1
|
Gayathri S, Aravind MK, Gowda VK, Varalakshmi P, Chatterjee C, Matheshwaran S, Efthymiou S, Houlden H, Ashokkumar B. Brown-Vialetto-Van Laere syndrome patients with unusual phenotypes from Indian ethnicity: Functional analysis of clinical variants in SLC52A2 and SLC52A3 genes. Brain Dev 2025; 47:104355. [PMID: 40168907 DOI: 10.1016/j.braindev.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND BVVLS (Brown-Vialetto-Van Laere syndrome), a rare genetic condition characterized by progressive neuropathy, is caused by defects in SLC52A2 and SLC52A3 genes coding for hRFVT-2 and hRFVT-3. METHODS Five BVVLS cases were screened for disease-causing variants using exome sequencing and their functional contributions were evaluated by in silico analysis, riboflavin transport assay and confocal imaging. RESULTS Probands enrolled in this study were presented with unusual phenotypes like syndactyly, polydactyly, pedal edema and chronic osteomyelitis. Genetic testing disclosed heterozygous variants in all five cases including c.229G>A p.E77K, c.384G>A p.S128S, c.1245C>T p.G415G and c.843del p.L282Cfs*8 in SLC52A2 gene and c.833C>T p.T278M, c.907A>G p.I303V and c.62A>G p.N21S in SLC52A3 gene. Among them, p.L282Cfs*8 was diagnosed here for first-time, whereas p.E77K and p.S128S were reported previously with a variation at nucleotide position. Functional analysis of the variant p.E77K, p.S128S, p.T278M and p.I303V evidenced impairment in riboflavin transport, whereas p.G415G and p.L282Cfs*8 showed no significant changes. Despite of having reduction in riboflavin uptake, the presence of same polymorphic variant (p.T278M and p.I303V) in asymptomatic father suggests it as not likely associated with disease phenotypes. Meantime, membranous expression of hRFVT-2 variants p.S128S and p.E77K were abrogated and mostly internalized in cytoplasmic regions of transfected cells, whereas no change was observed with other variants than wild-type. CONCLUSION These results show for the first-time that BVVLS associated hRFVT-2 variants p.S128S and p.E77K affected riboflavin transport function due to abrogation in membranous localization and/or activity of the transporter. The polymorphic variants p.T278M and p.I303V of hRFVT-3 are unlikely to be implicated functionally in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Santhalingam Gayathri
- School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Perumal Varalakshmi
- School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Chitral Chatterjee
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | |
Collapse
|
2
|
Mei C, Magliocca V, Chen X, Massey K, Gonzalez-Cordero A, Gray SJ, Tartaglia M, Bertini ES, Corti S, Compagnucci C. Riboflavin transporter deficiency: AAV9-SLC52A2 gene therapy as a new therapeutic strategy. Front Cell Neurosci 2025; 19:1523773. [PMID: 40134705 PMCID: PMC11933037 DOI: 10.3389/fncel.2025.1523773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Riboflavin transporter deficiency syndrome (RTD) is a rare childhood-onset neurodegenerative disorder caused by mutations in SLC52A2 and SLC52A3 genes, encoding the riboflavin (RF) transporters hRFVT2 and hRFVT3. In the present study we focused on RTD Type 2, which is due to variants in SLC52A2 gene. There is no cure for RTD patients and, although studies have reported clinical improvements with administration of RF, an effective treatment is still unavailable. Here we tested gene augmentation therapy on RTD type 2 patient-derived motoneurons using an adeno-associated viral vector 2/9 (AAV9) carrying the human codon optimized SLC52A2 cDNA. We optimized the in vitro transduction of motoneurons using sialidase treatment. Treated RTD motoneurons showed a significant increase in neurite's length when compared to untreated samples demonstrating that AAV9-SLC52A2 gene therapy can rescue RTD motoneurons. This leads the path towards in vivo studies offering a potential treatment for RTD patients.
Collapse
Affiliation(s)
- Cecilia Mei
- Department of Pathophysiology and Transplantation (DEPT), Università degli studi di Milano, Milan, Italy
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Valentina Magliocca
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Università degli studi di Milano, Milan, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Patel R, Mukherjee-Clavin B. Top 10 Clinical Pearls in Inherited Neuropathies. Semin Neurol 2025; 45:88-98. [PMID: 39406376 DOI: 10.1055/s-0044-1791520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The inherited neuropathies are a clinically and genetically heterogeneous collection of neuropathies that neurologists, particularly neuromuscular specialists, must be familiar with. They include Charcot-Marie-Tooth disease, which is common yet currently lacks targeted treatment, and hATTRV polyneuropathy, which is rare but has disease-modifying gene therapies. With a focus on emerging new genes and treatments, this article offers a recent update on clinical diagnosis and management of inherited neuropathies.
Collapse
Affiliation(s)
- Ruchee Patel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
4
|
Choueiri CM, Lau J, O'Connor E, DiBattista A, Wong BY, Spendiff S, Horvath R, Pena I, MacKenzie A, Lochmüller H. Development of a riboflavin-responsive model of riboflavin transporter deficiency in zebrafish. Hum Mol Genet 2025; 34:265-276. [PMID: 39656631 DOI: 10.1093/hmg/ddae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Riboflavin transporter deficiency (RTD) is a rare and progressive neurodegenerative disease resulting from the disruption of RFVT2- and RFVT3- mediated riboflavin transport caused by biallelic mutations in SLC52A2 and SLC52A3, respectively. The resulting impaired mitochondrial metabolism leads to sensorimotor neurodegeneration and symptoms including muscle weakness, respiratory difficulty, and sensorineural deafness. Although over 70% of patients with RTD improve following high-dose riboflavin supplementation, remaining patients either stabilise or continue to deteriorate. This may be due to the rapid excretion of central nervous system (CNS) riboflavin by organic anion transporter 3 (OAT-3), highlighting the need for alternative or supplemental RTD treatments. Probenecid is a promising therapeutic candidate for RTD due to its known inhibitory effect on OAT-3. Therefore, this study aimed to generate morpholino-mediated knockdowns of human SLC52A3 ortholog slc52a3 in zebrafish larvae for use in therapeutic screening of riboflavin and probenecid. Knockdown of slc52a3 resulted in an RTD-like phenotype indicative of altered neurodevelopment, hearing loss, and reduced mobility. This RTD-like phenotype overlaps with the phenotype of CRISPR/Cas9-mediated knockout of slc52a3 in zebrafish, is maintained following slc52a3 morpholino + p53 morpholino co-injection, and is rescued following slc52a3 morpholino + human SLC52A3 mRNA co-injection, indicating specificity of the knockdown. Riboflavin treatment alone ameliorates locomotor activity and hearing ability in slc52a3 morphants. Riboflavin and probenecid co-treatment provides an additional small benefit to hearing but not to locomotion. Our findings demonstrate that this model recapitulates both the RTD phenotype and the riboflavin-responsiveness of RTD patients, and possible therapeutic benefit conferred by probenecid warrants further investigation.
Collapse
Affiliation(s)
- Catherine M Choueiri
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Jarred Lau
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Alicia DiBattista
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Brittany Y Wong
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, John Van Geest Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Izabella Pena
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Alexander MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital Civic Campus, 1053 Carling Avenue, Ottawa K1Y 4E9, Canada
- Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
- Centro Nacional de Análisis Genómico, Carrer Baldiri Reixac, 4, Barcelona Science Park - Tower I, Barcelona 08028, Spain
| |
Collapse
|
5
|
Schrier MS, Smirnova MI, Nemeth DP, Deth RC, Quan N. Flavins and Flavoproteins in the Neuroimmune Landscape of Stress Sensitization and Major Depressive Disorder. J Inflamm Res 2025; 18:681-699. [PMID: 39839188 PMCID: PMC11748166 DOI: 10.2147/jir.s501652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Major Depressive Disorder (MDD) is a common and severe neuropsychiatric condition resulting in irregular alterations in affect, mood, and cognition. Besides the well-studied neurotransmission-related etiologies of MDD, several biological systems and phenomena, such as the hypothalamic-pituitary-adrenal (HPA) axis, reactive oxygen species (ROS) production, and cytokine signaling, have been implicated as being altered and contributing to depressive symptoms. However, the manner in which these factors interact with each other to induce their effects on MDD development has been less clear, but is beginning to be understood. Flavins are potent biomolecules that regulate many redox activities, including ROS generation and energy production. Studies have found that circulating flavin levels are modulated during stress and MDD. Flavins are also known for their importance in immune responses. This review offers a unique perspective that considers the redox-active cofactors, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), as vital substrates for linking MDD-related maladaptive processes together, by permitting stress-induced enhancement of microglial interleukin-1 beta (IL-1β) signaling.
Collapse
Affiliation(s)
- Matt Scott Schrier
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Maria Igorevna Smirnova
- The International Max Planck Research School (IMPRS) for Synapses and Circuits, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL, USA
| | - Daniel Paul Nemeth
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
6
|
Shastak Y, Pelletier W. Exploring the role of riboflavin in swine well-being: a literature review. Porcine Health Manag 2024; 10:46. [PMID: 39482748 PMCID: PMC11526614 DOI: 10.1186/s40813-024-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential B-vitamin crucial for the metabolism, development, and overall well-being of porcine species. As pig production intensifies, understanding the micronutrient needs of swine, particularly riboflavin, becomes increasingly vital. Riboflavin acts as a precursor for coenzymes involved in key redox reactions essential for energy production, growth, and immune regulation. Ariboflavinosis can disrupt metabolic functions, leading to impaired growth, reproductive issues, decreased feed efficiency, compromised immune function, ocular problems, and liver dysfunction. To ensure optimal growth and health, pig diets are consistently supplemented with riboflavin-enriched supplements. This review explores the diverse functions of riboflavin in swine metabolism, focusing on biochemical basics, metabolic pathways, riboflavin uptake and distribution, consequences of deficiency, and benefits of adequate intake. It emphasizes the need for optimized riboflavin supplementation strategies tailored to different production stages and environmental conditions. According to recommendations from four major breeding companies, the dietary riboflavin levels for swine are advised to range between 7.5 and 15 mg/kg for piglets, 3.5 to 8.0 mg/kg for finishing gilts and barrows, 4 to 10 mg/kg for gestating sows, and 5 to 10 mg/kg for lactating sows. Advances in precision nutrition, microbial production of riboflavin, and the development of functional feed additives are potential innovations to enhance swine health, growth performance, and sustainability. Comprehensive studies on the long-term effects of subclinical riboflavin deficiency and the broader health and welfare implications of supplementation are also needed. Addressing knowledge gaps and embracing future trends and innovations will be key to optimizing riboflavin supplementation and advancing the swine industry.
