1
|
Schlaeger S, Mühlau M, Gilbert G, Vavasour I, Amthor T, Doneva M, Menegaux A, Mora M, Lauerer M, Pongratz V, Zimmer C, Wiestler B, Kirschke JS, Preibisch C, Berg RC. Sensitivity of multi-parametric quantitative magnetic resonance imaging for multiple sclerosis pathology. PLoS One 2025; 20:e0318415. [PMID: 40238815 PMCID: PMC12002544 DOI: 10.1371/journal.pone.0318415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/15/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND In recent years, quantitative magnetic resonance imaging (MRI) made progress towards clinical applicability mainly through advances in acceleration techniques. In patients with multiple sclerosis (MS), objective quantitative MRI-based characterization of subtle pathological alterations in lesions, perilesion (PL), as well as normal-appearing (NA) white matter (NAWM) and grey matter (NAGM) would revolutionize clinical assessment. While numerous quantitative techniques have been applied in studies of MS patients, their diagnostic significance especially for individual patients with relatively short disease duration is unclear. Therefore, we investigated the sensitivity of several quantitative MRI parameters to focal and diffuse MS pathology in a clinical feasibility study with a small sample size. METHODS In 13 MS patients with a mean disease duration of 8 years and a mean EDSS of 1.1 as well as 14 healthy age-matched controls (HC), we acquired nine (semi-)quantitative magnetic resonance (MR) biomarkers, namely myelin water fraction (MWF), magnetization transfer (MT) saturation (MTsat), inhomogeneous MT ratio (ihMTR), quantitative longitudinal relaxation time (qT1), intrinsic (qT2) and effective (qT2*) quantitative transverse relaxation times, proton density (PD), quantitative susceptibility mapping (QSM), and the ratio between T1-weighted and T2-weighted images (T1w/T2w). Four volumes of interest were automatically defined (NA/HC grey matter (GM), NA/HC white matter (WM), lesion, and PL), and biomarker values were analyzed between groups and tissue types. RESULTS For all nine assessed biomarkers, mean values per patient were significantly different between lesion, PL, and NAWM (p < 0.05, FDR corrected). The lesion values of qT1, qT2, qT2 * , PD, and QSM were rather inhomogeneous. Furthermore, MWF, MTsat, and ihMTR were sensitive to diffuse WM pathology in MS with the largest absolute differences between NAWM and HCWM medians, albeit not statistically significant after correction for multiple testing. DISCUSSION In our study, we successfully compared nine different quantitative MR parameters within the same subjects for tissue characterization of MS. Our study adds relevant aspects to the current debate on different sensitivities of various quantitative MR biomarkers to MS pathology. While all investigated MR biomarkers allowed characterizing lesions in individual patients, a separation of NAWM and HCWM could be most promising with the myelin-sensitive measures MWF, MTsat, and ihMTR.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Irene Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Mora
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Lauerer
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Viola Pongratz
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ronja C. Berg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Liu X, Wang Y, Wei N, Zhu W, Suo Y, Xu Y, Jin A, Xu Q, Qi N, Jiang Q, Wang Z, Su L, Guo A, Sun J, Duan Y, Zhang Z, Jing J, Tian DC. The characteristics and influencing factors of paramagnetic rim lesions in Chinese MS patients: A 7T MRI study. Mult Scler 2025:13524585251328902. [PMID: 40219829 DOI: 10.1177/13524585251328902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) in multiple sclerosis (MS) are a significant factor for disability progression and prognosis, but their characteristics in the Chinese population are unclear. OBJECTIVE To explore PRLs in Chinese MS patients using 7T magnetic resonance imaging (MRI), including their number, proportion, distribution, and associated factors. METHODS Patients from the 7T MRI subgroup of the China National Registry of Neuro-Inflammatory Diseases (CNRID) were prospectively included. PRLs were assessed on susceptibility-weighted imaging (SWI)-phase images. Patients were grouped by PRL count (0, 1-3, 4-10, >10). Associations between clinical characteristics and PRL count were analyzed using multivariable linear regression, while correlations with disease duration were assessed using Pearson partial correlation and regression. RESULTS Among 110 participants, 96 (87.3%) had at least one PRL. In PRL groups, proportions were 12.7%, 20.0%, 29.1%, and 38.2%. PRL count positively correlated with Expanded Disability Status Scale (EDSS), total lesion count, and volume and negatively with Symbol Digit Modality Test (SDMT; p < 0.05). Longer disease duration was associated with a lower PRL proportion after adjusting for age and sex (β = -0.006, p = 0.032). CONCLUSION A high proportion of Chinese MS patients in our 7T MRI cohort had PRLs, with many exhibiting multiple PRLs (⩾4). PRL count was influenced by EDSS, SDMT, total lesion count, and volume, while PRL proportion negatively correlated with disease duration.
Collapse
Affiliation(s)
- Xinyao Liu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wei
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanlin Zhu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Suo
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuyuan Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Aoming Jin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Epidemiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Qi
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianmei Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaobin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Su
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ai Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiali Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Elkady AM, Elliott C, Fetco D, Araujo D, Karimaghaloo Z, Ganzetti M, Clayton D, Craveiro L, Kazlauskaite A, Narayanan S, Arnold DL, Rudko DA. Longitudinal Multiparametric Quantitative MRI Evaluation of Acute and Chronic Multiple Sclerosis Paramagnetic Rim Lesions. J Magn Reson Imaging 2025; 61:1812-1828. [PMID: 39239775 PMCID: PMC11896925 DOI: 10.1002/jmri.29583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) paramagnetic rim lesions (PRLs) are markers of chronic active biology and exhibit complex iron and myelin changes that may complicate quantification when using conventional MRI approaches. PURPOSE To conduct a multiparametric MRI analysis of PRLs. STUDY TYPE Retrospective/longitudinal. SUBJECTS Ninety-five progressive MS subjects with at least one persistent PRL who were enrolled in the CONSONANCE trial. FIELD STRENGTH/SEQUENCE 3-T/Susceptibility-weighted, T1-weighted, T2-weighted, and fluid-attenuated inversion recovery. ASSESSMENT Acute/chronic PRLs and non-PRLs were measured at screening, 24, 48, and 96 weeks using quantitative magnetic susceptibility (QS), R2*, and standardized T1w/T2w ratio (sT1w/T2w). PRL analyses were performed for whole lesion, core, and rim. The correlations between PRL core and rim sT1w/T2w, QS, and R2* were assessed. STATISTICAL TESTS Linear mixed models. A P-value <0.05 was considered significant. RESULTS There was a significant decrease in sT1w/T2w (-0.24 ± -5.3 × 10-3) and R2* (-3.6 ± 2.2 Hz) but a significant increase in QS (+21 ± 1.3 ppb) using whole-lesion analysis of chronic PRLs compared to non-PRLs at screening. Tissue damage accumulated at the 96-week time point was more evident in acute/chronic PRLs compared to acute/chronic non-PRLs (ΔsT1w/T2w = -0.21/-0.24 ± 0.033/0.0053; ΔR2* = -4.4/-3.6 ± 1.4/2.2 Hz). New, acute PRL sT1w/T2w significantly increased in lesion core (+4.3 × 10-3 ± 1.2 × 10-4) and rim (+5.6 × 10-3 ± 1.2 × 10-4) 24 weeks post lesion inception, suggestive of partial recovery. Chronic PRLs, contrastingly, showed significant decreases in sT1w/T2w over the initial 24 weeks for both core (-2.1 × 10-4 ± 2.0 × 10-5) and rim (-2.4 × 10-4 ± 2.0 × 10-5), indicative of irreversible tissue damage. Significant positive correlations between PRL core and rim sT1w/T2w (R2 = 0.53), R2* (R2 = 0.69) and QS (R2 = 0.52) were observed. DATA CONCLUSION Multiparametric assessment of PRLs has the potential to be a valuable tool for assessing complex iron and myelin changes in chronic active PRLs of progressive MS patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Ahmed M. Elkady
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | | | - Dumitru Fetco
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | - David Araujo
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | | | | | | | | | | | - Sridar Narayanan
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | - Douglas L. Arnold
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- NeuroRx ResearchMontrealQuebecCanada
| | - David A. Rudko
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Agarwal N, Fan A, Huang X, Dehkharghani S, van der Kolk A. ISMRM Clinical Focus Meeting 2023: "Imaging the Fire in the Brain". J Magn Reson Imaging 2025; 61:1580-1596. [PMID: 39193867 PMCID: PMC11896938 DOI: 10.1002/jmri.29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
Set during the Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), the "Clinical Focus Meeting" (CFM) aims to bridge the gap between innovative magnetic resonance imaging (MRI) scientific research and daily patient care. This initiative is dedicated to maximizing the impact of MRI technology on healthcare outcomes for patients. At the 2023 Annual Meeting, clinicians and scientists from across the globe were invited to discuss neuroinflammation from various angles (entitled "Imaging the Fire in the Brain"). Topics ranged from fundamental mechanisms and biomarkers of neuroinflammation to the role of different contrast mechanisms, including both proton and non-proton techniques, in brain tumors, autoimmune disorders, and pediatric neuroinflammatory diseases. Discussions also delved into how systemic inflammation can trigger neuroinflammation and the role of the gut-brain axis in causing brain inflammation. Neuroinflammation arises from various external and internal factors and serves as a vital mechanism to mitigate tissue damage and provide neuroprotection. Nonetheless, excessive neuroinflammatory responses can lead to significant tissue injury and subsequent neurological impairments. Prolonged neuroinflammation can result in cellular apoptosis and neurodegeneration, posing severe consequences. MRI can be used to visualize these consequences, by detecting blood-brain barrier damage, characterizing brain lesions, quantifying edema, and identifying specific metabolites. It also facilitates monitoring of chronic changes in both the brain and spinal cord over time, potentially leading to better patient outcomes. This paper represents a summary of the 2023 CFM, and is intended to guide the enthusiastic MR user to several key and novel sequences that MRI offers to image pathophysiologic processes underlying acute and chronic neuroinflammation. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology UnitIRCCS Scientific Institute E. MedeaBosisio PariniLeccoItaly
| | - Audrey Fan
- Department of NeurologyUniversity of California Davis HealthSacramentoCaliforniaUSA
- Department of Biomedical EngineeringUniversity of California DavisDavisCaliforniaUSA
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China HospitalSichuan UniversityChengduChina
| | - Seena Dehkharghani
- Department of RadiologyAlbert Einstein College of Medicine‐Montefiore HealthNew YorkNew YorkUSA
| | | |
Collapse
|
5
|
Zhang Q, Xu Y, Luo H, Su H, Zhong J, Pan L, Liu Y, Yang C, Yin Y, Tan B. Treadmill Training-Induced Remyelination Rescues Cognitive Impairment After Acute Hypoxia. Neurochem Res 2025; 50:109. [PMID: 40025348 DOI: 10.1007/s11064-025-04359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/24/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Acute and chronic exposure to high altitude causes multiple negative neurological consequences. Further research has shown the efficacy of targeted drugs after acute hypoxia. However, the effects and mechanisms of physical therapy like exercise, on after exposed-induced myelin repair and functional improvements have remained unclear. Here, we explored the efficacy of treadmill training at different intensities on recovery in a rat model of acute hypobaric hypoxia (HH) injury. A 4-week treadmill training scheme was used at 30%, 50%, and 70% of maximum speed. The evolution of oligodendrocyte morphometry was observed by immunofluorescence, and the expressions of myelin-related proteins were detected by western blotting. Transmission electron microscopy (TEM) is used to study fine myelin structure. In addition, the open field test (OFT), elevated plus maze (EPM) and Morris water maze (MWM) were used for the observation of cognitive function recovery. Our study revealed varying degrees of demyelination changes in the cortex and hippocampus following acute hypoxia exposure. Additionally, high-intensity treadmill training enhances oligodendrocyte (OL) maturation, improves myelin-related proteins, and increases myelin sheath thickness, thus facilitating myelin repair, rescuing cognitive function and mood disorders, and preserving normal nerve conduction. Finally, the upregulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and key enzymes of cholesterol synthesis (HMGCR/FDPS) induced by high-intensity treadmill training was detected. Our results demonstrate that high-intensity treadmill training as a physical therapy via PGC1α and cholesterol synthesis enhances myelin repair and functional restoration, which should provide new insight for the rehabilitation of remyelination by exercise.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Yangjie Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Hong Su
- Guangzhou Women and Children'S Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Juan Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, 400000, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of Special Environment War Wound Prevention and Treatment, Institute of Surgery Research, Army Medical Center of PLA, Chongqing, 400000, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing, 400000, China.
