1
|
Shy R, Dragon A, Feely SME, Donlevy G, Cornett K, Mandarakas M, Estilow T, Burns J, Shy ME. Feasibility, Validity, and Reliability of the Virtual CMT Infant Toddler Scale (vCMTInfS): A Remote Evaluation of Infants/Toddlers With CMT. J Peripher Nerv Syst 2025; 30:e70029. [PMID: 40391770 PMCID: PMC12090703 DOI: 10.1111/jns.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND AND AIMS The CMT Infant Scale (CMTInfS) enables evaluation of infants/toddlers in clinic. Our aim was to evaluate the feasibility, reliability, and validity of a virtual version of the CMTInfS (vCMTInfS). METHODS Children aged 55 months or less were evaluated either in clinic using CMTInfS or remotely via telemedicine using the vCMTInfS. A trained clinical evaluator remotely directed activities with assistance from the parent/caregiver. vCMTInfS scores were calculated using the CMTInfS calculator available at www.ClinicalOutcomeMeasures.org. Clinical evaluators also used the Brazelton Neonatal Behavior assessment scale to give insight into the behavior of the child during the exam. RESULTS Twenty children (10 males and 10 females) aged 6-55 months with confirmed or at risk for CMT were evaluated. The mean in person (IP) CMT Infant and Toddler Scale (CMTInfS) raw score (4.11, SD = 2.76) was not significantly different from the mean initial virtual (V1) CMTInfS raw score (3.78, SD = 2.59) using a two-tailed test (t = 1.000, p = 0.347). Differences between the first and second (V2) visits as well as between the IP and V2 visits were also nonsignificant. INTERPRETATION Our data demonstrate that children aged 55 months or less can be effectively evaluated remotely using the vCMTInfS, which will expand the number of very young children who can be evaluated with rare forms of CMT.
Collapse
Affiliation(s)
- Rosemary Shy
- Department of Neurology, Neuromuscular and Neurogenetics DivisionUniversity of Iowa Health Care, Carver College of MedicineIowa CityIowaUSA
| | - Amanda Dragon
- Department of Neurology, Neuromuscular and Neurogenetics DivisionUniversity of Iowa Health Care, Carver College of MedicineIowa CityIowaUSA
| | - Shawna M. E. Feely
- Division of Pediatric Neurology, Seattle Children's HospitalUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Gabrielle Donlevy
- Faculty of Medicine and HealthUniversity of Sydney School of Health Sciences, The Children's Hospital WestmeadWestmeadAustralia
| | - Kayla Cornett
- Sydney Children's Hospitals Network and Discipline of Paediatrics and Child Health, School of Clinical MedicineUniversity of New South WalesSydneyNSWAustralia
| | - Melissa Mandarakas
- Sydney Children's Hospitals Network and Discipline of Paediatrics and Child Health, School of Clinical MedicineUniversity of New South WalesSydneyNSWAustralia
| | - Tim Estilow
- Department of Occupational TherapyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Joshua Burns
- Department of Epidemiology and Cancer ControlSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Michael E. Shy
- Department of Neurology, Neuromuscular and Neurogenetics DivisionUniversity of Iowa Health Care, Carver College of MedicineIowa CityIowaUSA
| |
Collapse
|
2
|
Sivera Mascaró R, García Sobrino T, Horga Hernández A, Pelayo Negro AL, Alonso Jiménez A, Antelo Pose A, Calabria Gallego MD, Casasnovas C, Cemillán Fernández CA, Esteban Pérez J, Fenollar Cortés M, Frasquet Carrera M, Gallano Petit MP, Giménez Muñoz A, Gutiérrez Gutiérrez G, Gutiérrez Martínez A, Juntas Morales R, Ciano-Petersen NL, Martínez Ulloa PL, Mederer Hengstl S, Millet Sancho E, Navacerrada Barrero FJ, Navarrete Faubel FE, Pardo Fernández J, Pascual Pascual SI, Pérez Lucas J, Pino Mínguez J, Rabasa Pérez M, Sánchez González M, Sotoca J, Rodríguez Santiago B, Rojas García R, Turon-Sans J, Vicent Carsí V, Sevilla Mantecón T. Clinical practice guidelines for the diagnosis and management of Charcot-Marie-Tooth disease. Neurologia 2025; 40:290-305. [PMID: 38431252 DOI: 10.1016/j.nrleng.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/03/2023] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Charcot-Marie-Tooth disease (CMT) is classified according to neurophysiological and histological findings, the inheritance pattern, and the underlying genetic defect. The objective of these guidelines is to offer recommendations for the diagnosis, prognosis, follow-up, and treatment of this disease in Spain. MATERIAL AND METHODS These consensus guidelines were developed through collaboration by a multidisciplinary panel encompassing a broad group of experts on the subject, including neurologists, paediatric neurologists, geneticists, physiatrists, and orthopaedic surgeons. RECOMMENDATIONS The diagnosis of CMT is clinical, with patients usually presenting a common or classical phenotype. Clinical assessment should be followed by an appropriate neurophysiological study; specific recommendations are established for the parameters that should be included. Genetic diagnosis should be approached sequentially; once PMP22 duplication has been ruled out, if appropriate, a next-generation sequencing study should be considered, taking into account the limitations of the available techniques. To date, no pharmacological disease-modifying treatment is available, but symptomatic management, guided by a multidiciplinary team, is important, as is proper rehabilitation and orthopaedic management. The latter should be initiated early to identify and improve the patient's functional deficits, and should include individualised exercise guidelines, orthotic adaptation, and assessment of conservative surgeries such as tendon transfer. The follow-up of patients with CMT is exclusively clinical, and ancillary testing is not necessary in routine clinical practice.
Collapse
Affiliation(s)
- R Sivera Mascaró
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - T García Sobrino
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain.
| | - A Horga Hernández
- Servicio de Neurología, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - A L Pelayo Negro
- Servicio de Neurología, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Center for Biomedical Research in the Neurodegenerative Diseases (CIBERNED) Network, Madrid, Spain
| | - A Alonso Jiménez
- Neuromuscular Reference Center, Neurology Department, University Hospital of Antwerp, Amberes, Belgium
| | - A Antelo Pose
- Servicio de Rehabilitación, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - C Casasnovas
- Unitat de Neuromuscular, Servicio de Neurología, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | | | - J Esteban Pérez
- Servicio de Neurología, Unidad de ELA y Enfermedades Neuromusculares, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - M Fenollar Cortés
- Genética Clínica, Servicio de Análisis Clínicos, Instituto de Medicina del Laboratorio, IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - M Frasquet Carrera
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitari Dr. Peset, Valencia, Spain
| | - M P Gallano Petit
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Genética, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A Giménez Muñoz
- Servicio de Neurología, Hospital Royo Villanova, Zaragoza, Spain
| | - G Gutiérrez Gutiérrez
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain; Facultad de Medicina, Universidad Europea de Madrid, Madrid, Spain
| | - A Gutiérrez Martínez
- Servicio de Neurología, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - R Juntas Morales
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - N L Ciano-Petersen
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - P L Martínez Ulloa
- Servicio de Neurología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - S Mederer Hengstl
- Servicio de Neurología, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - E Millet Sancho
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - F J Navacerrada Barrero
- Servicio de Neurología, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | - F E Navarrete Faubel
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Pardo Fernández
- Servicio de Neurología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | | | - J Pérez Lucas
- Servicio de Neurología, Hospital del Tajo, Aranjuez, Madrid, Spain
| | - J Pino Mínguez
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | - M Rabasa Pérez
- Servicio de Neurología, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - M Sánchez González
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - J Sotoca
- Servicio de Neurología, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - R Rojas García
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - J Turon-Sans
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Neurofisiología, Hospital de la Santa Creu i Sant Pau, Departamento de Medicina, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - V Vicent Carsí
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Universitari i Politécnic La Fe, Valencia, Spain
| | - T Sevilla Mantecón
- Servicio de Neurología, Hospital Universitari i Politécnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Universidad de Valencia, Valencia, Spain
| |
Collapse
|
3
|
Zhu J, Guo G, Mehryab F, McCulloch MK, Junior WM, Shy ME, Hester ME, Rashnonejad A. Generation of two induced pluripotent stem cell lines from Charcot-Marie-Tooth type 1B patients harboring autosomal dominant mutations in myelin protein zero gene. Stem Cell Res 2025; 84:103684. [PMID: 39986019 DOI: 10.1016/j.scr.2025.103684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Charcot-Marie-Tooth type 1B (CMT1B) is a demyelination neuropathy caused by over 200 mutations in the myelin protein zero (MPZ) gene. Here, we generated two induced pluripotent stem cell (iPSC) lines from fibroblasts isolated from the skin biopsies of CMT1B patients, each carrying a distinct MPZ mutation (Arg98Cys and Ser63del). The iPSC lines created in this work retained their respective MPZ mutation, exhibited normal karyotypes, expressed pluripotency markers, and demonstrated the ability to differentiate into three germ-layer cell types. These lines offer a valuable tool for exploring and modeling dominant CMT1B disease within a human cellular framework.
Collapse
Affiliation(s)
- Jingting Zhu
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Gongbo Guo
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Fatemeh Mehryab
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Mary Kate McCulloch
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Wilson Marques Junior
- Department of Neurology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Michael E Shy
- University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mark E Hester
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Moschou M, Poulidou V, Liouta E, Pepe G, Kimiskidis VK, Arnaoutoglou M. Charcot-Marie-tooth disease type 1 phenotype in a family with a novel myelin protein zero variant. J Neurol Sci 2025; 469:123396. [PMID: 39842379 DOI: 10.1016/j.jns.2025.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Affiliation(s)
- Maria Moschou
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, Thessaloniki, Greece
| | - Vasiliki Poulidou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, Thessaloniki, Greece.
| | - Eleni Liouta
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, Thessaloniki, Greece.
| | | | - Vasileios K Kimiskidis
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, Thessaloniki, Greece.
| | - Marianthi Arnaoutoglou
- Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, Thessaloniki, Greece.
| |
Collapse
|
5
|
Cakar A, Candayan A, Bagırova G, Uyguner ZO, Ceylaner S, Durmus H, Battaloglu E, Parman Y. Delineating the genetic landscape of Charcot-Marie-tooth disease in Türkiye: Distinct distribution, rare phenotypes, and novel variants. Eur J Neurol 2025; 32:e16572. [PMID: 39776111 PMCID: PMC11707620 DOI: 10.1111/ene.16572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye. METHODS Demographic and clinical findings were recorded. Patients were initially screened for PMP22 duplication. Targeted sequencing or whole-exome sequencing was performed in duplication-negative patients. RESULTS Overall, 311 patients from 265 families were included. Demyelinating CMT (67.4%) was more common than axonal (20.5%) and intermediate subtypes (11.7%). PMP22 duplication was the most frequent mutation, followed by pathogenic variants in GJB1, MFN2, SH3TC2, and GDAP1 genes. MPZ-neuropathy was rare in our cohort (3.0%). Interestingly, CMT4 is the second most common type after CMT1. Lower extremity weakness and foot deformities were the most frequent presenting complaints. Striking clinical features included a high frequency of scoliosis in SH3TC2, peripheral hyperexcitability in HINT1, and central nervous system findings in GJB1. Autosomal recessive CMT subtypes had higher CMTESv2 scores when compared to autosomal dominant ones (12.39 ± 4.81 vs. 8.36 ± 4.15, p: 0.023). Twenty-one patients used wheelchairs during their last examination. Among them, 16 had an autosomal recessive subtype. Causative variants were identified in 31 genes, including 28 novel pathogenic or likely pathogenic changes. CONCLUSIONS Our findings provided robust data regarding the genetic distribution of CMT in Türkiye, which may pave the path for building population-specific diagnostic gene panels. Rare autosomal recessive subtypes were relatively frequent in our cohort. By analyzing genotype-phenotype correlations, our data may provide clinical clues for clinicians.