Collapse
Affiliation(s)
- Yauheni Shastak
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany.
| | - Wolf Pelletier
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany
| |
Collapse
|
7
|
Beaudin M, Dupre N, Manto M. The importance of synthetic pharmacotherapy for recessive cerebellar ataxias. Expert Rev Neurother 2024; 24:897-912. [PMID: 38980086 DOI: 10.1080/14737175.2024.2376840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.
Collapse
Affiliation(s)
- Marie Beaudin
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Nicolas Dupre
- Neuroscience axis, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgique
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgique
| |
Collapse
|
8
|
Sabeghi D, InanlooRahatloo K, Mirzadeh HS, Khani M, Shamshiri H, Taghavi T, Alavi A, Boostani R, Tonekaboni SH, Akhondian J, Ebrahimi M, Salehi N, Nafissi S, Elahi E. Atypical presentations in an RTD patient and report of novel SLC52A3 and SLC52A2 mutations. Acta Neurol Belg 2024; 124:1363-1370. [PMID: 38965176 DOI: 10.1007/s13760-024-02598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Riboflavin Transporter Deficiency (RTD) is a rare neurological disorder characterized by pontobulbar palsy, hearing loss, and motor cranial nerve involvement. SLC52A3 and SLC52A2 mutations are causes of RTD. SLC52A2 mutations are usually found in childhood onset cases. Fifteen Iranian RTD diagnosed patients without SLC52A2 mutations have been previously described. We aimed to identify causative mutations in two childhood cases. METHODS We recruited patients with diagnosis of BVVL. Comprehensive clinical evaluations were performed on the patients. SLC52A3 and SLC52A2 genes were PCR-amplified and Sanger sequenced. Candidate disease causing variations were screened for segregation with disease status in the respective families and control individuals. RESULTS A novel homozygous SLC52A3 mutation (p.Met1Val) and a heterozygous SLC52A2 mutation (p.Ala288Val) were both observed in one proband with typical RTD presentations. The aggregate of presentations in the early stages of disease in the second patient that included weakness in the lower extremities, absence of bulbar or hearing defects, prominent sensory polyneuropathy as evidenced in electrodiagnostic studies, and absence of sensory symptoms including sensory ataxia did not prompt immediate RTD diagnosis. Dysarthria and decreased hearing manifested later in the disease course. A novel homozygous SLC52A2 (p.Val314Met) mutation was identified. CONCLUSION A literature search found recent reports of other atypical RTD presentations. These include MRI findings, speech understanding difficulties accompanied by normal hearing, anemia, and left ventricular non-compaction. Knowledge of unusual presentations lessens the chance of misdiagnosis or delayed RTD diagnosis which, in light of favorable effects of riboflavin supplementation, is of immense importance.
Collapse
Affiliation(s)
- Donya Sabeghi
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
| | | | - Hanieh S Mirzadeh
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Shahid Fahmideh Children Hospital, Iran University of Medical Science, Tehran, Iran
| | - Marzieh Khani
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Shamshiri
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Tarannomsadat Taghavi
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
| | - Afagh Alavi
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology, School of Medicine, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Javad Akhondian
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoomah Ebrahimi
- Pediatric Neurology, School of Medicine, Mofid Children's Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Shahriar Nafissi
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Enghelab Ave, Tehran, Iran
- Iranian Neuromusclar Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Jaeger B, Langeveld M, Brunkhorst R, Distelmaier F, Pop A, Wolf NI, Bosch AM. Riboflavin transporter deficiency in young adults unmasked by dietary changes. JIMD Rep 2024; 65:233-238. [PMID: 38974615 PMCID: PMC11224500 DOI: 10.1002/jmd2.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 07/09/2024] Open
Abstract
Riboflavin transporter deficiency (RTD) is a genetic disorder of reduced riboflavin (vitamin B2) uptake that causes progressive, multifocal neurological dysfunction. Most patients present in early childhood; if patients present later in life, symptoms usually develop more gradually. We report three previously healthy young adults, who developed rapidly progressive neurological symptoms after decreasing dietary intake of meat and dairy. After a diagnostic odyssey, the diagnosis of a riboflavin transporter deficiency was made. Treatment with high dose oral riboflavin (20-40 mg/kg/day) partially reversed symptoms. This case series highlights that reduced riboflavin intake as a result of dietary changes can unmask RTD at a later age. We emphasize the importance of early recognition of this progressive and potentially lethal disease and show that timely treatment with high dose riboflavin is highly effective.
Collapse
Affiliation(s)
- Bregje Jaeger
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical CentersAmsterdamThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and MetabolismAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Robert Brunkhorst
- Department of NeurologyAachen University Medical CenterAachenGermany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric CardiologyUniversity Children's Hospital, Heinrich Heine UniversityDüsseldorfGermany
| | - Ana Pop
- Laboratory of Genetic Metabolic Diseases, Gastroenterology, Endocrinology & MetabolismAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Nicole I. Wolf
- Department of Child NeurologyEmma Children's Hospital, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije UniversiteitAmsterdamThe Netherlands
| | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersEmma Children's Hospital, Gastroenterology, Endocrinology & Metabolism, Amsterdam University Medical CentersAmsterdamThe Netherlands
| |
Collapse
|
10
|
Shinsato RN, Correa CG, Herai RH. Genetic network analysis indicate that individuals affected by neurodevelopmental conditions have genetic variations associated with ophthalmologic alterations: A critical review of literature. Gene 2024; 908:148246. [PMID: 38325665 DOI: 10.1016/j.gene.2024.148246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Changes in the nervous system are related to a wide range of mental disorders, which include neurodevelopmental disorders (NDD) that are characterized by early onset mental conditions, such as schizophrenia and autism spectrum disorders and correlated conditions (ASD). Previous studies have shown distinct genetic components associated with diverse schizophrenia and ASD phenotypes, with mostly focused on rescuing neural phenotypes and brain activity, but alterations related to vision are overlooked. Thus, as the vision is composed by the eyes that itself represents a part of the brain, with the retina being formed by neurons and cells originating from the glia, genetic variations affecting the brain can also affect the vision. Here, we performed a critical systematic literature review to screen for all genetic variations in individuals presenting NDD with reported alterations in vision. Using these restricting criteria, we found 20 genes with distinct types of genetic variations, inherited or de novo, that includes SNP, SNV, deletion, insertion, duplication or indel. The variations occurring within protein coding regions have different impact on protein formation, such as missense, nonsense or frameshift. Moreover, a molecular analysis of the 20 genes found revealed that 17 shared a common protein-protein or genetic interaction network. Moreover, gene expression analysis in samples from the brain and other tissues indicates that 18 of the genes found are highly expressed in the brain and retina, indicating their potential role in adult vision phenotype. Finally, we only found 3 genes from our study described in standard public databanks of ophthalmogenetics, suggesting that the other 17 genes could be novel target for vision diseases.
Collapse
Affiliation(s)
- Rogério N Shinsato
- Unisalesiano, Araçatuba, São Paulo, Brazil; Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil.
| | - Camila Graczyk Correa
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil
| | - Roberto H Herai
- Laboratory of Bioinformatics and Neurogenetics (LaBiN/LEM), Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná, 80215-901, Brazil; Research Division, Buko Kaesemodel Institute (IBK), Curitiba, Paraná 80240-000, Brazil; Research Division, 9p Brazil Association (A9pB), Santa Maria, Rio Grande do Sul 97060-580, Brazil.
| |
Collapse
|
11
|
Rance G, Wills R, Kornberg A, Zanin J. Diffusion-Weighted Magnetic Resonance Imaging (dMRI) and Cochlear Implant Outcomes in Axonal Auditory Neuropathy: A Case Report. J Clin Med 2024; 13:3072. [PMID: 38892782 PMCID: PMC11172963 DOI: 10.3390/jcm13113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Progressive auditory dysfunction is common in patients with generalized neurodegenerative conditions, but clinicians currently lack the diagnostic tools to determine the location/degree of the pathology and, hence, to provide appropriate intervention. In this study, we present the white-matter microstructure measurements derived from a novel diffusion-weighted magnetic resonance imaging (dMRI) technique in a patient with axonal auditory neuropathy and consider the findings in relation to the auditory intervention outcomes. METHODS We tracked the hearing changes in an adolescent with Riboflavin Transporter Deficiency (Type 2), evaluating the sound detection/discrimination, auditory evoked potentials, and both structural- and diffusion-weighted MRI findings over a 3-year period. In addition, we explored the effect of bilateral cochlear implantation in this individual. RESULTS Between the ages of 15 years and 18 years, the patient showed a complete loss of functional hearing ability. The auditory brainstem response testing indicated an auditory neuropathy with evidence of normal cochlear function but disrupted auditory neural activity. While three structural MRI assessments across this period showed a clinically normal cochleovestibular anatomy, the dMRI evaluation revealed a significant loss of fiber density consistent with axonopathy. The subsequent cochlear implant function was affected with the high levels of current required to elicit auditory sensations and concomitant vestibular and facial nerve stimulation issues. CONCLUSIONS The case study demonstrates the ability of dMRI technologies to identify the subtle white-matter microstructure changes in the auditory pathway, which may disrupt the neural function in patients with auditory axonopathy.
