1
|
Fadakar H, Rudra P, Adhikari A, Perera GK, Sirimanne V, Kaur D, Wong H, Yiu KY, Schweitzer D, Akefe IO. Dietary interventions targeting the neurolipidome in epilepsy: From preclinical models to clinical applications and future therapeutic approaches. Neurosci Biobehav Rev 2025; 175:106242. [PMID: 40472945 DOI: 10.1016/j.neubiorev.2025.106242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/02/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025]
Abstract
Epilepsy is a neurological disorder affecting approximately 50 million people globally and is characterised by recurrent, unprovoked seizures resulting from abnormal, excessive synchronised firing of neurons. Developing new therapeutic targets and biomarkers is key to improving the diagnosis, treatment, and management. This scoping review examines the current literature on the preclinical and clinical applications of dietary interventions that target the neurolipidome in epilepsy. Specifically, it investigates the role of lipids in the underlying pathogenesis of epilepsy. A comprehensive search of databases was conducted to identify peer-reviewed articles published in the past ten years. Original research articles focusing on both adult and paediatric epilepsy and disrupted lipid metabolism were included, resulting in a total of 101 papers. Our review identified several key lipids implicated in the pathogenesis of epilepsy, including sphingolipids, free fatty acids, endocannabinoids, cholesterol, triglycerides, and phospholipids, and also explores the complex interactions between these lipids and their roles in the disease process. Furthermore, our study highlighted that the Ketogenic Diet (KD) and Modified Atkins Diet (MAD) have proven effective adjunctive or alternative treatments in paediatric and adult populations, improving patient quality of life and reducing seizure frequency. Additionally, treatment with lipid-based supplements, such as eicosapentaenoic acid, docosahexaenoic acid, fish oil, and cannabidiol, has been associated with a reduction in seizure rates in patients with drug-resistant epilepsy. In summary, findings from this study indicate that KD and MAD lipid-based supplements are effective for managing epilepsy in paediatrics, adults, and animal models. However, further research is necessary to elucidate the pathophysiological mechanisms underlying the role of lipids in the development and progression of epilepsy.
Collapse
Affiliation(s)
- Hasti Fadakar
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Priyanka Rudra
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Apil Adhikari
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Vichari Sirimanne
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Dayajyot Kaur
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Huon Wong
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kwan Yiu Yiu
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Centre for Neurosciences, Mater Hospital South Brisbane, QLD 4101, Australia.
| | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
2
|
Falsaperla R, Sortino V, Soler MA, Spatuzza M, Fortuna S, Salpietro V. AMPA Receptor Modulation Through Medium-Chain Triglycerides and Decanoic Acid Supports Nutritional Intervention in Pediatric Epilepsy. Nutrients 2025; 17:1805. [PMID: 40507074 PMCID: PMC12157101 DOI: 10.3390/nu17111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/20/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
Background: Developmental epileptic encephalopathies (DEEs) are often associated with variably severe cognitive and motor impairment and frequent refractory epilepsy, with many children not achieving adequate seizure control via standard antiepileptic medications. The classic ketogenic diet (KD) has proven effective in reducing seizure frequency and/or severity in a category of DEEs and in certain refractory epilepsies of infancy. However, its multifaceted mechanisms, e.g., epigenetic modulation, anti-inflammatory and antioxidative effects, and direct neuronal excitability changes, are balanced by a high burden and low long-term adherence. Medium-chain triglycerides (MCTs), particularly decanoic acid (C10:0), have gained attention in recent years for their potential direct inhibitory action on AMPA receptors, contributing to seizure reduction. Methods: A systematic review was conducted, including articles from January 2000 to January 2025, to explore the potential role of medium-chain triglyceride (MCT) add-on to classic KD and as MCT supplementation in free diets in the management of pediatric drug-resistant epilepsy (DRE). Results: Selected studies show how the action of MCTs, and decanoic acid in particular, is via negative modulation of AMPA receptors, with a positive impact on epileptic seizures. Conclusions: This review discusses the complexities of implementing and sustaining KD in children and presents recent pre-clinical and clinical evidence, including trials where MCTs (often enriched in decanoic acid) serve as an add-on therapy in both ketogenic and free/unrestricted diets. The summarized findings reinforce the therapeutic potential of MCTs, highlighting both the beneficial seizure outcomes and the hurdles that remain to be addressed through future research.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Department of Medical Science-Pediatrics, University of Ferrara, 44124 Ferrara, Italy
| | - Vincenzo Sortino
- Pediatrics and Pediatric Emergency Department, Azienda Ospedaliero-Universitaria Policlinico “Rodolico-San Marco”, San Marco Hospital, 95121 Catania, Italy;
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, 95126 Catania, Italy
| | - Miguel Angel Soler
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, 33100 Udine, Italy;
| | - Michela Spatuzza
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, 95126 Catania, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Via Melen 83, B Block, 16163 Genova, Italy;
| | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
3
|
Wang L, Huang J, Liu Z, Wang C. Decoding the Secrets of Odor-Active Compounds in Dark Tea. Compr Rev Food Sci Food Saf 2025; 24:e70206. [PMID: 40421835 DOI: 10.1111/1541-4337.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/23/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Dark tea has received growing attention in recent years due to its distinctive aroma and potential health benefits. The overall aroma profile of dark tea is determined by the combined effects of diverse odor-active compounds (OACs). However, comprehensive studies on these compounds remain limited. Beyond its role in sensory perception, could the distinctive aroma of dark tea also exert physiological functions? Existing research has primarily focused on the health benefits of non-volatile components in dark tea, such as tea polyphenols, tea polysaccharides, and theanine. However, the potential of OACs to influence physiological processes via olfactory receptors (ORs) remains underexplored in the literature. Accordingly, we systematically classify and comprehensively review OACs. Furthermore, we examine OAC-OR interactions, encompassing not only their roles in olfactory recognition and emotion regulation via nasal ORs but also their health benefits and potential therapeutic applications mediated by non-nasal ORs. Interestingly, our findings reveal that OACs follow a "structure-similarity-function-convergence" trend in both bioactivity and aromatic properties. Specifically, structurally similar OACs not only impart analogous aromatic profiles but may also share comparable physiological functions. This phenomenon provides new insights into the health potential of flavor compounds. This review not only enhances our understanding of OACs in dark tea but also systematically, and for the first time, explores the potential health-related functions mediated by interactions between OACs and ORs. It offers new insights for future integrative research on food flavor and health and may shed light on the synergistic role of odor and bioactive compounds in health regulation.
Collapse
Affiliation(s)
- Lianqing Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P. R. China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P. R. China
- Department of Food Nutrition and Health, The China Modern Agricultural Joint Graduate Institution, Zhengzhou, Henan, P. R. China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P. R. China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, P. R. China
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha, Hunan, P. R. China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P. R. China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P. R. China
- Department of Food Nutrition and Health, The China Modern Agricultural Joint Graduate Institution, Zhengzhou, Henan, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, P. R. China
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha, Hunan, P. R. China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, P. R. China
| | - Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, P. R. China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, P. R. China
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha, Hunan, P. R. China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, P. R. China
| |
Collapse
|
4
|
Kumar A, Kumari S, Dhiman P, Singh D. Medium-Chain Triglycerides Supplementation Protects Epilepsy-Associated Behavioral Impairments in a Mouse Model. J Biochem Mol Toxicol 2025; 39:e70213. [PMID: 40114545 DOI: 10.1002/jbt.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/01/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Presently there has been a growing interest in the development of dietary-based interventions as alternative therapies to combat chronic neurological conditions like epilepsy. Medium-chain triglycerides (MCT) are composed of three fatty acids attached to a glycerol backbone and have shown several beneficial effects in various neurological diseases. The present study investigated MCT supplementation's impact on seizure severity and associated neurobehavioral comorbidities in a pentylenetetrazole (PTZ) mouse kindling model. Mice were administered 35 mg/kg (i.p.) of PTZ every other day for kindling induction. The kindled mice were then subjected to MCT supplementation for over 25 days with seizure scoring at every 5th day following PTZ exposure. Behavioral analysis was initiated at the end of 25 days of the MCT supplementation. After that, lipid peroxidation assay, and, gene and protein expression studies were performed in the isolated hippocampus. MCT significantly decreased seizure severity scores compared to control. The treatment reduced immobility duration in the forced swim and tail suspension tests, indicating a reversal of seizures-associated depression-like behavior. A significant reduction in the percentage of spontaneous alternation was observed in the kindled control group in the T-maze test, which remained unchanged following MCT supplementation in the treated group. Furthermore, no change was observed in the locomotion and anxiety index of the kindled mice supplemented with MCT compared to the control group. In addition, the supplementation attenuated the altered hippocampal lipid peroxidation, and mRNA and protein levels of mTOR and Gsk-3β. The study concluded that MCT supplementation suppresses epileptic seizures and associated depression-like behavior in kindled mice via interacting mTOR and Gsk-3β signaling.
Collapse
Affiliation(s)
- Amit Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Poonam Dhiman
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
5
|
Jiao D, Xu L, Gu Z, Yan H, Shen D, Gu X. Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies. Neural Regen Res 2025; 20:917-935. [PMID: 38989927 PMCID: PMC11438347 DOI: 10.4103/nrr.nrr-d-23-01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 07/12/2024] Open
Abstract
Epilepsy is a severe, relapsing, and multifactorial neurological disorder. Studies regarding the accurate diagnosis, prognosis, and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy. The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression, protein expression, ion channel activity, energy metabolites, and gut microbiota composition. Satisfactory results are lacking for conventional treatments for epilepsy. Surgical resection of lesions, drug therapy, and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy. Non-pharmacological treatments, such as a ketogenic diet, gene therapy for nerve regeneration, and neural regulation, are currently areas of research focus. This review provides a comprehensive overview of the pathogenesis, diagnostic methods, and treatments of epilepsy. It also elaborates on the theoretical basis, treatment modes, and effects of invasive nerve stimulation in neurotherapy, including percutaneous vagus nerve stimulation, deep brain electrical stimulation, repetitive nerve electrical stimulation, in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation. Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures. Additionally, many new technologies for the diagnosis and treatment of epilepsy are being explored. However, current research is mainly focused on analyzing patients' clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level, which has led to a lack of consensus regarding the mechanisms related to the disease.