| |
Collapse
|
6
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Rovira À, Auger C, Sceppacuercia S, Torres C. Typical and Emerging Diagnostic MRI Features in Multiple Sclerosis. Can Assoc Radiol J 2025; 76:122-144. [PMID: 39044390 DOI: 10.1177/08465371241261847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Magnetic resonance imaging (MRI) stands as the most sensitive paraclinical technique for detecting the demyelinating lesions characteristic of multiple sclerosis (MS). Consequently, MRI plays a pivotal role in establishing an accurate and timely diagnosis of the disease, ultimately based on the application of the McDonald criteria. Early diagnosis is particularly important as it facilitates the prompt initiation of disease-modifying treatments, deemed most effective during the initial phases of MS. This review article examines the recommended standardized MRI protocol, as well as the classic imaging features of MS in the brain, optic nerve, and spinal cord, capable of discriminating, in most cases, MS from other disorders that can mimic this disease. Additionally, novel MR imaging findings, such as the central vein sign and paramagnetic rim lesion, which have been proposed as new imaging biomarkers to enhance diagnostic specificity for MS, are also discussed. These emerging features are likely to be incorporated in the future iterations of the McDonald criteria, and therefore, radiologists should be familiar with their appearance and with the optimal MRI protocols required for their detection.
Collapse
Affiliation(s)
- Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
| | - Cristina Auger
- Section of Neuroradiology, Department of Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Carlos Torres
- Department of Radiology, University of Ottawa, The Ottawa Hospital Civic and General Campus, Ottawa, ON, Canada
| |
Collapse
|
8
|
Gillen KM, Nguyen TD, Dimov A, Kovanlikaya I, Luu HM, Demmon E, Markowitz DM, Bagnato F, Pitt D, Gauthier SA, Wang Y. Quantitative susceptibility mapping is more sensitive and specific than phase imaging in detecting chronic active multiple sclerosis lesion rims: pathological validation. Brain Commun 2025; 7:fcaf011. [PMID: 39916751 PMCID: PMC11800486 DOI: 10.1093/braincomms/fcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Quantitative susceptibility mapping and phase imaging are used to identify multiple sclerosis lesions with paramagnetic rims that slowly expand over time and are associated with earlier progression to disability, decreased brain volume and increased frequency of clinical relapse. However, the presence of iron-laden microglia/macrophages at the lesion rim and demyelination within the lesion both contribute to phase and quantitative susceptibility mapping images. Therefore, simultaneous pathological validation is needed to assess accuracies in identifying iron-positive lesions. MRI was performed on 15 multiple sclerosis brain slabs; 32 lesions of interest were processed for myelin, iron and microglial markers. Three experienced readers classified lesions as rim positive or negative on quantitative susceptibility mapping and phase; these classifications were compared with Perls' stain as the gold standard. All 10 of the quantitative susceptibility mapping-positive lesions had iron-positive rims on histology. Of the 16 phase-positive lesions, only 10 had iron-positive rims on histology. Using Perls' stain as the ground truth, the positive predictive value was 100% for quantitative susceptibility mapping and 63% for phase; the negative predictive value was 95% for quantitative susceptibility mapping and 94% for phase. Post-mortem imaging results demonstrate that quantitative susceptibility mapping is a more reliable indicator of an iron-positive rim compared with phase imaging.
Collapse
Affiliation(s)
- Kelly M Gillen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ha Manh Luu
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily Demmon
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel M Markowitz
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francesca Bagnato
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
9
|
Tozlu C, Jamison K, Kang Y, Rua SH, Kaunzner UW, Nguyen T, Kuceyeski A, Gauthier SA. TSPO-PET Reveals Higher Inflammation in White Matter Disrupted by Paramagnetic Rim Lesions in Multiple Sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.627857. [PMID: 39803549 PMCID: PMC11722250 DOI: 10.1101/2025.01.03.627857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objective To explore whether the inflammatory activity is higher in white matter (WM) tracts disrupted by paramagnetic rim lesions (PRLs) and if inflammation in PRL-disrupted WM tracts is associated with disability in people with multiple sclerosis (MS). Methods Forty-four MS patients and 16 healthy controls were included. 18 kDa-translocator protein positron emission tomography (TSPO-PET) with the 11C-PK11195 radioligand was used to measure the neuroinflammatory activity. The Network Modification Tool was used to identify WM tracts disrupted by PRLs and non-PRLs that were delineated on MRI. The Expanded Disability Status Scale was used to measure disability. Results MS patients had higher inflammatory activity in whole brain WM compared to healthy controls (p=0.001). Compared to patients without PRLs, patients with PRLs exhibited higher levels of inflammatory activity in the WM tracts disrupted by any type of lesions (p=0.02) or PRLs (p=0.004). In patients with at least one PRL, inflammatory activity was higher in WM tracts highly disrupted by PRLs compared to WM tracts highly disrupted by non-PRLs (p=0.009). Elevated inflammatory activity in highly disrupted WM tracts was associated with increased disability in patients with PRL (p=0.03), but not in patients without PRL (p=0.2). Interpretation This study suggests that patients with PRLs may exhibit more diffuse WM inflammation in addition to higher inflammation along WM tracts disrupted by PRLs compared to non-PRLs, which could contribute to larger lesion volumes and faster disability progression. Imaging PRLs may serve to identify patients with both focal and diffuse inflammation, guiding therapeutic interventions aimed at reducing inflammation and preventing progressive disability in MS.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington DC, USA
| | - Sandra Hurtado Rua
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, USA
| | - Ulrike W. Kaunzner
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan A. Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
10
|
Doorduin J. Imaging neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:277-291. [PMID: 40122630 DOI: 10.1016/b978-0-443-19104-6.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Imaging can help us understand the role neuroglia plays in health and during the course of neurologic disorders. In vivo microscopy has had a great impact on our understanding of how neuroglia behaves during health and disease. While initially the technique was hindered by the limited penetration depth in brain tissue, recent advancements lead to increasing possibilities for imaging of deeper brain structures, even at super-resolution. Unfortunately, in vivo microscopy cannot be applied in a clinical setting and thus cannot be used to study neuroglia in patient populations. However, noninvasive imaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI) can. PET has provided valuable information on the involvement of neuroglia in neurologic disorders. To more specifically image microglia and astrocytes, many new PET biomarkers have been defined for which PET tracers are continuously developed, evaluated, and improved. A cell-type specific PET tracer with favorable imaging characteristics can have a huge impact on neuroglia research. While being less sensitive than PET, MRI is a more accessible imaging technique. Initially, only general neuroinflammation processes could be imaged with MRI, but newly developed methods and sequences allow for increasing cell-type specificity. Overall, while each imaging method comes with limitations, improvements are continuously made, all with the aim to truly understand the role that neuroglia play in health and disease.