Collapse
Affiliation(s)
- Gary Rance
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, VIC 3052, Australia;
| | - Raoul Wills
- Cochlear Implant Clinic, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia;
| | - Andrew Kornberg
- Department of Neurology, Royal Children’s Hospital, Parkville, VIC 3052, Australia;
- Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Julien Zanin
- Department of Audiology and Speech Pathology, The University of Melbourne, Carlton, VIC 3052, Australia;
| |
Collapse
|
12
|
Kentab AY, Alsalloum Y, Labani M, Hudairi A, Hamad MH, Jamjoom DZ, Alwadei AH, Alhammad RM, Bashiri FA. Case Report: A rare treatable metabolic syndrome (Brown-Vialetto-Van Laere syndrome) masquerading as chronic inflammatory demyelinating polyneuropathy from Saudi Arabia. Front Pediatr 2024; 12:1377515. [PMID: 38745833 PMCID: PMC11091239 DOI: 10.3389/fped.2024.1377515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Background Brown-Vialetto-Van Laere (BVVL) syndrome is an extremely rare autosomal recessive progressive motoneuron disease that is caused by a defect in the riboflavin transporter genes SLC52A2 and SLC52A3. BVVL syndrome has a variable age of presentation, and it is characterized by progressive auditory neuropathy, bulbar palsy, stridor, muscle weakness, and respiratory compromise secondary to diaphragmatic and vocal cord paralysis. BVVL syndrome has a poor prognosis in the absence of treatment, including morbidity with quadriparesis and sensorineural hearing loss, with mortality in the younger age group. Early administration of riboflavin is associated with prolonged survival, low morbidity, and reversal of some clinical manifestations. Case presentation We describe an 18-month-old male infant with progressive pontobulbar palsy, loss of developmental milestones, and a clinical picture suggestive of chronic inflammatory demyelinating neuropathy. A nerve conduction study revealed axonal neuropathy, while molecular analysis revealed a homozygous mutation in one of the riboflavin transporter genes, SLC52A3, confirming BVVL syndrome. The patient needed long-term respiratory support and a gastrostomy tube to support feeding. With high-dose riboflavin supplementation, he experienced moderate recovery of motor function. Conclusion This report highlights the importance of considering BVVL syndrome in any patient who presents with the clinical phenotype of pontobulbar palsy and peripheral axonal neuropathy, as early riboflavin treatment may improve or halt disease progression, thus reducing the associated mortality and morbidity.
Collapse
Affiliation(s)
- Amal Y. Kentab
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Yara Alsalloum
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Mai Labani
- Pediatric Intensive Care Unit, Department of Pediatrics, King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Abrar Hudairi
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Muddathir H. Hamad
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Dima Z. Jamjoom
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali H. Alwadei
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
- Pediatric Neurology Department, National Neuroscience Institute, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Reem M. Alhammad
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fahad A. Bashiri
- Division of Pediatric Neurology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Tranel ES, McGowan B, Drackley A, Epstein LG, Rao VK, Kuntz NL, Schwaede AN. A case report of riboflavin transporter deficiency: A novel heterozygous pathogenic variant in the SLC52A3 gene. Mol Genet Metab Rep 2024; 38:101051. [PMID: 38469093 PMCID: PMC10926195 DOI: 10.1016/j.ymgmr.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 03/13/2024] Open
Abstract
Riboflavin transporter deficiency (RTD) is a neurodegenerative disorder that presents from infancy to adulthood with a progressive axonal neuropathy characterized by a variety of neurologic symptoms including hearing loss, weakness, bulbar palsy, and respiratory insufficiency. Pathogenic variants in SLC52A2 and SLC52A3 are implicated in the pathogenesis of RTD type 2 and 3, respectively. Early identification of this disorder is critical, as it is treatable with riboflavin supplementation. We describe a 16-year-old female with a phenotype consistent with RTD3 found to have a novel heterozygous SLC52A3 variant. Though RTD is typically considered an autosomal recessive condition, her heterozygous variant was thought to be disease causing after further genetic analysis and given her improvement in response to riboflavin supplementation. This case highlights the importance of reinterpretation of genetic testing, particularly when there is a high clinical suspicion for disease.
Collapse
Affiliation(s)
- Elizabeth S. Tranel
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Bridget McGowan
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Andy Drackley
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Leon G. Epstein
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Vamshi K. Rao
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Nancy L. Kuntz
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| | - Abigail N. Schwaede
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States of America
| |
Collapse
|
14
|
Khani M, Shamshiri H, Nafissi S, Salehi N, Moazzeni H, Taheri H, Elahi E. Identification of a mutation in TNRC18 in a patient with clinical features of Fazio-Londe disease. Clin Case Rep 2024; 12:e8394. [PMID: 38188848 PMCID: PMC10766555 DOI: 10.1002/ccr3.8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Fazio-Londe disease and Brown-Vialetto-Van Laere syndrome are rare related neurological disorders. Although SLC52A3 and SLC52A2 that encode riboflavin transporters are their only known causative genes, many patients without mutations in these genes have been reported. Clinical and genetic data of a patient with features suggestive of Fazio-Londe disease are presented. Neurological examination revealed significant involvement of cranial nerves and weakness in the lower extremities. Pontobulbar presentations were prominent. EDX study suggested motor neuronopathy. Hearing was normal. She was diagnosed with FL disease. Response to riboflavin supplementation was not favorable. The patient's pedigree suggested recessive inheritance. SLC52A3 and SLC52A2 were screened and mutations were not observed. Results of exome sequencing and segregation analysis suggested that a mutation in TNRC18 is a candidate cause of disease in the patient. The three dimensional structure of the TNRC18 protein was predicted and it was noted that its two conserved domains (BAH and Tudor) interact and that the valine residue affected by the mutation is positioned close to both domains. A mutation in TNRC18 is cautiously reported as the possible cause of FL disease in the patient. The finding warrants further inquiries on TNRC18 about which little is presently known.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of ScienceUniversity of TehranTehranIran
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
| | - Hosein Shamshiri
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
- Department of NeurologyTehran University of Medical SciencesTehranIran
| | - Shahriar Nafissi
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
- Department of NeurologyTehran University of Medical SciencesTehranIran
| | - Najmeh Salehi
- School of Biological ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
| | | | - Hanieh Taheri
- School of Biology, College of ScienceUniversity of TehranTehranIran
| | - Elahe Elahi
- School of Biology, College of ScienceUniversity of TehranTehranIran
- Neuromusclar Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Kramarz C, Murphy E, Reilly MM, Rossor AM. Nutritional peripheral neuropathies. J Neurol Neurosurg Psychiatry 2023; 95:61-72. [PMID: 37536924 DOI: 10.1136/jnnp-2022-329849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Nutritional peripheral neuropathies are a global problem, heavily influenced by geopolitical, cultural and socioeconomic factors. Peripheral neuropathy occurs most frequently secondary to B-vitamin deficiencies, which is suspected to increase in years to come due to the popularity of vegan and vegetarian diets and increased use of bariatric surgery.This review will focus on the common B-vitamins for which a causal link to peripheral neuropathy is more established (vitamins B1, B2, B6, B9 and B12). We will review the historical human and animal data on which much of the clinical descriptions of vitamin deficiencies are based and summarise current available tools for accurately diagnosing a nutritional deficiency. We will also review recently described genetic diseases due to pathogenic variants in genes involved in B-vitamin metabolism that have helped to inform the phenotypes and potential causality of certain B-vitamins in peripheral neuropathy (B2 and B9).Endemic outbreaks of peripheral neuropathy over the last two centuries have been linked to food shortages and nutritional deficiency. These include outbreaks in Jamaican sugar plantation workers in the nineteenth century (Strachan's syndrome), World War two prisoners of war, Cuban endemic neuropathy and also Tanzanian endemic optic neuropathy, which remains a significant public health burden today. An improved understanding of lack of which vitamins cause peripheral neuropathy and how to identify specific deficiencies may lead to prevention of significant and irreversible disability in vulnerable populations.
Collapse
Affiliation(s)
- Caroline Kramarz
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander M Rossor
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
16
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Abstract
BACKGROUND To describe the clinical presentation with a focus on ocular manifestations and response to riboflavin supplementation of 3 patients with riboflavin transporter deficiency (RTD) caused by mutations in SLC52A2 ( SLC52A2- RTD). METHODS This is a retrospective review of records of 3 children (aged 18, n = 2 and age = 8, n = 1) with SLC52A2- RTD. Patients underwent comprehensive ophthalmic evaluations including color vision testing, pattern visual-evoked potentials (pVEPs, 1 patient) and spectral domain optical coherence tomography (SD-OCT) imaging. Patients received riboflavin supplements from the time of the molecular diagnosis of RTD. RESULTS Two unrelated 18-year-old patients with SLC52A2- RTD had a symptomatic onset with sensorineural hearing loss and auditory neuropathy/dys-synchrony since age 3 and 11, respectively. On examination 7 years after symptomatic onset, they showed subnormal visual acuities (20/30 and 20/60, both eyes, respectively), preserved color vision, and a thin but measurable retinal ganglion cell layer (GCL) and nerve fiber (RNFL). The inner and outer nuclear layers were normal. The asymptomatic SLC52A2- positive brother of one of these patients started riboflavin supplementation right after the molecular diagnosis and had normal vision and SD-OCTs 7 years later. Onset of riboflavin supplementation in one of the 2 symptomatic cases resulted in acute improvement of the pattern visual-evoked potential and vision. CONCLUSIONS Retinal ganglion cells and their axons are uniquely susceptible to RTD compared with other highly energy-dependent retinal neurons, such as photoreceptors, raising the possibility for alternative mechanisms of disease or protection. Riboflavin supplementation results in acute functional improvement of vision and long-term preservation of GCL and RNFL if initiated early.
