT SPECT, magnetic resonance imaging, [18F]2-fluoro-deoxy-D-glucose-positron emission tomography (PET), and 11C-Pittsburgh compound B (PiB)-PET were assessed in 35 participants with DLBs and 14 participants with ADem (autopsy confirmation in 9 DLBs and 4 ADem). Nigrostriatal dopamine transporter uptake was evaluated with 123I-FP-CIT SPECT using DaTQUANT software. Hippocampal volume was calculated with magnetic resonance imaging, cingulate island sign ratio with FDG-PET, and global cortical PiB retention with PiB-PET. The DaTQUANT z-scores of the putamen showed the highest c-statistic of 0.916 in differentiating DLBs from ADem among the analyzed imaging biomarkers. Adding another imaging modality to 123I-FP-CIT SPECT had c-statistics ranging from 0.968 to 0.975, and 123I-FP-CIT SPECT in combination with 2 other imaging modalities presented c-statistics ranging from 0.987 to 0.996. These findings suggest that multimodal imaging with 123I-FP-CIT SPECT aids in differentiating DLBs and ADem and in detecting comorbid Lewy-related and Alzheimer's disease pathology in patients with DLBs and ADem.
Collapse
Affiliation(s)
- Toji Miyagawa
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Lennon Jordan
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Lesnick
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Qin Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - David Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Walter K Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Laura Allen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph Parisi
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Ross Reichard
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Melissa Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
45
|
Yang KC, Yang BH, Lirng JF, Liu MN, Hu LY, Liou YJ, Chan LA, Chou YH. Interaction of dopamine transporter and metabolite ratios underpinning the cognitive dysfunction in patients with carbon monoxide poisoning: A combined SPECT and MRS study. Neurotoxicology 2020; 82:26-34. [PMID: 33171150 DOI: 10.1016/j.neuro.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Cognitive dysfunction has been reported in patients with carbon monoxide (CO) poisoning. However, the underpinning mechanism remained unclear. This study examined dopamine transporter (DAT) and metabolite ratios concurrently and their relationships with cognitive dysfunction in CO poisoning. Eighteen suicide attempters with charcoal burning which results in CO poisoning and 18 age- and gender- matched normal controls were recruited. A battery of cognitive assessments including attention, memory, and executive function was administered. Each participant received one single photon emission computed tomography with 99mTc-TRODAT for measuring striatal DAT availability and proton magnetic resonance spectroscopy to determine N-acetyl aspartate/creatine (NAA/Cr), choline-containing compounds/creatine (Cho/Cr) and myo-inositol/creatine (mI/Cr) in the left parietal white matter and mid-occipital gray matter (OGM). CO poisoning patients had significant impairments in memory and executive function. Compared to normal, CO poisoning patients had lower striatal DAT availability, lower NAA/Cr levels in both regions and higher Cho/Cr levels in both regions. In CO poisoning patients, the altered left striatal DAT availability and Cho/Cr level in OGM were significantly associated with executive dysfunction in the expected directions. Moreover, there was a significant interaction between these two imaging indices on their relationships with executive dysfunction and combination of them could adequately predict executive dysfunction in more CO poisoning cases than either alone. The current results suggested that both alterations in DAT availability and metabolite ratios might play crucial roles in executive dysfunction in CO poisoning. This research also highlights the importance of multimodal imaging approaches for studying neurotoxicity effects.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Radiology, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-An Chan
- Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
46
|
Bohnen NI, Postuma RB. Body-first versus brain-first biological subtyping of Parkinson's disease. Brain 2020; 143:2871-2873. [PMID: 33103732 PMCID: PMC7821233 DOI: 10.1093/brain/awaa293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This scientific commentary refers to ‘Brain-first versus body-first Parkinson’s disease: a multi-modal imaging case-control study’, by Horsager etal. (doi:10.1093/brain/awaa238).
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Departments of Radiology and Neurology, University of Michigan, and Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | | |
Collapse
|
47
|
Kwok JB, Loy CT, Dobson-Stone C, Halliday GM. The complex relationship between genotype, pathology and phenotype in familial dementia. Neurobiol Dis 2020; 145:105082. [PMID: 32927063 DOI: 10.1016/j.nbd.2020.105082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Causative genes involved in familial forms of dementias, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB), as well as amyotrophic lateral sclerosis and prion diseases where dementia is present as a significant clinical feature, are associated with distinct proteinopathies. This review summarizes the relationship between known genetic determinants of these dementia syndromes and variations in key neuropathological proteins in terms of three types of heterogeneity: (i) Locus Heterogeneity, whereby mutations in different genes cause a similar proteinopathy, as exemplified by mutations in APP, PSEN1 and PSEN2 leading to AD neuropathology; (ii) Allelic Heterogeneity, whereby different mutations in the same gene lead to different proteinopathies or neuropathological severity, as exemplified by different mutations in MAPT and PRNP giving rise to protein species that differ in their biochemistry and affected cell types; and (iii) Phenotypic Heterogeneity, where identical gene mutations lead to different proteinopathies, as exemplified by LRRK2 p.G2019S being associated with variable Lewy body presence and alternative AD neuropathology or FTLD-tau. Of note, the perceived homogeneity in histologic phenotypes may arise from laboratory-specific assessment protocols which can differ in the panel of proteins screened. Finally, the understanding of the complex relationship between genotype and phenotype in dementia families is highly relevant in terms of therapeutic strategies which range from targeting specific genes, to a broader strategy of targeting a downstream, common biochemical problem that leads to the histopathology.