Collapse
Affiliation(s)
- Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Krajnc N, Hofer L, Föttinger F, Dal‐Bianco A, Leutmezer F, Kornek B, Rommer P, Kasprian G, Berger T, Pemp B, Haider L, Bsteh G. Paramagnetic rim lesions are associated with inner retinal layer thinning and progression independent of relapse activity in multiple sclerosis. Eur J Neurol 2025; 32:e16529. [PMID: 39529542 PMCID: PMC11622274 DOI: 10.1111/ene.16529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Paramagnetic rim lesions (PRLs) are chronic active lesions associated with a severe disease course in multiple sclerosis (MS). This study was undertaken to investigate an association between retinal layer thinning (annualized loss of peripapillary retinal nerve fiber layer [aLpRNFL] and ganglion cell-inner plexiform layer [aLGCIPL]) and PRLs in patients with MS (pwMS). METHODS In this study, pwMS with brain magnetic resonance imaging and ≥2 optical coherence tomography scans were included. Cox proportional hazard regression models were performed using progression independent of relapse activity (PIRA) as the dependent variable, and aLpRNFL, aLGCIPL, or the number of PRLs as independent variables, adjusted for covariates. RESULTS We analyzed data from 97 pwMS (mean age = 35.2 years [SD = 9.9], 71.1% female, median disease duration = 2.3 years [interquartile range = 0.9-9.0]). The number of PRLs was associated with aLpRNFL and aLGCIPL. PIRA was observed in 18 (18.6%) pwMS, with aLpRNFL (hazard ratio [HR] = 1.44 per %/year), aLGCIPL (HR = 1.61 per %/year), and the number of PRLs (HR = 1.24 per PRL) being associated with increased risk of PIRA. CONCLUSIONS The number of PRLs is associated with inner retinal layer thinning and increased risk of PIRA. A combination of PRLs and retinal layer thinning could serve as a surrogate for pwMS at highest risk of disability progression.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Leo Hofer
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
- Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Fabian Föttinger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Assunta Dal‐Bianco
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Fritz Leutmezer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Barbara Kornek
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Paulus Rommer
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
- Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Thomas Berger
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| | - Berthold Pemp
- Department of OphthalmologyMedical University of ViennaViennaAustria
| | - Lukas Haider
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
- Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Gabriel Bsteh
- Department of NeurologyMedical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental HealthMedical University of ViennaViennaAustria
| |
Collapse
|
12
|
Dal-Bianco A, Oh J, Sati P, Absinta M. Chronic active lesions in multiple sclerosis: classification, terminology, and clinical significance. Ther Adv Neurol Disord 2024; 17:17562864241306684. [PMID: 39711984 PMCID: PMC11660293 DOI: 10.1177/17562864241306684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In multiple sclerosis (MS), increasing disability is considered to occur due to persistent, chronic inflammation trapped within the central nervous system (CNS). This condition, known as smoldering neuroinflammation, is present across the clinical spectrum of MS and is currently understood to be relatively resistant to treatment with existing disease-modifying therapies. Chronic active white matter lesions represent a key component of smoldering neuroinflammation. Initially characterized in autopsy specimens, multiple approaches to visualize chronic active lesions (CALs) in vivo using advanced neuroimaging techniques and postprocessing methods are rapidly emerging. Among these in vivo imaging correlates of CALs, paramagnetic rim lesions (PRLs) are defined by the presence of a perilesional rim formed by iron-laden microglia and macrophages, whereas slowly expanding lesions are identified based on linear, concentric lesion expansion over time. In recent years, several longitudinal studies have linked the occurrence of in vivo detected CALs to a more aggressive disease course. PRLs are highly specific to MS and therefore have recently been incorporated into the MS diagnostic criteria. They also have prognostic potential as biomarkers to identify patients at risk of early and severe disease progression. These developments could significantly affect MS care and the evaluation of new treatments. This review describes the latest knowledge on CAL biology and imaging and the relevance of CALs to the natural history of MS. In addition, we outline considerations for current and future in vivo biomarkers of CALs, emphasizing the need for validation, standardization, and automation in their assessment.
Collapse
Affiliation(s)
- Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18–20, Vienna 1090, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | - Pascal Sati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
13
|
Stölting A, Vanden Bulcke C, Borrelli S, Bugli C, Du Pasquier R, van Pesch V, Maggi P. Clinical relevance of paramagnetic rim lesion heterogeneity in multiple sclerosis. Ann Clin Transl Neurol 2024; 11:3137-3151. [PMID: 39382072 DOI: 10.1002/acn3.52220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Previous studies reveal heterogeneity in terms of paramagnetic rim lesions (PRL) associated tissue damage. We investigated the physiopathology and clinical implications of this heterogeneity. METHODS In 103 MS patients (72 relapsing and 31 progressive), brain lesions were manually segmented on 3T 3D-FLAIR and rim visibility was assessed with a visual confidence level score (VCLS) on 3D-EPI phase. Using T1 relaxation time maps, lesions were categorized in long-T1 and short-T1. Lesion age was calculated from time of first gadolinium enhancement (N = 84 lesions). Results on clinical scores were validated in an extended cohort of 167 patients using normalized T1w-MPRAGE lesion values. RESULTS Rim visibility (VCLS analysis) was associated with increasing lesional T1 (P/PFDR < 0.001). Of 1680 analyzed lesions, 427 were categorized as PRL. Long-T1 PRL were older than short-T1 PRL (average 0.8 vs. 2.0 years, P/PFDR = 0.005/0.008), and featured larger lesional volume (P/PFDR < 0.0001) and multi-shell diffusion-measured axonal damage (P/PFDR < 0.0001). The total volume of long-T1-PRL versus PRL showed 2× predictive power for both higher MS disability (EDSS; P/PFDR = 0.003/0.005 vs. P/PFDR = 0.042/0.057) and severity (MSSS; P/PFDR = 0.0006/0.001 vs. P/PFDR = 0.004/0.007). In random forest, having ≥1 long-T1-PRL versus ≥4 PRL showed 2-4× higher performance to predict a higher EDSS and MSSS. In the validation cohort, long-T1 PRL outperformed (~2×) PRL in predicting both EDSS and MSSS. INTERPRETATION PRL show substantial heterogeneity in terms of intralesional tissue damage. More destructive, likely older, long-T1 PRL improve the association with MS clinical scales. This PRL heterogeneity characterization was replicated using standard T1w MRI, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Anna Stölting
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Colin Vanden Bulcke
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
- ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Serena Borrelli
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Brussels, Brussels, Belgium
| | - Céline Bugli
- Plateforme technologique de Support en Méthodologie et Calcul Statistique, Université catholique de Louvain, Brussels, Belgium
| | - Renaud Du Pasquier
- Neurology Service, Department of Clinical Neurosciences, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Vincent van Pesch
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
14
|
Gaitán MI, Marquez RV, Ayerbe J, Reich DS. Imaging Outcomes for Phase 2 Trials Targeting Compartmentalized Inflammation. Mult Scler 2024; 30:48-60. [PMID: 39658905 PMCID: PMC11637223 DOI: 10.1177/13524585241301303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This comprehensive review aims to explore imaging outcome measures targeting compartmentalized inflammation in Phase 2 clinical trials for multiple sclerosis (MS). The traditional primary imaging outcomes used in Phase 2 MS trials, new or enhancing white matter lesions on MRI, target the effects of peripheral inflammation, but the widespread inflammation behind a mostly closed blood-brain barrier is not captured. This review discusses several emerging imaging technologies that could be used as surrogate markers of compartmentalized inflammation, targeting chronic active lesions, meningeal inflammation, and innate immune activation within the normal-appearing white matter and gray matter. The integration of specific imaging outcomes into Phase 2 trials can provide a more accurate assessment of treatment efficacy, ultimately contributing to the development of more effective therapies for MS.
Collapse
Affiliation(s)
- María I Gaitán
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Rocio V Marquez
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Jeremias Ayerbe
- Department of Neurology, Italian Hospital of Buenos Aires, Argentina
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Treaba CA, Herranz E, Barletta VT, Mehndiratta A, Sloane JA, Granberg T, Miscioscia A, Bomprezzi R, Loggia ML, Mainero C. Phenotyping in vivo chronic inflammation in multiple sclerosis by combined 11C-PBR28 MR-PET and 7T susceptibility-weighted imaging. Mult Scler 2024; 30:1755-1764. [PMID: 39436837 PMCID: PMC11742271 DOI: 10.1177/13524585241284157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND 11C-PBR28 positron emission tomography (PET), targeting the translocator protein, and paramagnetic rim lesions (PRL) have emerged as promising imaging markers of MS chronic inflammation. No consensus on which is the optimal marker exists. OBJECTIVES To investigate the ability of 11C-PBR28 PET and PRL assessment to identify chronic inflammation in white matter (WM) MS lesions and their relation to neurological impairment. METHODS Based on 11C-PBR28 uptake, brain WM lesions from 30 MS patients were classified as PET active or inactive. The PRL presence was assessed on 7T phase reconstructions, T1/T2 ratio was calculated to measure WM microstructural integrity. RESULTS Less than half (44%) of non-PRL WM lesions were active on 11C-PBR28 imaging either throughout the lesion (whole active) or at its periphery. PET peripherally active lesions and PRL did not differ in T1/T2 ratio and 11C-PBR28 uptake. A positive correlation was observed between PRL and active PET lesion count. Whole active PET lesion volume was the strongest predictor (β = 0.97, p < 0.001) of increased Expanded Disability Status Scale scores. CONCLUSION 11C-PBR28 imaging reveals more active WM lesions than 7T PRL assessment. Although PRL and PET active lesion counts are related, neurological disability is better explained by PET whole active lesion volume.
Collapse
Affiliation(s)
- Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Valeria T Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandro Miscioscia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberto Bomprezzi
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care & Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Manasseh G, Hilbert T, Fartaria MJ, Deverdun J, Cuadra MB, Maréchal B, Kober T, Dunet V. Automated Quantitative Susceptibility and Morphometry MR Study: Feasibility and Interrelation Between Clinical Score, Lesion Load, Deep Grey Matter and Normal-Appearing White Matter in Multiple Sclerosis. Diagnostics (Basel) 2024; 14:2669. [PMID: 39682577 DOI: 10.3390/diagnostics14232669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Lesion load (LL), deep gray matter (DGM) and normal-appearing white matter (NAWM) susceptibility and morphometry may help in monitoring brain changes in multiple sclerosis (MS) patients. We aimed at evaluating the feasibility of a fully automated segmentation and the potential interrelation between these biomarkers and clinical disability. METHODS Sixty-six patients with brain MRIs and clinical evaluations (Expanded Disability Status Scale [EDSS]) were retrospectively included. Automated prototypes were used for the segmentation and morphometry of brain regions (MorphoBox) and MS lesions (LeManPV). Susceptibility maps were estimated using standard post-processing (RESHARP and TVSB). Spearman's rho was computed to evaluate the interrelation between biomarkers and EDSS. RESULTS We found (i) anticorrelations between the LL and right thalamus susceptibility (rho = -0.46, p < 0.001) and between the LL and NAWM susceptibility (rho = [-0.68 to -0.25], p ≤ 0.05); (ii) an anticorrelation between LL and DGM (rho = [-0.71 to -0.36], p < 0.04) and WM morphometry (rho = [-0.64 to -0.28], p ≤ 0.01); and (iii) a positive correlation between EDSS and LL (rho = [0.28 to 0.5], p ≤ 0.03) and anticorrelation between EDSS and NAWM susceptibility (rho = [-0.29 to -0.38], p < 0.014). CONCLUSIONS Fully automated brain morphometry and susceptibility monitoring is feasible in MS patients. The lesion load, thalamus and NAWM susceptibility values and trophicity are interrelated and correlate with disability.