Collapse
|
18
|
Amorini M, Iapadre G, Mancuso A, Ceravolo I, Farello G, Scardamaglia A, Gramaglia S, Ceravolo A, Salpietro A, Cuppari C. An Overview of Genes Involved in the Pure Joubert Syndrome and in Joubert Syndrome-Related Disorders (JSRD). JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:023-032. [DOI: 10.1055/s-0042-1760242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disease characterized by a peculiar brain malformation, hypotonia, ataxia, developmental delay, abnormal eye movements, and neonatal breathing abnormalities. This picture is often associated with variable multiorgan involvement, mainly of the retina, kidneys and liver, defining a group of conditions termed syndrome and Joubert syndrome-related disorders (JSRD). Currently, more than 30 causative genes have been identified, involved in the development and stability of the primary cilium. Correlations genotype–phenotype are emerging between clinical presentations and mutations in JSRD genes, with implications in terms of molecular diagnosis, prenatal diagnosis, follow-up, and management of mutated patients.
Collapse
Affiliation(s)
- Maria Amorini
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Annarita Scardamaglia
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Simone Gramaglia
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
19
|
Ceravolo I, Granata F, Gitto E, Iapadre G, Chimenz R, Giannitto N, Mancuso A, Ceravolo MD, Macchia TL, Rissotto F, Farello G, Cuppari C. Ophthalmological Findings in Joubert Syndrome and Related Disorders. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:068-072. [DOI: 10.1055/s-0042-1759536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare genetic condition characterized by congenital malformation of the mid-hindbrain, cerebellar ataxia, hypotonia, oculomotor apraxia, hypoplasia of the cerebellar vermis resulting in breathing defects, ataxia, and delayed development. Ophthalmological examination reveals eye involvement with nystagmus and retinal defects. Genetic counseling is important for the prevention of new cases. Great advances have been made in recent years. Management is symptomatic and multidisciplinary. In the present review, we discussed the most frequent ophthalmological anomalies associated with JS and speculated on the role of ciliary physiology in eye development.
Collapse
Affiliation(s)
- Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Roberto Chimenz
- Faculty of Medicine and Surgery, University of Messina, Messina, Italy
| | - Nino Giannitto
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Tommaso La Macchia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federico Rissotto
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Giovanni Farello
- Pediatric Clinic–Department of Life, Health and Environmental Sciences–Piazzale Salvatore, Coppito (AQ), Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
20
|
Conti G, Farello G, Ceravolo MD, Fusco M, Cuppari C, Mancuso A, Ceravolo I, David E, Iapadre G, Scorrano G, Fiorile MF, Chimenz R. Joubert Syndrome and Renal Implication. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:049-052. [DOI: 10.1055/s-0042-1759541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AbstractTwenty-five to 30% of patients with Joubert syndrome (JS) have renal involvement. Two forms of renal disease (RD) have traditionally been described. The less common form is the Dekaban–Arima syndrome, a JS RD that includes congenital blindness and occasional encephalocele. The other, more common RD is juvenile nephronophthisis (NPHP), that presents a progressive interstitial fibrosis, associated with small cysts at the corticomedullary junction. NPHP is the most frequent genetic cause for end-stage RD in the first three decades of life. Symptoms start at approximately 6 years of age with urine concentrating defects, polydipsia, polyuria, and secondary enuresis.
Collapse
Affiliation(s)
- Giovanni Conti
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Alessio Mancuso
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | | | | | - Roberto Chimenz
- Unit of Pediatric Nephrology and Rheumatology, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
21
|
Prato A, Scuderi A, Amore G, Spoto G, Salpietro V, Ceravolo A, Farello G, Iapadre G, Pironti E, Dicanio D, Rosa GD. Epilepsy in Joubert Syndrome: A Still Few Explored Matter. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1759540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractEpilepsy is rarely associated with Joubert's syndrome and related disorders (JSRD), being reported only in 3% of cases. Few patients have been described, moreover, with poor evidences of specific seizures' semiology or standard of practice for pharmacological treatment. Epilepsy is likely to be related to brain malformations in ciliopathies. Beyond the typical hindbrain malformation, the molar tooth sign, other cerebral anomalies variably reported in JSRD, such as generalized polymicrogyria, hamartomas, periventricular nodular heterotopia, and hippocampal defects, have been described. Herein, we aimed to revise the main clinical and etiopathogenetic characteristics of epilepsy associated with JSRD.
Collapse
Affiliation(s)
- Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | | | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito, L'Aquila, Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
22
|
Stroscio G, Cuppari C, Ceravolo MD, Salpietro A, Battaglia F, Sallemi A, Fusco M, Ceravolo A, Iapadre G, Calì E, Impollonia D, Granata F. Radiological Features of Joubert's Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2023. [DOI: 10.1055/s-0042-1760241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractJoubert syndrome (JS) is a rare autosomal recessive disorder. All patients affected by this syndrome presented a characteristic picture of cranial fossa malformations, called “molar tooth sign.” This sign is defined by the presence in axial section at the level of a deck/midbrain, of hypo/dysplasia of the cerebellar vermis, abnormally deep interpeduncular fossa and horizontalized thickened and elongated superior cerebellar peduncles. Although “molar tooth sign” is peculiar of JS, other radiological findings have been also reported in these patients. Here, the authors briefly assumed the principal magnetic resonance imaging findings of JS.
Collapse
Affiliation(s)
- Giovanni Stroscio
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Caterina Cuppari
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Maria Domenica Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Francesco Battaglia
- Orthopaedic and Traumatology Department, “S. Anna” Hospital, University of Ferrara, Ferrara, Italy
| | - Alessia Sallemi
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Monica Fusco
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Elisa Calì
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Daniela Impollonia
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| | - Francesca Granata
- Unit of Radiology, Department of Human Pathology in Adulthood and Childhood “G. Barresi,” University Hospital of Messina, Messina, Italy
| |
Collapse
|
23
|
Cade BE, Gharib SA. Breath of Fresh Air: Toward Unraveling the Molecular Underpinnings of Sleep Apnea. Am J Respir Crit Care Med 2022; 206:1450-1451. [PMID: 35944212 PMCID: PMC9757082 DOI: 10.1164/rccm.202207-1410ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Brian E. Cade
- Division of Sleep and Circadian DisordersBrigham and Women’s HospitalBoston, Massachusetts,Division of Sleep MedicineHarvard Medical SchoolBoston, Massachusetts
| | - Sina A. Gharib
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of WashingtonSeattle, Washington
| |
Collapse
|
24
|
Zhao S, Che F, Yang L, Zheng Y, Wang D, Yang Y, Wang Y. First report of paternal uniparental disomy of chromosome 8 with SLC52A2 mutation in Brown-vialetto-van laere syndrome type 2 and an analysis of genotype-phenotype correlations. Front Genet 2022; 13:977914. [PMID: 36186484 PMCID: PMC9520306 DOI: 10.3389/fgene.2022.977914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: This study reports the clinical and genetic features of Brown-Vialetto-Van Laere syndrome (BVVL) type 2 in a case of uniparental disomy of chromosome 8 in mainland China and analyzes the genotype-phenotype correlation through a review of the literature of BVVL type 2 cases. Methods: The clinical characteristics, treatment, and follow-up data of the patient were summarized, and the etiology was identified by whole-exome sequencing and gene chip analysis. Correlations between the genotype and phenotype were analyzed by collecting clinical and genetic data of published cases and our patient. Results: We identified a homozygous mutation in SLC52A2 (NM_001253815.2 c.1255G>A) by trio-WES. Sanger sequencing confirmed that his father was heterozygous and his mother was wild type. Subsequently, paternal uniparental disomy of chromosome 8 [UPD (8)pat] was confirmed by chromosomal microarray analysis.The patient received long-term oral riboflavin treatment (7 mg/kg.d) and was followed up for 40 months by which time the child’s bulbar palsy, ataxia, and motor function had improved. A review of the literature and statistical analysis found that the symptoms of BVVL type 2 appear at the earliest shortly after birth and at the latest at 10 years of age. The median age of onset was 2.5 years, but the overall delay in diagnosis was a median of 5.6 years. The most common symptoms were hearing loss (83.9%), followed by muscle weakness (80.6%), visual impairment (64.5%), and ataxia (61.3%). To date, a total of 32 mutations in the SLC52A2 gene have been reported, with the most common being a missense mutation. Mutations occur throughout the length of the gene apart from at the N-terminus. In patients with missense mutations, homozygous pattern was more likely to present with ataxia as the first symptom (p < 0.05), while compound heterozygous pattern was more likely to develop respiratory insufficiency during the course of disease (p < 0.001). Moreover, patients with one missense mutation located in inside the transmembrane domain were more likely to have respiratory insufficiency than those with mutations both inside and outside the domain (p < 0.05). Riboflavin supplementation was an important factor in determining prognosis (p < 0.001). Conclusion: We report the first UPD(8)pat with SLC52A2 homozygous pathogenic mutation case in BVVL type 2, which expand the mutation spectrum of gene.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Le Yang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Yanyan Zheng
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Dong Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| | - Yan Wang
- Department of Pediatric neurology, Xi’an Children’s hospital, Xi’an, China
- *Correspondence: Ying Yang, Yan Wang,
| |
Collapse
|
25
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
26
|
Colasuonno F, Marioli C, Tartaglia M, Bertini E, Compagnucci C, Moreno S. New Insights into the Neurodegeneration Mechanisms Underlying Riboflavin Transporter Deficiency (RTD): Involvement of Energy Dysmetabolism and Cytoskeletal Derangement. Biomedicines 2022; 10:biomedicines10061329. [PMID: 35740351 PMCID: PMC9219947 DOI: 10.3390/biomedicines10061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Riboflavin transporter deficiency (RTD) is a rare genetic disorder characterized by motor, sensory and cranial neuropathy. This childhood-onset neurodegenerative disease is caused by biallelic pathogenic variants in either SLC52A2 or SLC52A3 genes, resulting in insufficient supply of riboflavin (vitamin B2) and consequent impairment of flavoprotein-dependent metabolic pathways. Current therapy, empirically based high-dose riboflavin supplementation, ameliorates the progression of the disease, even though response to treatment is variable and partial. Recent studies have highlighted concurrent pathogenic contribution of cellular energy dysmetabolism and cytoskeletal derangement. In this context, patient specific RTD models, based on induced pluripotent stem cell (iPSC) technology, have provided evidence of redox imbalance, involving mitochondrial and peroxisomal dysfunction. Such oxidative stress condition likely causes cytoskeletal perturbation, associated with impaired differentiation of RTD motor neurons. In this review, we discuss the most recent findings obtained using different RTD models. Relevantly, the integration of data from innovative iPSC-derived in vitro models and invertebrate in vivo models may provide essential information on RTD pathophysiology. Such novel insights are expected to suggest custom therapeutic strategies, especially for those patients unresponsive to high-dose riboflavin treatments.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Chiara Marioli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Correspondence: (C.C.); (S.M.)