Collapse
Affiliation(s)
- John B Kwok
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia; School of Medical Sciences, the University of New South Wales, Sydney, Australia
| | - Clement T Loy
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia; Sydney School of Public Health, the University of Sydney, Sydney, Australia; The Garvan Institute of Medical Research, Sydney, Australia
| | - Carol Dobson-Stone
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia; School of Medical Sciences, the University of New South Wales, Sydney, Australia
| | - Glenda M Halliday
- The Brain and Mind Centre & School of Medical Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia.
| |
Collapse
|
48
|
Kobayashi R, Hayashi H, Kawakatsu S, Nagasawa H, Koyama S, Ishizawa K, Otani K. Detection of reduced dopamine transporter availability by 123 I-N-omega-fluoropropyl-2-beta-carbomethoxy-3-beta (4-iodophenyl) nortropane single-photon emission computed tomography in a patient of frontotemporal dementia with motor neuron disease. Psychogeriatrics 2020; 20:799-801. [PMID: 32603013 DOI: 10.1111/psyg.12584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Ryota Kobayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroshi Hayashi
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shinobu Kawakatsu
- Department of Neuropsychiatry, Aizu Medical Center, Fukushima Medical University, Aizuwakamatsu, Japan
| | - Hiroki Nagasawa
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| | - Shingo Koyama
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Kenichi Ishizawa
- Department of Neurology, Hematology, Metabolism, Endocrinology, and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | - Koichi Otani
- Department of Psychiatry, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
49
|
Kotikova K, Zogala D, Ptacnik V, Trnka J, Kupka K, Vaneckova M, Seidl Z, Diblik P, Heissigerova J, Navratil T, Komarc M, Zak I, Polakova K, Brozova H, Zakharov S. Efficiency of 123I-ioflupane SPECT as the marker of basal ganglia damage in acute methanol poisoning: 6-year prospective study. Clin Toxicol (Phila) 2020; 59:235-245. [PMID: 32762574 DOI: 10.1080/15563650.2020.1802033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONTEXT Investigate whether 123I-ioflupane SPECT (DaT SPECT) has the potential as a marker of basal ganglia damage in acute methanol poisoning. METHODS Prospective, single-centre, cohort study of patients with confirmed methanol poisoning was conducted. DaT SPECT was performed twice with semi-quantification using DaTQUANTTM and MRI-based volumetry was calculated. Specific binding ratios (SBR) of striatum, caudate nucleus, and putamen were correlated with laboratory parameters of outcome, volumetric data, and retinal nerve fibres layer (RNFL) thickness measurements. RESULTS Forty-two patients (mean age 46.3 ± 4.2 years; 8 females), including 15 with MRI-detected putamen lesions (group I) and 27 patients with intact putamen (group II), underwent DaT SPECT. Volumetry was calculated in 35 of the patients assessed. SBR values for the left putamen correlated with putamen volume (r = 0.665; p < 0.001). Decreased bilateral SBR values were determined for the striatum and the putamen, but not for the nucleus caudate, in group I (p < 0.05). Significant correlation was observed between the SBR of the posterior putamen and arterial blood pH (r = 0.574; p < 0.001) and other toxicological parameters of severity of poisoning/outcome including serum lactate, glucose, and creatinine concentrations (p < 0.05). The SBR of the posterior putamen positively correlated with the global RNFL thickness (p < 0.05). ROC analysis demonstrated a significant discriminatory ability of SBR of the posterior putamen with AUC = 0.753 (95%CI 0.604-0.902; p = 0.007). The multivariate regression model demonstrated that arterial blood pH, age, and gender were the most significant factors associated with SBR of the posterior putamen. CONCLUSION DaT SPECT demonstrates significant potential for the diagnosis of methanol-induced basal ganglia damage.
Collapse
Affiliation(s)
- Katerina Kotikova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Toxicological Information Centre, General University Hospital, Prague, Czech Republic
| | - David Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Vaclav Ptacnik
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiri Trnka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Karel Kupka
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdenek Seidl
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Pavel Diblik
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Navratil
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Electrochemistry at the Nanoscale, J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Komarc
- Department of Methodology, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Ivan Zak
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Toxicological Information Centre, General University Hospital, Prague, Czech Republic
| | - Kamila Polakova
- Department of Neurology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Brozova
- Department of Neurology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sergey Zakharov
- Department of Occupational Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Toxicological Information Centre, General University Hospital, Prague, Czech Republic
| |
Collapse
|
50
|
Cakir Y. The effects of Alzheimer's disease related striatal pathologic changes on the fractional amplitude of low-frequency fluctuations. Comput Methods Biomech Biomed Engin 2020; 23:1347-1359. [PMID: 32749154 DOI: 10.1080/10255842.2020.1801653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This paper aims to correlate Alzheimer's disease (AD) related striatal pathologic changes with the fractional amplitude of low-frequency fluctuations (fALLF) in the blood oxygenation level-dependent (BOLD) signal in the resting state functional Magnetic Resonance Imaging (rs-fMRI). A dopamine modulated Izikhevich neuron model based network of striatum region is constructed. Balloon-Windkessel hemodynamic model is used to obtain BOLD signals. fALFF differences between two frequency bands (slow-5:0.01-0.027 Hz; slow-4:0.027-0.073 Hz) are investigated in the case of dopamine depletion, decrease in the synaptic connectivity and the input from cortical and thalamic region, assumed that they are the degenerations occurring in AD.
Collapse
Affiliation(s)
- Yuksel Cakir
- Department of Electric and Electronics Engineering, Istanbul Technical University, Istanbul, Turkey.,ICube IMAGeS, Strasbourg University, Strasbourg, France
| |
Collapse
|