Collapse
Affiliation(s)
- Arman Cakar
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Ayse Candayan
- Department of Molecular Biology and GeneticsBogazici UniversityIstanbulTurkey
- Molecular Neurogenomics GroupVIB Center for Molecular Neurology, VIBAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Gulandam Bagırova
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
- Institute of Health SciencesIstanbul UniversityIstanbulTurkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | | | - Hacer Durmus
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Esra Battaloglu
- Department of Molecular Biology and GeneticsBogazici UniversityIstanbulTurkey
| | - Yesim Parman
- Neuromuscular Unit, Neurology Department, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| |
Collapse
|
6
|
Bertini A, Gentile L, Cavallaro T, Tozza S, Saveri P, Russo M, Massucco S, Falzone YM, Bellone E, Taioli F, Geroldi A, Occhipinti G, Ferrarini M, Cavalca E, Crivellari L, Mandich P, Balistreri F, Magri S, Taroni F, Previtali SC, Schenone A, Grandis M, Manganelli F, Fabrizi GM, Mazzeo A, Pareyson D, Pisciotta C. Phenotypic spectrum of myelin protein zero-related neuropathies: a large cohort study from five mutation clusters across Italy. J Neurol Neurosurg Psychiatry 2024; 96:47-53. [PMID: 38839277 PMCID: PMC11672051 DOI: 10.1136/jnnp-2024-333842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND We aimed to investigate the clinical features of a large cohort of patients with myelin protein zero (MPZ)-related neuropathy, focusing on the five main mutation clusters across Italy. METHODS We retrospectively gathered a minimal data set of clinical information in a series of patients with these frequent mutations recruited among Italian Charcot-Marie-Tooth (CMT) registry centres, including disease onset/severity (CMTES-CMT Examination Score), motor/sensory symptoms and use of orthotics/aids. RESULTS We collected data from 186 patients: 60 had the p.Ser78Leu variant ('classical' CMT1B; from Eastern Sicily), 42 the p.Pro70Ser (CMT2I; mainly from Lombardy), 38 the p.Thr124Met (CMT2J; from Veneto), 25 the p.Ser44Phe (CMT2I; from Sardinia) and 21 the p.Asp104ThrfsX13 (mild CMT1B; from Apulia) mutation. Disease severity (CMTES) was higher (p<0.001) in late-onset axonal forms (p.Thr124Met=9.2±6.6; p.Ser44Phe=7.8±5.7; p.Pro70Ser=7.6±4.8) compared with p.Ser78Leu (6.1±3.5) patients. Disease progression (ΔCMTES/year) was faster in the p.Pro70Ser cohort (0.8±1.0), followed by p.Ser44Phe (0.7±0.4), p.Thr124Met (0.4±0.5) and p.Ser78Leu (0.2±0.4) patients. Disease severity (CMTES=1.2±1.5), progression (ΔCMTES/year=0.1±0.4) and motor involvement were almost negligible in p.Asp104ThrfsX13 patients, who, however, frequently (78%, p<0.001) complained of neuropathic pain. In the other four clusters, walking difficulties were reported by 69-85% of patients, while orthotic and walking aids use ranged between 40-62% and 16-28%, respectively. CONCLUSIONS This is the largest MPZ (and late-onset CMT2) cohort ever collected, reporting clinical features and disease progression of 186 patients from five different clusters across Italy. Our findings corroborate the importance of differentiating between 'classical' childhood-onset demyelinating, late-onset axonal and mild MPZ-related neuropathy, characterised by different pathomechanisms, in view of different therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Bertini
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Gentile
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Tiziana Cavallaro
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Stefano Tozza
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università Federico II di Napoli, Naples, Italy
| | - Paola Saveri
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Russo
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Sara Massucco
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Yuri Matteo Falzone
- INSPE and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Emilia Bellone
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Taioli
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Alessandro Geroldi
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
| | - Giuseppe Occhipinti
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Moreno Ferrarini
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Eleonora Cavalca
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luca Crivellari
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Mandich
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Angelo Schenone
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marina Grandis
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze materno-infantili, Università di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiore Manganelli
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università Federico II di Napoli, Naples, Italy
| | - Gian Maria Fabrizi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, Verona, Italy
| | - Anna Mazzeo
- Unità di Neurologia e Malattie Neuromuscolari, Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Messina, Italy
| | - Davide Pareyson
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unità di Malattie Neurologiche Rare, Dipartimento di Neuroscienze Cliniche, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
7
|
Frezatti RSS, Tomaselli PJ, Record CJ, Wilson LA, Alves GM, Dominik N, Efthymiou S, Patel K, Vandrovcova J, Männikkö R, Pitceathly RDS, Sobreira CFDR, McFarland R, Taylor RW, Houlden H, Hanna MG, Reilly MM, Marques W. Overcoming genetic neuromuscular diagnostic pitfalls in a middle-income country. Brain Commun 2024; 6:fcae342. [PMID: 39544699 PMCID: PMC11562110 DOI: 10.1093/braincomms/fcae342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Neuromuscular disorders affect almost 20 million people worldwide. Advances in molecular diagnosis have provided valuable insights into neuromuscular disorders, allowing for improved standards of care and targeted therapeutic approaches. Despite this progress, access to genomic diagnosis remains scarce and inconsistent in middle-income countries such as Brazil. The lack of public health policies to enable feasible genetic diagnosis and the shortage of neuromuscular disorders specialists are the main reasons in this process. We report our experience in a transcontinental genomic consortium for neuromuscular disorders highlighting how collaborative efforts have helped overcome various obstacles in diagnosing our patients. We describe several challenging cases categorized into three major themes, underlining significant gaps in genetic diagnosis: (i) reverse phenotyping and variant validation, (ii) deep phenotyping and identifying a bespoke molecular approach, and (iii) exploring the use of genomic tests beyond whole exome sequencing. We applied a qualitative case-based approach to exemplify common pitfalls in genomic diagnosis in a middle-income country. Our experience has shown that establishing a virtual transcontinental partnership is viable, offering effective exchange of scientific experiences, providing both guidance for rational decision-making and specialized training on a local level and access to diverse molecular diagnosis strategies and functional analyses. Collaborative efforts such as these have the potential to overcome local obstacles, strengthen scientific capabilities, foster diverse multi-ethnic cohorts, and ultimately provide improved care for patients.
Collapse
Affiliation(s)
- Rodrigo Siqueira Soares Frezatti
- Department of Neurosciences and Behaviour Sciences, Neuromuscular Disorders, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Pedro José Tomaselli
- Department of Neurosciences and Behaviour Sciences, Neuromuscular Disorders, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Christopher J Record
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lindsay A Wilson
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Gustavo Maximiano Alves
- Department of Neurosciences and Behaviour Sciences, Neuromuscular Disorders, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Natalia Dominik
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Krutik Patel
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Roope Männikkö
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Claudia Ferreira da Rosa Sobreira
- Department of Neurosciences and Behaviour Sciences, Neuromuscular Disorders, University of São Paulo, Ribeirao Preto 14040-900, Brazil
| | - Robert McFarland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Robert W Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wilson Marques
- Department of Neurosciences and Behaviour Sciences, Neuromuscular Disorders, University of São Paulo, Ribeirao Preto 14040-900, Brazil
- National Institute of Sciences and Technology (INCT)-Translational Medicine Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Fundo de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Ribeirao Preto, São Paulo 14040-900, Brazil
| |
Collapse
|
8
|
Moore SM, Jeong E, Zahid M, Gawron J, Arora S, Belin S, Sim F, Poitelon Y, Feltri ML. Loss of YAP in Schwann cells improves HNPP pathophysiology. Glia 2024; 72:1974-1984. [PMID: 38989661 PMCID: PMC11563883 DOI: 10.1002/glia.24592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Rapid nerve conduction in the peripheral nervous system (PNS) is facilitated by the multilamellar myelin sheath encasing many axons of peripheral nerves. Charcot-Marie-Tooth type 1A (CMT1A), and hereditary neuropathy with liability to pressure palsy (HNPP) are common demyelinating inherited peripheral neuropathies and are caused by mutations in the peripheral myelin protein 22 (PMP22) gene. Duplication of PMP22 leads to its overexpression and causes CMT1A, while its deletion results in PMP22 under expression and causes HNPP. Here, we investigated novel targets for modulating the protein level of PMP22 in HNPP. We found that genetic attenuation of the transcriptional coactivator Yap in Schwann cells reduces p-TAZ levels, increased TAZ activity, and increases PMP22 in peripheral nerves. Based on these findings, we ablated Yap alleles in Schwann cells of the Pmp22-haploinsufficient mouse model of HNPP and identified fewer tomacula on morphological assessment and improved nerve conduction in peripheral nerves. These findings suggest YAP modulation may be a new avenue for treatment of HNPP.
Collapse
Affiliation(s)
- Seth M. Moore
- Department of Biochemistry, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Institute for Myelin and Glia Exploration, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eunbi Jeong
- Department of Biochemistry, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Institute for Myelin and Glia Exploration, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Muhammad Zahid
- Department of Biological Sciences, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Institute for Myelin and Glia Exploration, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joseph Gawron
- Department of Biochemistry, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Institute for Myelin and Glia Exploration, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Simar Arora
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, USA
| | - Sophie Belin
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, USA
| | - Fraser Sim
- Department of Pharmacology and Toxicology, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Albany Medical College, Department of Neuroscience and Experimental Therapeutics, Albany, NY, USA
| | - M. Laura Feltri
- Department of Biochemistry, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurology, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Institute for Myelin and Glia Exploration, Jacob’s School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
9
|
Xiang G, Sui M, Jiang N, Luo R, Xia J, Wei X, Lin Y, Li X, Cai Z, Lin J, Li S, Chen W, Zhao Y, Yang L. The progress in epidemiological, diagnosis and treatment of primary hemifacial spasm. Heliyon 2024; 10:e38600. [PMID: 39430510 PMCID: PMC11490810 DOI: 10.1016/j.heliyon.2024.e38600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Hemifacial Spasm is a neurological disorder characterized by persistent and rhythmic spasms of the facial muscles, significantly affecting the patient's quality of life. This condition can be classified into primary and secondary types; this article focuses on the characteristics of primary hemifacial spasm. Epidemiological studies indicate that the condition is more common in women, older adults, and individuals with posterior fossa stenosis or uneven blood flow dynamics, and is associated with gene expression related to demyelinating lesions. In terms of diagnosis, magnetic resonance imaging can show the location of arterial or venous compression on the facial nerve on a macroscopic level and reveal white matter lesions on a microscopic level. Additionally, optimized electrophysiological techniques can determine the type of neural excitation disorder from both central and peripheral perspectives, thereby improving detection rates. There are numerous treatment options available. Although early oral medications may have limited effectiveness, botulinum toxin injections can provide temporary relief. Future considerations include balancing injection costs with long-term efficacy. Microvascular decompression remains the preferred treatment approach and can be further optimized with endoscopic techniques. For refractory cases, alternative therapies such as facial nerve massage, radiofrequency techniques, rhizotomy, or acupuncture may be considered.
Collapse
Affiliation(s)
- Guangfa Xiang
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Minghong Sui
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Naifu Jiang
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| | - Rui Luo
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jianwei Xia
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, Shandong, China
| | - Xinling Wei
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yifeng Lin
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
| | - Xingyu Li
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zixiang Cai
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Junxia Lin
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shipei Li
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wanyi Chen
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- College of Health Science, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yang Zhao
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
- Standard Robots Co.,Ltd, Room 405, Building D, Huafeng International Robot Fusen Industrial Park, Hangcheng Avenue, Guxing Community, Xixiang Street, Baoan District, Shenzhen, Guangdong, China
| | - Lin Yang
- Zunyi Medical University Campus Zhuhai, Zhuhai, Guangdong, China
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Moore SM, Gawron J, Stevens M, Marziali LN, Buys ES, Milne GT, Feltri ML, VerPlank JJS. Pharmacologically increasing cGMP improves proteostasis and reduces neuropathy in mouse models of CMT1. Cell Mol Life Sci 2024; 81:434. [PMID: 39400753 PMCID: PMC11473742 DOI: 10.1007/s00018-024-05463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Increasing cyclic GMP activates 26S proteasomes via phosphorylation by Protein Kinase G and stimulates the intracellular degradation of misfolded proteins. Therefore, agents that raise cGMP may be useful therapeutics against neurodegenerative diseases and other diseases in which protein degradation is reduced and misfolded proteins accumulate, including Charcot Marie Tooth 1A and 1B peripheral neuropathies, for which there are no treatments. Here we increased cGMP in the S63del mouse model of CMT1B by treating for three weeks with either the phosphodiesterase 5 inhibitor tadalafil, or the brain-penetrant soluble guanylyl cyclase stimulator CYR119. Both molecules activated proteasomes in the affected peripheral nerves, reduced polyubiquitinated proteins, and improved myelin thickness and nerve conduction. CYR119 increased cGMP more than tadalafil in the peripheral nerves of S63del mice and elicited greater biochemical and functional improvements. To determine whether raising cGMP could be beneficial in other neuropathies, we first showed that polyubiquitinated proteins and the disease-causing protein accumulate in the sciatic nerves of the C3 mouse model of CMT1A. Treatment of these mice with CYR119 reduced the levels of polyubiquitinated proteins and the disease-causing protein, presumably by increasing their degradation, and improved myelination, nerve conduction, and motor coordination. Thus, pharmacological agents that increase cGMP are promising treatments for CMT1 neuropathies and may be useful against other proteotoxic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seth M Moore
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Joseph Gawron
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mckayla Stevens
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Leandro N Marziali
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Emmanuel S Buys
- Cyclerion Therapeutics, 245 First Street Riverview II, 18th floor, Cambridge, MA, 02142, USA
| | - G Todd Milne
- Cyclerion Therapeutics, 245 First Street Riverview II, 18th floor, Cambridge, MA, 02142, USA
| | - Maria Laura Feltri
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
- IRCCS Neurological institute 'Carlo Besta', Milano, Italy
- Department of Medical Biotechnology and Translational Medicine, Universita' degli Studi di Milano, Milano, Italy
| | - Jordan J S VerPlank
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
- Department of Anatomy, Physiology, and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
11
|
McCulloch MK, Mehryab F, Rashnonejad A. Navigating the Landscape of CMT1B: Understanding Genetic Pathways, Disease Models, and Potential Therapeutic Approaches. Int J Mol Sci 2024; 25:9227. [PMID: 39273178 PMCID: PMC11395143 DOI: 10.3390/ijms25179227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Charcot-Marie-Tooth type 1B (CMT1B) is a peripheral neuropathy caused by mutations in the gene encoding myelin protein zero (MPZ), a key component of the myelin sheath in Schwann cells. Mutations in the MPZ gene can lead to protein misfolding, unfolded protein response (UPR), endoplasmic reticulum (ER) stress, or protein mistrafficking. Despite significant progress in understanding the disease mechanisms, there is currently no effective treatment for CMT1B, with therapeutic strategies primarily focused on supportive care. Gene therapy represents a promising therapeutic approach for treating CMT1B. To develop a treatment and better design preclinical studies, an in-depth understanding of the pathophysiological mechanisms and animal models is essential. In this review, we present a comprehensive overview of the disease mechanisms, preclinical models, and recent advancements in therapeutic research for CMT1B, while also addressing the existing challenges in the field. This review aims to deepen the understanding of CMT1B and to encourage further research towards the development of effective treatments for CMT1B patients.