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
- Correspondence: (C.C.); (S.M.)
| |
Collapse
|
27
|
Electrodiagnostic Findings in Riboflavin Transporter Deficiency Type 2. J Clin Neuromuscul Dis 2022; 23:205-209. [PMID: 35608644 DOI: 10.1097/cnd.0000000000000390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT We present the electrodiagnostic findings in a case of a 3-year-old girl presenting with sensory ataxia, gait disturbance, and visual-auditory disturbance with a genetically confirmed diagnosis of riboflavin transporter deficiency type 2 (RTD2). She carries a homozygous mutation in the SLC52A2 gene, c.1016T>C (p.Leu339Pro). Her testing demonstrates a non-length-dependent axonal sensorimotor polyneuropathy affecting predominantly the upper extremities with active denervation of the distal muscles of both arms. It is important to highlight these findings because most genetic neuropathies have a length-dependent pattern of involvement, affecting the distal legs before the arms. The electrodiagnostic findings in RTD2 have not been previously well described. These electrodiagnostic findings are in agreement with the typical clinical phenotype of RTD2, which affects the upper limbs and bulbar muscles more than the lower extremities.
Collapse
|
28
|
Chen F, Ni C, Wang X, Cheng R, Pan C, Wang Y, Liang J, Zhang J, Cheng J, Chin YE, Zhou Y, Wang Z, Guo Y, Chen S, Htun S, Mathes EF, de Alba Campomanes AG, Slavotinek AM, Zhang S, Li M, Yao Z. S1P defects cause a new entity of cataract, alopecia, oral mucosal disorder, and psoriasis-like syndrome. EMBO Mol Med 2022; 14:e14904. [PMID: 35362222 PMCID: PMC9081911 DOI: 10.15252/emmm.202114904] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
In this report, we discovered a new entity named cataract, alopecia, oral mucosal disorder, and psoriasis‐like (CAOP) syndrome in two unrelated and ethnically diverse patients. Furthermore, patient 1 failed to respond to regular treatment. We found that CAOP syndrome was caused by an autosomal recessive defect in the mitochondrial membrane‐bound transcription factor peptidase/site‐1 protease (MBTPS1, S1P). Mitochondrial abnormalities were observed in patient 1 with CAOP syndrome. Furthermore, we found that S1P is a novel mitochondrial protein that forms a trimeric complex with ETFA/ETFB. S1P enhances ETFA/ETFB flavination and maintains its stability. Patient S1P variants destabilize ETFA/ETFB, impair mitochondrial respiration, decrease fatty acid β‐oxidation activity, and shift mitochondrial oxidative phosphorylation (OXPHOS) to glycolysis. Mitochondrial dysfunction and inflammatory lesions in patient 1 were significantly ameliorated by riboflavin supplementation, which restored the stability of ETFA/ETFB. Our study discovered that mutations in MBTPS1 resulted in a new entity of CAOP syndrome and elucidated the mechanism of the mutations in the new disease.
Collapse
Affiliation(s)
- Fuying Chen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cheng Ni
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxiao Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruhong Cheng
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yumeng Wang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianying Liang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Eugene Chin
- Instituteof Health Sciences, Chinese Academy of Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Department of gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Wang
- Department of Dermatology, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Yiran Guo
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, PA, USA
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Stephanie Htun
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Erin F Mathes
- Departments of Dermatology and Pediatrics, University California, San Francisco, CA, USA
| | | | - Anne M Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Curtabbi A, Enríquez JA. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 2022; 74:629-644. [PMID: 35166025 DOI: 10.1002/iub.2600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The flavin mononucleotide (FMN) cofactor of respiratory complex I occupies a key position in the electron transport chain. Here, the electrons coming from NADH start the sequence of oxidoreduction reactions, which drives the generation of the proton-motive force necessary for ATP synthesis. The overall architecture and the general catalytic proprieties of the FMN site are mostly well established. However, several aspects regarding the complex I flavin cofactor are still unknown. For example, the flavin binding to the N-module, the NADH-oxidizing portion of complex I, lacks a molecular description. The dissociation of FMN from the enzyme is beginning to emerge as an important regulatory mechanism of complex I activity and ROS production. Finally, how mitochondria import and metabolize FMN is still uncertain. This review summarizes the current knowledge on complex I flavin cofactor and discusses the open questions for future research.
Collapse
Affiliation(s)
- Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Wang P, Ma K, Yang L, Zhang G, Ye M, Wang S, Wei S, Chen Z, Gu J, Zhang L, Niu J, Tao S. Predicting signaling pathways regulating demyelination in a rat model of lithium-pilocarpine-induced acute epilepsy: A proteomics study. Int J Biol Macromol 2021; 193:1457-1470. [PMID: 34742844 DOI: 10.1016/j.ijbiomac.2021.10.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Demyelination is observed in animal models of intractable epilepsy (IE). Epileptogenesis damages the myelin sheath and dysregulates oligodendrocyte precursor cell (OPC) development. However, the molecular pathways regulating demyelination in epilepsy are unclear. Here, we predicted the molecular mechanisms regulating demyelination in a rat model of lithium-pilocarpine hydrochloride-induced epilepsy. We identified DGKA/Mboat2/Inpp5j and NOS/Keratin 28 as the main target molecules that regulate demyelination via glycerolipid and glycerophospholipid metabolism, phosphatidylinositol signaling, and estrogen signaling in demyelinated forebrain slice cultures (FSCs). In seizure-like FCSs, the actin cytoskeleton was regulated by Cnp and MBP via Pak4/Tmsb4x (also known as Tβ4) and Kif5c/Kntc1. Tβ4 possibly prevented OPC differentiation and maturation and inhibited MBP phosphorylation via the p38MAPK/ERK1/JNK1 pathway. The MAPK signaling pathway was more likely activated in seizure-like FCSs than in demyelinated FCSs. pMBP expression was decreased in the hippocampus of lithium-pilocarpine hydrochloride-induced acute epilepsy rats. The expression of remyelination-related factors was suppressed in the hippocampus and corpus callosum in lithium-pilocarpine hydrochloride-induced epilepsy rats. These findings suggest that the actin cytoskeleton, Tβ4, and MAPK signaling pathways regulate the decrease in pMBP in the hippocampus in a rat model of epilepsy. Our results indicate that regulating the actin cytoskeleton, Tβ4, and MAPK signaling pathways may facilitate the prevention of demyelination in IE.
Collapse
Affiliation(s)
- Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China.
| | - Kang Ma
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Guodong Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Mengyi Ye
- Ningxia Medical University College of Traditional Chinese Medicine, Yinchuan 750004, Ningxia, China
| | - Siqi Wang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Shuangshuang Wei
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Zhangping Chen
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Jinghai Gu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China
| | - Lianxiang Zhang
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianguo Niu
- Department of Anatomy, Ningxia Medical University, Yinchuan 750004, China.
| | - Sun Tao
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan 750004, China; Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shengli Street, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
31
|
Liu Z, Peng Q, Li J, Rao C, Lu X. BVVLS2 overlooked for 3 years in a pediatric patient caused by novel compound heterozygous mutations in SLC52A2 gene. Clin Chim Acta 2021; 523:402-406. [PMID: 34737166 DOI: 10.1016/j.cca.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Brown-Vialetto-Van Laere syndrome-2 (BVVLS2) is a rare autosomal recessive neurological disorder caused by mutations in the SLC52A2 gene, which is characterized by early childhood onset of sensorineural hearing loss, bulbar palsy, peripheral neuropathy, and respiratory insufficiency. We aimed to investigate the genetic cause of a 4-year-old boy who suffered from BVVLS2 whose initial presentation was severe normocytic anemia and had been overlooked for three years in a local hospital. He was misdiagnosed with pure red cell aplasia (PRCA) and treated with hormones and chemotherapy drugs, but there was no obvious effect. METHODS The targeted capture of 927 genes associated with neuromuscular disorders and next-generation sequencing were performed. Sanger sequencing was employed to verify the variant mutations. RESULTS The proband was found to be heterozygous for c.350T > C (p.L117P) in exon 3 and c.1135_1137delTGG (p.W379del) in exon 5 of SLC52A2 gene. His anemia and neurological symptoms improved significantly after treatment with low dose oral riboflavin. CONCLUSIONS This study expands the mutational spectrum of SLC52A2 and phenotypic spectrum of BVVLS2, which provides a foundation for further investigations elucidating the SLC52A2 related mechanisms of BVVLS2. A low-dosage of riboflavin supplementation was used to obtain good curative effect, which provides further future references for the clinical treatments of BVVLS.
