1
|
Jovanovic MZ, Stanojevic J, Stevanovic I, Ninkovic M, Ilic TV, Nedeljkovic N, Dragic M. Prolonged intermittent theta burst stimulation restores the balance between A2AR- and A1R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease. Neural Regen Res 2025; 20:2053-2067. [PMID: 39254566 PMCID: PMC11691459 DOI: 10.4103/nrr.nrr-d-23-01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 09/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202507000-00027/figure1/v/2024-09-09T124005Z/r/image-tiff An imbalance in adenosine-mediated signaling, particularly the increased A2AR-mediated signaling, plays a role in the pathogenesis of Parkinson's disease. Existing therapeutic approaches fail to alter disease progression, demonstrating the need for novel approaches in PD. Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease. However, the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown. The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling. Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test. Immunoblot, quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen. Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals. A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen. Treatment with intermittent theta burst stimulation began 7 days after the lesion, coinciding with the onset of motor symptoms. After treatment with prolonged intermittent theta burst stimulation, complete motor recovery was observed. This improvement was accompanied by downregulation of the eN/CD73-A2AR pathway and a return to physiological levels of A1R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation. Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A1R and elevated the expression of A2AR. Intermittent theta burst stimulation reversed these effects by restoring the abundances of A1R and A2AR to control levels. The shift in ARs expression likely restored the balance between dopamine-adenosine signaling, ultimately leading to the recovery of motor control.
Collapse
Affiliation(s)
- Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanojevic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Idris RM, Al-Hroub H, Schmies CC, Riziki P, Renn C, Claff T, Sylvester K, Moschütz S, Reinhardt J, Deuter-Conrad W, Dietrich JM, Toma M, Fleischmann BK, Wenzel D, Zimmermann H, Hölzel M, Sträter N, Müller CE. Design, development and evaluation of a tritium-labeled radiotracer for ecto-5'-nucleotidase (CD73) - A versatile research tool and diagnostic agent for personalized medicine. Biomed Pharmacother 2025; 188:118115. [PMID: 40367555 DOI: 10.1016/j.biopha.2025.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Ecto-5'-nucleotidase (CD73) is the main enzyme that catalyzes the hydrolysis of extracellular AMP to produce anti-inflammatory, immunosuppressive adenosine. Many tumor cells over-express ectonucleotidases accumulating adenosine in the tumor microenvironment, which promotes tumor growth, metastasis, angiogenesis, and immune escape. CD73 is upregulated in inflammation, and possesses potential as a biomarker and as a novel drug target for inflammatory diseases and cancer immunotherapy. New, metabolically stable N6-disubstituted adenosine-5'-diphosphate analogs were synthesized providing a basis for the design and preparation of the CD73-selective radioligand [3H]PSB-17230 by catalytic hydrogenation of a propargyl-substituted precursor. It showed high, pico- to low nanomolar affinity for human, rat and mouse CD73, slow dissociation kinetics, negligible non-specific binding, and high selectivity, as confirmed by studies on an inactive CD73 mutant and CD73 knockout cells. A high-resolution co-crystal structure (2.35 Å) of PSB-17230 with human CD73 elucidated its binding interactions. Radioligand binding was employed to characterize competitive CD73 inhibitors and to study expression levels of the enzyme in tissues and tumor cell lines of different species. Moreover, [3H]PSB-17230 was employed in autoradiography studies to determine CD73 expression in healthy and diseased mouse and human tissues. Significant upregulation of CD73 was observed in a mouse asthma model and in kidney cancer biopsies as compared to healthy controls. [3H]PSB-17230 represents a high-affinity tracer which is anticipated to find broad application in drug screening, preclinical studies, and for diagnostic purposes in inflammation and cancer, enabling drug monitoring and targeted therapies.
Collapse
Affiliation(s)
- Riham M Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Constanze C Schmies
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Patrick Riziki
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Tobias Claff
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Katharina Sylvester
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Susanne Moschütz
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Julia Reinhardt
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Venusberg-Campus, Bonn 153127, Germany
| | - Winnie Deuter-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Leipzig 04318, Germany
| | - Jennifer M Dietrich
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Bonn Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn (UKB), Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, Bonn Germany; Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe-University, Frankfurt am Main, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology (IEO), University Hospital Bonn, Venusberg-Campus, Bonn 153127, Germany
| | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, University of Leipzig, Deutscher Platz 5, Leipzig 04103, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany.