Collapse
Affiliation(s)
- Dian Jiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lai Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingding Shen
- Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Khatami SH, Alehossein P, Ehtiati S, Zarei T, Salmani F, Bagherzadeh S, Razmafrooz M, Rajabibazl M, Halimi A, Shahmohammadi MR, Jouibari MF, Tafakhori A, Karima S. Therapeutic Efficacy of Intermittent Ketogenesis in Modulating Adenosine Metabolism, Immune Response, and Seizure Severity in Refractory Temporal Lobe Epilepsy: A Pilot Human Study. Inflammation 2025:10.1007/s10753-025-02264-x. [PMID: 39920557 DOI: 10.1007/s10753-025-02264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Temporal lobe epilepsy (TLE) is a common neurological disorder characterized by recurrent seizures originating in the temporal lobe, often affecting patients' physical, cognitive, and social well-being. Despite the availability of antiseizure medication (ASMs), approximately 30% of TLE patients exhibit drug-resistant seizures, emphasizing the need for alternative therapeutic approaches. Ketogenic diets, known for their anticonvulsant effects, have shown promise in managing drug-resistant epilepsy. However, their demanding high-fat, low-carbohydrate regimens pose significant adherence challenges. Medium-chain triglyceride (MCT) offers a viable alternative by inducing ketosis periodically without the need for continuous dietary restrictions. This study evaluated seizure severity, biochemical markers, and immune-related factors in TLE patients. The intervention group received neuro-Capridin caprylate and caprate (n-CAP), while the control group did not. Significant findings included increased plasma ATP and adenosine levels in the treatment group, along with higher expression of ADORA1 and CD73 and reduced expression of ADK. Corresponding protein changes were observed, with increased CD73 and decreased ADK levels. Caprylate and Caprate also elevated regulatory T cells and reduced proinflammatory cytokines (TNF-α, IL-6, IL-1β). These changes were associated with significant reductions in seizure severity and frequency. Intermittent ketogenesis through the consumption of Caprylate and Caprate effectively reduced seizures and improved immune and metabolic markers in drug-resistant TLE patients. These findings highlight its potential as a complementary therapy, warranting further exploration of its long-term impact and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alehossein
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Tayebe Zarei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sadegh Bagherzadeh
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Razmafrooz
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Aram Halimi
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Faghih Jouibari
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| |
Collapse
|
7
|
Shin HJ, Ryu S, Lee N, Lee E, Ko A, Kang HC, Lee JS, Kim SH, Kim HD. Decanoic acid-enriched ketogenic diet in refractory epilepsy. Front Neurol 2025; 16:1524799. [PMID: 39931550 PMCID: PMC11809036 DOI: 10.3389/fneur.2025.1524799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To assess the anti-seizure efficacy and safety of a C10-enriched medium-chain triglyceride (MCT) ketogenic diet (KD) compared with the classic KD in pediatric patients with refractory epilepsy. Methods This 16-week, open-label, randomized, controlled, crossover pilot study was conducted at Severance Children's Hospital, Seoul, South Korea, between August 2022 and September 2023. Fifteen pediatric patients with refractory epilepsy were enrolled and received classic KD and C10-enriched KD for 8 weeks each. The study compared seizure reduction rate, tolerability, and safety of the two diets. Results Fifteen patients were enrolled. Patients were divided into 2 groups depending on the type of KD initiated. Ten patients completed the trial. Initial treatment with the C10-enriched KD resulted in seizure reduction in all five patients, with two becoming seizure-free. Initial treatment with classic KD was effective in two out of five patients. Upon crossover, those initially on C10-enriched KD maintained their seizure reduction, while patients initially on the classic KD showed additional seizure reduction when switched to C10-enriched KD. Adverse effects included transient hypoglycemia, metabolic acidosis, hypercalciuria, and gastrointestinal symptoms, all of which were manageable. Discussion The C10-enriched KD demonstrated comparable efficacy and tolerability to the classic KD, offering a promising option for patients with refractory epilepsy who do not respond adequately to the classic KD alone. This study, the first to directly compare a C10-enriched KD with a classic KD, highlights the potential synergistic effects of decanoic acid.
Collapse
Affiliation(s)
- Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seonae Ryu
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - NaRae Lee
- Department of Dietetics, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunjoo Lee
- Department of Dietetics, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heung Dong Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Zhu H, Fu Q, Chen R, Luo L, Yu M, Zhou Y. Association of dietary decanoic acid intake with diabetes or prediabetes: an analysis from NHANES 2005-2016. Front Nutr 2025; 11:1483045. [PMID: 39839274 PMCID: PMC11747714 DOI: 10.3389/fnut.2024.1483045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Background With the increasing prevalence of prediabetes and diabetes, exploring dietary factors associated with prediabetes and diabetes has become a global health research priority. This study aimed to assess the relationship between dietary decanoic acid (DDA) intake and the risk of diabetes and prediabetes. Methods Data from the National Health and Nutrition Examination Survey (NHANES) 2005-2016 included 11,477 adult participants. DDA intake was assessed through two 24-h dietary recalls and participants were grouped according to the diagnostic criteria for diabetes and prediabetes. Multivariate regression models were applied to analyze the relationship between DDA intake and diabetes and prediabetes, with subgroup analyses conducted to explore potential interactions. Results Dietary decanoic acid intake was significantly negatively associated with the risk of diabetes. In the fully adjusted model, each 1 g/day increase in DDA intake was associated with a 19% reduction in the odds of developing diabetes from prediabetes (OR = 0.81, 95% CI: 0.68-0.96, p = 0.015) and this negative association was more pronounced in individuals with higher education level (P for interaction = 0.006). Compared with the DDA intake ≤0.18 g/day, DDA intake >0.58 g/day is related to reduced risk of progression to diabetes in prediabetic patients. However, the relationship between DDA intake and the risk of prediabetes was not statistically significant in the fully adjusted model (OR = 0.95, 95% CI: 0.84-1.07, p = 0.404). Conclusion This study found that higher DDA intake may be associated with lower prevalence of diabetes among prediabetic population, and high education level strengthen this relationship.
Collapse
Affiliation(s)
- Huangxin Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qingan Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruxin Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linfei Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
10
|
Richardson JC, Higgins GA, Upton N, Massey P, Cunningham M, Wilson S, Holenz J, Taylor C, Lavrov A, Lin H, Matsuoka Y, Brown AJ. The hydroxycarboxylic acid receptor HCA2 is required for the protective effect of ketogenic diet in epilepsy. Pharmacol Res Perspect 2024; 12:e70026. [PMID: 39439218 PMCID: PMC11496569 DOI: 10.1002/prp2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One third of epilepsy patients are resistant to treatment with current anti-seizure medications. The ketogenic diet is used to treat some forms of refractory epilepsy, but the mechanism of its action has not yet been elucidated. In this study, we aimed to investigate whether the hydroxycarboxylic acid receptor 2 (HCA2), a known immunomodulatory receptor, plays a role in mediating the protective effect of this diet. We demonstrate for the first time that selective agonists at this receptor can directly reduce seizures in animal models. Agonists also reduce network activity in rodent and human brain slices. Ketogenic diet is known to increase circulating levels of endogenous HCA2 agonists, and we show that the effect of ketogenic diet in reducing seizures in the 6 Hz seizure model is negated in HCA2-deficient mice. Our data support the potential of HCA2 as a target for the treatment of epilepsy and potentially for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Peter Massey
- Institute of NeuroscienceUniversity of NewcastleNewcastleUK
| | - Mark Cunningham
- Institute of NeuroscienceUniversity of NewcastleNewcastleUK
- Discipline of Physiology, School of MedicineTrinity College DublinDublin 2Ireland
| | - Steve Wilson
- In vitro and in vivo TranslationGlaxoSmithKline R&D LtdStevenageUK
| | - Joerg Holenz
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | | | - Arseniy Lavrov
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdStockley ParkUK
| | - Hong Lin
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | - Yasuji Matsuoka
- Neurosciences Therapeutic Area UnitGlaxoSmithKline R&D LtdUpper ProvidencePennsylvaniaUSA
| | | |
Collapse
|
11
|
Zeng X, Shi C, Han Y, Hu K, Li X, Wei C, Ding L, Cui J, Huang S, Xu Y, Zhang M, Shan W, Luo Q, Yu J, Zheng Z, Li X, Qian P, Huang H. A metabolic atlas of blood cells in young and aged mice identifies uridine as a metabolite to rejuvenate aged hematopoietic stem cells. NATURE AGING 2024; 4:1477-1492. [PMID: 39020094 DOI: 10.1038/s43587-024-00669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Aging of hematopoietic stem cells (HSCs) is accompanied by impaired self-renewal ability, myeloid skewing, immunodeficiencies and increased susceptibility to malignancies. Although previous studies highlighted the pivotal roles of individual metabolites in hematopoiesis, comprehensive and high-resolution metabolomic profiles of different hematopoietic cells across ages are still lacking. In this study, we created a metabolome atlas of different blood cells across ages in mice. We reveal here that purine, pyrimidine and retinol metabolism are enriched in young hematopoietic stem and progenitor cells (HSPCs), whereas glutamate and sphingolipid metabolism are concentrated in aged HSPCs. Through metabolic screening, we identified uridine as a potential regulator to rejuvenate aged HSPCs. Mechanistically, uridine treatment upregulates the FoxO signaling pathway and enhances self-renewal while suppressing inflammation in aged HSCs. Finally, we constructed an open-source platform for public easy access and metabolomic analysis in blood cells. Collectively, we provide a resource for metabolic studies in hematopoiesis that can contribute to future anti-aging metabolite screening.