Collapse
Affiliation(s)
- Ziqiang Liu
- Child Healthcare Department, Dongguan Children's Hospital, Dongguan, Guangdong, China
| | - Qi Peng
- Laboratory Department, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China; Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong, China
| | - Jianwei Li
- Department of Neurology, Dongguan Children's Hospital, Dongguan, Guangdong, China
| | - Chunbao Rao
- Laboratory Department, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China; Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong, China
| | - Xiaomei Lu
- Laboratory Department, Dongguan Children's Hospital, Dongguan, Guangdong, China; Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, Guangdong, China; Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, Guangdong, China.
| |
Collapse
|
32
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
33
|
The audiovestibular profile of Brown-Vialetto-Van Laere syndrome. The Journal of Laryngology & Otology 2021; 135:1000-1009. [PMID: 34496984 DOI: 10.1017/s0022215121002395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Brown-Vialetto-Van Laere syndrome, a rare disorder associated with motor, sensory and cranial nerve neuropathy, is caused by mutations in riboflavin transporter genes SLC52A2 and SLC52A3. Hearing loss is a characteristic feature of Brown-Vialetto-Van Laere syndrome and has been shown in recent studies to be characterised by auditory neuropathy spectrum disorder. METHOD This study reports the detailed audiovestibular profiles of four cases of Brown-Vialetto-Van Laere syndrome with SLC52A2 and SLC52A3 mutations. All of these patients had auditory neuropathy spectrum disorder. RESULTS There was significant heterogeneity in vestibular function and in the benefit gained from cochlear implantation. The audiological response to riboflavin therapy was also variable, in contrast to generalised improvement in motor function. CONCLUSION We suggest that comprehensive testing of vestibular function should be conducted in Brown-Vialetto-Van Laere syndrome, in addition to serial behavioural audiometry as part of the systematic examination of the effects of riboflavin.
Collapse
|
34
|
Huang X, Zhao X, Zhang X, Wang P, Zhu K, Shao B. Chlorinated disinfection byproducts of diazepam perturb cell metabolism and induce behavioral toxicity in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112416. [PMID: 34119928 DOI: 10.1016/j.ecoenv.2021.112416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Numerous byproducts resulting from chlorinated disinfection are constantly being generated during water treatment processes. The potential risks of these new emerging pollutions remain largely unknown. Here, we determined the risks of chlorinated disinfection byproducts of diazepam (DZP) in the cellular and zebrafish exposure experiments. The cytotoxicity of disinfection byproducts (MACB and MBCC) was greater than DZP in macrophage raw 264.7 cells at 10 mg/L. We further found that the effects of MBCC on the metabolism of glycine, serine, threonine and riboflavin were far greater than DZP by the targeted metabolomics methods. Moreover, MBCC significantly decreased the peak amplitude of neuronal action potential in primary embryonic rat (Spragu-Dawley SD) hippocampal neurons. We finally determined behavioral toxicity of DZP and byproducts in zebrafish larvae. MBCC significantly decreased the maximal swim-activity and peak duration of zebrafish after 72 h exposure. Altogether, these findings indicate the MBCC pose serious pressures on public health.
Collapse
Affiliation(s)
- Xiaoyong Huang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China; College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaole Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xin Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Peng Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Bing Shao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China.
| |
Collapse
|
35
|
Prominent and Regressive Brain Developmental Disorders Associated with Nance-Horan Syndrome. Brain Sci 2021; 11:brainsci11091150. [PMID: 34573171 PMCID: PMC8465299 DOI: 10.3390/brainsci11091150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Nance-Horan syndrome (NHS) is a rare X-linked developmental disorder caused mainly by loss of function variants in the NHS gene. NHS is characterized by congenital cataracts, dental anomalies, and distinctive facial features, and a proportion of the affected individuals also present intellectual disability and congenital cardiopathies. Despite identification of at least 40 distinct hemizygous variants leading to NHS, genotype-phenotype correlations remain largely elusive. In this study, we describe a Sicilian family affected with congenital cataracts and dental anomalies and diagnosed with NHS by whole-exome sequencing (WES). The affected boy from this family presented a late regression of cognitive, motor, language, and adaptive skills, as well as broad behavioral anomalies. Furthermore, brain imaging showed corpus callosum anomalies and periventricular leukoencephalopathy. We expand the phenotypic and mutational NHS spectrum and review potential disease mechanisms underlying the central neurological anomalies and the potential neurodevelopmental features associated with NHS.
Collapse
|
36
|
Carey G, Kuchcinski G, Gauvrit F, Defebvre L, Nguyen S, Dhaenens CM, Dessein AF, Vianey-Saban C, Acquaviva C, Tard C. Three cases of adult-onset Brown-Vialetto-Van Laere syndrome: Novel variants in SLC52A3 gene and MRI abnormalities. Neuromuscul Disord 2021; 31:752-755. [PMID: 34384672 DOI: 10.1016/j.nmd.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Brown-Vialetto-Van Laere syndrome is a rare, autosomal, recessive neurological condition caused by variants in the riboflavin transporter genes SLC52A2 and SLC52A3. Here, we report on three cases. Case 1 was a 35-year-old woman from a consanguineous family who presented with progressive deafness, subacute multiple cranial nerve impairments (III, VII, IX, XII), and MRI abnormalities (including as hypersignal from the cranial nerves). The patient was homozygous for a novel SLC52A3variant. Case 2 was the woman's brother, who presented similar symptoms. Case 3 was an 18-year-old woman experiencing progressive hearing loss, bilateral steppage gait and a cranial nerves impairment (VII and XII). MRI revealed hypersignal in the root nerves and cauda equina. A novel heterozygous variant in SLC52A3 was identified. A subacute history of polyradiculoneuropathy along with progressive deafness, cranial nerve impairment, and MRI abnormalities should raise suspicion for Brown-Vialetto-Van Laere syndrome.
Collapse
Affiliation(s)
- Guillaume Carey
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Neurology Department, Lille University Medical Center, Lille, France.
| | - Gregory Kuchcinski
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Neuroradiology Department, Lille University Medical Center, Lille, France
| | - Fanny Gauvrit
- ENT Department, Lille University Medical Center, Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Neurology Department, Lille University Medical Center, Lille, France
| | - Sylvie Nguyen
- Centre de référence des maladies neuromusculaires Nord Est Ile de France, Lille University Medical Centre, Lille, France; Neuropediatric Department, Lille University Medical Center, Lille, France
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Anne Frédérique Dessein
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Christine Vianey-Saban
- Service de Biochimie et Biologie Moléculaire, UF Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, Bron, France
| | - Cécile Acquaviva
- Service de Biochimie et Biologie Moléculaire, UF Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, Bron, France
| | - Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Centre de référence des maladies neuromusculaires Nord Est Ile de France, Lille University Medical Centre, Lille, France; Neurology Department, Lille University Medical Center, Lille, France
| |
Collapse
|
37
|
Frederick AL, Yang JH, Schneider S, Quade A, Guidugli L, Wigby K, Cameron M. To Be or No B2: A Rare Cause of Stridor and Weakness in a Toddler. Child Neurol Open 2021; 8:2329048X211030723. [PMID: 34395718 PMCID: PMC8361551 DOI: 10.1177/2329048x211030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
We present a case of a young child with a rare metabolic disorder whose
clinical presentation resembled that of autoimmune myasthenia gravis.
The differential diagnosis was expanded when autoantibody testing was
negative and the patient did not respond to standard immunomodulatory
therapies. Rapid whole genome sequencing identified 2 rare variants of
uncertain significance in the SLC52A3 gene shown to
be in compound heterozygous state after parental testing. Biallelic
mutations in SLC52A3 are associated with Riboflavin
Transporter Deficiency, which in its untreated form, results in
progressive neurodegeneration and death. Supplementation with oral
riboflavin has been shown to limit disease progression and improve
symptoms in some patients. When the diagnosis is suspected, patients
should be started on supplementation immediately while awaiting
results from genetic studies.
Collapse
Affiliation(s)
- Aliya L Frederick
- Department of Neurosciences, University of California San Diego, CA, USA.,Rady Children's Hospital, San Diego, CA, USA
| | - Jennifer H Yang
- Department of Neurosciences, University of California San Diego, CA, USA.,Rady Children's Hospital, San Diego, CA, USA
| | - Sarah Schneider
- Rady Children's Hospital, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, CA, USA
| | - Alexis Quade
- Rady Children's Hospital, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, CA, USA.,Department of Internal Medicine, University of California San Diego, CA, USA
| | - Lucia Guidugli
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Kristen Wigby
- Rady Children's Hospital, San Diego, CA, USA.,Department of Genetics and Dysmorphology, University of California San Diego, CA, USA
| | - Melissa Cameron
- Rady Children's Hospital, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, CA, USA
| |
Collapse
|
38
|
Quantitative Proteomic and Metabolomic Profiling Reveals Altered Mitochondrial Metabolism and Folate Biosynthesis Pathways in the Aging Drosophila Eye. Mol Cell Proteomics 2021; 20:100127. [PMID: 34332122 PMCID: PMC8385154 DOI: 10.1016/j.mcpro.2021.100127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022] Open
Abstract
Aging is associated with increased risk of ocular disease, suggesting that age-associated molecular changes in the eye increase its vulnerability to damage. Although there are common pathways involved in aging at an organismal level, different tissues and cell types exhibit specific changes in gene expression with advanced age. Drosophila melanogaster is an established model system for studying aging and neurodegenerative disease that also provides a valuable model for studying age-associated ocular disease. Flies, like humans, exhibit decreased visual function and increased risk of retinal degeneration with age. Here, we profiled the aging proteome and metabolome of the Drosophila eye and compared these data with age-associated transcriptomic changes from both eyes and photoreceptors to identify alterations in pathways that could lead to age-related phenotypes in the eye. Of note, the proteomic and metabolomic changes observed in the aging eye are distinct from those observed in the head or whole fly, suggesting that tissue-specific changes in protein abundance and metabolism occur in the aging fly. Our integration of the proteomic, metabolomic, and transcriptomic data reveals that changes in metabolism, potentially due to decreases in availability of B vitamins, together with chronic activation of the immune response, may underpin many of the events observed in the aging Drosophila eye. We propose that targeting these pathways in the genetically tractable Drosophila system may help to identify potential neuroprotective approaches for neurodegenerative and age-related ocular diseases. Data are available via ProteomeXchange with identifier PXD027090. Tissue-specific changes in protein abundance occur in the aging Drosophila eye. Increase in mitochondrial metabolism enzyme abundance in the aging eye. Decrease in corneal lens protein abundance and calcium buffering in the aging eye. Dysregulated metabolism impacts vitamin B and methionine metabolism in the aging eye.