Collapse
Affiliation(s)
- Mary Kate McCulloch
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Fatemeh Mehryab
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Uncini A, Cavallaro T, Fabrizi GM, Manganelli F, Vallat JM. Conduction slowing, conduction block and temporal dispersion in demyelinating, dysmyelinating and axonal neuropathies: Electrophysiology meets pathology. J Peripher Nerv Syst 2024; 29:135-160. [PMID: 38600691 DOI: 10.1111/jns.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Nerve conduction studies are usually the first diagnostic step in peripheral nerve disorders and their results are the basis for planning further investigations. However, there are some commonplaces in the interpretation of electrodiagnostic findings in peripheral neuropathies that, although useful in the everyday practice, may be misleading: (1) conduction block and abnormal temporal dispersion are distinctive features of acquired demyelinating disorders; (2) hereditary neuropathies are characterized by uniform slowing of conduction velocity; (3) axonal neuropathies are simply diagnosed by reduced amplitude of motor and sensory nerve action potentials with normal or slightly slow conduction velocity. In this review, we reappraise the occurrence of uniform and non-uniform conduction velocity slowing, conduction block and temporal dispersion in demyelinating, dysmyelinating and axonal neuropathies attempting, with a translational approach, a correlation between electrophysiological and pathological features as derived from sensory nerve biopsy in patients and animal models. Additionally, we provide some hints to navigate in this complex field.
Collapse
Affiliation(s)
- Antonino Uncini
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti-Pescara, Italy
| | - Tiziana Cavallaro
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Jean-Michel Vallat
- Department of Neurology, National Reference Center for "Rare Peripheral Neuropathies", CHU Dupuytren, Limoges, France
| |
Collapse
|
13
|
Doherty CM, Morrow JM, Zuccarino R, Howard P, Wastling S, Pipis M, Zafeiropoulos N, Stephens KJ, Grider T, Feely SME, Nopoulous P, Skorupinska M, Milev E, Nicolaisen E, Dudzeic M, McDowell A, Dilek N, Muntoni F, Rossor AM, Shah S, Laura M, Yousry TA, Thedens D, Thornton J, Shy ME, Reilly MM. Lower limb muscle MRI fat fraction is a responsive outcome measure in CMT X1, 1B and 2A. Ann Clin Transl Neurol 2024; 11:607-617. [PMID: 38173284 DOI: 10.1002/acn3.51979] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE With potential therapies for many forms of Charcot-Marie-Tooth disease (CMT), responsive outcome measures are urgently needed for clinical trials. Quantitative lower limb MRI demonstrated progressive calf intramuscular fat accumulation in the commonest form, CMT1A with large responsiveness. In this study, we evaluated the responsiveness and validity in the three other common forms, due to variants in GJB1 (CMTX1), MPZ (CMT1B) and MFN2 (CMT2A). METHODS 22 CMTX1, 21 CMT1B and 21 CMT2A patients and matched controls were assessed at a 1-year interval. Intramuscular fat fraction (FF) was evaluated using three-point Dixon MRI at thigh and calf level along with clinical measures including CMT examination score, clinical strength assessment, CMT-HI and plasma neurofilament light chain. RESULTS All patient groups had elevated muscle fat fraction at thigh and calf levels, with highest thigh FF and atrophy in CMT2A. There was moderate correlation between calf muscle FF and clinical measures (CMTESv2 rho = 0.405; p = 0.001, ankle MRC strength rho = -0.481; p < 0.001). Significant annualised progression in calf muscle FF was seen in all patient groups (CMTX1 2.0 ± 2.0%, p < 0.001, CMT1B 1.6 ± 2.1% p = 0.004 and CMT2A 1.6 ± 2.1% p = 0.002). Greatest increase was seen in patients with 10-70% FF at baseline (calf 2.7 ± 2.3%, p < 0.0001 and thigh 1.7 ± 2.1%, p = 0.01). INTERPRETATION Our results confirm that calf muscle FF is highly responsive over 12 months in three additional common forms of CMT which together with CMT1A account for 90% of genetically confirmed cases. Calf muscle MRI FF should be a valuable outcome measure in upcoming CMT clinical trials.
Collapse
Affiliation(s)
- Carolynne M Doherty
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jasper M Morrow
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Riccardo Zuccarino
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Fondazione Serena Onlus, Centro Clinico NeMO Trento, Pergine Valsugana, Italy
| | - Paige Howard
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen Wastling
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Menelaos Pipis
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Nick Zafeiropoulos
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Katherine J Stephens
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Tiffany Grider
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shawna M E Feely
- Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peggy Nopoulous
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mariola Skorupinska
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | | - Emma Nicolaisen
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Magdalena Dudzeic
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Amy McDowell
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Nuran Dilek
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Sachit Shah
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Tarek A Yousry
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Daniel Thedens
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John Thornton
- Lysholm Department of Radiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael E Shy
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
14
|
Gemignani F, Percesepe A, Gualandi F, Allegri I, Bellanova MF, Nuredini A, Saccani E, Ambrosini E, Barili V, Uliana V. Charcot-Marie-Tooth Disease with Myelin Protein Zero Mutation Presenting as Painful, Predominant Small-Fiber Neuropathy. Int J Mol Sci 2024; 25:1654. [PMID: 38338934 PMCID: PMC10855578 DOI: 10.3390/ijms25031654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) rarely presents with painful symptoms, which mainly occur in association with myelin protein zero (MPZ) gene mutations. We aimed to further characterize the features of painful neuropathic phenotypes in MPZ-related CMT. We report on a 58-year-old woman with a longstanding history of intermittent migrant pain and dysesthesias. Examination showed minimal clinical signs of neuropathy along with mild changes upon electroneurographic examination, consistent with an intermediate pattern, and small-fiber loss upon skin biopsy. Genetic testing identified the heterozygous variant p.Trp101Ter in MPZ. We identified another 20 CMT patients in the literature who presented with neuropathic pain as a main feature in association with MPZ mutations, mostly in the extracellular MPZ domain; the majority of these patients showed late onset (14/20), with motor-nerve-conduction velocities predominantly in the intermediate range (12/20). It is hypothesized that some MPZ mutations could manifest with, or predispose to, neuropathic pain. However, the mechanisms linking MPZ mutations and pain-generating nerve changes are unclear, as are the possible role of modifier factors. This peculiar CMT presentation may be diagnostically misleading, as it is suggestive of an acquired pain syndrome rather than of an inherited neuropathy.
Collapse
Affiliation(s)
- Franco Gemignani
- European Diagnostic Center, Polyclinic Dalla Rosa Prati, 43126 Parma, Italy
| | - Antonio Percesepe
- Medical Genetics Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy
| | - Isabella Allegri
- Neurology Unit, Department of Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Maria Federica Bellanova
- Laboratory of Neuromuscular Histopathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andi Nuredini
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elena Saccani
- Neurology Unit, Department of Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Valeria Barili
- Medical Genetics Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
15
|
Noort RJ, Zhu H, Flemmer RT, Moore CS, Belbin TJ, Esseltine JL. Apically localized PANX1 impacts neuroepithelial expansion in human cerebral organoids. Cell Death Discov 2024; 10:22. [PMID: 38212304 PMCID: PMC10784521 DOI: 10.1038/s41420-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Dysfunctional paracrine signaling through Pannexin 1 (PANX1) channels is linked to several adult neurological pathologies and emerging evidence suggests that PANX1 plays an important role in human brain development. It remains unclear how early PANX1 influences brain development, or how loss of PANX1 alters the developing human brain. Using a cerebral organoid model of early human brain development, we find that PANX1 is expressed at all stages of organoid development from neural induction through to neuroepithelial expansion and maturation. Interestingly, PANX1 cellular distribution and subcellular localization changes dramatically throughout cerebral organoid development. During neural induction, PANX1 becomes concentrated at the apical membrane domain of neural rosettes where it co-localizes with several apical membrane adhesion molecules. During neuroepithelial expansion, PANX1-/- organoids are significantly smaller than control and exhibit significant gene expression changes related to cell adhesion, WNT signaling and non-coding RNAs. As cerebral organoids mature, PANX1 expression is significantly upregulated and is primarily localized to neuronal populations outside of the ventricular-like zones. Ultimately, PANX1 protein can be detected in all layers of a 21-22 post conception week human fetal cerebral cortex. Together, these results show that PANX1 is dynamically expressed by numerous cell types throughout embryonic and early fetal stages of human corticogenesis and loss of PANX1 compromises neuroepithelial expansion due to dysregulation of cell-cell and cell-matrix adhesion, perturbed intracellular signaling, and changes to gene regulation.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Hanrui Zhu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Robert T Flemmer
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Thomas J Belbin
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
- Discipline of Oncology, Faculty of sp. Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, A1B 3V6, NL, Canada.
| |
Collapse
|
16
|
Bremer J, Meinhardt A, Katona I, Senderek J, Kämmerer‐Gassler EK, Roos A, Ferbert A, Schröder JM, Nikolin S, Nolte K, Sellhaus B, Popzhelyazkova K, Tacke F, Schara‐Schmidt U, Neuen‐Jacob E, de Groote CC, de Jonghe P, Timmerman V, Baets J, Weis J. Myelin protein zero mutation-related hereditary neuropathies: Neuropathological insight from a new nerve biopsy cohort. Brain Pathol 2024; 34:e13200. [PMID: 37581289 PMCID: PMC10711263 DOI: 10.1111/bpa.13200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023] Open
Abstract
Myelin protein zero (MPZ/P0) is a major structural protein of peripheral nerve myelin. Disease-associated variants in the MPZ gene cause a wide phenotypic spectrum of inherited peripheral neuropathies. Previous nerve biopsy studies showed evidence for subtype-specific morphological features. Here, we aimed at enhancing the understanding of these subtype-specific features and pathophysiological aspects of MPZ neuropathies. We examined archival material from two Central European centers and systematically determined genetic, clinical, and neuropathological features of 21 patients with MPZ mutations compared to 16 controls. Cases were grouped based on nerve conduction data into congenital hypomyelinating neuropathy (CHN; n = 2), demyelinating Charcot-Marie-Tooth (CMT type 1; n = 11), intermediate (CMTi; n = 3), and axonal CMT (type 2; n = 5). Six cases had combined muscle and nerve biopsies and one underwent autopsy. We detected four MPZ gene variants not previously described in patients with neuropathy. Light and electron microscopy of nerve biopsies confirmed fewer myelinated fibers, more onion bulbs and reduced regeneration in demyelinating CMT1 compared to CMT2/CMTi. In addition, we observed significantly more denervated Schwann cells, more collagen pockets, fewer unmyelinated axons per Schwann cell unit and a higher density of Schwann cell nuclei in CMT1 compared to CMT2/CMTi. CHN was characterized by basal lamina onion bulb formation, a further increase in Schwann cell density and hypomyelination. Most late onset axonal neuropathy patients showed microangiopathy. In the autopsy case, we observed prominent neuromatous hyperinnervation of the spinal meninges. In four of the six muscle biopsies, we found marked structural mitochondrial abnormalities. These results show that MPZ alterations not only affect myelinated nerve fibers, leading to either primarily demyelinating or axonal changes, but also affect non-myelinated nerve fibers. The autopsy case offers insight into spinal nerve root pathology in MPZ neuropathy. Finally, our data suggest a peculiar association of MPZ mutations with mitochondrial alterations in muscle.