Collapse
Affiliation(s)
- Xiangjun Zeng
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ce Shi
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Kejia Hu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Cong Wei
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lijuan Ding
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Simao Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yulin Xu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Meng Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Shan
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Qian Luo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | | | - Xia Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| |
Collapse
|
12
|
Kovács Z, Rauch E, D’Agostino DP, Ari C. Putative Role of Adenosine A1 Receptors in Exogenous Ketone Supplements-Evoked Anti-Epileptic Effect. Int J Mol Sci 2024; 25:9869. [PMID: 39337356 PMCID: PMC11432942 DOI: 10.3390/ijms25189869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 30% of patients with epilepsy are drug-refractory. There is an urgent need to elucidate the exact pathophysiology of different types of epilepsies and the mechanisms of action of both antiseizure medication and metabolic therapies to treat patients more effectively and safely. For example, it has been demonstrated that exogenous ketone supplement (EKS)-generated therapeutic ketosis, as a metabolic therapy, may decrease epileptic activity in both animal models and humans, but its exact mechanism of action is unknown. However, it was demonstrated that therapeutic ketosis, among others, can increase adenosine level, which may enhance activity of A1 adenosine receptors (A1Rs) in the brain. It has also been demonstrated previously that adenosine has anti-epileptic effect through A1Rs in different models of epilepsies. Thus, it is possible that (i) therapeutic ketosis generated by the administration of EKSs may exert its anti-epileptic effect through, among other mechanisms, increased adenosine level and A1R activity and that (ii) the enhanced activity of A1Rs may be a necessary anti-epileptic mechanism evoked by EKS administration-generated ketosis. Moreover, EKSs can evoke and maintain ketosis without severe side effects. These results also suggest that the therapeutic application of EKS-generated ketosis may be a promising opportunity to treat different types of epilepsies. In this literature review, we specifically focus on the putative role of A1Rs in the anti-epileptic effect of EKS-induced ketosis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
| | - Enikő Rauch
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Csilla Ari
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
13
|
Pain E, Snowden S, Oddy J, Shinhmar S, Alhammad YMA, King JS, Müller-Taubenberger A, Williams RSB. Pharmacological inhibition of ENT1 enhances the impact of specific dietary fats on energy metabolism gene expression. Proc Natl Acad Sci U S A 2024; 121:e2321874121. [PMID: 39207736 PMCID: PMC11388398 DOI: 10.1073/pnas.2321874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
Medium chain fatty acids are commonly consumed as part of diets for endurance sports and as medical treatment in ketogenic diets where these diets regulate energy metabolism and increase adenosine levels. However, the role of the equilibrative nucleoside transporter 1 (ENT1), which is responsible for adenosine transport across membranes in this process, is not well understood. Here, we investigate ENT1 activity in controlling the effects of two dietary medium chain fatty acids (decanoic and octanoic acid), employing the tractable model system Dictyostelium. We show that genetic ablation of three ENT1 orthologues unexpectedly improves cell proliferation specifically following decanoic acid treatment. This effect is not caused by increased adenosine levels triggered by both fatty acids in the presence of ENT1 activity. Instead, we show that decanoic acid increases expression of energy-related genes relevant for fatty acid β-oxidation, and that pharmacological inhibition of ENT1 activity leads to an enhanced effect of decanoic acid to increase expression of tricarboxylicacid cycle and oxidative phosphorylation components. Importantly, similar transcriptional changes have been shown in the rat hippocampus during ketogenic diet treatment. We validated these changes by showing enhanced mitochondria load and reduced lipid droplets. Thus, our data show that ENT1 regulates the medium chain fatty acid-induced increase in cellular adenosine levels and the decanoic acid-induced expression of important metabolic enzymes in energy provision, identifying a key role for ENT1 proteins in metabolic effects of medium chain fatty acids.
Collapse
Affiliation(s)
- Erwann Pain
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Joseph Oddy
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Yousef M A Alhammad
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jason S King
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Annette Müller-Taubenberger
- Department of Cell Biology, Biomedical Center, Ludwig Maximilian University of Munich, Planegg-Martinsried 82152, Germany
| | - Robin S B Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| |
Collapse
|
14
|
Baldwin T, Clayton P, Rutherford T, Heales S, Eaton S. SH-SY5Y cells undergo changes in peroxisomal metabolism when exposed to decanoic acid. J Neurochem 2024; 168:3108-3115. [PMID: 39018358 DOI: 10.1111/jnc.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Medium-chain fatty acids (MCFAs), particularly decanoic acid (C10) and octanoic acid (C8), have garnered attention in recent years for their potential antiepileptic properties. A previous study from our laboratory demonstrated that C10 targets the PPARγ nuclear receptor, increasing the activity of the antioxidant enzyme catalase and thereby possibly modulating peroxisomal content. Here, we examined markers of peroxisomal content and activity in response to C10 and C8 exposure in neuronal-like SH-SY5Y cells. SH-SY5Y were treated with 250 mM C10 or C8 for a period of 6 days. Following this, biochemical markers of peroxisomal content and function were assessed, including acyl-coA oxidase activity, peroxisomal gene expression and peroxisomal VLCFA β-oxidation. Our findings revealed that C10 treatment augments acyl-CoA oxidase 1 (ACOx1) activity by 129% in comparison to control cells. An exploration into genes related to peroxisomal biosynthesis showed 23% increased expression of PEX11α upon C10 exposure, implying peroxisomal proliferation. Furthermore, it was observed that C10 exposure not only elevated ACOx1 activity but also enhanced peroxisomal β-oxidation of docosanoic acid (C22). Our findings bolster the premise that C10 functions as a peroxisome proliferator, influencing peroxisomal content and function. Further investigations are required to fully understand the mechanistic details as to how this may be beneficial in epilepsy and the potential implications with regards to peroxisomal disease.
Collapse
Affiliation(s)
- Tomas Baldwin
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Simon Heales
- UCL Great Ormond Street Institute of Child Health & Neurometabolic Unit, National Hospital, London, UK
| | - Simon Eaton
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
15
|
Meeusen H, Kalf RS, Broekaart DWM, Silva JP, Verkuyl JM, van Helvoort A, Gorter JA, van Vliet EA, Aronica E. Effective reduction in seizure severity and prevention of a fatty liver by a novel low ratio ketogenic diet composition in the rapid kindling rat model of epileptogenesis. Exp Neurol 2024; 379:114861. [PMID: 38876196 DOI: 10.1016/j.expneurol.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Drug-resistant epilepsy patients may benefit from non-pharmacological therapies, such as the ketogenic diet (KD). However, its high fat content poses compliance challenges and metabolic risks. To mitigate this, we developed a novel KD composition with less fat and additional nutrients (citrate, nicotinamide riboside, and omega-3 fatty acids) for ketone-independent neuroprotection. The efficacy, metabolic and neuropathological effects of the novel KD and a classic KD were compared to a control diet in the rapid kindling model of temporal lobe epilepsy. Both KD groups entered ketosis before kindling onset, with higher ketone levels in the classic KD group. Remarkably, rats on the novel KD had slower progression of behavioral seizures as compared to rats on a control diet, while this was not the case for rats on a classic KD. Both KDs reduced electrographic after-discharge duration, preserved neurons in the dorsal hippocampus, and normalized activity in open field tests. The novel KD, despite lower fat and ketone levels, demonstrated effective reduction of behavioral seizure severity while the classic KD did not, suggesting alternative mode(s) of action are involved. Additionally, the novel KD significantly mitigated liver triglyceride and plasma fatty acid levels compared to the classic KD, indicating a reduced risk of long-term liver steatosis. Our findings highlight the potential of the novel KD to enhance therapeutic efficacy and compliance in epilepsy patients.
Collapse
Affiliation(s)
- Hester Meeusen
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Danone Research & Innovation, Utrecht, the Netherlands
| | - Rozemarijn S Kalf
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Danone Research & Innovation, Utrecht, the Netherlands
| | - Diede W M Broekaart
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jose P Silva
- Danone Research & Innovation, Utrecht, the Netherlands
| | | | - Ardy van Helvoort
- Danone Research & Innovation, Utrecht, the Netherlands; NUTRIM - Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Dept of (Neuro)pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| |
Collapse
|
16
|
Xu W, Borges K. Case for supporting astrocyte energetics in glucose transporter 1 deficiency syndrome. Epilepsia 2024; 65:2213-2226. [PMID: 38767952 DOI: 10.1111/epi.18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
In glucose transporter 1 deficiency syndrome (Glut1DS), glucose transport into brain is reduced due to impaired Glut1 function in endothelial cells at the blood-brain barrier. This can lead to shortages of glucose in brain and is thought to contribute to seizures. Ketogenic diets are the first-line treatment and, among many beneficial effects, provide auxiliary fuel in the form of ketone bodies that are largely metabolized by neurons. However, Glut1 is also the main glucose transporter in astrocytes. Here, we review data indicating that glucose shortage may also impact astrocytes in addition to neurons and discuss the expected negative biochemical consequences of compromised astrocytic glucose transport for neurons. Based on these effects, auxiliary fuels are needed for both cell types and adding medium chain triglycerides (MCTs) to ketogenic diets is a biochemically superior treatment for Glut1DS compared to classical ketogenic diets. MCTs provide medium chain fatty acids (MCFAs), which are largely metabolized by astrocytes and not neurons. MCFAs supply energy and contribute carbons for glutamine and γ-aminobutyric acid synthesis, and decanoic acid can also block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. MCTs do not compete with metabolism of ketone bodies mostly occurring in neurons. Triheptanoin, an anaplerotic but also gluconeogenic uneven MCT, may be another potential addition to ketogenic diets, although maintenance of "ketosis" can be difficult. Gene therapy has also targeted both endothelial cells and astrocytes. Other approaches to increase fuel delivery to the brain currently investigated include exchange of Glut1DS erythrocytes with healthy cells, infusion of lactate, and pharmacological improvement of glucose transport. In conclusion, although it remains difficult to assess impaired astrocytic energy metabolism in vivo, astrocytic energy needs are most likely not met by ketogenic diets in Glut1DS. Thus, we propose prospective studies including monitoring of blood MCFA levels to find optimal doses for add-on MCT to ketogenic diets and assessing of short- and long-term outcomes.
Collapse
Affiliation(s)
- Weizhi Xu
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Karin Borges
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
17
|
Zierath DK, Davidson S, Manoukian J, Knox KM, White HS, Meeker S, Ericsson A, Barker-Haliski M. Diet composition and sterilization modifies intestinal microbiome diversity and burden of Theiler's virus infection-induced acute seizures. Epilepsia 2024; 65:1777-1790. [PMID: 38491947 DOI: 10.1111/epi.17946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Brain infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can induce acquired epileptogenesis. Diet alters acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet formulation and sterilization on acute seizure presentation, gut microbiome composition, and epilepsy-related chronic behavioral comorbidities. METHODS Baseline fecal samples were collected from male C57BL/6J mice (4- to 5-weeks-old; Jackson Labs) upon facility arrival. Mice were randomized to either autoclaved (AC) or irradiated diet (IR) (Prolab RMH 3000) or IR (Picolab 5053). Three days later, mice underwent intracerebral TMEV or phosphate-buffered saline (PBS) injection. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. RESULTS TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28 of 57 IR Picolab 5053 (49.1%), 30 of 41 IR Prolab RMH 3000 (73.2%), and 47 of 77 AC Prolab RMH 3000 (61%) mice displayed seizures. The number of observed seizures differed significantly by diet: IR Picolab 5053 diet-fed mice had 2.2 ± 2.8 seizures (mean ± standard deviation), IR Prolab RMH 3000 diet-fed mice had 3.5 ± 2.9 seizures, and AC Prolab RMH 3000 diet-fed mice had 4.4 ± 3.8 seizures during the 7-day monitoring period. Gut microbiome composition differed significantly in TMEV-infected mice fed the AC Prolab RMH 3000 diet, with measured differences in gram-positive bacteria. These mice also displayed worsened long-term working memory deficits. SIGNIFICANCE Diet-induced differences in intestinal dysbiosis in the TMEV model are associated with marked changes in acute seizure presentation, symptomatic recovery, and onset of chronic behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying impact of dietary manipulation on intestinal bacterial species after TMEV-induced acute seizures.