Collapse
Affiliation(s)
- Gibran Manasseh
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Tom Hilbert
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mário João Fartaria
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jeremy Deverdun
- I2FH, Institut d'Imagerie Fonctionnelle Humaine, Montpellier University Hospital Center, Gui de Chauliac Hospital, 34295 Montpellier, France
| | - Meritxell Bach Cuadra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- CIBM Center of Biomedical Imaging, 1015 Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tobias Kober
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, 1015 Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
17
|
Michaelson NM, Rúa SH, Kaunzner UW, Marcille M, Pliska‐Bloch I, Markowitz K, Nguyen TD, Gauthier SA. Impact of paramagnetic rim lesions on disability and race in multiple sclerosis: mediation analysis. Ann Clin Transl Neurol 2024; 11:2923-2931. [PMID: 39290047 PMCID: PMC11572731 DOI: 10.1002/acn3.52203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Black American (BA) multiple sclerosis (MS) patients experience greater disability compared to White American (WA) patients. Here, we investigated the role of paramagnetic rim lesions (PRLs), a subset of chronic active lesions, on race-related disability in MS. METHODS We conducted a retrospective observational study comparing BA and WA MS patients. PRLs were identified through Quantitative Susceptibility Mapping (QSM) MRI. A causal mediation analysis explored the impact of PRLs on the relationship between race and disability, as measured by the Expanded Disability Status Scale (EDSS). RESULTS The prevalence of PRLs in BA patients with MS was higher at 55% compared to WA patients at 39% (p = 0.022). A higher percentage of PRLs among all white matter lesions was observed with BA (8.01%) patients compared to WA (3.4%) patients (p = 0.003). In a regression analysis, controlling for significant patient-level covariates and income-level demographics, the percentage of PRLs was, on average, 4.61 points higher for BA patients than for WA patients (p = 0.003). In a separate regression analysis, accounting for covariates, BA patients exhibited significantly higher EDSS scores (p < 0.001). Further analysis demonstrated that the percentage of PRLs was a mediator in the association between BA patients and greater disability (p = 0.031). Higher proportion of PRLs in BA population accounted for 14% of the total effect of race on disability. INTERPRETATION BA patients exhibit greater disability, in part, due to their higher proportion of PRLs. This study underscores the substantial impact of chronic active lesions on disability outcomes in this specific minority MS patient population.
Collapse
Affiliation(s)
| | - Sandra H. Rúa
- Department of Mathematics and StatisticsCleveland State UniversityClevelandOhioUSA
| | | | - Melanie Marcille
- Department of NeurologyWeill Cornell MedicineNew YorkNew YorkUSA
| | | | | | - Thanh D. Nguyen
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Susan A. Gauthier
- Department of NeurologyWeill Cornell MedicineNew YorkNew YorkUSA
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
- Feil Family Brain and Mind Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
18
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
19
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
20
|
Sanabria-Diaz G, Cagol A, Lu PJ, Barakovic M, Ocampo-Pineda M, Chen X, Weigel M, Ruberte E, Siebenborn NDOS, Galbusera R, Schädelin S, Benkert P, Kuhle J, Kappos L, Melie-Garcia L, Granziera C. Advanced MRI Measures of Myelin and Axon Volume Identify Repair in Multiple Sclerosis. Ann Neurol 2024. [PMID: 39390658 DOI: 10.1002/ana.27102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Pathological studies suggest that multiple sclerosis (MS) lesions endure multiple waves of damage and repair; however, the dynamics and characteristics of these processes are poorly understood in patients living with MS. METHODS We studied 128 MS patients (75 relapsing-remitting, 53 progressive) and 72 healthy controls who underwent advanced magnetic resonance imaging and clinical examination at baseline and 2 years later. Magnetization transfer saturation and multi-shell diffusion imaging were used to quantify longitudinal changes in myelin and axon volumes within MS lesions. Lesions were grouped into 4 classes (repair, damage, mixed repair damage, and stable). The frequency of each class was correlated to clinical measures, demographic characteristics, and levels of serum neurofilament light chain (sNfL). RESULTS Stable lesions were the most frequent (n = 2,276; 44%), followed by lesions with patterns of "repair" (n = 1,352; 26.2%) and damage (n = 1,214; 23.5%). The frequency of "repair" lesion was negatively associated with disability (β = -0.04; p < 0.001) and sNfL (β = -0.16; p < 0.001) at follow-up. The frequency of the "damage" class was higher in progressive than relapsing-remitting patients (p < 0.05) and was related to disability (baseline: β = -0.078; follow-up: β = -0.076; p < 0.001) and age (baseline: β = -0.078; p < 0.001). Stable lesions were more frequent in relapsing-remitting than in progressive patients (p < 0.05), and in younger patients versus older (β = -0.07; p < 0.001) at baseline. Further, "mixed" lesions were most frequent in older patients (β = 0.004; p < 0.001) at baseline. INTERPRETATION These findings show that repair and damage processes within MS lesions occur across the entire disease spectrum and that their frequency correlates with patients disability, age, disease duration, and extent of neuroaxonal damage. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Gretel Sanabria-Diaz
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Po-Jui Lu
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Esther Ruberte
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Nina de Oliveira S Siebenborn
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Riccardo Galbusera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre, Department of Neurology, Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Zhang Y. Editorial for "Longitudinal Multi-Parametric Quantitative MRI Evaluation of Acute and Chronic Multiple Sclerosis Paramagnetic Rim Lesions". J Magn Reson Imaging 2024. [PMID: 39269287 DOI: 10.1002/jmri.29585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Affiliation(s)
- Yue Zhang
- Department of Electronic and Information Engineering, Beihai Vocational College, Beihai Open University, Beihai, China
- Department of Mechanical and Electrical Engineering, Beihai Vocational college, Beihai Open University, Beihai, China
- Department of Basic Discipline, Beihai Vocational college, Beihai Open University, Beihai, China
| |
Collapse
|
22
|
Bagnato F, Sati P, Hemond CC, Elliott C, Gauthier SA, Harrison DM, Mainero C, Oh J, Pitt D, Shinohara RT, Smith SA, Trapp B, Azevedo CJ, Calabresi PA, Henry RG, Laule C, Ontaneda D, Rooney WD, Sicotte NL, Reich DS, Absinta M. Imaging chronic active lesions in multiple sclerosis: a consensus statement. Brain 2024; 147:2913-2933. [PMID: 38226694 PMCID: PMC11370808 DOI: 10.1093/brain/awae013] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Chronic active lesions (CAL) are an important manifestation of chronic inflammation in multiple sclerosis and have implications for non-relapsing biological progression. In recent years, the discovery of innovative MRI and PET-derived biomarkers has made it possible to detect CAL, and to some extent quantify them, in the brain of persons with multiple sclerosis, in vivo. Paramagnetic rim lesions on susceptibility-sensitive MRI sequences, MRI-defined slowly expanding lesions on T1-weighted and T2-weighted scans, and 18-kDa translocator protein-positive lesions on PET are promising candidate biomarkers of CAL. While partially overlapping, these biomarkers do not have equivalent sensitivity and specificity to histopathological CAL. Standardization in the use of available imaging measures for CAL identification, quantification and monitoring is lacking. To fast-forward clinical translation of CAL, the North American Imaging in Multiple Sclerosis Cooperative developed a consensus statement, which provides guidance for the radiological definition and measurement of CAL. The proposed manuscript presents this consensus statement, summarizes the multistep process leading to it, and identifies the remaining major gaps in knowledge.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Department of Neurology, Nashville VA Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Pascal Sati
- Neuroimaging Program, Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher C Hemond
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Susan A Gauthier
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Neurology, Baltimore VA Medical Center, VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiwon Oh
- Division of Neurology, St. Michael’s Hospital, University of Toronto, Toronto, ON M5S, Canada
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Bruce Trapp
- Department on Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90007, USA
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Roland G Henry
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Cornelia Laule
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Translational Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
23
|
Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, Granziera C, Ropele S, Toosy AT, Vidal-Jordana À, Di Filippo M, Filippi M. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100978. [PMID: 39444702 PMCID: PMC11496980 DOI: 10.1016/j.lanepe.2024.100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
In the majority of cases, multiple sclerosis (MS) is characterized by reversible episodes of neurological dysfunction, often followed by irreversible clinical disability. Accurate diagnostic criteria and prognostic markers are critical to enable early diagnosis and correctly identify patients with MS at increased risk of disease progression. The 2017 McDonald diagnostic criteria, which include magnetic resonance imaging (MRI) as a fundamental paraclinical tool, show high sensitivity and accuracy for the diagnosis of MS allowing early diagnosis and treatment. However, their inappropriate application, especially in the context of atypical clinical presentations, may increase the risk of misdiagnosis. To further improve the diagnostic process, novel imaging markers are emerging, but rigorous validation and standardization is still needed before they can be incorporated into clinical practice. This Series article discusses the current role of MRI in the diagnosis and prognosis of MS, while examining promising MRI markers, which could serve as reliable predictors of subsequent disease progression, helping to optimize the management of individual patients with MS. We also explore the potential of new technologies, such as artificial intelligence and automated quantification tools, to support clinicians in the management of patients. Yet, to ensure consistency and improvement in the use of MRI in MS diagnosis and patient follow-up, it is essential that standardized brain and spinal cord MRI protocols are applied, and that interpretation of results is performed by qualified (neuro)radiologists in all countries.
Collapse
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Wallace Brownlee
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Massimiliano Calabrese
- The Multiple Sclerosis Center of University Hospital of Verona, Department of Neurosciences and Biomedicine and Movement, Verona, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Àngela Vidal-Jordana
- Servicio de Neurología, Centro de Esclerosis Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
24
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Xie Y, Zhang S, Wu D, Yao Y, Cho J, Lu J, Zhu H, Wang Y, Zhang Y, Zhu W. The changes of oxygen extraction fraction in different types of lesions in relapsing-remitting multiple sclerosis: A cross-sectional and longitudinal study. Neurol Sci 2024; 45:3939-3949. [PMID: 38492126 DOI: 10.1007/s10072-024-07463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES To explore the oxygen metabolism level of different types of lesions in relapsing-remitting multiple sclerosis (RRMS) patients by oxygen extraction fraction (OEF) both cross-sectionally and longitudinally. METHODS Forty-six RRMS patients and forty-one healthy controls (HC) went MRI examination. The quantitative susceptibility mapping (QSM) and OEF map were reconstructed from a 3D multi-echo gradient echo sequence. MS lesions in white matter were classified as contrast-enhancing lesions (CELs) on post-gadolinium T1-weighted sequence, paramagnetic rim lesions (PRLs), hyperintense lesions and non-hyperintense lesions on QSM, respectively. The susceptibility and OEF of different types of lesions were compared. The susceptibility and OEF values were measured and compared among different types of lesions. Among these RRMS patients, seventeen had follow-up MRI and 232 lesions, and baseline to follow-up longitudinal changes in susceptibility and OEF were measured. RESULTS PRLs had higher susceptibility and lower OEF than CELs, hyperintense lesions, and non-hyperintense lesions. The hyperintense lesions had higher susceptibility and lower OEF than non-hyperintense lesions. In longitudinal changes, PRLs had susceptibility increased (P < 0.001) and OEF decreased (P < 0.001). The hyperintense lesions showed significant decreases in susceptibility (P = 0.020), and non-hyperintense lesions showed significant increases in OEF during follow-up (P = 0.005). Notably, hyperintense lesions may convert to PRLs or non-hyperintense lesions as time progresses, accompanied by changes of OEF and susceptibility in the lesions. CONCLUSION This study revealed tissue damage and oxygen metabolism level in different types of MS lesions. The OEF may contribute to further understanding the evolution of MS lesions.