Collapse
Affiliation(s)
- Juliane Bremer
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Axel Meinhardt
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Istvan Katona
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Jan Senderek
- Friedrich Baur Institute at the Department of NeurologyUniversity Hospital, LMU MunichMunichGermany
| | | | - Andreas Roos
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
- Department of NeuropaediatricsUniversity of EssenEssenGermany
| | | | | | - Stefan Nikolin
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Kay Nolte
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | - Bernd Sellhaus
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| | | | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin BerlinCampus Virchow‐Klinikum (CVK) and Campus Charité Mitte (CCM)BerlinGermany
| | | | - Eva Neuen‐Jacob
- Department of NeuropathologyUniversity Hospital, Heinrich‐Heine University DüsseldorfDüsseldorfGermany
| | - Chantal Ceuterick de Groote
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
| | - Peter de Jonghe
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
- Department of NeurologyUniversity Hospital AntwerpAntwerpBelgium
| | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
- Peripheral Neuropathy Research Group, Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born‐Bunge, and Translational Neurosciences, Faculty of MedicineUniversity of AntwerpBelgium
- Department of NeurologyUniversity Hospital AntwerpAntwerpBelgium
| | - Joachim Weis
- Institute of NeuropathologyRWTH Aachen University HospitalAachenGermany
| |
Collapse
|
17
|
Ptak CP, Peterson TA, Hopkins JB, Ahern CA, Shy ME, Piper RC. Homomeric interactions of the MPZ Ig domain and their relation to Charcot-Marie-Tooth disease. Brain 2023; 146:5110-5123. [PMID: 37542466 PMCID: PMC10690024 DOI: 10.1093/brain/awad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023] Open
Abstract
Mutations in MPZ (myelin protein zero) can cause demyelinating early-onset Charcot-Marie-Tooth type 1B disease or later onset type 2I/J disease characterized by axonal degeneration, reflecting the diverse roles of MPZ in Schwann cells. MPZ holds apposing membranes of the myelin sheath together, with the adhesion role fulfilled by its extracellular immunoglobulin-like domain (IgMPZ), which oligomerizes. Models for how the IgMPZ might form oligomeric assemblies has been extrapolated from a protein crystal structure in which individual rat IgMPZ subunits are packed together under artificial conditions, forming three weak interfaces. One interface organizes the IgMPZ into tetramers, a second 'dimer' interface links tetramers together across the intraperiod line, and a third hydrophobic interface that mediates binding to lipid bilayers or the same hydrophobic surface on another IgMPZ domain. Presently, there are no data confirming whether the proposed IgMPZ interfaces actually mediate oligomerization in solution, whether they are required for the adhesion activity of MPZ, whether they are important for myelination, or whether their loss results in disease. We performed nuclear magnetic resonance spectroscopy and small angle X-ray scattering analysis of wild-type IgMPZ as well as mutant forms with amino acid substitutions designed to interrupt its presumptive oligomerization interfaces. Here, we confirm the interface that mediates IgMPZ tetramerization, but find that dimerization is mediated by a distinct interface that has yet to be identified. We next correlated different types of Charcot-Marie-Tooth disease symptoms to subregions within IgMPZ tetramers. Variants causing axonal late-onset disease (CMT2I/J) map to surface residues of IgMPZ proximal to the transmembrane domain. Variants causing early-onset demyelinating disease (CMT1B) segregate into two groups: one is described by variants that disrupt the stability of the Ig-fold itself and are largely located within the core of the IgMPZ domain; whereas another describes a region on the surface of IgMPZ tetramers, accessible to protein interactions. Computational docking studies predict that this latter disease-relevant subregion may potentially mediate dimerization of IgMPZ tetramers.
Collapse
Affiliation(s)
- Christopher P Ptak
- Biomolecular Nuclear Magnetic Resonance Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jesse B Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Kontogeorgiou Z, Kartanou C, Rentzos M, Kokotis P, Anagnostou E, Zambelis T, Chroni E, Dinopoulos A, Panas M, Koutsis G, Karadima G. Mutational screening of Greek patients with axonal Charcot-Marie-Tooth disease using targeted next-generation sequencing: Clinical and molecular spectrum delineation. J Peripher Nerv Syst 2023; 28:642-650. [PMID: 37747677 DOI: 10.1111/jns.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND AIMS Axonal forms of Charcot-Marie-Tooth disease (CMT) are classified as CMT2, distal hereditary motor neuropathy (dHMN) or hereditary sensory neuropathy (HSN) and can be caused by mutations in over 100 genes. We presently aimed to investigate for the first time the genetic landscape of axonal CMT in the Greek population. METHODS Sixty index patients with CMT2, dHMN or HSN were screened by a combination of Sanger sequencing (GJB1) and next-generation sequencing custom-made gene panel covering 24 commonly mutated genes in axonal CMT. RESULTS Overall, 20 variants classified as pathogenic or likely pathogenic were identified in heterozygous state in 20 index cases, representing 33.3% of the cohort. Of these, 14 were known pathogenic/likely pathogenic and six were designated as such according to ACMG classification, after in silico evaluation, testing for familial segregation and further literature review. The most frequently involved genes were GJB1 (11.7%), MPZ (5%) and MFN2 (5%), followed by DNM2 (3.3%) and LRSAM1 (3.3%). Single cases were identified with mutations in BSCL2, HSPB1 and GDAP1. INTERPRETATION A wide phenotypic variability in terms of severity and age of onset was noted. Given the limited number of genes tested, the diagnostic yield of the present panel compares favourably with studies in other European populations. Our study delineates the genetic and phenotypic variability of inherited axonal neuropathies in the Greek population and contributes to the pathogenicity characterization of further variants linked to axonal neuropathies.
Collapse
Affiliation(s)
- Zoi Kontogeorgiou
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrisoula Kartanou
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rentzos
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kokotis
- Clinical Neurophysiology Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Anagnostou
- Clinical Neurophysiology Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Zambelis
- Clinical Neurophysiology Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Argyris Dinopoulos
- 3rd Department of Pediatrics, General Hospital of Athens Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Panas
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Sakakura M, Tanabe M, Mori M, Takahashi H, Mio K. Structural bases for the Charcot-Marie-Tooth disease induced by single amino acid substitutions of myelin protein zero. Structure 2023; 31:1452-1462.e4. [PMID: 37699394 DOI: 10.1016/j.str.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Myelin protein zero (MPZ or P0) is a transmembrane protein which functions to glue membranes in peripheral myelin. Inter-membrane adhesion is mediated by homophilic interactions between the extracellular domains (ECDs) of MPZ. Single amino acid substitutions in an ECD cause demyelinating neuropathy, Charcot-Marie-Tooth disease (CMT), with unknown mechanisms. In this study, by using a novel assay system "nanomyelin," we revealed that a stacked-rings-like ECD-8-mer is responsible for membrane adhesion. Two inter-ECD interactions, cis and head-to-head, are essential to constituting the 8-mer and to gluing the membranes. This result was reinforced by the observation that the CMT-related N87H substitution at the cis interface abolished membrane-adhesion activity. In contrast, the CMT-related D32G and E68V variants retained membrane-stacking activity, whereas their thermal stability was lower than that of the WT. Reduced thermal stability may lead to impairment of the long-term stability of ECD and the layered membranes of myelin.
Collapse
Affiliation(s)
- Masayoshi Sakakura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| | - Mikio Tanabe
- Structural Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Masaki Mori
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Kazuhiro Mio
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa 277-0882, Japan
| |
Collapse
|
20
|
Ma Z, Yan XM, Geng J, Gao L, Du W, Li HB, Yuan LX, Zhou ZY, Zhang JS, Zhang Y, Chen L. Genome-wide identification and analysis of TMT-based proteomes in longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle. Anim Biotechnol 2023; 34:1261-1272. [PMID: 34965845 DOI: 10.1080/10495398.2021.2019756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the gradual completion of the human genome project, proteomes have gained extremely important value in the fields of human disease and biological process research. In our previous research, we performed transcriptomic analyses of longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle and conducted in-depth studies on the muscles of both species through epigenetics. However, it is unclear whether differentially expressed proteins in Kazakh cattle and Xinjiang brown cattle regulate muscle production and development. In this study, a proteomic analysis was performed on Xinjiang brown cattle and Kazakh cattle by using TMT markers, HPLC classification, LC/MS and bioinformatics analysis. A total of 13,078 peptides were identified, including 11,258 unique peptides. We identified a total of 1874 proteins, among which 1565 were quantifiable. Compared to Kazakh cattle, Xinjiang brown cattle exhibited 75 upregulated proteins and 44 downregulated proteins. These differentially expressed proteins were enriched for the functions of adrenergic signaling in cardiomyocytes, fatty acid degradation and glutathione metabolism. In our research, we found differentially expressed proteins in longissimus dorsi tissue between Kazakh cattle and Xinjiang brown cattle. We predict that these proteins regulate muscle production and development through select enriched signaling pathways. This study provides novel insights into the roles of proteomes in cattle genetics and breeding.
Collapse
Affiliation(s)
- Zhen Ma
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Xiang-Min Yan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Juan Geng
- Xinjiang Animal Husbandry General Station, Urumqi, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, China
| | - Wei Du
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Hong-Bo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Li-Xing Yuan
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Zhen-Yong Zhou
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Jin-Shan Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Yang Zhang
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Urumqi, China
| | - Lei Chen
- School of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
21
|
Cook S, Hooser BN, Williams DC, Kortz G, Aleman M, Minor K, Koziol J, Friedenberg SG, Cullen JN, Shelton GD, Ekenstedt KJ. Canine models of Charcot-Marie-Tooth: MTMR2, MPZ, and SH3TC2 variants in golden retrievers with congenital hypomyelinating polyneuropathy. Neuromuscul Disord 2023; 33:677-691. [PMID: 37400349 PMCID: PMC10530471 DOI: 10.1016/j.nmd.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Congenital hypomyelinating polyneuropathy (HPN) restricted to the peripheral nervous system was reported in 1989 in two Golden Retriever (GR) littermates. Recently, four additional cases of congenital HPN in young, unrelated GRs were diagnosed via neurological examination, electrodiagnostic evaluation, and peripheral nerve pathology. Whole-genome sequencing was performed on all four GRs, and variants from each dog were compared to variants found across >1,000 other dogs, all presumably unaffected with HPN. Likely causative variants were identified for each HPN-affected GR. Two cases shared a homozygous splice donor site variant in MTMR2, with a stop codon introduced within six codons following the inclusion of the intron. One case had a heterozygous MPZ isoleucine to threonine substitution. The last case had a homozygous SH3TC2 nonsense variant predicted to truncate approximately one-half of the protein. Haplotype analysis using 524 GR established the novelty of the identified variants. Each variant occurs within genes that are associated with the human Charcot-Marie-Tooth (CMT) group of heterogeneous diseases, affecting the peripheral nervous system. Testing a large GR population (n = >200) did not identify any dogs with these variants. Although these variants are rare within the general GR population, breeders should be cautious to avoid propagating these alleles.