Collapse
Affiliation(s)
- Dannielle K Zierath
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Stephanie Davidson
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Jonathan Manoukian
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Kevin M Knox
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Stacey Meeker
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Rühling MR, Hartmann H, Das AM. Simplification of Dietary Treatment in Pharmacoresistant Epilepsy: Impact of C8 and C10 Fatty Acids on Sirtuins of Neuronal Cells In Vitro. Nutrients 2024; 16:1678. [PMID: 38892612 PMCID: PMC11174688 DOI: 10.3390/nu16111678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Pharmacotherapy is the therapeutic mainstay in epilepsy; however, in about 30% of patients, epileptic seizures are drug-resistant. A ketogenic diet (KD) is an alternative therapeutic option. The mechanisms underlying the anti-seizure effect of a KD are not fully understood. Epileptic seizures lead to an increased energy demand of neurons. An improvement in energy provisions may have a protective effect. C8 and C10 fatty acids have been previously shown to activate mitochondrial function in vitro. This could involve sirtuins (SIRTs) as regulatory elements of energy metabolism. The aim of the present study was to investigate whether ß-hydroxybutyrate (ßHB), C8 fatty acids, C10 fatty acids, or a combination of C8 and C10 (250/250 µM) fatty acids, which all increase under a KD, could up-regulate SIRT1, -3, -4, and -5 in HT22 hippocampal murine neurons in vitro. Cells were incubated for 1 week in the presence of these metabolites. The sirtuins were measured at the enzyme (fluorometrically), protein (Western blot), and gene expression (PCR) levels. In hippocampal cells, the C8, C10, and C8 and C10 incubations led to increases in the sirtuin levels, which were not inferior to a ßHB incubation as the 'gold standard'. This may indicate that both C8 and C10 fatty acids are important for the antiepileptic effect of a KD. A KD may be replaced by nutritional supplements of C8 and C10 fatty acids, which could facilitate the diet.
Collapse
|
19
|
Borowicz-Reutt K, Krawczyk M, Czernia J. Ketogenic Diet in the Treatment of Epilepsy. Nutrients 2024; 16:1258. [PMID: 38732505 PMCID: PMC11085120 DOI: 10.3390/nu16091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Epilepsy is one of the most disabling neurological diseases. Despite proper pharmacotherapy and the availability of 2nd and 3rd generation antiepileptic drugs, deep brain stimulation, and surgery, up to 30-40% of epilepsy patients remain drug-resistant. Consequences of this phenomenon include not only decreased a quality of life, and cognitive, behavioral, and personal disorders, but also an increased risk of death, i.e., in the mechanism of sudden unexpected death in epilepsy patients (SUDEP). The main goals of epilepsy treatment include three basic issues: achieving the best possible seizure control, avoiding the undesired effects of treatment, and maintaining/improving the quality of patients' lives. Therefore, numerous attempts are made to offer alternative treatments for drug-resistant seizures, an example of which is the ketogenic diet. It is a long-known but rarely used dietary therapy for intractable seizures. One of the reasons for this is the unpalatability of the classic ketogenic diet, which reduces patient compliance and adherence rates. However, its antiseizure effects are often considered to be worth the effort. Until recently, the diet was considered the last-resort treatment. Currently, it is believed that a ketogenic diet should be used much earlier in patients with well-defined indications. In correctly qualified patients, seizure activity may be reduced by over 90% or even abolished for long periods after the diet is stopped. A ketogenic diet can be used in all age groups, although most of the available literature addresses pediatric epilepsy. In this article, we focus on the mechanisms of action, effectiveness, and adverse effects of different variants of the ketogenic diet, including its classic version, a medium-chain triglyceride diet, a modified Atkins diet, and a low glycemic index treatment.
Collapse
Affiliation(s)
- Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL-20-090 Lublin, Poland; (M.K.); (J.C.)
| | | | | |
Collapse
|
20
|
Falsaperla R, Sortino V, Vitaliti G, Privitera GF, Ruggieri M, Fusto G, Pappalardo XG. GLUT-1DS resistant to ketogenic diet: from clinical feature to in silico analysis. An exemplificative case report with a literature review. Neurogenetics 2024; 25:69-78. [PMID: 38190079 DOI: 10.1007/s10048-023-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Glucose transporter type 1 deficiency syndrome (GLUT-1DS) is characterized by alterations in glucose translocation through the blood-brain barrier (BBB) due to mutation involving the GLUT-1 transporter. The fundamental therapy is ketogenic diet (KD) that provide an alternative energetic substrate - ketone bodies that across the BBB via MCT-1 - for the brain. Symptoms are various and include intractable seizure, acquired microcephalia, abnormal ocular movement, movement disorder, and neurodevelopment delay secondary to an energetic crisis for persistent neuroglycopenia. KD is extremely effective in controlling epileptic seizures and has a positive impact on movement disorders and cognitive impairment. Cases of KD resistance are rare, and only a few of them are reported in the literature, all regarding seizure. Our study describes a peculiar case of GLUT-1DS due to a new deletion involving the first codon of SLC2A1 gene determining a loss of function with a resistance to KD admitted to hospital due to intractable episodes of dystonia. This patient presented a worsening of symptomatology at higher ketonemia values but without hyperketosis and showed a complete resolution of symptomatology while maintaining low ketonemia values. Our study proposes an in-silico genomic and proteomic analysis aimed at explaining the atypical response to KD exhibited by our patient. In this way, we propose a new clinical and research approach based on precision medicine and molecular modelling to be applied to patients with GLUT-1DS resistant to first-line treatment with ketogenic diet by in silico study of genetic and altered protein product.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco," San Marco Hospital, University of Catania, Catania, Italy.
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy.
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy
| | - Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico, "Rodolico-San Marco," San Marco Hospital, Catania, Italy
| | | | - Martino Ruggieri
- Unit of Clinical Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, AOU "Policlinico," PO "G. Rodolico", Via S. Sofia, 78, 95124, Catania, Italy
| | - Gaia Fusto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
- National Council of Research, Institute for Research and Biomedical Innovation (IRIB), Unit of Catania, Catania, Italy
| |
Collapse
|
21
|
Li H, Wang Y, Guo J, Zhang P, Xu Z, Peng K, Dong X, Zhao L. Efficacy and safety of modified medium-chain triglyceride ketogenic diet in patients with drug-resistant epilepsy. ACTA EPILEPTOLOGICA 2024; 6:9. [PMID: 40217274 PMCID: PMC11960293 DOI: 10.1186/s42494-024-00150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Medium-chain triglyceride ketogenic diet (MCTKD) is previously less commonly used in China. This study was aimed to assess the efficacy and safety of the modified MCTKD in the treatment of drug-resistant epilepsy in Chinese patients. METHODS Patients with drug-resistant epilepsy were enrolled to receive treatment with modified MCTKD in Guangdong Sanjiu Brain Hospital during December 2020 and September 2022. The modified MCTKD contained fat that provided 50-70% of the total energy, as well as proteins and carbohydrates that provided 20-30% and 20% of energy, respectively. The fat component was composed of 20-30% medium-chain triglycerides (MCTs) and 30-40% long-chain triglycerides. The efficacy and safety of the diet were assessed at 1, 3 and 6 months. RESULTS A total of 123 patients aged 2.5 to 65 years, were included in this study. The response rates at 1, 3 and 6 months were 49.6%, 43.1%, and 30.9%, respectively. The seizure freedom rates at 1, 3 and 6 months were 12.2%, 10.6%, and 6.5%, respectively. The retention rates at 1, 3 and 6 months were 98.4%, 65.0% and 33.3% respectively. Side effects occurred in 21.14% of patients, which were predominantly gastrointestinal symptoms such as abdominal pain, diarrhea, vomiting, and constipation, and most of them resolved after dietary adjustments. A total of 82 patients (66.7%) discontinued the treatment with the reason of refusing to eat (8.1%), poor efficacy (35.0%), poor compliance (4.9%), and inability to follow-up (9.8%). Only 4 patients (3.3%) withdrew the diet due to side effects. CONCLUSIONS The modified MCTKD with MCTs providing 20-30% of energy has a good safety in patients with drug-resistant epilepsy, but its effectiveness needs to be enhanced. Further modifications of MCTKD with an optimal energy ratio are required to achieve a better efficacy and safety.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China.
| | - Yao Wang
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | - Jing Guo
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | - Peiqi Zhang
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | - Zheng Xu
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | - Kai Peng
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | - Xiaoli Dong
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| | - Liming Zhao
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510510, China
| |
Collapse
|
22
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Sandouka D, Heeh M, Idais TI. AMPA receptor neurotransmission and therapeutic applications: A comprehensive review of their multifaceted modulation. Eur J Med Chem 2024; 266:116151. [PMID: 38237342 DOI: 10.1016/j.ejmech.2024.116151] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The neuropharmacological community has shown a strong interest in AMPA receptors as critical components of excitatory synaptic transmission during the last fifteen years. AMPA receptors, members of the ionotropic glutamate receptor family, allow rapid excitatory neurotransmission in the brain. AMPA receptors, which are permeable to sodium and potassium ions, manage the bulk of the brain's rapid synaptic communications. This study thoroughly examines the recent developments in AMPA receptor regulation, focusing on a shift from single chemical illustrations to a more extensive investigation of underlying processes. The complex interplay of these modulators in modifying the function and structure of AMPA receptors is the main focus, providing insight into their influence on the speed of excitatory neurotransmission. This research emphasizes the potential of AMPA receptor modulation as a therapy for various neurological disorders such as epilepsy and Alzheimer's disease. Analyzing these regulators' sophisticated molecular details enhances our comprehension of neuropharmacology, representing a significant advancement in using AMPA receptors for treating intricate neurological conditions.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Tala Iyad Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
23
|
Sangermani M, Desiati I, Jørgensen SM, Li JV, Andreassen T, Bathen TF, Giskeødegård GF. Stability in fecal metabolites amid a diverse gut microbiome composition: a one-month longitudinal study of variability in healthy individuals. Gut Microbes 2024; 16:2427878. [PMID: 39533520 PMCID: PMC11562901 DOI: 10.1080/19490976.2024.2427878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of microbial-host interactions exists in the gut, making the gut microbiome a complex ecosystem to untangle. The microbial composition and the fecal metabolites are important readouts to investigate intricate microbiota-diet-host interplay. However, this ecosystem is dynamic, and it is of interest to understand the degree and timescale of changes occurring in the gut microbiota, during disease as well as in healthy individuals. Cross-sectional study design is often used to investigate the microbiome, but this design provides a static snapshot and cannot provide evidence on the dynamic nature of the gut microbiome. Longitudinal studies are better suited to extrapolate causation in a study or assess changes over time. This study investigates longitudinal change in the gut microbiome and fecal metabolites in 14 healthy individuals with weekly sampling over a period of one-month (four time points), to elucidate the temporal changes occurring in the gut microbiome composition and fecal metabolites. Utilizing 16S rRNA amplicon sequencing for microbiome analysis and NMR spectroscopy for fecal metabolite characterization, we assessed the stability of these two types of measurable parameters in fecal samples during the period of one month. Our results show that the gut microbiome display large variations between healthy individuals, but relatively lower within-individual variations, which makes it possible to uniquely identify individuals. The fecal metabolites showed higher stability over time compared to the microbiome and exhibited consistently smaller variations both within and between individuals. This relative higher stability of the fecal metabolites suggests a balanced, consistent output even amid individual's differences in microbial composition and they can provide a viable complementary readout to better understand the microbiome activity.