Collapse
Affiliation(s)
- Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yihao Yao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
26
|
Hemond CC, Gaitán MI, Absinta M, Reich DS. New Imaging Markers in Multiple Sclerosis and Related Disorders: Smoldering Inflammation and the Central Vein Sign. Neuroimaging Clin N Am 2024; 34:359-373. [PMID: 38942521 PMCID: PMC11213979 DOI: 10.1016/j.nic.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.
Collapse
Affiliation(s)
- Christopher C Hemond
- Department of Neurology, University of Massachusetts Memorial Medical Center and University of Massachusetts Chan Medical School, Worcester, MA, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - María I Gaitán
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
28
|
Moura J, Granziera C, Marta M, Silva AM. Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation. Neurol Sci 2024; 45:3061-3068. [PMID: 38374458 DOI: 10.1007/s10072-024-07402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
The presence of central nervous system lesions fulfilling the criteria of dissemination in space and time on MRI leads to the diagnosis of a radiologically isolated syndrome (RIS), which may be an early sign of multiple sclerosis (MS). However, some patients who do not fulfill the necessary criteria for RIS still evolve to MS, and some T2 hyperintensities that resemble demyelinating lesions may originate from mimics. In light of the recent recognition of the efficacy of disease-modifying therapy (DMT) in RIS, it is relevant to consider additional imaging features that are more specific of MS. We performed a narrative review on cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL) in patients with RIS. In previous RIS studies, the reported prevalence of CLs ranges between 20.0 and 40.0%, CVS + white matter lesions (WMLs) between 87.0 and 93.0% and PRLs between 26.7 and 63.0%. Overall, these imaging findings appear to be frequent in RIS cohorts, although not consistently taken into account in previous studies. The search for CLs, CVS + WML and PRLs in RIS patients could lead to earlier identification of patients who will evolve to MS and benefit from DMTs.
Collapse
Affiliation(s)
- João Moura
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Monica Marta
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London, UK
| | - Ana Martins Silva
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
29
|
Rimkus CDM, Otsuka FS, Nunes DM, Chaim KT, Otaduy MCG. Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology. Diagnostics (Basel) 2024; 14:1362. [PMID: 39001252 PMCID: PMC11240827 DOI: 10.3390/diagnostics14131362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain-blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes.
Collapse
Affiliation(s)
- Carolina de Medeiros Rimkus
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, 1081 HV Amsterdam, The Netherlands
- Instituto D'Or de Ensino e Pesquisa (IDOR), Sao Paulo 01401-002, SP, Brazil
| | - Fábio Seiji Otsuka
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Douglas Mendes Nunes
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Grupo Fleury, Sao Paulo 04701-200, SP, Brazil
| | - Khallil Taverna Chaim
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Maria Concepción Garcia Otaduy
- Department of Radiology and Oncology, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Sao Paulo 05403-010, SP, Brazil
- Laboratory of Medical Investigation in Magnetic Resonance-44 (LIM 44), University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| |
Collapse
|
30
|
Park C, Weerakkody JS, Schneider R, Miao S, Pitt D. CNS cell-derived exosome signatures as blood-based biomarkers of neurodegenerative diseases. Front Neurosci 2024; 18:1426700. [PMID: 38966760 PMCID: PMC11222337 DOI: 10.3389/fnins.2024.1426700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
Molecular biomarkers require the reproducible capture of disease-associated changes and are ideally sensitive, specific and accessible with minimal invasiveness to patients. Exosomes are a subtype of extracellular vesicles that have gained attention as potential biomarkers. They are released by all cell types and carry molecular cargo that reflects the functional state of the cells of origin. These characteristics make them an attractive means of measuring disease-related processes within the central nervous system (CNS), as they cross the blood-brain barrier (BBB) and can be captured in peripheral blood. In this review, we discuss recent progress made toward identifying blood-based protein and RNA biomarkers of several neurodegenerative diseases from circulating, CNS cell-derived exosomes. Given the lack of standardized methodology for exosome isolation and characterization, we discuss the challenges of capturing and quantifying the molecular content of exosome populations from blood for translation to clinical use.
Collapse
Affiliation(s)
- Calvin Park
- Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| | | | | | - Sheng Miao
- Yale School of Medicine, Yale University, New Haven, CT, United States
| | - David Pitt
- Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
31
|
Singhal T, Cicero S, Rissanen E, Ficke J, Kukreja P, Vaquerano S, Glanz B, Dubey S, Sticka W, Seaver K, Kijewski M, Callen AM, Chu R, Carter K, Silbersweig D, Chitnis T, Bakshi R, Weiner HL. Glial Activity Load on PET Reveals Persistent "Smoldering" Inflammation in MS Despite Disease-Modifying Treatment: 18 F-PBR06 Study. Clin Nucl Med 2024; 49:491-499. [PMID: 38630948 DOI: 10.1097/rlu.0000000000005201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
PURPOSE OF THE REPORT 18 F-PBR06-PET targeting 18-kDa translocator protein can detect abnormal microglial activation (MA) in multiple sclerosis (MS). The objectives of this study are to develop individualized mapping of MA using 18 F-PBR06, to determine the effect of disease-modifying treatment (DMT) efficacy on reducing MA, and to determine its clinical, radiological, and serological correlates in MS patients. PATIENTS AND METHODS Thirty 18 F-PBR06-PET scans were performed in 22 MS patients (mean age, 46 ± 13 years; 16 females) and 8 healthy controls (HCs). Logarithmically transformed "glial activity load on PET" scores (calculated as the sum of voxel-by-voxel z -scores ≥4), "lnGALP," were compared between MS and HC and between MS subjects on high-efficacy DMTs (H-DMT, n = 13) and those on no or lower-efficacy treatment, and correlated with clinical measures, serum biomarkers, and cortical thickness. RESULTS Cortical gray matter (CoGM) and white matter (WM) lnGALP scores were higher in MS versus HC (+33% and +48%, P < 0.001). In H-DMT group, CoGM and WM lnGALP scores were significantly lower than lower-efficacy treatment ( P < 0.01) but remained abnormally higher than in HC group ( P = 0.006). Within H-DMT patients, CoGM lnGALP scores correlated positively with physical disability, fatigue and serum glial fibrillary acid protein levels ( r = 0.65-0.79, all P 's < 0.05), and inversely with cortical thickness ( r = -0.66, P < 0.05). CONCLUSIONS High-efficacy DMTs decrease, but do not normalize, CoGM and WM MA in MS patients. Such "residual" MA in CoGM is associated with clinical disability, serum biomarkers, and cortical degeneration. Individualized mapping of translocator protein PET using 18 F-PBR06 is clinically feasible and can potentially serve as an imaging biomarker for evaluating "smoldering" inflammation in MS patients.
Collapse
Affiliation(s)
| | - Steven Cicero
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Eero Rissanen
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - John Ficke
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Preksha Kukreja
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Steven Vaquerano
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - Bonnie Glanz
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Shipra Dubey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - William Sticka
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Kyle Seaver
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Marie Kijewski
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology
| | - Alexis M Callen
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Renxin Chu
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Kelsey Carter
- From the Department of Neurology, PET Imaging Program in Neurologic Diseases
| | - David Silbersweig
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tanuja Chitnis
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Rohit Bakshi
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| | - Howard L Weiner
- Department of Neurology, Brigham Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases
| |
Collapse
|
32
|
Li V, Binder MD, Purcell AW, Kilpatrick TJ. Antigen-specific immunotherapy via delivery of tolerogenic dendritic cells for multiple sclerosis. J Neuroimmunol 2024; 390:578347. [PMID: 38663308 DOI: 10.1016/j.jneuroim.2024.578347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system resulting from loss of immune tolerance. Many disease-modifying therapies for MS have broad immunosuppressive effects on peripheral immune cells, but this can increase risks of infection and attenuate vaccine-elicited immunity. A more targeted approach is to re-establish immune tolerance in an autoantigen-specific manner. This review discusses methods to achieve this, focusing on tolerogenic dendritic cells. Clinical trials in other autoimmune diseases also provide learnings with regards to clinical translation of this approach, including identification of autoantigen(s), selection of appropriate patients and administration route and frequency.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
33
|
Bilgic B, Costagli M, Chan KS, Duyn J, Langkammer C, Lee J, Li X, Liu C, Marques JP, Milovic C, Robinson SD, Schweser F, Shmueli K, Spincemaille P, Straub S, van Zijl P, Wang Y. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-magnetic tissue properties study group. Magn Reson Med 2024; 91:1834-1862. [PMID: 38247051 PMCID: PMC10950544 DOI: 10.1002/mrm.30006] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.
Collapse
Affiliation(s)
- Berkin Bilgic
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Kwok-Shing Chan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jeff Duyn
- Advanced MRI Section, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Carlos Milovic
- School of Electrical Engineering (EIE), Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute at the University at Buffalo, Buffalo, New York, USA
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pascal Spincemaille
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, Florida, USA
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Wang
- MRI Research Institute, Departments of Radiology and Biomedical Engineering, Cornell University, New York, New York, USA
| |
Collapse
|
34
|
Voon CC, Wiltgen T, Wiestler B, Schlaeger S, Mühlau M. Quantitative susceptibility mapping in multiple sclerosis: A systematic review and meta-analysis. Neuroimage Clin 2024; 42:103598. [PMID: 38582068 PMCID: PMC11002889 DOI: 10.1016/j.nicl.2024.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) is a quantitative measure based on magnetic resonance imaging sensitive to iron and myelin content. This makes QSM a promising non-invasive tool for multiple sclerosis (MS) in research and clinical practice. OBJECTIVE We performed a systematic review and meta-analysis on the use of QSM in MS. METHODS Our review was prospectively registered on PROSPERO (CRD42022309563). We searched five databases for studies published between inception and 30th April 2023. We identified 83 English peer-reviewed studies that applied QSM images on MS cohorts. Fifty-five included studies had at least one of the following outcome measures: deep grey matter QSM values in MS, either compared to healthy controls (HC) (k = 13) or correlated with the score on the Expanded Disability Status Scale (EDSS) (k = 7), QSM lesion characteristics (k = 22) and their clinical correlates (k = 17), longitudinal correlates (k = 11), histological correlates (k = 7), or correlates with other imaging techniques (k = 12). Two meta-analyses on deep grey matter (DGM) susceptibility data were performed, while the remaining findings could only be analyzed descriptively. RESULTS After outlier removal, meta-analyses demonstrated a significant increase in the basal ganglia susceptibility (QSM values) in MS compared to HC, caudate (k = 9, standardized mean difference (SDM) = 0.54, 95 % CI = 0.39-0.70, I2 = 46 %), putamen (k = 9, SDM = 0.38, 95 % CI = 0.19-0.57, I2 = 59 %), and globus pallidus (k = 9, SDM = 0.48, 95 % CI = 0.28-0.67, I2 = 60 %), whereas thalamic QSM values exhibited a significant reduction (k = 12, SDM = -0.39, 95 % CI = -0.66--0.12, I2 = 84 %); these susceptibility differences in MS were independent of age. Further, putamen QSM values positively correlated with EDSS (k = 4, r = 0.36, 95 % CI = 0.16-0.53, I2 = 0 %). Regarding rim lesions, four out of seven studies, representing 73 % of all patients, reported rim lesions to be associated with more severe disability. Moreover, lesion development from initial detection to the inactive stage is paralleled by increasing, plateauing (after about two years), and gradually decreasing QSM values, respectively. Only one longitudinal study provided clinical outcome measures and found no association. Histological data suggest iron content to be the primary source of QSM values in DGM and at the edges of rim lesions; further, when also considering data from myelin water imaging, the decrease of myelin is likely to drive the increase of QSM values within WM lesions. CONCLUSIONS We could provide meta-analytic evidence for DGM susceptibility changes in MS compared to HC; basal ganglia susceptibility is increased and, in the putamen, associated with disability, while thalamic susceptibility is decreased. Beyond these findings, further investigations are necessary to establish the role of QSM in MS for research or even clinical routine.