Collapse
Affiliation(s)
- Shawna Cook
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Blair N Hooser
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - D Colette Williams
- The William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, USA
| | - Gregg Kortz
- VCA Sacramento Veterinary Referral Center, Sacramento CA, USA
| | - Monica Aleman
- The William R. Pritchard Veterinary Medical Teaching Hospital, University of California, Davis, Davis, CA, USA
| | - Katie Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jennifer Koziol
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
22
|
Iyer VG, Shields LB, Zhang YP, Shields CB. Clinical Features of a Newly Described Mutation of Myelin Protein Zero in a Family. Cureus 2023; 15:e39884. [PMID: 37404437 PMCID: PMC10315180 DOI: 10.7759/cureus.39884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common hereditary neuropathy. Duplication of the peripheral myelin protein-22 (PMP22) gene is the most frequent genetic abnormality in CMT disease. Although rare compared to PMP22 gene mutations, many different myelin protein zero (MPZ) gene mutations have been described in patients with CMT disease. MPZ gene mutations are known to cause hereditary neuropathies with heterogenous phenotypes ranging from early-onset severe demyelinating to adult-onset axonal forms. MPZ, the major protein component of peripheral nerve myelin, is important for myelin compaction. We report a family in which a mother and her son, both with adult-onset CMT disease, showed a newly described mutation p.Glu37Lys of the MPZ gene. The clinical features of the mother provided insight into the progression of the disease over decades, while features in the early stage of the disease could be studied in the son. Clinical, electrodiagnostic, and sonographic findings are described in the early and late stages of the disease. The MPZ gene mutation p.Glu37Lys is associated with clinical features of a progressive axonal type of adult-onset CMT disease.
Collapse
Affiliation(s)
| | - Lisa B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, USA
| |
Collapse
|
23
|
Lei L, Xiaobo L, Zhiqiang L, Yongzhi X, Shunxiang H, Huadong Z, Beisha T, Ruxu Z. Genotype-phenotype characteristics and baseline natural history of Chinese myelin protein zero gene related neuropathy patients. Eur J Neurol 2023; 30:1069-1079. [PMID: 36692866 DOI: 10.1111/ene.15700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to characterize the phenotypic and genotypic features of myelin protein zero (MPZ) related neuropathy and provide baseline data for longitudinal natural history studies or drug clinical trials. METHOD Clinical, neurophysiological and genetic data of 37 neuropathy patients with MPZ mutations were retrospectively collected. RESULTS Nineteen different MPZ mutations in 23 unrelated neuropathy families were detected, and the frequency of MPZ mutations was 5.84% in total. Mutations c.103_104InsTGGTTTACACCG, c.513dupG, c.521_557del and c.696_699delCAGT had not been reported previously. Hot spot mutation p.Thr124Met was detected in four unrelated families, and seven patients carried de novo mutations. The onset age indicated a bimodal distribution: prominent clustering in the first and fourth decades. The infantile-onset group included 12 families, the childhood-onset group consisted of two families and the adult-onset group included nine families. The Charcot-Marie-Tooth Disease Neuropathy Score ranged from 3 to 25 with a mean value of 15.85 ± 5.88. Mutations that changed the cysteine residue (p.Arg98Cys, p.Cys127Trp, p.Ser140Cys and p.Cys127Arg) in the extracellular region were more likely to cause severe early-onset Charcot-Marie-Tooth disease type 1B (CMT1B) or Dejerine-Sottas syndrome. Nonsense-mediated mRNA decay mutations p.Asp35delInsVVYTD, p.Leu174Argfs*66 and p.Leu172Alafs*63 were related to severe infantile-onset CMT1B or Dejerine-Sottas syndrome; however, mutation p.Val232Valfs*19 was associated with a relatively milder childhood-onset CMT1 phenotype. CONCLUSION Four novel MPZ mutations are reported that expand the genetic spectrum. De novo mutations accounted for 30.4% and were most related to a severe infantile-onset phenotype. Genetic and clinical data from this cohort will provide the baseline data necessary for clinical trials and natural history studies.
Collapse
Affiliation(s)
- Liu Lei
- Health Management Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiaobo
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhiqiang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xie Yongzhi
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huang Shunxiang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Huadong
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tang Beisha
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhang Ruxu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Fridman V, Sillau S, Bockhorst J, Smith K, Moroni I, Pagliano E, Pisciotta C, Piscosquito G, Laurá M, Muntoni F, Bacon C, Feely S, Grider T, Gutmann L, Shy R, Wilcox J, Herrmann DN, Li J, Ramchandren S, Sumner CJ, Lloyd TE, Day J, Siskind CE, Yum SW, Sadjadi R, Finkel RS, Scherer SS, Pareyson D, Reilly MM, Shy ME. Disease Progression in Charcot-Marie-Tooth Disease Related to MPZ Mutations: A Longitudinal Study. Ann Neurol 2023; 93:563-576. [PMID: 36203352 PMCID: PMC9977145 DOI: 10.1002/ana.26518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The paucity of longitudinal natural history studies in MPZ neuropathy remains a barrier to clinical trials. We have completed a longitudinal natural history study in patients with MPZ neuropathies across 13 sites of the Inherited Neuropathies Consortium. METHODS Change in Charcot-Marie-Tooth Examination Score (CMTES) and Rasch modified CMTES (CMTES-R) were evaluated using longitudinal regression over a 5-year period in subjects with MPZ neuropathy. Data from 139 patients with MPZ neuropathy were examined. RESULTS The average baseline CMTES and CMTES-R were 10.84 (standard deviation [SD] = 6.0, range = 0-28) and 14.60 (SD = 7.56, range = 0-32), respectively. A mixed regression model showed significant change in CMTES at years 2-5 (mean change from baseline of 0.87 points at 2 years, p = 0.008). Subgroup analysis revealed greater change in CMTES at 2 years in subjects with axonal as compared to demyelinating neuropathy (mean change of 1.30 points [p = 0.016] vs 0.06 points [p = 0.889]). Patients with a moderate baseline neuropathy severity also showed more notable change, by estimate, than those with mild or severe neuropathy (mean 2-year change of 1.14 for baseline CMTES 8-14 [p = 0.025] vs -0.03 for baseline CMTES 0-7 [p = 0.958] and 0.25 for baseline CMTES ≥ 15 [p = 0.6897]). The progression in patients harboring specific MPZ mutations was highly variable. INTERPRETATION CMTES is sensitive to change over time in adult patients with axonal but not demyelinating forms of MPZ neuropathy. Change in CMTES was greatest in patients with moderate baseline disease severity. These findings will inform future clinical trials of MPZ neuropathies. ANN NEUROL 2023;93:563-576.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Jacob Bockhorst
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kaitlin Smith
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Isabella Moroni
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Pagliano
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Guiseppe Piscosquito
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Istituti Clinici Scientifici Maugeri, Neurorehabilitation Unit, Scientific Institute of Telese Terme (BN), Italy
| | - Matilde Laurá
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Chelsea Bacon
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Shawna Feely
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | - Tiffany Grider
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Rosemary Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | - Janel Wilcox
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David N. Herrmann
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Jun Li
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- PRA Health Sciences, Raleigh, North Carolina, USA
| | - Charlotte J. Sumner
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas E. Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Carly E. Siskind
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Sabrina W. Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard S. Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, Florida, USA
| | - Steven S. Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael E. Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
25
|
Masingue M, Fernández-Eulate G, Debs R, Tard C, Labeyrie C, Leonard-Louis S, Dhaenens CM, Masson MA, Latour P, Stojkovic T. Strategy for genetic analysis in hereditary neuropathy. Rev Neurol (Paris) 2023; 179:10-29. [PMID: 36566124 DOI: 10.1016/j.neurol.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.
Collapse
Affiliation(s)
- M Masingue
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France.
| | - G Fernández-Eulate
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - R Debs
- Service de neurophysiologie, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C Tard
- CHU de Lille, clinique neurologique, centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, 59037 Lille cedex, France
| | - C Labeyrie
- Service de neurologie, hôpital Kremlin-Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - S Leonard-Louis
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - C-M Dhaenens
- Université de Lille, Inserm, CHU de Lille, U1172-LilNCog-Lille Neuroscience & Cognition, 59000 Lille, France
| | - M A Masson
- Inserm U1127, Paris Brain Institute, ICM, Sorbonne Université, CNRS UMR 7225, hôpital Pitié-Salpêtrière, Paris, France
| | - P Latour
- Service de biochimie biologie moléculaire, CHU de Lyon, centre de biologie et pathologie Est, 69677 Bron cedex, France
| | - T Stojkovic
- Centre de référence des maladies neuromusculaires Nord/Est/Île-de-France, hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| |
Collapse
|
26
|
Kozina AA, Baryshnikova NV, Ilinskaya AY, Kim AA, Plotnikov NA, Pogodina NA, Surkova EI, Shatalov PA, Ilinsky VV. Novel mutation in the MPZ gene causes early-onset but slow-progressive Charcot-Marie-Tooth disease in a Russian family: a case report. J Int Med Res 2022; 50:3000605221139718. [PMID: 36567457 PMCID: PMC9806381 DOI: 10.1177/03000605221139718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous group of peripheral neuropathies most of which are associated with mutations in four genes including peripheral myelin protein-22 (PMP22), myelin protein zero (MPZ), gap junction protein beta1 (GJB1) and mitofusin2 (MFN2). This current case report describes the clinical and genetic characteristics of a 6-year-old male proband. A physical examination revealed muscular hypotonia. He started walking on his own at 18 months. A nerve conduction study with needle electromyography revealed conduction block. A novel MPZ mutation (c.398C > T, p.Pro133Leu) was revealed in the proband. This mutation was also found in the 32-year-old father of the proband. The father had had deformity of the feet and distal muscle weakness since childhood. The novel p.Pro133Leu pathogenic mutation was responsible for early onset but slowly progressive CMT1B. We assume that this site is an intolerant to change region in the MPZ gene. This variant in the MPZ gene is an important contributor to hereditary neuropathy with reduced nerve conduction velocity in the Russian population. This case highlights the importance of whole exome sequencing for a proper clinical diagnosis of CMT associated with a mutation in the MPZ gene.
Collapse
Affiliation(s)
- Anastasiya Aleksandrovna Kozina
- Department of Medical Genomics Group, Institute of Biomedical
Chemistry, Moscow, Russia,Department of Clinical Laboratory Diagnostics, Pirogov Russian
National Research Medical University, Moscow, Russia
| | - Natalia Vladimirovna Baryshnikova
- Department of Clinical Laboratory Diagnostics, Pirogov Russian
National Research Medical University, Moscow, Russia,Department of Science, Genotek Limited, Moscow, Russia
| | | | | | | | | | - Ekaterina Ivanovna Surkova
- Department of Science, Genotek Limited, Moscow, Russia,Ekaterina Ivanovna Surkova, Department of
Science, Genotek Limited, Nastavnicheskiipereulok 17/1, Moscow, 105120, Russia.
| | - Peter Alekseevich Shatalov
- Department of Science, Genotek Limited, Moscow, Russia,Department of Molecular Genetic Service, National Medical
Research Centre of Radiology of the Ministry of Health of the Russian
Federation, Obninsk, Russia
| | | |
Collapse
|
27
|
Cui M, Wang C, Shen Q, Ren H, Li L, Li S, Song Z, Lin W, Zhang R. Integrative analysis of omics summary data reveals putative mechanisms linked to different cell populations in systemic lupus erythematosus. Genomics 2022; 114:110435. [PMID: 35878812 DOI: 10.1016/j.ygeno.2022.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex disease involving many interactions at the molecular level, the details of which remain unclear. Here, we demonstrated an analytical paradigm of prioritizing genes and regulatory elements based on GWAS loci at the single-cell levels. Our initial step was to apply TWMR to identify causal genes and causal methylation sites in SLE. Based on the eQTL, LD and mQTL, we calculated the correlation between these genes and methylation sites. Next, we separately used gene expression and DNAm as exposure variables and outcome variables to analyze the regulatory mechanisms. We identified two mediating modes for SLE: 1) transcription mediation model and 2) epigenetic mediation model. Further, using single-cell RNA sequencing data, we revealed the cell subclusters associated with these mechanisms. Our identification of the mechanisms of SLE in different cell populations is of great significance for understanding the heterogeneity of disease in different cell populations.