Collapse
|
39
|
Lee K, Choi YI, Im ST, Hwang SM, Lee HK, Im JZ, Kim YH, Jung SJ, Park CK. Riboflavin Inhibits Histamine-Dependent Itch by Modulating Transient Receptor Potential Vanilloid 1 (TRPV1). Front Mol Neurosci 2021; 14:643483. [PMID: 34220447 PMCID: PMC8249943 DOI: 10.3389/fnmol.2021.643483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Riboflavin, also known as vitamin B2, isfound in foods and is used as a dietary supplement. Its deficiency (also called ariboflavinosis) results in some skin lesions and inflammations, such as stomatitis, cheilosis, oily scaly skin rashes, and itchy, watery eyes. Various therapeutic effects of riboflavin, such as anticancer, antioxidant, anti-inflammatory, and anti-nociceptive effects, are well known. Although some studies have identified the clinical effect of riboflavin on skin problems, including itch and inflammation, its underlying mechanism of action remains unknown. In this study, we investigated the molecular mechanism of the effects of riboflavin on histamine-dependent itch based on behavioral tests and electrophysiological experiments. Riboflavin significantly reduced histamine-induced scratching behaviors in mice and histamine-induced discharges in single-nerve fiber recordings, while it did not alter motor function in the rotarod test. In cultured dorsal root ganglion (DRG) neurons, riboflavin showed a dose-dependent inhibitory effect on the histamine- and capsaicin-induced inward current. Further tests wereconducted to determine whether two endogenous metabolites of riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have similar effects to those of riboflavin. Here, FMN, but not FAD, significantly inhibited capsaicin-induced currents and itching responses caused by histamine. In addition, in transient receptor potential vanilloid 1 (TRPV1)-transfected HEK293 cells, both riboflavin and FMN blocked capsaicin-induced currents, whereas FAD did not. These results revealed that riboflavin inhibits histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how riboflavin exerts antipruritic effects and suggests that it might be a useful drug for the treatment of histamine-dependent itch.
Collapse
Affiliation(s)
- Kihwan Lee
- Tooth-Periodontium Complex Medical Research Center (MRC), Department of Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Young In Choi
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Sang-Taek Im
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Han-Kyu Lee
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Jay-Zoon Im
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
40
|
Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Methods Mol Biol 2021; 2280:275-295. [PMID: 33751442 DOI: 10.1007/978-1-0716-1286-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.
Collapse
|
41
|
Pająk R, Mendela E, Będkowska N, Paprocka J. Update on Neuropathies in Inborn Errors of Metabolism. Brain Sci 2021; 11:763. [PMID: 34201281 PMCID: PMC8227217 DOI: 10.3390/brainsci11060763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathies are relatively common in inborn errors of metabolism (IEMs); however, due to the early onset and severe, progressive course of many IEMs, they have not been very well researched yet. This article aims to review and compare neuropathies in inborn errors of metabolism, mostly with childhood and juvenile onset. Some of these diseases are treatable if diagnosed early and in many cases, the therapy can not only slow down disease progression, but can also reverse the changes already made by the condition.
Collapse
Affiliation(s)
- Renata Pająk
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Ewelina Mendela
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Natalia Będkowska
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (R.P.); (E.M.); (N.B.)
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
42
|
Plantone D, Pardini M, Rinaldi G. Riboflavin in Neurological Diseases: A Narrative Review. Clin Drug Investig 2021; 41:513-527. [PMID: 33886098 DOI: 10.1007/s40261-021-01038-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Riboflavin is classified as one of the water-soluble B vitamins. It is part of the functional group of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors and is required for numerous flavoprotein-catalysed reactions. Riboflavin has important antioxidant properties, essential for correct cell functioning. It is required for the conversion of oxidised glutathione to the reduced form and for the mitochondrial respiratory chain as complexes I and II contain flavoprotein reductases and electron transferring flavoproteins. Riboflavin deficiency has been demonstrated to impair the oxidative state of the body, especially in relation to lipid peroxidation status, in both animal and human studies. In the nervous system, riboflavin is essential for the synthesis of myelin and its deficiency can determine the disruption of myelin lamellae. The inherited condition of restricted riboflavin absorption and utilisation, reported in about 10-15% of world population, warrants further investigation in relation to its association with the main neurodegenerative diseases. Several successful trials testing riboflavin for migraine prevention were performed, and this drug is currently classified as a Level B medication for migraine according to the American Academy of Neurology evidence-based rating, with evidence supporting its efficacy. Brown-Vialetto-Van Laere syndrome and Fazio-Londe diseases are now renamed as "riboflavin transporter deficiency" because these are autosomal recessive diseases caused by mutations of SLC52A2 and SLC52A3 genes that encode riboflavin transporters. High doses of riboflavin represent the mainstay of the therapy of these diseases and high doses of riboflavin should be rapidly started as soon as the diagnosis is suspected and continued lifelong. Remarkably, some mitochondrial diseases respond to supplementation with riboflavin. These include multiple acyl-CoA-dehydrogenase deficiency (which is caused by ETFDH gene mutations in the majority of the cases, or mutations in the ETFA and ETFB genes in a minority), mutations of ACAD9 gene, mutations of AIFM1 gene, mutations of the NDUFV1 and NDUFV2 genes. Therapeutic riboflavin administration has been tried in other neurological diseases, including stroke, multiple sclerosis, Friedreich's ataxia and Parkinson's disease. Unfortunately, the design of these clinical trials was not uniform, not allowing to accurately assess the real effects of this molecule on the disease course. In this review we analyse the properties of riboflavin and its possible effects on the pathogenesis of different neurological diseases, and we will review the current indications of this vitamin as a therapeutic intervention in neurology.
Collapse
Affiliation(s)
- Domenico Plantone
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Giuseppe Rinaldi
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy
| |
Collapse
|
43
|
Jin C, Matsui Y, Yonezawa A, Imai S, Ogihara T, Itohara K, Nakagawa S, Nakagawa T, Matsubara K. Complete Deletion of Slc52a2 Causes Embryonic Lethality in Mice. Biol Pharm Bull 2021; 44:283-286. [PMID: 33518683 DOI: 10.1248/bpb.b20-00751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Riboflavin (vitamin B2) plays an important role in cellular growth and function. Riboflavin transporter 2 (RFVT2) is widely expressed in several tissues, especially in the brain and salivary glands, and plays an important role in the tissue disruption of riboflavin. During the last 10 years, mutations in SLC52A2 have been documented in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. However, no suitable animal model of this disease has been reported. Here, we aimed to clarify the physiological role of RFVT2 using Slc52a2-mutant mice. The appearance, body weight, and plasma riboflavin concentration of Slc52a2 heterozygous mutant (Slc52a2+/-) mice were similar to those of wild-type (WT) mice. However, intercrossing between Slc52a2+/- mice failed to generate Slc52a2 homozygous mutant (Slc52a2-/-) mice. This suggested that Slc52a2 gene deficiency results in early embryonic lethality. Our findings suggested that RFVT2 is essential for growth and development, and its deletion may influence embryonic survival.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yoshihiro Matsui
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Takashi Ogihara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital.,Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital
| |
Collapse
|
44
|
Abstract
Objectives: Generally, neuropathies of peripheral nerves are a frequent condition (prevalence 2–3%) and most frequently due to alcoholism, diabetes, renal insufficiency, malignancy, toxins, or drugs. However, the vast majority of neuropathies has orphan status. This review focuses on the etiology, frequency, diagnosis, and treatment of orphan neuropathies. Methods: Literature review Results: Rareness of diseases is not uniformly defined but in the US an orphan disease is diagnosed if the prevalence is <1:200000, in Europe if <5:10000. Most acquired and hereditary neuropathies are orphan diseases. Often the causative variant has been reported only in a single patient or family, particularly the ones that are newly detected (e.g. SEPT9, SORD). Among the complex neuropathies (hereditary multisystem disorders with concomitant neuropathies) orphan forms have been reported among mitochondrial disorders (e.g. NARP, MNGIE, SANDO), spinocerebellar ataxias (e.g. TMEM240), hereditary spastic paraplegias (e.g UBAP1), lysosomal storage disease (e.g. Schindler disease), peroxisomal disorders, porphyrias, and other types (e.g. giant axonal neuropathy, Tangier disease). Orphan acquired neuropathies include the metabolic neuropathies (e.g. vitamin-B1, folic acid), toxic neuropathies (e.g. copper, lithium, lead, arsenic, thallium, mercury), infectious neuropathies, immune-mediated (e.g. Bruns-Garland syndrome), and neoplastic/paraneoplastic neuropathies. Conclusions: Though orphan neuropathies are rare per definition they constitute the majority of neuropathies and should be considered as some of them are easy to identify and potentially treatable, as clarification of the underlying cause may contribute to the knowledge about etiology and pathophysiology of these conditions, and as the true prevalence may become obvious only if all ever diagnosed cases are reported.