Collapse
Affiliation(s)
- Cui Ci Voon
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tun Wiltgen
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Dept. of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Mark Mühlau
- Dept. of Neurology, School of Medicine and Health, Technical University of Munich, Munich, Germany; TUM-Neuroimaging Center, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
35
|
Nakamura K, Thoomukuntla B, Bena J, Cohen JA, Fox RJ, Ontaneda D. Ibudilast reduces slowly enlarging lesions in progressive multiple sclerosis. Mult Scler 2024; 30:369-380. [PMID: 38286755 PMCID: PMC11190892 DOI: 10.1177/13524585231224702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
BACKGROUND Ibudilast has shown beneficial effects on several imaging outcomes in progressive multiple sclerosis (MS). Slowly enlarging lesions are a proposed imaging biomarker of compartmentalized inflammation within chronic active lesions. OBJECTIVE To assess the treatment effect of ibudilast on slowly enlarging lesion volumes over 96 weeks from a phase II clinical trial of ibudilast (Secondary and Primary Progressive Ibudilast NeuroNEXT Trial in Multiple Sclerosis [SPRINT-MS]). METHODS In total, 255 participants with progressive MS from 28 sites were randomized to oral ibudilast or placebo. Participants with at least four analyzable magnetic resonance imaging (MRI) were included. Slowly enlarging lesions were quantified using Jacobian determinant maps. A linear model was used to assess the effect of ibudilast. Magnetization transfer ratio within slowly enlarging lesions was assessed to determine the effect of ibudilast on tissue integrity. RESULTS In total, 195 participants were included in this analysis. Ibudilast significantly decreased slowly enlarging lesion volume (23%, p = 0.003). Ibudilast also reduced magnetization transfer ratio change in slowly enlarging lesions: 0.22%/year, p = 0.04. CONCLUSION Ibudilast showed a significant effect on baseline volume of lesions that were slowly enlarging and magnetization transfer ratio in slowly enlarging lesions. The results support the use of slowly enlarging lesions for assessment of compartmentalized inflammation represented by chronic active lesions and provide further support for the neuroprotective effects of ibudilast in progressive MS.
Collapse
Affiliation(s)
- Kunio Nakamura
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bhaskar Thoomukuntla
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James Bena
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Wang M, Yang X, Liu D, Dang P, Huang X, Zheng J, Ding F, Ding X, Wang X. Altered brain iron deposition in patients with minimal hepatic encephalopathy: an MRI quantitative susceptibility mapping study. Clin Radiol 2024; 79:e369-e375. [PMID: 38071103 DOI: 10.1016/j.crad.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 11/06/2023] [Indexed: 02/15/2024]
Abstract
AIM To explore the use of quantitative susceptibility mapping (QSM) in assessing changes in brain iron deposits and their association with cognitive function in patients with minimal hepatic encephalopathy (MHE). MATERIALS AND METHODS The study cohort comprised 27 cases with hepatitis B-associated cirrhosis with MHE (MHE group), 25 with hepatitis B-associated cirrhosis without MHE (NMHE group), and 25 healthy controls (HC group). Iron deposits in the bilateral frontal white matter, caudate nucleus (CN), putamen, globus pallidus, thalamus, red nucleus, substantia nigra (SN), hippocampus, and dentate nucleus were measured by QSM. The associations between iron deposition with the time taken to complete number connection tests A (NCT-A) and the score on digital-symbol test (DST) were analysed. RESULTS Susceptibility values differed significantly in the bilateral CN, left thalamus, right SN, and left hippocampus in the MHE group compared with the other groups and were positively associated with the times taken to complete the NCT-A in the bilateral CN, left thalamus, and right SN and negatively associated with DST scores in the bilateral CN, left TH, and left HP. CONCLUSION Reduced cognitive function in MHE patients was significantly associated with abnormally increased iron deposition in certain brain areas. The quantification of brain iron deposition by QSM may thus be an objective and accurate means of evaluating MHE.
Collapse
Affiliation(s)
- M Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - D Liu
- Department of Traditional Chinese Medicine Orthopedics and Traumatology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - P Dang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Huang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - J Zheng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - F Ding
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Ding
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - X Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
37
|
Ndayisaba A, Pitaro AT, Willett AS, Jones KA, de Gusmao CM, Olsen AL, Kim J, Rissanen E, Woods JK, Srinivasan SR, Nagy A, Nagy A, Mesidor M, Cicero S, Patel V, Oakley DH, Tuncali I, Taglieri-Noble K, Clark EC, Paulson J, Krolewski RC, Ho GP, Hung AY, Wills AM, Hayes MT, Macmore JP, Warren L, Bower PG, Langer CB, Kellerman LR, Humphreys CW, Glanz BI, Dielubanza EJ, Frosch MP, Freeman RL, Gibbons CH, Stefanova N, Chitnis T, Weiner HL, Scherzer CR, Scholz SW, Vuzman D, Cox LM, Wenning G, Schmahmann JD, Gupta AS, Novak P, Young GS, Feany MB, Singhal T, Khurana V. Clinical Trial-Ready Patient Cohorts for Multiple System Atrophy: Coupling Biospecimen and iPSC Banking to Longitudinal Deep-Phenotyping. CEREBELLUM (LONDON, ENGLAND) 2024; 23:31-51. [PMID: 36190676 PMCID: PMC9527378 DOI: 10.1007/s12311-022-01471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease of unknown etiology characterized by widespread aggregation of the protein alpha-synuclein in neurons and glia. Its orphan status, biological relationship to Parkinson's disease (PD), and rapid progression have sparked interest in drug development. One significant obstacle to therapeutics is disease heterogeneity. Here, we share our process of developing a clinical trial-ready cohort of MSA patients (69 patients in 2 years) within an outpatient clinical setting, and recruiting 20 of these patients into a longitudinal "n-of-few" clinical trial paradigm. First, we deeply phenotype our patients with clinical scales (UMSARS, BARS, MoCA, NMSS, and UPSIT) and tests designed to establish early differential diagnosis (including volumetric MRI, FDG-PET, MIBG scan, polysomnography, genetic testing, autonomic function tests, skin biopsy) or disease activity (PBR06-TSPO). Second, we longitudinally collect biospecimens (blood, CSF, stool) and clinical, biometric, and imaging data to generate antecedent disease-progression scores. Third, in our Mass General Brigham SCiN study (stem cells in neurodegeneration), we generate induced pluripotent stem cell (iPSC) models from our patients, matched to biospecimens, including postmortem brain. We present 38 iPSC lines derived from MSA patients and relevant disease controls (spinocerebellar ataxia and PD, including alpha-synuclein triplication cases), 22 matched to whole-genome sequenced postmortem brain. iPSC models may facilitate matching patients to appropriate therapies, particularly in heterogeneous diseases for which patient-specific biology may elude animal models. We anticipate that deeply phenotyped and genotyped patient cohorts matched to cellular models will increase the likelihood of success in clinical trials for MSA.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Ariana T Pitaro
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Andrew S Willett
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Kristie A Jones
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Claudio Melo de Gusmao
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Abby L Olsen
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jisoo Kim
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eero Rissanen
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sharan R Srinivasan
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI , 48103, USA
| | - Anna Nagy
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Amanda Nagy
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Merlyne Mesidor
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Steven Cicero
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Viharkumar Patel
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Idil Tuncali
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Katherine Taglieri-Noble
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Emily C Clark
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jordan Paulson
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Richard C Krolewski
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Gary P Ho
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Albert Y Hung
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael T Hayes
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jason P Macmore
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Pamela G Bower
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Carol B Langer
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Lawrence R Kellerman
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Christopher W Humphreys
- Department of Pulmonary, Sleep and Critical Care Medicine, Salem Hospital, MassGeneral Brigham, Salem, MA, 01970, USA
| | - Bonnie I Glanz
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Elodi J Dielubanza
- Department of Urology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Roy L Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Nadia Stefanova
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Tanuja Chitnis
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Howard L Weiner
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Clemens R Scherzer
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Sonja W Scholz
- Laboratory of Neurogenetics, Disorders and Stroke, National Institute of Neurological, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, 21287, USA
| | - Dana Vuzman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Laura M Cox
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Gregor Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Novak
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Geoffrey S Young
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tarun Singhal
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Vikram Khurana
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA.