Collapse
Affiliation(s)
- Mintian Cui
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Qi Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Hongbiao Ren
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Liangshuang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Shuai Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Zerun Song
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Wenbo Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
28
|
Deng J, Wang Y, Hu M, Lin J, Li Q, Liu C, Xu X. Deleterious Variation in BR Serine/Threonine Kinase 2 Classified a Subtype of Autism. Front Mol Neurosci 2022; 15:904935. [PMID: 35754711 PMCID: PMC9231588 DOI: 10.3389/fnmol.2022.904935] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, deleterious variants in the BR serine/threonine kinase 2 (BRSK2) gene have been reported in patients with autism spectrum disorder (ASD), suggesting that BRSK2 is a new high-confidence ASD risk gene, which presents an opportunity to understand the underlying neuropathological mechanisms of ASD. In this study, we performed clinical and neurobehavioral evaluations of a proband with a de novo non-sense variant in BRSK2 (p.R222X) with other reported BRSK2 mutant patients. To validate BRSK2 as an ASD risk gene, we generated a novel brsk2b-deficient zebrafish line through CRISPR/Cas9 and characterized its morphological and neurobehavioral features as well as performed molecular analysis of neurogenesis-related markers. The proband displayed typical ASD behaviors and language and motor delay, which were similar to other published BRSK2 mutant patients. Morphologically, brsk2b–/– larvae exhibited a higher embryonic mortality and rate of pericardium edema, severe developmental delay, and depigmentation as well as growth retardation in the early developmental stage. Behaviorally, brsk2b–/– zebrafish displayed significantly decreased activity in open field tests and enhanced anxiety levels in light/dark tests and thigmotaxis analysis. Specifically, brsk2b–/– zebrafish showed a prominent reduction of social interaction with peers and disrupted social cohesion among homogeneous groups. Molecularly, the mRNA expression levels of homer1b (a postsynaptic density scaffolding protein), and mbpa, mpz, and plp1b (molecular markers of oligodendrocytes and myelination) were increased in the brain tissues of adult brsk2b–/– zebrafish, while the expression level of isl1a, a marker of motor neurons, was decreased. Taken together, for the first time, we established a novel brsk2b-deficient zebrafish model that showed prominent ASD-like behaviors. In addition, the disturbed mRNA expression levels of neurogenesis-related markers implied that the processes of postsynaptic signaling as well as oligodendrocytes and myelination may be involved. This discovery may suggest a path for further research to identify the underlying neuropathological mechanisms between BRSK2 and ASD.
Collapse
Affiliation(s)
- Jingxin Deng
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Wang
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Meixin Hu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Jia Lin
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Translational Medical Center for Development and Disease, National Children's Medical Center, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| | - Chunxue Liu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Division of Child Health Care, National Children' Medical Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
29
|
Bai Y, Treins C, Volpi VG, Scapin C, Ferri C, Mastrangelo R, Touvier T, Florio F, Bianchi F, Del Carro U, Baas FF, Wang D, Miniou P, Guedat P, Shy ME, D'Antonio M. Treatment with IFB-088 Improves Neuropathy in CMT1A and CMT1B Mice. Mol Neurobiol 2022; 59:4159-4178. [PMID: 35501630 PMCID: PMC9167212 DOI: 10.1007/s12035-022-02838-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), caused by duplication of the peripheral myelin protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene, are the two most common forms of demyelinating CMT (CMT1), and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modelled by MpzR98C/ + mice that also show ER stress and an activated UPR. C3-PMP22 mice are considered to effectively model CMT1A. Altered proteostasis, ER stress and activation of the UPR have been demonstrated in mice carrying Pmp22 mutations. To determine whether enabling the ER stress/UPR and readjusting protein homeostasis would effectively treat these models of CMT1B and CMT1A, we administered Sephin1/IFB-088/icerguestat, a UPR modulator which showed efficacy in the MpzS63del model of CMT1B, to heterozygous MpzR98C and C3-PMP22 mice. Mice were analysed by behavioural, neurophysiological, morphological and biochemical measures. Both MpzR98C/ + and C3-PMP22 mice improved in motor function and neurophysiology. Myelination, as demonstrated by g-ratios and myelin thickness, improved in CMT1B and CMT1A mice and markers of UPR activation returned towards wild-type values. Taken together, our results demonstrate the capability of IFB-088 to treat a second mouse model of CMT1B and a mouse model of CMT1A, the most common form of CMT. Given the recent benefits of IFB-088 treatment in amyotrophic lateral sclerosis and multiple sclerosis animal models, these data demonstrate its potential in managing UPR and ER stress for multiple mutations in CMT1 as well as in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Vera G Volpi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Rosa Mastrangelo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Thierry Touvier
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Francesca Florio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy
| | - Frank F Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - David Wang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | | | | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute DIBIT, 20132, Milan, Italy.
| |
Collapse
|
30
|
Abati E, Manini A, Velardo D, Del Bo R, Napoli L, Rizzo F, Moggio M, Bresolin N, Bellone E, Bassi MT, D'Angelo MG, Comi GP, Corti S. Clinical and genetic features of a cohort of patients with MFN2-related neuropathy. Sci Rep 2022; 12:6181. [PMID: 35418194 PMCID: PMC9008012 DOI: 10.1038/s41598-022-10220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Charcot–Marie–Tooth disease type 2A (CMT2A) is a rare inherited axonal neuropathy caused by mutations in MFN2 gene, which encodes Mitofusin 2, a transmembrane protein of the outer mitochondrial membrane. We performed a cross-sectional analysis on thirteen patients carrying mutations in MFN2, from ten families, describing their clinical and genetic characteristics. Evaluated patients presented a variable age of onset and a wide phenotypic spectrum, with most patients presenting a severe phenotype. A novel heterozygous missense variant was detected, p.K357E. It is located at a highly conserved position and predicted as pathogenic by in silico tools. At a clinical level, the p.K357E carrier shows a severe sensorimotor axonal neuropathy. In conclusion, our work expands the genetic spectrum of CMT2A, disclosing a novel mutation and its related clinical effect, and provides a detailed description of the clinical features of a cohort of patients with MFN2 mutations. Obtaining a precise genetic diagnosis in affected families is crucial both for family planning and prenatal diagnosis, and in a therapeutic perspective, as we are entering the era of personalized therapy for genetic diseases.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy. .,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Daniele Velardo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Rizzo
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilia Bellone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi) - Medical Genetics, University of Genoa, Genoa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Maria Grazia D'Angelo
- Neuromuscular Disorder Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
31
|
Concomitant MPZ and MFN2 Gene Variants and Charcot Marie Tooth Disease in a Boy: Clinical and Genetic Analysis—Literature Review. Case Rep Pediatr 2022; 2022:3793226. [PMID: 35449525 PMCID: PMC9017559 DOI: 10.1155/2022/3793226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
Charcot- Marie- Tooth (CMT) disease includes a group of clinically and genetically heterogeneous neuropathic disorders with an estimated frequency of 1 on 2.500 individuals. CMTs are differently classified according to the age of onset, type of inheritance, and type of inheritance plus clinical features. For these disorders, more than 100 genes have been implicated as causal factors, with mutations in the PMP22 being one of the most common. The demyelinating type (CMT1) affects more than 30% of the CMTs patients and manifests with motor and sensory dysfunctions of the peripheral nervous system mainly starting with slow progressive weakness of the lower extremities. We report here a 12 year- old boy presenting with typical features of CMT1 type, hearing impairment, and inguinal hernia who at the next-generation sequence analysis displayed a concomitant presence of two variants: the c.233 C>T p.Ser 78Leu of the MPZ gene (NM_000530.6) characterized as pathogenetic and the c.1403 G>A p.Arg 468His of the MFN2 gene (NM_014874.3) characterized as VUS. Concomitant variant mutations in CMTs have been uncommonly reported. The role of these gene mutations on the clinical expression and a literature review on this topic is discussed.
Collapse
|
32
|
VerPlank JJS, Gawron J, Silvestri NJ, Feltri ML, Wrabetz L, Goldberg AL. Raising cGMP restores proteasome function and myelination in mice with a proteotoxic neuropathy. Brain 2022; 145:168-178. [PMID: 34382059 PMCID: PMC9126006 DOI: 10.1093/brain/awab249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/12/2021] [Accepted: 06/16/2021] [Indexed: 11/14/2022] Open
Abstract
Agents that raise cyclic guanosine monophosphate (cGMP) by activating protein kinase G increase 26S proteasome activities, protein ubiquitination and degradation of misfolded proteins. Therefore, they may be useful in treating neurodegenerative and other diseases caused by an accumulation of misfolded proteins. Mutations in myelin protein zero (MPZ) cause the peripheral neuropathy Charcot-Marie-Tooth type 1B (CMT1B). In peripheral nerves of a mouse model of CMT1B, where the mutant MPZS63del is expressed, proteasome activities are reduced, mutant MPZS63del and polyubiquitinated proteins accumulate and the unfolded protein response (p-eif2α) is induced. In HEK293 cells, raising cGMP stimulated ubiquitination and degradation of MPZS63del, but not of wild-type MPZ. Treating S63del mice with the phosphodiesterase 5 inhibitor, sildenafil-to raise cGMP-increased proteasome activity in sciatic nerves and reduced the levels of polyubiquitinated proteins, the proteasome reporter ubG76V-GFP and p-elF2α. Furthermore, sildenafil treatment reduced the number of amyelinated axons, and increased myelin thickness and nerve conduction velocity in sciatic nerves. Thus, agents that raise cGMP, including those widely used in medicine, may be useful therapies for CMT1B and other proteotoxic diseases.
Collapse
Affiliation(s)
- Jordan J S VerPlank
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Biochemistry, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Joseph Gawron
- Department of Biochemistry, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Nicholas J Silvestri
- Department of Biochemistry, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - M Laura Feltri
- Department of Biochemistry, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Lawrence Wrabetz
- Department of Biochemistry, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Neurology, Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Alfred L Goldberg
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Genetic Workup for Charcot–Marie–Tooth Neuropathy: A Retrospective Single-Site Experience Covering 15 Years. Life (Basel) 2022; 12:life12030402. [PMID: 35330153 PMCID: PMC8948690 DOI: 10.3390/life12030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease is the most commonly inherited neurological disorder. This study includes patients affected by CMT during regular follow-ups at the CMT clinic in Genova, a neuromuscular university center in the northwest of Italy, with the aim of describing the genetic distribution of CMT subtypes in our cohort and reporting a peculiar phenotype. Since 2004, 585 patients (447 index cases) have been evaluated at our center, 64.9% of whom have a demyelinating neuropathy and 35.1% of whom have an axonal neuropathy. A genetic diagnosis was achieved in 66% of all patients, with the following distribution: CMT1A (48%), HNPP (14%), CMT1X (13%), CMT2A (5%), and P0-related neuropathies (7%), accounting all together for 87% of all the molecularly defined neuropathies. Interestingly, we observe a peculiar phenotype with initial exclusive lower limb involvement as well as lower limb involvement that is maintained over time, which we have defined as a “strictly length-dependent” phenotype. Most patients with this clinical presentation shared variants in either HSPB1 or MPZ genes. The identification of distinctive phenotypes such as this one may help to address genetic diagnosis. In conclusion, we describe our diagnostic experiences as a multidisciplinary outpatient clinic, combining a gene-by-gene approach or targeted gene panels based on clinical presentation.
Collapse
|
34
|
Chen B, Zhang Z, Chen N, Li W, Pan H, Wang X, Ren Y, Shi Y, Tai H, Niu S. Two Novel Myelin Protein Zero Mutations in a Group of Chinese Patients. Front Neurol 2021; 12:734515. [PMID: 34925207 PMCID: PMC8674198 DOI: 10.3389/fneur.2021.734515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the myelin protein zero gene are responsible for the autosomal dominant Charcot-Marie-Tooth disease (CMT). We summarized the genetic and clinical features of six unrelated Chinese families and the genetic spectrum of Chinese patients with myelin protein zero (MPZ) mutations. Our study reports data from a group of Chinese patients consisting of five males and one female with the age of disease onset ranging from 16 to 55 years. The initial symptom in all the patients was the weakness of the lower limbs. Electrophysiological presentations suggested chronic progressive sensorimotor demyelinating polyneuropathy. Overall six mutations were identified in the cohort, including four known mutations [c.103G>T (p.D35Y), c.233C>T (p.S78L), c.293G>A (p.R98H), and c.449-1G>T], and two novel mutations [c.67+4A>G with a mild CMT1B phenotype, and (c.79delG) p.A27fs with a rapidly progressive CMT1B phenotype]. According to the literature review, there are 35 Chinese families with 28 different MPZ mutations. The MPZ mutational spectrum in Chinese patients is very heterogeneous and differs from that of Japanese and Korean individuals, although they do share several common hot spot mutations.
Collapse
Affiliation(s)
- Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Na Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Monogenic Disease Diagnosis Center for Neurological Disorders, Precision Medicine Research Center for Neurological Disorders, Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuting Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuzhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
35
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
36
|
Bosco L, Falzone YM, Previtali SC. Animal Models as a Tool to Design Therapeutical Strategies for CMT-like Hereditary Neuropathies. Brain Sci 2021; 11:1237. [PMID: 34573256 PMCID: PMC8465478 DOI: 10.3390/brainsci11091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Since ancient times, animal models have provided fundamental information in medical knowledge. This also applies for discoveries in the field of inherited peripheral neuropathies (IPNs), where they have been instrumental for our understanding of nerve development, pathogenesis of neuropathy, molecules and pathways involved and to design potential therapies. In this review, we briefly describe how animal models have been used in ancient medicine until the use of rodents as the prevalent model in present times. We then travel along different examples of how rodents have been used to improve our understanding of IPNs. We do not intend to describe all discoveries and animal models developed for IPNs, but just to touch on a few arbitrary and paradigmatic examples, taken from our direct experience or from literature. The idea is to show how strategies have been developed to finally arrive to possible treatments for IPNs.