Collapse
Affiliation(s)
| | | | - Julia Wanschitz
- Department of Neurology, Medical University, Innsbruck, Austria
| | | |
Collapse
|
45
|
Console L, Tolomeo M, Indiveri C. Functional Study of the Human Riboflavin Transporter 2 Using Proteoliposomes System. Methods Mol Biol 2021; 2280:45-54. [PMID: 33751428 DOI: 10.1007/978-1-0716-1286-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboflavin is essential for cell viability. The biologically active forms of riboflavin, FMN and FAD, participate in many biochemical redox reactions including the metabolism of carbohydrates, amino acids, and lipids. Differently from bacteria, fungi, and plants which synthesize riboflavin, higher organisms have lost the ability to synthesize the vitamin and must absorb it from food and intestinal microflora production. The riboflavin flux through cell membranes occurs via specific transporters belonging to the SLC52 family. Three members of this family have been identified so far which show poor homology with the riboflavin transporters of Saccharomyces cerevisiae or bacteria. Alterations of RFVTs are causative of severe diseases. Indeed, under pathological stress, humans are susceptible of developing riboflavin deficiency. Such a deficiency in pregnancy induces fetus abnormalities, and has been indicated as a risk factor for anemia, cancer, cardiovascular diseases, and neurodegeneration. Moreover, inherited diseases are also of interest; the most well-described is the Brown-Vialetto-van Laere syndrome, a rare neurological disorder characterized by infancy onset sensorineural deafness and pontobulbar palsy. Numerous polymorphisms of Slc52a2 and Slc52a3 genes associated with this syndrome have been discovered. In spite of their important metabolic role and their relevance to human health, the riboflavin transporters are still poorly characterized. Bacterial overexpression, purification, and protein reconstitution in liposomes represent an up-to-date methodology for obtaining functional data information. The methodology for reconstituting the RFVT2 into proteoliposomes and performing transport assay is described. These methods will be suitable for investigating the functional defects of the variants of RFVTs associated with human pathologies.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.
| |
Collapse
|
46
|
Turton N, Rutherford T, Thijssen D, Hargreaves IP. Putative adjunct therapies to target mitochondrial dysfunction and oxidative stress in phenylketonuria, lysosomal storage disorders and peroxisomal disorders. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1850254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tricia Rutherford
- Department of research and development, Vitaflo International Ltd, Liverpool, UK
| | - Dick Thijssen
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
47
|
Qu X, Cheng L, Zhao L, Qiu L, Guo W. Functional variation of SLC52A3 rs13042395 predicts survival of Chinese gastric cancer patients. J Cell Mol Med 2020; 24:12550-12559. [PMID: 32888389 PMCID: PMC7686988 DOI: 10.1111/jcmm.15798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
The solute carrier family 52 member 3 (SLC52A3) gene encodes riboflavin transporter protein which is essential to maintain mitochondrial function in cells. In our research, we found that SLC52A3 rs13042395 C > T variation was significantly associated with poor survival in a 926 Chinese gastric cancer (GCa) patients cohort (CC/CT genotype versus TT genotype, HR = 0.57, 95%CI (0.40-0.82), log-rank P = 0.015). The SLC52A3 rs13042395 C > T change led to its increased mRNA expression according to expression quantitative trait loci analysis (P = 0.0029). In vitro, it was revealed that rs13042395 C allele had higher binding affinity to inhibitory transcription factor Meis homeobox 1 (MEIS1) compared with T allele, knock-down of MEIS1 could up-regulate SLC52A3, and overexpression of SLC52A3 contributed to the increased ability of proliferation, colony formation, migration and invasion in GCa cells. Subsequently, the bioinformatics analysis combined with experiments in vitro suggested that Gap junction protein alpha 1 (GJA1) was the downstream effector of SLC52A3, SLC52A3 may promote the GCa cells aggressiveness by down-regulating the GJA1 expression. Overall, SLC52A3 genetic variant rs13042395 C > T change was associated with poorer survival in Chinese GCa patients and increased SLC52A3 expression by interaction with MEIS1. SLC52A3 promoted the GCa cells aggressiveness by down-regulating the GJA1 expression.
Collapse
Affiliation(s)
- Xiaofei Qu
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Lei Cheng
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Liqin Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Lixin Qiu
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Weijian Guo
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
| |
Collapse
|
48
|
Effect of riboflavin deficiency on development of the cerebral cortex in Slc52a3 knockout mice. Sci Rep 2020; 10:18443. [PMID: 33116204 PMCID: PMC7595085 DOI: 10.1038/s41598-020-75601-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Riboflavin transporter 3 (RFVT3), encoded by the SLC52A3 gene, is important for riboflavin homeostasis in the small intestine, kidney, and placenta. Our previous study demonstrated that Slc52a3 knockout (Slc52a3−/−) mice exhibited neonatal lethality and metabolic disorder due to riboflavin deficiency. Here, we investigated the influence of Slc52a3 gene disruption on brain development using Slc52a3−/− embryos. Slc52a3−/− mice at postnatal day 0 showed hypoplasia of the brain and reduced thickness of cortical layers. At embryonic day 13.5, the formation of Tuj1+ neurons and Tbr2+ intermediate neural progenitors was significantly decreased; no significant difference was observed in the total number and proliferative rate of Pax6+ radial glia. Importantly, the hypoplastic phenotype was rescued upon riboflavin supplementation. Thus, it can be concluded that RFVT3 contributes to riboflavin homeostasis in embryos and that riboflavin itself is required during embryonic development of the cerebral cortex in mice.
Collapse
|
49
|
Carreau C, Benoit C, Ahle G, Cauquil C, Roubertie A, Lenglet T, Cosgrove J, Meunier I, Veauville-Merllié A, Acquaviva-Bourdain C, Nadjar Y. Late-onset riboflavin transporter deficiency: a treatable mimic of various motor neuropathy aetiologies. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-323304. [PMID: 33087424 DOI: 10.1136/jnnp-2020-323304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Riboflavin transporter deficiencies (RTDs), involving SLC52A3 and SLC52A2 genes, have recently been related to Brown-Vialetto-Van Laere (BVVL) syndrome, a hereditary paediatric condition associating motor neuropathy (MN) and deafness. BVVL/RTD has rarely been reported in adult patients, but is probably underdiagnosed due to poor knowledge and lack of awareness of this form of disease among neurologists. In this study, we aimed to investigate the phenotype and prognosis of RTD patients with late-onset MN. METHODS We retrospectively collected clinical, biological and electrophysiological data from all French RTD patients with MN onset after 10 years of age (n=6) and extracted data from 19 other similar RTD patients from the literature. RESULTS Adult RTD patients with MN had heterogeneous clinical presentations, potentially mimicking amyotrophic lateral sclerosis or distal hereditary motor neuropathy (56%), multinevritis with cranial nerve involvement (16%), Guillain-Barré syndrome (8%) and mixed motor and sensory neuronopathy syndromes (20%, only in SLC52A2 patients). Deafness was often diagnosed before MN (in 44%), but in some patients, onset began only with MN (16%). The pattern of weakness varied widely, and the classic pontobulbar palsy described in BVVL was not constant. Biochemical tests were often normal. The majority of patients improved under riboflavin supplementation (86%). INTERPRETATION Whereas late-onset RTD may mimic different acquired or genetic causes of motor neuropathies, it is a diagnosis not to be missed since high-dose riboflavin per oral supplementation is often highly efficient.
Collapse
Affiliation(s)
- Christophe Carreau
- Department of Neurology, Reference Center for Lysosomal Diseases, Neuro-Metabolism Unit, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | - Charline Benoit
- Department of Neurology, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | - Guido Ahle
- Neurology, Hôpital Louis Pasteur, Colmar, Alsace, France
| | - Cécile Cauquil
- Neurology, Hôpital Bicêtre, Le Kremlin-Bicêtre, Île-de-France, France
| | - Agathe Roubertie
- Neuropediatrie, Hôpital Gui de Chauliac Pôle Neurosciences tête et cou, Montpellier, Languedoc-Roussillon Midi, France
| | - Timothée Lenglet
- Department of Neurophysiology, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| | | | - Isabelle Meunier
- Ophthalmology, Hôpital Gui de Chauliac, Montpellier, Languedoc-Roussillon, France
| | - Alice Veauville-Merllié
- Laboratory of Inborn Errors of Metabolism, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Cécile Acquaviva-Bourdain
- Laboratory of Inborn Errors of Metabolism, Hospices Civils de Lyon, Lyon, Auvergne-Rhône-Alpes, France
| | - Yann Nadjar
- Department of Neurology, Reference Center for Lysosomal Diseases, Neuro-Metabolism Unit, AP-HP, Hôpital Universitaire Pitié Salpêtrière, Paris, France
| |
Collapse
|
50
|
Khani M, Shamshiri H, Taheri H, Hardy J, Bras JT, Carmona S, Moazzeni H, Alavi A, Heshmati A, Taghizadeh P, Nilipour Y, Ghazanfari T, Shahabi M, Okhovat AA, Rohani M, Valle G, Boostani R, Abdi S, Eshghi S, Nafissi S, Elahi E. BVVL/ FL: features caused by SLC52A3 mutations; WDFY4 and TNFSF13B may be novel causative genes. Neurobiol Aging 2020; 99:102.e1-102.e10. [PMID: 33189404 DOI: 10.1016/j.neurobiolaging.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/19/2020] [Indexed: 11/17/2022]
Abstract
Brown-Vialetto-Van Laere (BVVL) and Fazio-Londe are disorders with amyotrophic lateral sclerosis-like features, usually with recessive inheritance. We aimed to identify causative mutations in 10 probands. Neurological examinations, genetic analysis, audiometry, magnetic resonance imaging, biochemical and immunological testings, and/or muscle histopathology were performed. Mutations in known causative gene SLC52A3 were found in 7 probands. More importantly, only 1 mutated allele was observed in several patients, and variable expressivity and incomplete penetrance were clearly noted. Environmental insults may contribute to variable presentations. Putative causative mutations in other genes were identified in 3 probands. Two of the genes, WDFY4 and TNFSF13B, have immune-related functions. Inflammatory responses were implicated in the patient with the WDFY4 mutation. Malfunction of the immune system and mitochondrial anomalies were shown in the patient with the TNFSF13B mutation. Prevalence of heterozygous SLC52A3 BVVL causative mutations and notable variability in expressivity of homozygous and heterozygous genotypes are being reported for the first time. Identification of WDFY4 and TNFSF13B as candidate causative genes supports conjectures on involvement of the immune system in BVVL and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Marzieh Khani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hosein Shamshiri
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Taheri
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Jose Tomas Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Susana Carmona
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Hamidreza Moazzeni
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ali Heshmati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Peyman Taghizadeh
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Mofid and Shohaday-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Majid Shahabi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Asghar Okhovat
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Giorgio Valle
- Department of Biology and CRIBI Biotechnology Centre, University of Padova, Padova, Italy
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Siamak Abdi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Eshghi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahriar Nafissi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elahe Elahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|