Collapse
Affiliation(s)
- Matteo Sangermani
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Indri Desiati
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | | | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Central Staff, St. Olavs Hospital HF, Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Guro F. Giskeødegård
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
24
|
Vukolova MN, Yen LY, Khmyz MI, Sobolevsky AI, Yelshanskaya MV. Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis-emerging role of AMPA and kainate subtypes of ionotropic glutamate receptors. Front Cell Dev Biol 2023; 11:1252953. [PMID: 38033869 PMCID: PMC10683763 DOI: 10.3389/fcell.2023.1252953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission and are implicated in various neurological disorders. In this review, we discuss the role of the two fastest iGluRs subtypes, namely, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, in the pathogenesis and treatment of Parkinson's disease, epilepsy, and amyotrophic lateral sclerosis. Although both AMPA and kainate receptors represent promising therapeutic targets for the treatment of these diseases, many of their antagonists show adverse side effects. Further studies of factors affecting the selective subunit expression and trafficking of AMPA and kainate receptors, and a reasonable approach to their regulation by the recently identified novel compounds remain promising directions for pharmacological research.
Collapse
Affiliation(s)
- Marina N Vukolova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University, New York, NY, United States
| | - Margarita I Khmyz
- N. V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Zierath DK, Davidson S, Manoukian J, White HS, Meeker S, Ericsson A, Barker-Haliski M. Diet composition and sterilization modifies intestinal microbiome diversity and burden of Theiler's virus infection-induced acute seizures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562694. [PMID: 37905123 PMCID: PMC10614857 DOI: 10.1101/2023.10.17.562694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Objective Central nervous system infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can model acquired epileptogenesis. Diet alters the acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet sterilization in a specific pathogen-free vivarium on acute seizure presentation, the composition of the gut microbiome, and chronic behavioral comorbidities of epilepsy. Methods Baseline fecal samples were collected from male C57BL/6J mice (4-5 weeks-old; Jackson Labs) upon arrival. Mice were randomized to either autoclaved (AC) or irradiated (IR) diet (Prolab RMH 3000 - UU diets) or IR (Picolab 5053 - UW IR diet). Mice then underwent intracerebral TMEV or PBS injection three days later. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. Results TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28/57 UW IR (49.1%), 30/41 UU IR (73.2%), and 47/77 UU AC (61%) mice displayed seizures. The number of observed seizures significantly differed: UW IR mice had 2.2±2.8 seizures (mean±standard deviation), UU IR mice had 3.5±2.9 seizures, and UU AC mice had 4.4±3.8 seizures during the 7-day monitoring period. The composition of the gut microbiome significantly differed in TMEV-infected mice fed the UU AC diet, with most measured differences occurring in Gram-positive bacteria. TMEV-infected mice fed the UU AC diet displayed worsened chronic working memory. Significance Intestinal dysbiosis evokes stark differences in acute seizure presentation in the TMEV model and vastly influences the trajectory of post-TMEV infection-induced behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying contribution of intestinal bacterial species after TMEV-induced acute seizures.
Collapse
Affiliation(s)
- Dannielle K. Zierath
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Stephanie Davidson
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Jonathan Manoukian
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - H. Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA
| | - Stacey Meeker
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO
| | | |
Collapse
|
26
|
Wu Z, Yang W, Li M, Li F, Gong R, Wu Y. Relationship between Dietary Decanoic Acid and Coronary Artery Disease: A Population-Based Cross-Sectional Study. Nutrients 2023; 15:4308. [PMID: 37892384 PMCID: PMC10609701 DOI: 10.3390/nu15204308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a cardiovascular disease with significant personal health and socioeconomic consequences. The biological functions of decanoic acid and the pathogenesis of CAD overlap considerably; however, studies exploring their relationship are limited. METHODS Data from 34,186 Americans from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2018 were analyzed. The relationship between dietary decanoic acid (DDA) and CAD prevalence was explored using weighted multivariate logistic regression models, generalized summation models, and fitted smoothing curves. Stratified analyses and interaction tests were conducted to explore the potential modifiers between them. RESULTS DDA was negatively associated with CAD prevalence, with each 1 g/d increase in the DDA being associated with a 21% reduction in CAD prevalence (odds ratio (OR) 0.79, 95% confidence interval (CI) 0.61-1.02). This relationship persisted after log10 and trinomial transformations, respectively. The OR after log10 transformation was 0.81 (95% CI 0.69-0.96), and the OR for tertile 3 compared with tertile 1 was 0.83 (95% CI 0.69-1.00). The subgroup analyses found this relationship to be significant among males and non-Hispanic white individuals, and there was a significant interaction (interaction p-values of 0.011 and 0.012, respectively). CONCLUSIONS DDA was negatively associated with the prevalence of CAD, and both sex and race may modify this relationship.
Collapse
Affiliation(s)
- Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| | - Weichang Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| | - Fengyuan Li
- Department of Respiratory Medicine, Nanchang First Hospital, Nanchang 330006, China;
| | - Ren Gong
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (Z.W.); (R.G.)
| |
Collapse
|
27
|
Abghari M, Vu JTCM, Eckberg N, Aldana BI, Kohlmeier KA. Decanoic Acid Rescues Differences in AMPA-Mediated Calcium Rises in Hippocampal CA1 Astrocytes and Neurons in the 5xFAD Mouse Model of Alzheimer's Disease. Biomolecules 2023; 13:1461. [PMID: 37892143 PMCID: PMC10604953 DOI: 10.3390/biom13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD), a devastating neurodegenerative disease characterized by cognitive dysfunctions, is associated with high levels of amyloid beta 42 (Aβ42), which is believed to play a role in cellular damage and signaling changes in AD. Decanoic acid has been shown to be therapeutic in AD. Glutamatergic signaling within neurons and astrocytes of the CA1 region of the hippocampus is critical in cognitive processes, and previous work has indicated deficiencies in this signaling in a mouse model of AD. In this study, we investigated glutamate-mediated signaling by evaluating AMPA-mediated calcium rises in female and male CA1 neurons and astrocytes in a mouse model of AD and examined the potential of decanoic acid to normalize this signaling. In brain slices from 5xFAD mice in which there are five mutations leading to increasing levels of Aβ42, AMPA-mediated calcium transients in CA1 neurons and astrocytes were significantly lower than that seen in wildtype controls in both females and males. Interestingly, incubation of 5xFAD slices in decanoic acid restored AMPA-mediated calcium levels in neurons and astrocytes in both females and males to levels indistinguishable from those seen in wildtype, whereas similar exposure to decanoic acid did not result in changes in AMPA-mediated transients in neurons or astrocytes in either sex in the wildtype. Our data indicate that one mechanism by which decanoic acid could improve cognitive functioning is through normalizing AMPA-mediated signaling in CA1 hippocampal cells.
Collapse
|
28
|
Dunn E, Steinert JR, Stone A, Sahota V, Williams RSB, Snowden S, Augustin H. Medium-Chain Fatty Acids Rescue Motor Function and Neuromuscular Junction Degeneration in a Drosophila Model of Amyotrophic Lateral Sclerosis. Cells 2023; 12:2163. [PMID: 37681895 PMCID: PMC10486503 DOI: 10.3390/cells12172163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS.
Collapse
Affiliation(s)
- Ella Dunn
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Joern R. Steinert
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Aelfwin Stone
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Virender Sahota
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Hrvoje Augustin
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| |
Collapse
|
29
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
30
|
Sharma H, Reeta KH, Sharma U, Suri V. Decanoic acid mitigates ischemia reperfusion injury by modulating neuroprotective, inflammatory and oxidative pathways in middle cerebral artery occlusion model of stroke in rats. J Stroke Cerebrovasc Dis 2023; 32:107184. [PMID: 37276786 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
OBJECTIVE Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) is an ionotropic transmembrane receptor for glutamate. AMPA receptor blockers have been reported to prevent neurological damage and enhance the post stroke recovery in rats. Decanoic acid, a medium-chain fatty acid, has been reported to exhibit non-competitive AMPA receptor antagonism. This study evaluated the effect of decanoic acid administered before and after ischemia reperfusion injury on neurological damage and post stroke recovery in rats. METHODS Middle cerebral artery occlusion (MCAo) was performed by using the intraluminal method to induce focal cerebral ischemia. Decanoic acid (120 mg/kg) was administered orally for 1 day (5-10 min post reperfusion) in one group and for 2 days (24 h pre and 5-10 min post reperfusion) in the other group. Effect on neurological damage and post stroke recovery was assessed by neurobehavioral parameters, MRI and TTC staining along with inflammatory, oxidative, apoptotic, and neuroprotective biomarkers. RESULTS Decanoic acid significantly reduced the MCAo induced neurological damage and infarct size. Decanoic acid treatment increased the motor coordination and grip strength. Furthermore, levels of inflammatory (TNFα, IL-1β and IL-6), oxidative stress (MDA), apoptotic (TUNEL positive cells) and neurological injury (GFAP) biomarkers were reduced after decanoic acid treatment. Anti-inflammatory cytokine (IL-10) and neuroprotective markers (NT-3, BDNF and TrkB) were found to be significantly increased with decanoic acid treatment. CONCLUSION This study showed protective effects of decanoic acid against ischemia reperfusion injury in rats. Anti-inflammatory, antioxidant, neuroprotective, and anti-apoptotic properties may be responsible for the beneficial effects of decanoic acid observed in the study.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - K H Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.
| | - Uma Sharma
- Department of NMR, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
31
|
Esatbeyoglu T, Fischer A, Legler AD, Oner ME, Wolken HF, Köpsel M, Ozogul Y, Özyurt G, De Biase D, Ozogul F. Physical, chemical, and sensory properties of water kefir produced from Aronia melanocarpa juice and pomace. Food Chem X 2023; 18:100683. [PMID: 37138825 PMCID: PMC10149414 DOI: 10.1016/j.fochx.2023.100683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Water kefir is widely consumed all over the world due to its potential health benefits. The aim of this current study was to compare non-fermented juice and fermented beverage of water kefir produced from Aronia melanocarpa juice and pomace in terms of chemical, physical and sensory quality as well as valorisation of pomace in the production of water kefir. When compared to water kefir made with aronia juice, less reduction in total phenolic content (TPC), total flavonoid content (TFC) and total anthocyanin content (TAC) was observed in samples made with aronia pomace during the fermentation process. Similarly, greater antioxidant activity was demonstrated in water kefir made with aronia pomace than juice. Based on sensory evaluation, no difference was found in overall acceptability, taste, aroma/odor, and turbidity of water kefir made with aronia pomace before and after fermentation. Results indicated that aronia pomace has potential in water kefir production.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
- Corresponding authors.