Collapse
Affiliation(s)
| | | | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.B.); (Y.M.F.)
| |
Collapse
|
37
|
Cavallaro T, Tagliapietra M, Fabrizi GM, Bai Y, Shy ME, Vallat JM. Hereditary neuropathies: A pathological perspective. J Peripher Nerv Syst 2021; 26 Suppl 2:S42-S60. [PMID: 34499384 DOI: 10.1111/jns.12467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
Hereditary neuropathies may result from mutations in genes expressed by Schwann cells or neurons that affect selectively the peripheral nervous system (PNS) or may represent a minor or major component of complex inherited diseases that involve also the central nervous system and/or other organs and tissues. The chapter is constantly expanding and reworking, thanks to advances of molecular genetics; next-generation sequencing is identifying a plethora of new genes and is revolutionizing the diagnostic approach. In the past, diagnostic sural nerve biopsies paved the way to the discovery and elucidation of major genes and molecular pathways associated to most frequent hereditary motor-sensory neuropathies. Nowadays, a sural nerve biopsy may prove useful in selected cases for the differential diagnosis of an acquired neuropathy when clinical examination, nerve conduction studies, and molecular tests are not sufficiently informative. Skin biopsy has emerged as a minimally invasive window on the PNS, which may provide biomarkers of progression and clues to the physiopathology and molecular pathology of inherited neuropathies. The aim of our review is to illustrate the pathological features of more frequent and paradigmatic hereditary neuropathies and to highlight their correlations with the roles of the involved genes and functional consequences of related molecular defects.
Collapse
Affiliation(s)
- Tiziana Cavallaro
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Matteo Tagliapietra
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jean-Michel Vallat
- Department of Neurology, National Reference Center for "Rare Peripheral Neuropathies", CHU Dupuytren, Limoges, France
| |
Collapse
|
38
|
Yamazaki R, Osanai Y, Kouki T, Shinohara Y, Huang JK, Ohno N. Macroscopic detection of demyelinated lesions in mouse PNS with neutral red dye. Sci Rep 2021; 11:16906. [PMID: 34413421 PMCID: PMC8377033 DOI: 10.1038/s41598-021-96395-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Lysophosphatidylcholine (LPC)-induced demyelination is a versatile animal model that is frequently used to identify and examine molecular pathways of demyelination and remyelination in the central (CNS) and peripheral nervous system (PNS). However, identification of focally demyelinated lesion had been difficult and usually required tissue fixation, sectioning and histological analysis. Recently, a method for labeling and identification of demyelinated lesions in the CNS by intraperitoneal injection of neutral red (NR) dye was developed. However, it remained unknown whether NR can be used to label demyelinated lesions in PNS. In this study, we generated LPC-induced demyelination in sciatic nerve of mice, and demonstrated that the demyelinated lesions at the site of LPC injection were readily detectable at 7 days postlesion (dpl) by macroscopic observation of NR labeling. Moreover, NR staining gradually decreased from 7 to 21 dpl over the course of remyelination. Electron microscopy analysis of NR-labeled sciatic nerves at 7 dpl confirmed demyelination and myelin debris in lesions. Furthermore, fluorescence microscopy showed NR co-labeling with activated macrophages and Schwann cells in the PNS lesions. Together, NR labeling is a straightforward method that allows the macroscopic detection of demyelinated lesions in sciatic nerves after LPC injection.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiaki Shinohara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
39
|
Xie Y, Lin Z, Liu L, Li X, Huang S, Zhao H, Wang B, Zeng S, Cao W, Li L, Zhu X, Huang S, Yang H, Wang M, Hu Z, Wang J, Guo J, Shen L, Jiang H, Zuchner S, Tang B, Zhang R. Genotype and phenotype distribution of 435 patients with Charcot-Marie-Tooth disease from central south China. Eur J Neurol 2021; 28:3774-3783. [PMID: 34255403 DOI: 10.1111/ene.15024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE The purpose was to provide an overview of genotype and phenotype distribution in a cohort of patients with Charcot-Marie-Tooth disease (CMT) and related disorders from central south China. METHODS In all, 435 patients were enrolled and detailed clinical data were collected. Multiplex ligation-dependent probe amplification for PMP22 duplication/deletion and CMT multi-gene panel sequencing were performed. Whole exome sequencing was further applied in the remaining patients who failed to achieve molecular diagnosis. RESULTS Among the 435 patients, 216 had CMT1, 14 had hereditary neuropathy with pressure palsies (HNPP), 178 had CMT2, 24 had distal hereditary motor neuropathy (dHMN) and three had hereditary sensory and autonomic neuropathy (HSAN). The overall molecular diagnosis rate was 70%: 75.7% in CMT1, 100% in HNPP, 64.6% in CMT2, 41.7% in dHMN and 33.3% in HSAN. The most common four genotypes accounted for 68.9% of molecular diagnosed patients. Relatively frequent causes were missense changes in PMP22 (4.6%) and SH3TC2 (2.3%) in CMT1; and GDAP1 (5.1%), IGHMBP2 (4.5%) and MORC2 (3.9%) in CMT2. Twenty of 160 detected pathogenic variants and the associated phenotypes have not been previously reported. Broad phenotype spectra were observed in six genes, amongst which the pathogenic variants in BAG3 and SPTLC1 were detected in two sporadic patients presenting with the CMT2 phenotype. CONCLUSIONS Our results provided a unique genotypic and phenotypic landscape of patients with CMT and related disorders from central south China, including a relatively high proportion of CMT2 and lower occurrence of PMP22 duplication. The broad phenotype spectra in certain genes have advanced our understanding of CMT.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China.,Health Management Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Binghao Wang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zeng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiying Zhu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siwei Huang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Honglan Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengli Wang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Lift Sciences, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Stephan Zuchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Howard P, Feely SME, Grider T, Bacha A, Scarlato M, Fazio R, Quattrini A, Shy ME, Previtali SC. Loss of function MPZ mutation causes milder CMT1B neuropathy. J Peripher Nerv Syst 2021; 26:177-183. [PMID: 33960567 DOI: 10.1111/jns.12452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Mutations in Myelin Protein Zero (MPZ) cause CMT1B, the second leading cause of CMT1. Many of the >200 mutations cause neuropathy through a toxic gain of function by the mutant protein such as ER retention, activation of the Unfolded Protein Response (UPR) or disruption of myelin compaction. While there is extensive literature on the loss of function consequences of MPZ in heterozygous Mpz +/- null mice, there is little known of the consequences of MPZ haploinsufficiency in humans. We identified six patients from different families with p.Tyr68Ter or p.Asp104fs heterozygous mutations of MPZ that are predicted to cause a premature termination and nonsense mediated decay of the mutant allele. Five patients were evaluated in Milan and one in Iowa City; all should be haploinsufficient for MPZ. Patients were evaluated clinically and by electrophysiology. Sensory ataxia dominated the clinical presentation with only mild weakness present in five of the six patients. Symptoms presented in adulthood in all patients and only one individual had a CMTNSv2 >5. Deep tendon reflexes were absent in all patients. Patients with likely MPZ loss of function due to mutations that cause haplodeficiency in MPZ have a mild, predominantly large fiber sensory neuropathy that serves as a human equivalent to the neuropathy observed in heterozygous Mpz null mice. Successful therapeutic approaches in treating Mpz deficient mice may be candidates for trials in these and similar patients.
Collapse
Affiliation(s)
- Paige Howard
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Tiffany Grider
- University of Iowa Healthcare Neurology, Iowa City, Iowa, USA
| | - Alexa Bacha
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marina Scarlato
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Raffaella Fazio
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Angelo Quattrini
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Michael E Shy
- Roy and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stefano C Previtali
- Institute of Experimental Neurology (InSpe) and Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
41
|
Kim HJ, Nam SH, Kwon HM, Lim SO, Park JH, Kim HS, Kim SB, Lee KS, Lee JE, Choi BO, Chung KW. Genetic and clinical spectrums in Korean Charcot-Marie-Tooth disease patients with myelin protein zero mutations. Mol Genet Genomic Med 2021; 9:e1678. [PMID: 33825325 PMCID: PMC8222852 DOI: 10.1002/mgg3.1678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background Charcot‐Marie‐Tooth disease (CMT) is the most common disorder of inherited peripheral neuropathies characterized by distal muscle weakness and sensory loss. CMT is usually classified into three types, demyelinating, axonal, and intermediate neuropathies. Mutations in myelin protein zero (MPZ) gene which encodes a transmembrane protein of the Schwann cells as a major component of peripheral myelin have been reported to cause various type of CMT. Methods This study screened MPZ mutations in Korean CMT patients (1,121 families) by whole exome sequencing and targeted sequencing. Results We identified 22 pathogenic or likely pathogenic MPZ mutations in 36 families as the underlying cause of the CMT1B, CMTDID, or CMT2I subtypes. Among them, five mutations were novel. The frequency of CMT patients with the MPZ mutations was similar or slightly lower compared to other ethnic groups. Conclusions We showed that the median onset ages and clinical phenotypes varied by subtypes: the most severe in the CMT1B group, and the mildest in the CMT2I group. This study also observed a clear correlation that earlier onsets cause more severe symptoms. We believe that this study will provide useful reference data for genetic and clinical information on CMT patients with MPZ mutations in Korea.
Collapse
Affiliation(s)
- Hye Jin Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Hyun Nam
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Si On Lim
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Jae Hong Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seou, Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Suk Lee
- Department of Physics Education, Kongju National University, Gongju, Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
42
|
Pipis M, Feely SME, Polke JM, Skorupinska M, Perez L, Shy RR, Laura M, Morrow JM, Moroni I, Pisciotta C, Taroni F, Vujovic D, Lloyd TE, Acsadi G, Yum SW, Lewis RA, Finkel RS, Herrmann DN, Day JW, Li J, Saporta M, Sadjadi R, Walk D, Burns J, Muntoni F, Ramchandren S, Horvath R, Johnson NE, Züchner S, Pareyson D, Scherer SS, Rossor AM, Shy ME, Reilly MM. Natural history of Charcot-Marie-Tooth disease type 2A: a large international multicentre study. Brain 2021; 143:3589-3602. [PMID: 33415332 PMCID: PMC7805791 DOI: 10.1093/brain/awaa323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 01/02/2023] Open
Abstract
Mitofusin-2 (MFN2) is one of two ubiquitously expressed homologous proteins in eukaryote cells, playing a critical role in mitochondrial fusion. Mutations in MFN2 (most commonly autosomal dominant) cause Charcot-Marie-Tooth disease type 2A (CMT2A), the commonest axonal form of CMT, with significant allelic heterogeneity. Previous, moderately-sized, cross sectional genotype-phenotype studies of CMT2A have described the phenotypic spectrum of the disease, but longitudinal natural history studies are lacking. In this large multicentre prospective cohort study of 196 patients with dominant and autosomal recessive CMT2A, we present an in-depth genotype-phenotype study of the baseline characteristics of patients with CMT2A and longitudinal data (1–2 years) to describe the natural history. A childhood onset of autosomal dominant CMT2A is the most predictive marker of significant disease severity and is independent of the disease duration. When compared to adult onset autosomal dominant CMT2A, it is associated with significantly higher rates of use of ankle-foot orthoses, full-time use of wheelchair, dexterity difficulties and also has significantly higher CMT Examination Score (CMTESv2) and CMT Neuropathy Score (CMTNSv2) at initial assessment. Analysis of longitudinal data using the CMTESv2 and its Rasch-weighted counterpart, CMTESv2-R, show that over 1 year, the CMTESv2 increases significantly in autosomal dominant CMT2A (mean change 0.84 ± 2.42; two-tailed paired t-test P = 0.039). Furthermore, over 2 years both the CMTESv2 (mean change 0.97 ± 1.77; two-tailed paired t-test P = 0.003) and the CMTESv2-R (mean change 1.21 ± 2.52; two-tailed paired t-test P = 0.009) increase significantly with respective standardized response means of 0.55 and 0.48. In the paediatric CMT2A population (autosomal dominant and autosomal recessive CMT2A grouped together), the CMT Pediatric Scale increases significantly both over 1 year (mean change 2.24 ± 3.09; two-tailed paired t-test P = 0.009) and over 2 years (mean change 4.00 ± 3.79; two-tailed paired t-test P = 0.031) with respective standardized response means of 0.72 and 1.06. This cross-sectional and longitudinal study of the largest CMT2A cohort reported to date provides guidance for variant interpretation, informs prognosis and also provides natural history data that will guide clinical trial design.