| |
Collapse
|
3
|
Wang D, Liu W, Lu M, Xu Q. Neuropharmacological effects of Gastrodia elata Blume and its active ingredients. Front Neurol 2025; 16:1574277. [PMID: 40371076 PMCID: PMC12074926 DOI: 10.3389/fneur.2025.1574277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
Gastrodia elata Blume (GE), a traditional Chinese medicine clinically employed to treat neurological disorders, demonstrates therapeutic efficacy supported by robust clinical evidence. Nowadays, conventional pharmacotherapies for neurological conditions-such as cholinesterase inhibitors for Alzheimer's or Ldopa for Parkinson's-often provide limited symptom relief, exhibit side effects, and fail to halt disease w, underscoring the need for alternative strategies. The primary bioactive compounds of Gastrodia elata Blume (GE) include gastrodin, p-hydroxybenzyl alcohol, Vanillyl alcohol, Polysaccharides, and β-sitosterol. Modern research has demonstrated that GE and its active components exhibit neuropharmacological effects, including neuron protection, reduction of neurotoxicity, and promotion of nerve regeneration and survival. For example, Gastrodin, exerts neuroprotection by scavenging reactive oxygen species, suppressing pro-inflammatory cytokines, and enhancing GABAergic transmission, thereby alleviating oxidative stress and neuronal apoptosis. Vanillin, potentiates GABA receptor activity, enhancing inhibitory neurotransmission and reducing seizure susceptibility.GE polysaccharides modulate the gut-brain axis and suppress microglial activation, mitigating neuroinflammation. Current studies primarily focus on GE and its active ingredients for the treatment of neurological diseases such as Parkinson's disease, Alzheimer's disease, epilepsy, convulsions, depression, schizophrenia, as well as enhancing learning and memory, and preventing or treating cerebral ischemic injury. This review explores the neuropharmacological effects of GE and its active compounds, elucidates the underlying mechanisms, and suggests potential preventive and therapeutic strategies for neurological diseases using herbal remedies.
Collapse
Affiliation(s)
- Dong Wang
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Liu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - MeiJuan Lu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiang Xu
- Department of Cardiology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Qin W, Su R, Chen X, Liang Z, Huang L, Qian X, Yang Y, Qi S, Luo X. Synergistic Anti-Ferroptosis with a Minimalistic, Peroxide-Triggered Carbon Monoxide Donor for Parkinson's Disease. J Med Chem 2025; 68:3547-3558. [PMID: 39895106 DOI: 10.1021/acs.jmedchem.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease, with current treatments primarily focusing on improving dopaminergic activity, providing symptomatic relief but failing to halt disease progression. Ferroptosis drives PD pathogenesis and is a potential therapeutic target. Herein, we introduce a novel peroxide-activated carbon monoxide (CO) donor, PCOD, featuring a streamlined structure designed to potentially enhance blood-brain barrier (BBB) penetration and optimize therapeutic outcomes. PCOD releases CO upon activation by nucleophilic peroxides, e.g., ONOO- and H2O2. This mechanism provides a potent strategy against ferroptosis: first, scavenging peroxides that generate oxidative radicals involved in ferroptosis, and second, CO is proposed to inhibit Fenton chemistry through coordination to Fe2+. In MPTP-treated mice, PCOD prevents dopaminergic neuron loss in the substantia nigra and alleviates PD symptoms. This peroxide-triggered CO release offers a promising and innovative strategy to combat ferroptosis and neurodegeneration in PD.