| | - Annik Fischer
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Alessandra D.S. Legler
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Manolya E. Oner
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
- Alanya Alaaddin Keykubat University, Faculty of Engineering, Department of Food Engineering, Alanya, Antalya, Turkey
| | - Henrik F. Wolken
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Magdalena Köpsel
- Gottfried Wilhelm Leibniz University Hannover, Institute of Food Science and Human Nutrition, Department of Food Development and Food Quality, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Yesim Ozogul
- Cukurova University, Department of Seafood Processing and Technology, 01330, Adana, Turkey
| | - Gülsün Özyurt
- Cukurova University, Department of Seafood Processing and Technology, 01330, Adana, Turkey
| | - Daniela De Biase
- Sapienza University of Rome, Department of Medico-Surgical Sciences and Biotechnologies, 04100 Latina, Italy
| | - Fatih Ozogul
- Cukurova University, Department of Seafood Processing and Technology, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
- Corresponding authors.
| |
Collapse
|
32
|
Xu A, Li W, Cai J, Wen Z, Wang K, Chen Y, Li X, Guan D, Duan C. Screening of key functional components of Taohong Siwu Decoction on ischemic stroke treatment based on multiobjective optimization approach and experimental validation. BMC Complement Med Ther 2023; 23:178. [PMID: 37264383 DOI: 10.1186/s12906-023-03990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Taohong Siwu Decoction (THSWD) is a widely used traditional Chinese medicine (TCM) prescription in the treatment of ischemic stroke. There are thousands of chemical components in THSWD. However, the key functional components are still poorly understood. This study aimed to construct a mathematical model for screening of active ingredients in TCM prescriptions and apply it to THSWD on ischemic stroke. METHODS Botanical drugs and compounds in THSWD were acquired from multiple public TCM databases. All compounds were initially screened by ADMET properties. SEA, HitPick, and Swiss Target Prediction were used for target prediction of the filtered compounds. Ischemic stroke pathological genes were acquired from the DisGeNet database. The compound-target-pathogenic gene (C-T-P) network of THSWD was constructed and then optimized using the multiobjective optimization (MOO) algorithm. We calculated the cumulative target coverage score of each compound and screened the top compounds with 90% coverage. Finally, verification of the neuroprotective effect of these compounds was performed with the oxygen-glucose deprivation and reoxygenation (OGD/R) model. RESULTS The optimized C-T-P network contains 167 compounds, 1,467 predicted targets, and 1,758 stroke pathological genes. And the MOO model showed better optimization performance than the degree model, closeness model, and betweenness model. Then, we calculated the cumulative target coverage score of the above compounds, and the cumulative effect of 39 compounds on pathogenic genes reached 90% of all compounds. Furthermore, the experimental results showed that decanoic acid, butylphthalide, chrysophanol, and sinapic acid significantly increased cell viability. Finally, the docking results showed the binding modes of these four compounds and their target proteins. CONCLUSION This study provides a methodological reference for the screening of potential therapeutic compounds of TCM. In addition, decanoic acid and sinapic acid screened from THSWD were found having potential neuroprotective effects first and verified with cell experiments, however, further in vitro and in vivo studies are needed to explore the precise mechanisms involved.
Collapse
Affiliation(s)
- Anqi Xu
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Wenxing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuohua Wen
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Kexin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xifeng Li
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Chuanzhi Duan
- Department of Cerebrovascular Surgery, Neurosurgery Center, Zhujiang Hospital, Southern Medical University, No.253. Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
33
|
Moraleda Merlo AB, Roux C, Bécue A, Weyermann C. A comparison of the natural and groomed fingermark lipid composition of different donors using GC/MS. Forensic Sci Int 2023:111709. [PMID: 37149490 DOI: 10.1016/j.forsciint.2023.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The lipid composition of natural fingermarks was studied and compared with the composition of groomed residue. Approximately 100 specimens were collected from 6 donors over three sessions (in October, December and July) and analysed using gas chromatography / mass spectrometry (GC/MS). The measured lipid content was generally lower and more variable in natural fingermarks than in groomed fingermarks. Some significant variability was noticed. Relative standard deviations were the highest between donors (generally above 100%) but were also relatively high within donor within a session (from 21% to 80%) and between sessions (from 34% to 126%). The fingermarks from one of the donors generally contained higher relative amounts of lipids in both groomed and natural residue compared to the others. All other fingermarks led to very variable amounts and did not allow classifying the other donors as constantly "good" or "poor" donors. Squalene was the major compound in all marks, particularly in groomed specimens. A correlation between squalene, cholesterol, myristic acid, palmitoleic acid, stearyl palmitoleate and pentadecanoic acid was highlighted. Oleic and stearic were also correlated together but generally more in natural than groomed marks. The obtained results may be particularly useful to better understand the detection mechanisms for techniques targeting lipids and to develop artificial fingermark secretions to further support the development of detection techniques.
Collapse
Affiliation(s)
| | - Claude Roux
- Centre for Forensic Science, University of Technology Sydney, Australia
| | - Andy Bécue
- Ecole des Sciences Criminelles, Université de Lausanne, Switzerland
| | - Céline Weyermann
- Ecole des Sciences Criminelles, Université de Lausanne, Switzerland.
| |
Collapse
|
34
|
Akiyama M, Akiyama T, Saigusa D, Hishinuma E, Matsukawa N, Shibata T, Tsuchiya H, Mori A, Fujii Y, Mogami Y, Tokorodani C, Kuwahara K, Numata-Uematsu Y, Inoue K, Kobayashi K. Comprehensive study of metabolic changes induced by a ketogenic diet therapy using GC/MS- and LC/MS-based metabolomics. Seizure 2023; 107:52-59. [PMID: 36958064 DOI: 10.1016/j.seizure.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVE The ketogenic diet (KD), a high-fat and low-carbohydrate diet, is effective for a subset of patients with drug-resistant epilepsy, although the mechanisms of the KD have not been fully elucidated. The aims of this observational study were to investigate comprehensive short-term metabolic changes induced by the KD and to explore candidate metabolites or pathways for potential new therapeutic targets. METHODS Subjects included patients with intractable epilepsy who had undergone the KD therapy (the medium-chain triglyceride [MCT] KD or the modified Atkins diet using MCT oil). Plasma and urine samples were obtained before and at 2-4 weeks after initiation of the KD. Targeted metabolome analyses of these samples were performed using gas chromatography-tandem mass spectrometry (GC/MS/MS) and liquid chromatography-tandem mass spectrometry (LC/MS/MS). RESULTS Samples from 10 and 11 patients were analysed using GC/MS/MS and LC/MS/MS, respectively. The KD increased ketone bodies, various fatty acids, lipids, and their conjugates. In addition, levels of metabolites located upstream of acetyl-CoA and propionyl-CoA, including catabolites of branched-chain amino acids and structural analogues of γ-aminobutyric acid and lactic acid, were elevated. CONCLUSIONS The metabolites that were significantly changed after the initiation of the KD and related metabolites may be candidates for further studies for neuronal actions to develop new anti-seizure medications.
Collapse
Affiliation(s)
- Mari Akiyama
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Tomoyuki Akiyama
- Department of Paediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Eiji Hishinuma
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Advanced Research Centre for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takashi Shibata
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Hiroki Tsuchiya
- Department of Child Neurology, Okayama University Hospital, Okayama, Japan
| | - Atsushi Mori
- Department of Neurology, Shiga Medical Centre for Children, Moriyama, Japan
| | - Yuji Fujii
- Department of Paediatrics, Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Yukiko Mogami
- Department of Paediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Chiho Tokorodani
- Department of Paediatrics, Kochi Health Sciences Centre, Kochi, Japan
| | - Kozue Kuwahara
- Department of Paediatrics, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | | | - Kenji Inoue
- Department of Neurology, Shiga Medical Centre for Children, Moriyama, Japan
| | - Katsuhiro Kobayashi
- Department of Paediatrics (Child Neurology), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
35
|
Schmidt T, Meller S, Meyerhoff N, Twele F, Zanghi B, Volk HA. A six-month prospective, randomised, double-blinded, placebo-controlled, crossover, dietary trial design to investigate the potential of psychobiotics on seizure semiology and comorbidities in canine epilepsy: study protocol. BMC Vet Res 2023; 19:57. [PMID: 36864510 PMCID: PMC9983181 DOI: 10.1186/s12917-023-03609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Epilepsy is the most common chronic neurological disease in dogs. More than two-thirds of these patients suffer from associated behavioural comorbidities. The latter could have their origin in partially overlapping pathomechanisms, with the intestinal microbiome as a potential key link between them. The current arsenal of drugs for epilepsy management remains limited. Most canine patients continue to have seizures despite treatment and the occurrence of comorbidities is not sufficiently addressed, limiting quality of life of affected dogs and owners. Therefore, novel additional epilepsy management options are urgently needed. The microbiome-gut-brain axis may serve as a new target for the development of innovative multimodal therapeutic approaches to overcome current shortcomings in epilepsy management. METHODS A six-month prospective, randomised, double-blinded, placebo-controlled, crossover, dietary trial was designed to investigate the potential of the psychobiotic Bifidobacterium longum on behavioural comorbidities in canine epilepsy. Seizure semiology will be evaluated as a secondary outcome measure. Thirty-four privately owned dogs are planned to be included in the ongoing study meeting the following inclusion criteria: Dogs displaying increased anxiety/fear behaviour since the start of the idiopathic epilepsy. Tier II confidence level of the International Veterinary Epilepsy Task Force for the diagnosis of idiopathic epilepsy, with a maximum seizure interval of 3 month and a minimum of three generalised seizures within that period and chronically treated with at least one antiseizure drug without improvement in seizure frequency Each dog will receive the allocated supplement (probiotic vs. placebo) alongside its normal diet for a 3-month period. After a three-week wash out period, the second phase starts by administering the respective other supplement for another 3 months. DISCUSSION The current study considers modern high-quality standards for epilepsy medication trials. Common biasing effects should be limited to a possible minimum (regression-to-the mean effect, placebo effect, observer effect), ensuring a high validity and accuracy of the acquired results, thus enabling a representative nature of the efficacy of Bifidobacterium longum as add-on supplement for dogs suffering from epilepsy and its comorbidities. This publication should provide a description of the study procedure and data acquisition methods, including prognosed statistical analysis.