Collapse
Affiliation(s)
- Menelaos Pipis
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - James M Polke
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mariola Skorupinska
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Laura Perez
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rosemary R Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matilde Laura
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jasper M Morrow
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dragan Vujovic
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas E Lloyd
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gyula Acsadi
- Connecticut Children's Medical Center, Hartford, CT, USA
| | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard S Finkel
- Center for Experimental Neurotherapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David N Herrmann
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - John W Day
- Department of Neurology, Stanford Health Care, Stanford, CA, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Reza Sadjadi
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Walk
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua Burns
- University of Sydney School of Health Sciences and Children's Hospital at Westmead, Sydney, Australia
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Biomedical Research Centre at UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital, London, UK
| | | | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander M Rossor
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
43
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
44
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
45
|
Fernandez-Garcia MA, Stettner GM, Kinali M, Clarke A, Fallon P, Knirsch U, Wraige E, Jungbluth H. Genetic neuropathies presenting with CIDP-like features in childhood. Neuromuscul Disord 2021; 31:113-122. [PMID: 33386210 DOI: 10.1016/j.nmd.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Inherited neuropathies are amongst the most common neuromuscular disorders. The distinction from chronic inflammatory demyelinating polyneuropathy (CIDP) may be challenging, considering its rarity in childhood, that genetic neuropathies may show secondary inflammatory features, and that subacute CIDP presentations may closely mimic the disease course of inherited disorders. The overlap between genetic neuropathies and CIDP is increasingly recognized in adults but rarely reported in children. Here we report 4 children with a neuropathy of subacute onset, initially considered consistent with an immune-mediated neuropathy based on suggestive clinical, laboratory and neurophysiological features. None showed convincing response to intravenous immunoglobulin therapy, leading to re-evaluation and confirmation of a genetic neuropathy in each case (including PMP22, MPZ and SH3TC2 genes). A review of the few Paediatric cases reported in the literature showed similar delays in diagnosis and no significant changes to immunomodulatory treatment. Our findings emphasize the importance of considering an inherited neuropathy in children with a CIDP-like presentation. In addition to an inconclusive response to treatment, subtle details of the family and developmental history may indicate a genetic rather than an acquired background. Correct diagnostic confirmation of a genetic neuropathy in a child is crucial for appropriate management, prognostication and genetic counselling.
Collapse
Affiliation(s)
- Miguel A Fernandez-Garcia
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, F02 - Becket House, Lambeth Palace Road, London SE1 7EU, United Kingdom
| | - Georg M Stettner
- Division of Paediatric Neurology, University Children´s Hospital Zurich, Zurich, Switzerland
| | - Maria Kinali
- Department of Paediatric Neurology, The Portland Hospital, HCA Healthcare, United Kingdom; Imperial College, London, United Kingdom
| | - Antonia Clarke
- Department of Paediatric Neurosciences, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Penny Fallon
- Department of Paediatric Neurosciences, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Ursula Knirsch
- Division of Paediatric Neurology, University Children´s Hospital Zurich, Zurich, Switzerland
| | - Elizabeth Wraige
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, F02 - Becket House, Lambeth Palace Road, London SE1 7EU, United Kingdom
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, F02 - Becket House, Lambeth Palace Road, London SE1 7EU, United Kingdom; Muscle Signalling Section, Randall Division for Cell and Molecular Biophysics, King's College, London, United Kingdom; Department of Basic and Clinical Neuroscience, King's College, IoPPN, London, United Kingdom.
| |
Collapse
|
46
|
Taniguchi T, Ando M, Okamoto Y, Yoshimura A, Higuchi Y, Hashiguchi A, Shiga K, Hayashida A, Hatano T, Ishiura H, Mitsui J, Hattori N, Mizuno T, Nakagawa M, Tsuji S, Takashima H. Genetic spectrum of Charcot-Marie-Tooth disease associated with myelin protein zero gene variants in Japan. Clin Genet 2020; 99:359-375. [PMID: 33179255 PMCID: PMC7898366 DOI: 10.1111/cge.13881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
We aimed to reveal the genetic features associated with MPZ variants in Japan. From April 2007 to August 2017, 64 patients with 23 reported MPZ variants and 21 patients with 17 novel MPZ variants were investigated retrospectively. Variation in MPZ variants and the pathogenicity of novel variants was examined according to the American College of Medical Genetics standards and guidelines. Age of onset, cranial nerve involvement, serum creatine kinase (CK), and cerebrospinal fluid (CSF) protein were also analyzed. We identified 64 CMT patients with reported MPZ variants. The common variants observed in Japan were different from those observed in other countries. We identified 11 novel pathogenic variants from 13 patients. Six novel MPZ variants in eight patients were classified as likely benign or uncertain significance. Cranial nerve involvement was confirmed in 20 patients. Of 30 patients in whom serum CK levels were evaluated, eight had elevated levels. Most of the patients had age of onset >20 years. In another subset of 30 patients, 18 had elevated CSF protein levels; four of these patients had spinal diseases and two had enlarged nerve root or cauda equina. Our results suggest genetic diversity across patients with MPZ variants.
Collapse
Affiliation(s)
- Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kensuke Shiga
- Department of Neurology, Matsushita Memorial Hospital, Osaka, Japan.,Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Arisa Hayashida
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Masanori Nakagawa
- Department of Neurology, Kyoto prefectural University of Medicine, Kyoto, Japan.,North Medical Center, Kyoto prefectural University of Medicine, Kyoto, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
47
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
48
|
Cardellini D, Zanette G, Taioli F, Bertolasi L, Ferrari S, Cavallaro T, Fabrizi GM. CIDP, CMT1B, or CMT1B plus CIDP? Neurol Sci 2020; 42:1127-1130. [PMID: 33070202 DOI: 10.1007/s10072-020-04789-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
Charcot-Marie-Tooth disease type 1 (CMT1) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) have distinct clinical and neurophysiological features that result from dysmyelination in CMT1 and macrophage-mediated segmental demyelination in CIDP. CMT1 may occur in genetically isolated cases with atypical presentations that converge phenotypically with CIDP; in rare cases, however, CMT1 may be complicated by superimposed CIDP. We report the case of a patient harboring a de novo heterozygous null mutation of the myelin protein zero (MPZ) gene and affected by subclinical CMT1B who became symptomatic due to superimposed CIDP. Peripheral nerve high-resolution ultrasound (HRUS) aided in establishing the coexistence of CMT1B and CIDP; the diagnosis was further supported by favorable clinical, neurophysiological, and ultrasound responses to immunoglobulin therapy.
Collapse
Affiliation(s)
- Davide Cardellini
- Section of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giampietro Zanette
- Neurology Division, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| | - Federica Taioli
- Section of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Section of Neurology B, Department of Neuroscience, University Hospital G.B. Rossi, AOUI Verona, P.le LA Scuro, 10 37134, Verona, VR, Italy
| | - Laura Bertolasi
- Section of Neurology B, Department of Neuroscience, University Hospital G.B. Rossi, AOUI Verona, P.le LA Scuro, 10 37134, Verona, VR, Italy
| | - Sergio Ferrari
- Section of Neurology B, Department of Neuroscience, University Hospital G.B. Rossi, AOUI Verona, P.le LA Scuro, 10 37134, Verona, VR, Italy
| | - Tiziana Cavallaro
- Section of Neurology B, Department of Neuroscience, University Hospital G.B. Rossi, AOUI Verona, P.le LA Scuro, 10 37134, Verona, VR, Italy
| | - Gian Maria Fabrizi
- Section of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
- Section of Neurology B, Department of Neuroscience, University Hospital G.B. Rossi, AOUI Verona, P.le LA Scuro, 10 37134, Verona, VR, Italy.
| |
Collapse
|
49
|
Scapin C, Ferri C, Pettinato E, Bianchi F, Del Carro U, Feltri ML, Kaufman RJ, Wrabetz L, D'Antonio M. Phosphorylation of eIF2α Promotes Schwann Cell Differentiation and Myelination in CMT1B Mice with Activated UPR. J Neurosci 2020; 40:8174-8187. [PMID: 32973043 PMCID: PMC7574653 DOI: 10.1523/jneurosci.0957-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Myelin Protein Zero (MPZ/P0) is the most abundant glycoprotein of peripheral nerve myelin. P0 is synthesized by myelinating Schwann cells, processed in the endoplasmic reticulum (ER) and delivered to myelin via the secretory pathway. The mutant P0S63del (deletion of serine 63 in the extracellular domain of P0), that causes Charcot-Marie-Tooth type 1B (CMT1B) neuropathy in humans and a similar demyelinating neuropathy in transgenic mice, is instead retained the ER where it activates an unfolded protein response. Under ER-stress conditions, protein kinase R-like endoplasmic reticulum kinase (PERK) phosphorylates eukaryotic initiation factor 2α (eIF2α) to attenuate global translation, thus reducing the misfolded protein overload in the ER. Genetic and pharmacological inactivation of Gadd34 (damage-inducible protein 34), a subunit of the PP1 phosphatase complex that promotes the dephosphorylation of eIF2α, prolonged eIF2α phosphorylation and improved motor, neurophysiological, and morphologic deficits in S63del mice. However, PERK ablation in S63del Schwann cells ameliorated, rather than worsened, S63del neuropathy despite reduced levels of phosphorylated eIF2α. These contradictory findings prompted us to genetically explore the role of eIF2α phosphorylation in P0S63del-CMT1B neuropathy through the generation of mice in which eIF2α cannot be phosphorylated specifically in Schwann cells. Morphologic and electrophysiological analysis of male and female S63del mice showed a worsening of the neuropathy in the absence of eIF2α phosphorylation. However, we did not detect significant changes in ER stress levels, but rather a dramatic increase of the MEK/ERK/c-Jun pathway accompanied by a reduction in expression of myelin genes and a delay in Schwann cell differentiation. Our results support the hypothesis that eIF2α phosphorylation is protective in CMT1B and unveil a possible cross talk between eIF2α and the MEK/ERK pathway in neuropathic nerves.SIGNIFICANCE STATEMENT In the P0S63del (deletion of serine 63 in the extracellular domain of P0) mouse model of Charcot-Marie-Tooth type 1B (CMT1B), the genetic and pharmacological inhibition of Gadd34 (damage-inducible protein 34) prolonged eukaryotic initiation factor 2α (eIF2α) phosphorylation, leading to a proteostatic rebalance that significantly ameliorated the neuropathy. Yet, ablation of protein kinase R-like endoplasmic reticulum kinase (PERK) also ameliorated the S63del neuropathy, despite reduced levels of eIF2α phosphorylation (P-eIF2α). In this study, we provide genetic evidence that eIF2α phosphorylation has a protective role in CMT1B Schwann cells by limiting ERK/c-Jun hyperactivation. Our data support the targeting of the P-eIF2α/Gadd34 complex as a therapeutic avenue in CMT1B and also suggest that PERK may hamper myelination via mechanisms outside its role in the unfolded protein response.
Collapse
Affiliation(s)
- Cristina Scapin
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Emanuela Pettinato
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Bianchi
- Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Neurology, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacob School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, California 92130
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Neurology, State University of New York at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Jacob School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203
| | - Maurizio D'Antonio
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
50
|
Abstract
Abstract
Inherited peripheral neuropathy is the most common hereditary neuromuscular disease with a prevalence of about 1:2,500. The most frequent form is Charcot-Marie-Tooth disease (CMT, or hereditary motor and sensory neuropathy [HMSN]). Other clinical entities are hereditary neuropathy with liability to pressure palsies (HNPP), distal hereditary motor neuropathies (dHMN), and hereditary sensory and autonomic neuropathies (HSAN). With the exception of HNPP, which is almost always caused by defects of the PMP22 gene, all other forms show genetic heterogeneity with altogether more than 100 genes involved. Mutation detection rates vary considerably, reaching up to 80 % in demyelinating CMT (CMT1) but are still as low as 10–30 % in axonal CMT (CMT2), dHMN, and HSAN. Based on current information, analysis of only four genes (PMP22, GJB1, MPZ, MFN2) identifies 80–90 % of CMT-causing mutations that can be detected in all known disease genes. For the remaining patients, parallel analysis of multiple neuropathy genes using next-generation sequencing is now replacing phenotype-oriented multistep gene-by-gene sequencing. Such approaches tend to generate a wealth of genetic information that requires comprehensive evaluation of the pathogenic relevance of identified variants. In this review, we present current classification systems, specific phenotypic clues, and diagnostic yields in the different subgroups of hereditary CMT and motor neuropathies.
Collapse
|