| |
Collapse
|
38
|
Gao C, Su L, Li H, Song T, Liu Y, Duan Y, Shi FD. Susceptibility-weighted image features in AQP4-negative-NMOSD versus MS. Mult Scler Relat Disord 2024; 82:105406. [PMID: 38176283 DOI: 10.1016/j.msard.2023.105406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To characterize the susceptibility-weighted image (SWI) features including paramagnetic rim and nodular lesions with signal intensity changes and central vein sign (CVS) associated with aquaporin 4 (AQP4)-immunoglobulin G (IgG)-negative neuromyelitis optica spectrum disorder (NMOSD), and explore whether they can be used as potential imaging biomarkers for differentiating multiple sclerosis (MS) from this disorder. METHODS We prospectively recruited NMOSD with AQP4-IgG-negative (AQP4- NMOSD) and IgG-positive (AQP4+ NMOSD), and MS subjects from the Clinical and Imaging Patterns of Neuroinflammation Diseases in China (CLUE) project (NCT0410683) between 2019 and 2021. The SWI features including paramagnetic rim and nodular lesions with signal intensity changes and CVS were analyzed and compared among groups, and the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were determined for distinguishing MS from AQP4- NMOSD. RESULTS We enrolled a total of 160 consecutive patients (22 AQP4- NMOSD, 65 AQP4+ NMOSD, and 73 MS). We observed paramagnetic rim lesion (0/120 lesions, 0 %) and nodular (1/120, 1 %) lesions with hypointense signals on SWI in the AQP4- NMOSD group. These characteristics were similar to those recorded from AQP4+ NMOSD patients (rim: 0/369 lesions, 0 %, P = 1.000; nodular: 10/369 lesions, 2.7 %, P = 1.000), but differed significantly from those observed in the MS group (rim: 162/1665 lesions, 9.7 %, P<0.001; nodular: 392/1665 lesions, 23.5 %, P < 0.001). AQP4- NMOSD patients had fewer average CVS+ rate (12 %) than MS patients (46 %, p<0.001), similar to AQP4+ NMOSD (13 %, p = 1.000). The SWI imaging features denoting lesions with paramagnetic rim or nodular hypointense SWI signals showed 90.4 % sensitivity, 95.5 % specificity, 98.5 % PPV, and 75 % NPV, and the criteria with≥3 CVS lesions showed sensitivity of 91.8 %, specificity of 90.9 %%, PPV of 97.1 %, and NPV of 76.9 % in distinguishing MS from AQP4- NMOSD. DISCUSSION The SWI imaging features including lesions with paramagnetic rim or nodular hypointense SWI signals and 3 CVS lesions carries useful information in distinguishing MS from AQP4- NMOSD.
Collapse
Affiliation(s)
- Chenyang Gao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, PR China
| | - Lei Su
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, PR China
| | - Hongfang Li
- Center for Neurology, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China/China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Tian Song
- Center for Neurology, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China/China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Yaou Liu
- Center for Neurology, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China/China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Yunyun Duan
- Center for Neurology, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China/China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, PR China; Center for Neurology, Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China/China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
| |
Collapse
|
39
|
Mantovani DBA, Pitombeira MS, Schuck PN, de Araújo AS, Buchpiguel CA, de Paula Faria D, M da Silva AM. Evaluation of Non-Invasive Methods for (R)-[ 11C]PK11195 PET Image Quantification in Multiple Sclerosis. J Imaging 2024; 10:39. [PMID: 38392087 PMCID: PMC10889702 DOI: 10.3390/jimaging10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
This study aims to evaluate non-invasive PET quantification methods for (R)-[11C]PK11195 uptake measurement in multiple sclerosis (MS) patients and healthy controls (HC) in comparison with arterial input function (AIF) using dynamic (R)-[11C]PK11195 PET and magnetic resonance images. The total volume of distribution (VT) and distribution volume ratio (DVR) were measured in the gray matter, white matter, caudate nucleus, putamen, pallidum, thalamus, cerebellum, and brainstem using AIF, the image-derived input function (IDIF) from the carotid arteries, and pseudo-reference regions from supervised clustering analysis (SVCA). Uptake differences between MS and HC groups were tested using statistical tests adjusted for age and sex, and correlations between the results from the different quantification methods were also analyzed. Significant DVR differences were observed in the gray matter, white matter, putamen, pallidum, thalamus, and brainstem of MS patients when compared to the HC group. Also, strong correlations were found in DVR values between non-invasive methods and AIF (0.928 for IDIF and 0.975 for SVCA, p < 0.0001). On the other hand, (R)-[11C]PK11195 uptake could not be differentiated between MS patients and HC using VT values, and a weak correlation (0.356, p < 0.0001) was found between VTAIF and VTIDIF. Our study shows that the best alternative for AIF is using SVCA for reference region modeling, in addition to a cautious and appropriate methodology.
Collapse
Affiliation(s)
| | - Milena S Pitombeira
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | | | - Adriel S de Araújo
- Graduate Program in Computer Science, Pontificia Universidade Catolica do Rio Grande do Sul PUCRS, Porto Alegre 90619-900, Brazil
| | - Carlos Alberto Buchpiguel
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Daniele de Paula Faria
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
- Laboratory of Nuclear Medicine (LIM 43), Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| | - Ana Maria M da Silva
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05403-911, Brazil
| |
Collapse
|
40
|
Etebar F, Harkin DG, White AR, Dando SJ. Non-invasive in vivo imaging of brain and retinal microglia in neurodegenerative diseases. Front Cell Neurosci 2024; 18:1355557. [PMID: 38348116 PMCID: PMC10859418 DOI: 10.3389/fncel.2024.1355557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Microglia play crucial roles in immune responses and contribute to fundamental biological processes within the central nervous system (CNS). In neurodegenerative diseases, microglia undergo functional changes and can have both protective and pathogenic roles. Microglia in the retina, as an extension of the CNS, have also been shown to be affected in many neurological diseases. While our understanding of how microglia contribute to pathological conditions is incomplete, non-invasive in vivo imaging of brain and retinal microglia in living subjects could provide valuable insights into their role in the neurodegenerative diseases and open new avenues for diagnostic biomarkers. This mini-review provides an overview of the current brain and retinal imaging tools for studying microglia in vivo. We focus on microglia targets, the advantages and limitations of in vivo microglia imaging approaches, and applications for evaluating the pathogenesis of neurological conditions, such as Alzheimer's disease and multiple sclerosis.
Collapse
Affiliation(s)
- Fazeleh Etebar
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Damien G. Harkin
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Anthony R. White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J. Dando
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Vision and Eye Research, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
41
|
Tozlu C, Olafson E, Jamison KW, Demmon E, Kaunzner U, Marcille M, Zinger N, Michaelson N, Safi N, Nguyen T, Gauthier S, Kuceyeski A. The sequence of regional structural disconnectivity due to multiple sclerosis lesions. Brain Commun 2023; 5:fcad332. [PMID: 38107503 PMCID: PMC10724045 DOI: 10.1093/braincomms/fcad332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Prediction of disease progression is challenging in multiple sclerosis as the sequence of lesion development and retention of inflammation within a subset of chronic lesions is heterogeneous among patients. We investigated the sequence of lesion-related regional structural disconnectivity across the spectrum of disability and cognitive impairment in multiple sclerosis. In a full cohort of 482 multiple sclerosis patients (age: 41.83 ± 11.63 years, 71.57% females), the Expanded Disability Status Scale was used to classify patients into (i) no or mild (Expanded Disability Status Scale <3) versus (ii) moderate or severe disability groups (Expanded Disability Status Scale ≥3). In 363 out of 482 patients, quantitative susceptibility mapping was used to identify paramagnetic rim lesions, which are maintained by a rim of iron-laden innate immune cells. In 171 out of 482 patients, Brief International Cognitive Assessment was used to identify subjects as being cognitively preserved or impaired. Network Modification Tool was used to estimate the regional structural disconnectivity due to multiple sclerosis lesions. Discriminative event-based modelling was applied to investigate the sequence of regional structural disconnectivity due to (i) all representative T2 fluid-attenuated inversion recovery lesions, (ii) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across disability groups ('no to mild disability' to 'moderate to severe disability'), (iii) all representative T2 fluid-attenuated inversion recovery lesions and (iv) paramagnetic rim lesions versus non-paramagnetic rim lesions separately across cognitive status ('cognitively preserved' to 'cognitively impaired'). In the full cohort, structural disconnection in the ventral attention and subcortical networks, particularly in the supramarginal and putamen regions, was an early biomarker of moderate or severe disability. The earliest biomarkers of disability progression were structural disconnections due to paramagnetic rim lesions in the motor-related regions. Subcortical structural disconnection, particularly in the ventral diencephalon and thalamus regions, was an early biomarker of cognitive impairment. Our data-driven model revealed that the structural disconnection in the subcortical regions, particularly in the thalamus, is an early biomarker for both disability and cognitive impairment in multiple sclerosis. Paramagnetic rim lesions-related structural disconnection in the motor cortex may identify the patients at risk for moderate or severe disability in multiple sclerosis. Such information might be used to identify people with multiple sclerosis who have an increased risk of disability progression or cognitive decline in order to provide personalized treatment plans.
Collapse
Affiliation(s)
- Ceren Tozlu
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Emily Olafson
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Keith W Jamison
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Emily Demmon
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Melanie Marcille
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Nicole Zinger
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Nara Michaelson
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Neha Safi
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| | - Susan Gauthier
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
- Department of Neurology, Weill Cornell Medical College, NewYork, NY, 10065, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, NewYork, NY, 10065, USA
| |
Collapse
|
42
|
Lipka A, Bogner W, Dal-Bianco A, Hangel GJ, Rommer PS, Strasser B, Motyka S, Hingerl L, Berger T, Leutmezer F, Gruber S, Trattnig S, Niess E. Metabolic Insights into Iron Deposition in Relapsing-Remitting Multiple Sclerosis via 7 T Magnetic Resonance Spectroscopic Imaging. Neuroimage Clin 2023; 40:103524. [PMID: 37839194 PMCID: PMC10590870 DOI: 10.1016/j.nicl.2023.103524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE To investigate the metabolic pattern of different types of iron accumulation in multiple sclerosis (MS) lesions, and compare metabolic alterations within and at the periphery of lesions and newly emerging lesions in vivo according to iron deposition. METHODS 7 T MR spectroscopic imaging and susceptibility-weighted imaging was performed in 31 patients with relapsing-remitting MS (16 female/15 male; mean age, 36.9 ± 10.3 years). Mean metabolic ratios of four neuro-metabolites were calculated for regions of interest (ROI) of normal appearing white matter (NAWM), "non-iron" (lesion without iron accumulation on SWI), and three distinct types of iron-laden lesions ("rim": distinct rim-shaped iron accumulation; "area": iron deposition across the entire lesions; "transition": transition between "area" and "rim" accumulation shape), and for lesion layers of "non-iron" and "rim" lesions. Furthermore, newly emerging "non-iron" and "iron" lesions were compared longitudinally, as measured before their appearance and one year later. RESULTS Thirty-nine of 75 iron-containing lesions showed no distinct paramagnetic rim. Of these, "area" lesions exhibited a 65% higher mIns/tNAA (p = 0.035) than "rim" lesions. Comparing lesion layers of both "non-iron" and "rim" lesions, a steeper metabolic gradient of mIns/tNAA ("non-iron" +15%, "rim" +40%) and tNAA/tCr ("non-iron" -15%, "rim" -35%) was found in "iron" lesions, with the lesion core showing +22% higher mIns/tNAA (p = 0.005) and -23% lower tNAA/tCr (p = 0.048) in "iron" compared to "non-iron" lesions. In newly emerging lesions, 18 of 39 showed iron accumulation, with the drop in tNAA/tCr after lesion formation remaining significantly lower compared to pre-lesional tissue over time in "iron" lesions (year 0: p = 0.013, year 1: p = 0.041) as opposed to "non-iron" lesions (year 0: p = 0.022, year 1: p = 0.231). CONCLUSION 7 T MRSI allows in vivo characterization of different iron accumulation types each presenting with a distinct metabolic profile. Furthermore, the larger extent of neuronal damage in lesions with a distinct iron rim was reconfirmed via reduced tNAA/tCr concentrations, but with metabolic differences in lesion development between (non)-iron-containing lesions. This highlights the ability of MRSI to further investigate different types of iron accumulation and suggests possible implications for disease monitoring.