Collapse
Affiliation(s)
- Teresa Schmidt
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sebastian Meller
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nina Meyerhoff
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Friederike Twele
- grid.412970.90000 0001 0126 6191Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Brian Zanghi
- Research and Development, Nestlé Purina PetCare, St. Louis, MO USA
| | - Holger Andreas Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany. .,Centre for Systems Neuroscience, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
36
|
Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem 2023; 67:77-91. [PMID: 36806927 DOI: 10.1042/ebc20220208] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
Synaptic regulation of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for brain function. Cerebral GABA homeostasis is tightly regulated through multiple mechanisms and is directly coupled to the metabolic collaboration between neurons and astrocytes. In this essay, we outline and discuss the fundamental roles of astrocytes in regulating synaptic GABA signaling. A major fraction of synaptic GABA is removed from the synapse by astrocytic uptake. Astrocytes utilize GABA as a metabolic substrate to support glutamine synthesis. The astrocyte-derived glutamine is subsequently transferred to neurons where it serves as the primary precursor of neuronal GABA synthesis. The flow of GABA and glutamine between neurons and astrocytes is collectively termed the GABA-glutamine cycle and is essential to sustain GABA synthesis and inhibitory signaling. In certain brain areas, astrocytes are even capable of synthesizing and releasing GABA to modulate inhibitory transmission. The majority of oxidative GABA metabolism in the brain takes place in astrocytes, which also leads to synthesis of the GABA-related metabolite γ-hydroxybutyric acid (GHB). The physiological roles of endogenous GHB remain unclear, but may be related to regulation of tonic inhibition and synaptic plasticity. Disrupted inhibitory signaling and dysfunctional astrocyte GABA handling are implicated in several diseases including epilepsy and Alzheimer's disease. Synaptic GABA homeostasis is under astrocytic control and astrocyte GABA uptake, metabolism, and recycling may therefore serve as relevant targets to ameliorate pathological inhibitory signaling.
Collapse
|
37
|
Potential of Capric Acid in Neurological Disorders: An Overview. Neurochem Res 2023; 48:697-712. [PMID: 36342577 DOI: 10.1007/s11064-022-03809-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.
Collapse
|
38
|
Guo HL, Wang WJ, Dong N, Zhao YT, Dai HR, Hu YH, Zhang YY, Wang J, Qiu JC, Lu XP, Chen F. Integrating metabolomics and lipidomics revealed a decrease in plasma fatty acids but an increase in triglycerides in children with drug-refractory epilepsy. Epilepsia Open 2023. [PMID: 36808532 DOI: 10.1002/epi4.12712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE The drug-refractory epilepsy (DRE) in children is commonly observed but the underlying mechanisms remain elusive. We examined whether fatty acids (FAs) and lipids are potentially associated with the pharmacoresistance to valproic acid (VPA) therapy. METHODS This single-center, retrospective cohort study was conducted using data from pediatric patients collected between May 2019 and December 2019 at the Children's Hospital of Nanjing Medical University. Ninety plasma samples from 53 responders with VPA monotherapy (RE group) and 37 non-responders with VPA polytherapy (NR group) were collected. Non-targeted metabolomics and lipidomics analysis for those plasma samples were performed to compare the potential differences of small metabolites and lipids between the two groups. Plasma metabolites and lipids passing the threshold of variable importance in projection value >1, fold change >1.2 or <0.8, and p-value <0.05 were regarded as statistically different substances. RESULTS A total of 204 small metabolites and 433 lipids comprising 16 different lipid subclasses were identified. The well-established partial least squares-discriminant analysis (PLS-DA) revealed a good separation of the RE from the NR group. The FAs and glycerophospholipids status were significantly decreased in the NR group, but their triglycerides (TG) levels were significantly increased. The trend of TG levels in routine laboratory tests was in line with the lipidomics analysis. Meanwhile, cases from the NR group were characterized by a decreased level of citric acid and L-thyroxine, but with an increased level of glucose and 2-oxoglutarate. The top two enriched metabolic pathways involved in the DRE condition were biosynthesis of unsaturated FAs and linoleic acid metabolism. SIGNIFICANCE The results of this study suggested an association between metabolism of FAs and the medically intractable epilepsy. Such novel findings might propose a potential mechanism linked to the energy metabolism. Ketogenic acid and FAs supplementation might therefore be high-priority strategies for DRE management.
Collapse
Affiliation(s)
- Hong-Li Guo
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Jun Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Na Dong
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China
| | - Yue-Tao Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao-Ran Dai
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Peng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Pharmacy, Pharmaceutical Sciences Research Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Fan L, Zhu X, Borenstein AR, Huang X, Shrubsole MJ, Dugan LL, Dai Q. Association of Circulating Caprylic Acid with Risk of Mild Cognitive Impairment and Alzheimer's Disease in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Cohort. J Prev Alzheimers Dis 2023; 10:513-522. [PMID: 37357292 PMCID: PMC10442865 DOI: 10.14283/jpad.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Medium-chain fatty acids (MCFAs) can rapidly cross the blood-brain barrier and provide an alternative energy source for the brain. This study aims to determine 1) whether plasma caprylic acid (C8:0) is associated with risk of incident mild cognitive impairment (MCI) among baseline cognitively normal (CN) participants, and incident Alzheimer's Disease (AD) among baseline MCI participants; and 2) whether these associations differ by sex, comorbidity of cardiometabolic diseases, apolipoprotein E (APOE) ε4 alleles, and ADAS-Cog 13. METHODS Within the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, plasma C8:0 was measured at baseline in 618 AD-free participants aged 55 to 91. Logistic regression models were used to estimate odds ratios (ORs) and 95% CIs with incident MCI and AD as dependent variables, separately. RESULTS The inverse association between circulating C8:0 and risk of incident MCI was of borderline significance. The inverse association between circulating levels of C8:0 and risk of incident MCI was significant among CN participants with ≥1 cardiometabolic diseases [OR (95% CI): 0.75 (0.58-0.98) (P=0.03)], those with one copy of APOE ε4 alleles [OR (95% CI): 0.43 (0.21-0.89) (P=0.02)], female [OR (95% CI): 0.60 (0.38-0.94) (P=0.02)], and ADAS-Cog 13 above the median [OR (95%CI): 0.69 (0.50-0.97)(P=0.03)] after adjusting for all covariates. CONCLUSION The inverse associations were present only among subgroups of CN participants, including female individuals, those with one or more cardiometabolic diseases, or one APOE ε4 allele, or higher ADAS-Cog 13 scores. If confirmed, this finding will facilitate precision prevention of MCI, in turn, AD among CN older adults.
Collapse
Affiliation(s)
- L Fan
- Qi Dai, M.D., Ph.D., Department of Medicine, Vanderbilt University Medical Center, 2525 West End Avenue, Suite 800, Nashville, TN 37203-1738, USA, Phone: (615) 936-0707, Fax: (615) 343-5938, E-mail:
| | | | | | | | | | | | | |
Collapse
|
40
|
Bogie JF, Guns J, Vanherle S. Lipid metabolism in neurodegenerative diseases. CELLULAR LIPID IN HEALTH AND DISEASE 2023:389-419. [DOI: 10.1016/b978-0-323-95582-9.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Coombs ID, Ziobro J, Krotov V, Surtees T, Cull‐Candy SG, Farrant M. A gain-of-function GRIA2 variant associated with neurodevelopmental delay and seizures: Functional characterization and targeted treatment. Epilepsia 2022; 63:e156-e163. [PMID: 36161652 PMCID: PMC10092096 DOI: 10.1111/epi.17419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) are ligand-gated cationic channels formed from combinations of GluA1-4 subunits. Pathogenic variants of GRIA1-4 have been described in patients with developmental delay, intellectual disability, autism spectrum disorder, and seizures, with GRIA2 variants typically causing AMPAR loss of function. Here, we identify a novel, heterozygous de novo pathogenic missense mutation in GRIA2 (c.1928 C>T, p.A643V, NM_001083619.1) in a 1-year-old boy with epilepsy, developmental delay, and failure to thrive. We made patch-clamp recordings to compare the functional and pharmacological properties of variant and wild-type receptors expressed in HEK293 cells, with and without the transmembrane AMPAR regulatory protein γ2. This showed GluA2 A643V-containing AMPARs to exhibit a novel gain of function, with greatly slowed deactivation, markedly reduced desensitization, and increased glutamate sensitivity. Perampanel, an antiseizure AMPAR negative allosteric modulator, was able to fully block GluA2 A643V/γ2 currents, suggesting potential therapeutic efficacy. The subsequent introduction of perampanel to the patient's treatment regimen was associated with a marked reduction in seizure burden, a resolution of failure to thrive, and clear developmental gains. Our study reveals that GRIA2 disorder can be caused by a gain-of-function variant, and both predicts and suggests the therapeutic efficacy of perampanel. Perampanel may prove beneficial for patients with other gain-of-function GRIA variants.
Collapse
Affiliation(s)
- Ian D. Coombs
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| | - Julie Ziobro
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | - Volodymyr Krotov
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| | - Taryn‐Leigh Surtees
- Department of NeurologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Stuart G. Cull‐Candy
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| | - Mark Farrant
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
42
|
Verdoodt F, Watanangura A, Bhatti SFM, Schmidt T, Suchodolski JS, Van Ham L, Meller S, Volk HA, Hesta M. The role of nutrition in canine idiopathic epilepsy management: Fact or fiction? Vet J 2022; 290:105917. [PMID: 36341888 DOI: 10.1016/j.tvjl.2022.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
In the last decade, nutrition has gained interest in the management of canine idiopathic epilepsy (IE) based on growing scientific evidence. Diets can serve their functions through many pathways. One potential pathway includes the microbiota-gut-brain axis, which highlights the relationship between the brain and the intestines. Changing the brain's energy source and a number of dietary sourced anti-inflammatory and neuroprotective factors appears to be the basis for improved outcomes in IE. Selecting a diet with anti-seizure effects and avoiding risks of proconvulsant mediators as well as interference with anti-seizure drugs should all be considered in canine IE. This literature review provides information about preclinical and clinical evidence, including a systematic evaluation of the level of evidence, suggested mechanism of action and interaction with anti-seizure drugs as well as pros and cons of each potential dietary adaptation in canine IE.
Collapse
Affiliation(s)
- Fien Verdoodt
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Antja Watanangura
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany; Veterinary Research and Academic Service, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sofie F M Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Teresa Schmidt
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Luc Van Ham
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Myriam Hesta
- Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
43
|
Saris CGJ, Timmers S. Ketogenic diets and Ketone suplementation: A strategy for therapeutic intervention. Front Nutr 2022; 9:947567. [PMID: 36458166 PMCID: PMC9705794 DOI: 10.3389/fnut.2022.947567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/13/2022] [Indexed: 07/24/2023] Open
Abstract
Ketogenic diets and orally administered exogenous ketone supplements are strategies to increase serum ketone bodies serving as an alternative energy fuel for high energy demanding tissues, such as the brain, muscles, and the heart. The ketogenic diet is a low-carbohydrate and fat-rich diet, whereas ketone supplements are usually supplied as esters or salts. Nutritional ketosis, defined as serum ketone concentrations of ≥ 0.5 mmol/L, has a fasting-like effect and results in all sorts of metabolic shifts and thereby enhancing the health status. In this review, we thus discuss the different interventions to reach nutritional ketosis, and summarize the effects on heart diseases, epilepsy, mitochondrial diseases, and neurodegenerative disorders. Interest in the proposed therapeutic benefits of nutritional ketosis has been growing the past recent years. The implication of this nutritional intervention is becoming more evident and has shown interesting potential. Mechanistic insights explaining the overall health effects of the ketogenic state, will lead to precision nutrition for the latter diseases.
Collapse
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Nijmegen, Netherlands
| | - Silvie Timmers
- Department of Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
44
|
Li R, Huang Q, Ye C, Wu C, Luo N, Lu Y, Fang J, Wang Y. Bibliometric and visual analysis in the field of ketogenic diet on cancer from 2012 to 2021. Front Nutr 2022; 9:1060436. [PMID: 36438725 PMCID: PMC9686384 DOI: 10.3389/fnut.2022.1060436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 08/13/2023] Open
Abstract
Increasing evidence demonstrated that the ketogenic diet (KD) played a positive effect on cancer treatment. However, no systematic review and bibliometric analysis were conducted in this field. This study aimed to explore the current status, and reveal the potential trends and hotspots to provide a reference for future research. Publications were extracted from the Web of Science Core Collection. CiteSpace (5.6.R3) software and the website of bibliometrics were used for visual analysis. A total of 500 publications with 334 articles and 166 reviews were included, with the timespan of 2012 to 2021. The United States was the most productive country. Majority of the top 10 institutions were from the United States, and Harvard University was the top-contributing institution. The most prolific author and the co-cited author was Thomas N Seyfried from Boston College. The highest cited reference was published in PLoS ONE, authored by Abdelwahab Mohammed G, with 161 citations. Glioma and breast cancer were the most common types of cancer in this field, while hepatocellular carcinoma and pancreatic cancer were the new hotspots. The anti-tumor mechanism of KD mainly focused on regulating metabolism, decanoic acid, oxidative stress, fatty acid oxidation, and cell apoptosis. Additionally, the presence of "chemotherapy" and "radiotherapy" in the keywords indicated that KD combined with anti-tumor research was a topic, while "immunotherapy" has became a recent frontiers. Notably, as a metabolic therapy, KD was deserved more attention in the treatment of hepatocellular carcinoma and pancreatic cancer, and KD combined with immunotherapy was the new hotspot and frontier. Additionally, more molecular studies and high-quality uniformly, randomized, controlled clinical trials are urgently warranted to evaluate the effect of KD in multiple cancers.
Collapse
Affiliation(s)
- Rongrong Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingcheng Huang
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxiao Ye
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Changhong Wu
- Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Luo
- Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Jianqiao Fang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Wang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
45
|
Hassanzadeh H, Ghanbarzadeh B, Galali Y, Bagheri H. The physicochemical properties of the spirulina-wheat germ-enriched high-protein functional beverage based on pear-cantaloupe juice. Food Sci Nutr 2022; 10:3651-3661. [PMID: 36348790 PMCID: PMC9632204 DOI: 10.1002/fsn3.2963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
The formulation of a novel functional juice, enriched with wheat germ powder and spirulina algae and based on cantaloupe and pear juice, was optimized by D-optimal combined design. Firstly, sensory evaluation was performed by hedonic test to evaluate the organoleptic properties, and organoleptically desirable samples were screened for further experiments. Various chemical experiments including PH, acidity, formalin index, total phenol, flavonoids, antioxidant capacity, mineral contents (Fe, Zn, Ca, P, K, Mg, and Cu), and fatty acids profile were evaluated. The steady shear flow rheological test also was performed on the screened samples. The results of sensory evaluation showed that the samples containing 1% spirulina and wheat germ had the highest organoleptic score. The results of physicochemical tests on the selected samples showed that the addition of spirulina and wheat germ powder had little effect on pH, acidity, and formalin index but they affected brix, dry matter, and protein content. Also, the addition of spirulina and wheat germ powder, changed the amounts of antioxidant capacity (from 90 to 98%), total phenol (from 4 to 22 mg GAE/g), and flavonoid content (from 5 to 15 mg/L) in the functional beverages. Furthermore, the results of rheological tests showed that the addition of wheat germ powder in the functional fruit juices increased apparent viscosity however; spirulina did not affect important change in rheological properties. The GC-Mass analysis presented fatty acid profiles of the functional beverages and confirmed the presence of polyunsaturated fatty acids (for example decanoic acid and heptadecanoic acid) in the samples.
Collapse
Affiliation(s)
- Hamed Hassanzadeh
- Department of Food Science and Hygiene, Faculty of Para‐VeterinaryIlam UniversityIlamIran
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
- Department of Food Engineering, Faculty of EngineeringNear East UniversityMersinTurkey
| | - Yaseen Galali
- Food Technology Department, College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilIraq
- Department of Nutrition and DieteticsCihan University‐ErbilErbilIraq
| | - Hamed Bagheri
- Department of Research and DevelopmentTakdaneh Co.MarandIran
| |
Collapse
|
46
|
Berk BA, Ottka C, Hong Law T, Packer RMA, Wessmann A, Bathen-Nöthen A, Jokinen TS, Knebel A, Tipold A, Lohi H, Volk HA. Metabolic fingerprinting of dogs with idiopathic epilepsy receiving a ketogenic medium-chain triglyceride (MCT) oil. Front Vet Sci 2022; 9:935430. [PMID: 36277072 PMCID: PMC9584307 DOI: 10.3389/fvets.2022.935430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/15/2022] [Indexed: 11/04/2022] Open
Abstract
Consumption of medium-chain triglycerides (MCT) has been shown to improve seizure control, reduce behavioural comorbidities and improve cognitive function in epileptic dogs. However, the exact metabolic pathways affected by dietary MCT remain poorly understood. In this study, we aimed to identify changes in the metabolome and neurotransmitters levels relevant to epilepsy and behavioural comorbidities associated with the consuming of an MCT supplement (MCT-DS) in dogs with idiopathic epilepsy (IE). Metabolic alterations induced by a commercial MCT-DS in a population of 28 dogs with IE were evaluated in a 6-month multi-centre, prospective, randomised, double-blinded, controlled cross-over trial design. A metabolic energy requirement-based amount of 9% MCT or control oil was supplemented to the dogs' stable base diet for 3 months, followed by the alternative oil for another 3 months. A validated, quantitative nuclear magnetic resonance (NMR) spectroscopy platform was applied to pre- and postprandially collected serum samples to compare the metabolic profile between both DS and baseline. Furthermore, alterations in urinary neurotransmitter levels were explored. Five dogs (30%) had an overall reduction in seizure frequency of ≥50%, and were classified as MCT-responders, while 23 dogs showed a ≤50% reduction, and were defined as MCT non-responders. Amino-acid metabolism was significantly influenced by MCT consumption compared to the control oil. While the serum concentrations of total fatty acids appeared similar during both supplements, the relative concentrations of individual fatty acids differed. During MCT supplementation, the concentrations of polyunsaturated fatty acids and arachidonic acid were significantly higher than under the control oil. β-Hydroxybutyric acid levels were significantly higher under MCT supplementation. In total, four out of nine neurotransmitters were significantly altered: a significantly increased γ-aminobutyric acid (GABA) concentration was detected during the MCT-phase accompanied by a significant shift of the GABA-glutamate balance. MCT-Responders had significantly lowered urinary concentrations of histamine, glutamate, and serotonin under MCT consumption. In conclusion, these novel data highlight metabolic changes in lipid, amino-acid and ketone metabolism due to MCT supplementation. Understanding the metabolic response to MCT provides new avenues to develop better nutritional management with improved anti-seizure and neuroprotective effects for dogs with epilepsy, and other behavioural disorders.
Collapse
Affiliation(s)
- Benjamin Andreas Berk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
- BrainCheck.Pet, Tierärztliche Praxis für Epilepsie, Mannheim, Germany
| | - Claudia Ottka
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- PetBiomics Ltd., Helsinki, Finland
| | - Tsz Hong Law
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Rowena Mary Anne Packer
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
| | - Annette Wessmann
- Pride Veterinary Centre, Neurology/Neurosurgery Service, Derby, United Kingdom
| | | | - Tarja Susanna Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Helsinki, Finland
| | - Anna Knebel
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Hannes Lohi
- Department of Veterinary Biosciences and Department of Medical and Clinical Genetics, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
- PetBiomics Ltd., Helsinki, Finland
| | - Holger Andreas Volk
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, United Kingdom
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
47
|
Fadó R, Molins A, Rojas R, Casals N. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients 2022; 14:nu14194137. [PMID: 36235789 PMCID: PMC9572450 DOI: 10.3390/nu14194137] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
In recent decades, traditional eating habits have been replaced by a more globalized diet, rich in saturated fatty acids and simple sugars. Extensive evidence shows that these dietary factors contribute to cognitive health impairment as well as increase the incidence of metabolic diseases such as obesity and diabetes. However, how these nutrients modulate synaptic function and neuroplasticity is poorly understood. We review the Western, ketogenic, and paleolithic diets for their effects on cognition and correlations with synaptic changes, focusing mainly (but not exclusively) on animal model studies aimed at tracing molecular alterations that may contribute to impaired human cognition. We observe that memory and learning deficits mediated by high-fat/high-sugar diets, even over short exposure times, are associated with reduced arborization, widened synaptic cleft, narrowed post-synaptic zone, and decreased activity-dependent synaptic plasticity in the hippocampus, and also observe that these alterations correlate with deregulation of the AMPA-type glutamate ionotropic receptors (AMPARs) that are crucial to neuroplasticity. Furthermore, we explored which diet-mediated mechanisms modulate synaptic AMPARs and whether certain supplements or nutritional interventions could reverse deleterious effects, contributing to improved learning and memory in older people and patients with Alzheimer’s disease.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Cerdanyola del Vallès, Spain
- Correspondence: ; Tel.: +34-93-504-20-00
| | - Anna Molins
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rocío Rojas
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
48
|
Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
49
|
Suvekbala V, Ramachandran H, Veluchamy A, Mascarenhas MAB, Ramprasath T, Nair MKC, Garikipati VNS, Gundamaraju R, Subbiah R. The Promising Epigenetic Regulators for Refractory Epilepsy: An Adventurous Road Ahead. Neuromolecular Med 2022:10.1007/s12017-022-08723-0. [DOI: 10.1007/s12017-022-08723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/13/2022] [Indexed: 10/14/2022]
|
50
|
Dietary Treatments for Epilepsy. Neurol Clin 2022; 40:785-797. [DOI: 10.1016/j.ncl.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|