Collapse
Affiliation(s)
- Alexandra Lipka
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna.
| | | | - Gilbert J Hangel
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stanislav Motyka
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MRI in Musculoskeletal System, Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for MR Imaging Biomarkers (BIOMAK), Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna
| |
Collapse
|
43
|
Krajnc N, Schmidbauer V, Leinkauf J, Haider L, Bsteh G, Kasprian G, Leutmezer F, Kornek B, Rommer PS, Berger T, Lassmann H, Dal-Bianco A, Hametner S. Paramagnetic rim lesions lead to pronounced diffuse periplaque white matter damage in multiple sclerosis. Mult Scler 2023; 29:1406-1417. [PMID: 37712486 PMCID: PMC10580674 DOI: 10.1177/13524585231197954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) are an imaging biomarker in multiple sclerosis (MS), associated with a more severe disease. OBJECTIVES To determine quantitative magnetic resonance imaging (MRI) metrics of PRLs, lesions with diffuse susceptibility-weighted imaging (SWI)-hypointense signal (DSHLs) and SWI-isointense lesions (SILs), their surrounding periplaque area (PPA) and the normal-appearing white matter (NAWM). METHODS In a cross-sectional study, quantitative MRI metrics were measured in people with multiple sclerosis (pwMS) using the multi-dynamic multi-echo (MDME) sequence post-processing software "SyMRI." RESULTS In 30 pwMS, 59 PRLs, 74 DSHLs, and 107 SILs were identified. Beside longer T1 relaxation times of PRLs compared to DSHLs and SILs (2030.5 (1519-2540) vs 1615.8 (1403.3-1953.5) vs 1199.5 (1089.6-1334.6), both p < 0.001), longer T1 relaxation times were observed in the PRL PPA compared to the SIL PPA and the NAWM but not the DSHL PPA. Patients with secondary progressive multiple sclerosis (SPMS) had longer T1 relaxation times in PRLs compared to patients with late relapsing multiple sclerosis (lRMS) (2394.5 (2030.5-3040) vs 1869.3 (1491.4-2451.3), p = 0.015) and also in the PRL PPA compared to patients with early relapsing multiple sclerosis (eRMS) (982 (927-1093.5) vs 904.3 (793.3-958.5), p = 0.013). CONCLUSION PRLs are more destructive than SILs, leading to diffuse periplaque white matter (WM) damage. The quantitative MRI-based evaluation of the PRL PPA could be a marker for silent progression in pwMS.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Victor Schmidbauer
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Joel Leinkauf
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Haider
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Stefan Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
45
|
Neumann KD, Broshek DK, Newman BT, Druzgal TJ, Kundu BK, Resch JE. Concussion: Beyond the Cascade. Cells 2023; 12:2128. [PMID: 37681861 PMCID: PMC10487087 DOI: 10.3390/cells12172128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Sport concussion affects millions of athletes each year at all levels of sport. Increasing evidence demonstrates clinical and physiological recovery are becoming more divergent definitions, as evidenced by several studies examining blood-based biomarkers of inflammation and imaging studies of the central nervous system (CNS). Recent studies have shown elevated microglial activation in the CNS in active and retired American football players, as well as in active collegiate athletes who were diagnosed with a concussion and returned to sport. These data are supportive of discordance in clinical symptomology and the inflammatory response in the CNS upon symptom resolution. In this review, we will summarize recent advances in the understanding of the inflammatory response associated with sport concussion and broader mild traumatic brain injury, as well as provide an outlook for important research questions to better align clinical and physiological recovery.
Collapse
Affiliation(s)
- Kiel D. Neumann
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Donna K. Broshek
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22903, USA;
| | - Benjamin T. Newman
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Bijoy K. Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (B.T.N.); (T.J.D.); (B.K.K.)
| | - Jacob E. Resch
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
46
|
Bilgic B, Costagli M, Chan KS, Duyn J, Langkammer C, Lee J, Li X, Liu C, Marques JP, Milovic C, Robinson S, Schweser F, Shmueli K, Spincemaille P, Straub S, van Zijl P, Wang Y. Recommended Implementation of Quantitative Susceptibility Mapping for Clinical Research in The Brain: A Consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. ARXIV 2023:arXiv:2307.02306v1. [PMID: 37461418 PMCID: PMC10350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting.
Collapse
Affiliation(s)
- Berkin Bilgic
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Kwok-Shing Chan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jeff Duyn
- Advanced MRI Section, NINDS, National Institutes of Health, Bethesda, MD, United States
| | | | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Xu Li
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Carlos Milovic
- School of Electrical Engineering (EIE), Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Simon Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, NY, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute at the University at Buffalo, Buffalo, NY, United States
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Pascal Spincemaille
- MRI Research Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Yi Wang
- MRI Research Institute, Departments of Radiology and Biomedical Engineering, Cornell University, New York, NY, United States
| |
Collapse
|
47
|
Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, Zun Z, Prince MR, Wang Y. QSM Throughout the Body. J Magn Reson Imaging 2023; 57:1621-1640. [PMID: 36748806 PMCID: PMC10192074 DOI: 10.1002/jmri.28624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jiahao Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | | | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
48
|
Cogswell PM, Fan AP. Multimodal comparisons of QSM and PET in neurodegeneration and aging. Neuroimage 2023; 273:120068. [PMID: 37003447 PMCID: PMC10947478 DOI: 10.1016/j.neuroimage.2023.120068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Audrey P Fan
- Department of Biomedical Engineering and Department of Neurology, University of California, Davis, 1590 Drew Avenue, Davis, CA 95618, USA
| |
Collapse
|
49
|
Li Z, Feng R, Liu Q, Feng J, Lao G, Zhang M, Li J, Zhang Y, Wei H. APART-QSM: an improved sub-voxel quantitative susceptibility mapping for susceptibility source separation using an iterative data fitting method. Neuroimage 2023; 274:120148. [PMID: 37127191 DOI: 10.1016/j.neuroimage.2023.120148] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The brain tissue phase contrast in MRI sequences reflects the spatial distributions of multiple substances, such as iron, myelin, calcium, and proteins. These substances with paramagnetic and diamagnetic susceptibilities often colocalize in one voxel in brain regions. Both opposing susceptibilities play vital roles in brain development and neurodegenerative diseases. Conventional QSM methods only provide voxel-averaged susceptibility value and cannot disentangle intravoxel susceptibilities with opposite signs. Advanced susceptibility imaging methods have been recently developed to distinguish the contributions of opposing susceptibility sources for QSM. The basic concept of separating paramagnetic and diamagnetic susceptibility proportions is to include the relaxation rate R2* with R2' in QSM. The magnitude decay kernel, describing the proportionality coefficient between R2' and susceptibility, is an essential reconstruction coefficient for QSM separation methods. In this study, we proposed a more comprehensive complex signal model that describes the relationship between 3D GRE signal and the contributions of paramagnetic and diamagnetic susceptibility to the frequency shift and R2* relaxation. The algorithm is implemented as a constrained minimization problem in which the voxel-wise magnitude decay kernel and sub-voxel susceptibilities are determined alternately in each iteration until convergence. The calculated voxel-wise magnitude decay kernel could realistically model the relationship between the R2' relaxation and the volume susceptibility. Thus, the proposed method effectively prevents the errors of the magnitude decay kernel from propagating to the final susceptibility separation reconstruction. Phantom studies, ex vivo macaque brain experiments, and in vivo human brain imaging studies were conducted to evaluate the ability of the proposed method to distinguish paramagnetic and diamagnetic susceptibility sources. The results demonstrate that the proposed method provides state-of-the-art performances for quantifying brain iron and myelin compared to previous QSM separation methods. Our results show that the proposed method has the potential to simultaneously quantify whole brain iron and myelin during brain development and aging. The proposed model was also deployed with multiple-orientation complex GRE data input measurements, resulting in high-quality QSM separation maps with more faithful tissue delineation between brain structures compared to those reconstructed by single-orientation QSM separation methods.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruimin Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangqiang Liu
- Department of Neurosurgery, Clinical Neuroscience Center Comprehensive Epilepsy Unit, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyan Lao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuyao Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hongjiang Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
50
|
Krajnc N, Dal-Bianco A, Leutmezer F, Kasprian G, Pemp B, Kornek B, Berger T, Rommer PS, Hametner S, Lassmann H, Bsteh G. Association of paramagnetic rim lesions and retinal layer thickness in patients with multiple sclerosis. Mult Scler 2023; 29:374-384. [PMID: 36537667 DOI: 10.1177/13524585221138486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) are chronic active lesions associated with a more severe disease course in multiple sclerosis (MS). Retinal layer thinning measured by optical coherence tomography (OCT) is a biomarker of neuroaxonal damage associated with disability progression in MS. OBJECTIVE We aimed to determine a potential association between OCT parameters (peripapillary retinal nerve fiber layer (pRNFL) ganglion cell-inner plexiform layer (GCIPL), inner nuclear layer (INL) thickness), and PRLs in patients with MS (pwMS). METHODS In this cross-sectional retrospective study, we included pwMS with both 3T brain MRI and an OCT scan. Regression models were calculated with OCT parameters (pRNFL, GCIPL, INL) as dependent variables, and the number of PRLs as an independent variable adjusted for covariates. RESULTS We analyzed data from 107 pwMS (mean age 34.7 years (SD 10.9), 64.5% female, median disease duration 6 years (IQR 1-13), median EDSS 1.5 (range 0-6.5)). Higher number of PRLs was associated with lower pRNFL (β = -0.18; 95% CI -0.98, -0.03; p = 0.038) and GCIPL thickness (β = -0.21; 95% CI -0.58, -0.02; p = 0.039). CONCLUSION The association between higher number of PRLs and lower pRNFL and GCIPL thicknesses provides additional evidence that pwMS with PRLs are affected by a more pronounced neurodegenerative process.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Paulus Stefan Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria/Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria/Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|