Collapse
Affiliation(s)
- Wenjie Qin
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Ruiqi Su
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xiaodie Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Zhiyan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Linyan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xuhong Qian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221004, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
5
|
Carracedo S, Launay A, Dechelle-Marquet PA, Faivre E, Blum D, Delarasse C, Boué-Grabot E. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol 2024; 243:102693. [PMID: 39579963 DOI: 10.1016/j.pneurobio.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors. G-protein coupled adenosine A2A receptors, ionotropic P2X and G-protein coupled P2Y receptors for ATP and other nucleotides are abundant and widely distributed in neurons, microglia, and astrocytes of the central nervous system as well as in peripheral immune cells. These receptors are strongly linked to inflammation, with a functional interplay that may influence the intricate purinergic signaling involved in inflammatory responses. In the present review, we examine the roles of the purinergic receptors in neuro-immune cell functions with particular emphasis on A2AR, P2X4 and P2X7 and their possible relevance to specific neurodegenerative disorders. Understanding the molecular mechanisms governing purinergic receptor interaction will be crucial for advancing the development of effective immunotherapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Agathe Launay
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | | | - Emilie Faivre
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - Cécile Delarasse
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, rue Moreau, Paris F-75012, France
| | | |
Collapse
|
6
|
Guo Q, Gobbo D, Zhao N, Zhang H, Awuku NO, Liu Q, Fang LP, Gampfer TM, Meyer MR, Zhao R, Bai X, Bian S, Scheller A, Kirchhoff F, Huang W. Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice. Nat Commun 2024; 15:6340. [PMID: 39068155 PMCID: PMC11283516 DOI: 10.1038/s41467-024-50466-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Molecular pathways mediating systemic inflammation entering the brain parenchyma to induce sepsis-associated encephalopathy (SAE) remain elusive. Here, we report that in mice during the first 6 hours of peripheral lipopolysaccharide (LPS)-evoked systemic inflammation (6 hpi), the plasma level of adenosine quickly increased and enhanced the tone of central extracellular adenosine which then provoked neuroinflammation by triggering early astrocyte reactivity. Specific ablation of astrocytic Gi protein-coupled A1 adenosine receptors (A1ARs) prevented this early reactivity and reduced the levels of inflammatory factors (e.g., CCL2, CCL5, and CXCL1) in astrocytes, thereby alleviating microglial reaction, ameliorating blood-brain barrier disruption, peripheral immune cell infiltration, neuronal dysfunction, and depression-like behaviour in the mice. Chemogenetic stimulation of Gi signaling in A1AR-deficent astrocytes at 2 and 4 hpi of LPS injection could restore neuroinflammation and depression-like behaviour, highlighting astrocytes rather than microglia as early drivers of neuroinflammation. Our results identify early astrocyte reactivity towards peripheral and central levels of adenosine as an important pathway driving SAE and highlight the potential of targeting A1ARs for therapeutic intervention.
Collapse
Affiliation(s)
- Qilin Guo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Na Zhao
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, University of Saarland, 66421, Homburg, Germany
| | - Hong Zhang
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Nana-Oye Awuku
- Molecular Neurophysiology, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Qing Liu
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Renping Zhao
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| |
Collapse
|
7
|
Xie G, Gao X, Guo Q, Liang H, Yao L, Li W, Ma B, Wu N, Han X, Li J. Cannabidiol ameliorates PTSD-like symptoms by inhibiting neuroinflammation through its action on CB2 receptors in the brain of male mice. Brain Behav Immun 2024; 119:945-964. [PMID: 38759736 DOI: 10.1016/j.bbi.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health disease related to traumatic experience, and its treatment outcomes are unsatisfactory. Accumulating research has indicated that cannabidiol (CBD) exhibits anti-PTSD effects, however, the underlying mechanism of CBD remains inadequately investigated. Although many studies pertaining to PTSD have primarily focused on aberrations in neuronal functioning, the present study aimed to elucidate the involvement and functionality of microglia/macrophages in PTSD while also investigated the modulatory effects of CBD on neuroinflammation associated with this condition. We constructed a modified single-prolonged stress (SPS) mice PTSD model and verified the PTSD-related behaviors by various behavioral tests (contextual freezing test, elevated plus maze test, tail suspension test and novel object recognition test). We observed a significant upregulation of Iba-1 and alteration of microglial/macrophage morphology within the prefrontal cortex and hippocampus, but not the amygdala, two weeks after the PTSD-related stress, suggesting a persistent neuroinflammatory phenotype in the PTSD-modeled group. CBD (10 mg/kg, i.p.) inhibited all PTSD-related behaviors and reversed the alterations in both microglial/macrophage quantity and morphology when administered prior to behavioral assessments. We further found increased pro-inflammatory factors, decreased PSD95 expression, and impaired synaptic density in the hippocampus of the modeled group, all of which were also restored by CBD treatment. CBD dramatically increased the level of anandamide, one of the endocannabinoids, and cannabinoid type 2 receptors (CB2Rs) transcripts in the hippocampus compared with PTSD-modeled group. Importantly, we discovered the expression of CB2Rs mRNA in Arg-1-positive cells in vivo and found that the behavioral effects of CBD were diminished by CB2Rs antagonist AM630 (1 mg/kg, i.p.) and both the behavioral and molecular effects of CBD were abolished in CB2Rs knockout mice. These findings suggest that CBD would alleviate PTSD-like behaviors in mice by suppressing PTSD-related neuroinflammation and upregulation and activation of CB2Rs may serve as one of the underlying mechanisms for this therapeutic effect. The present study offers innovative experimental evidence supporting the utilization of CBD in PTSD treatment from the perspective of its regulation of neuroinflammation, and paves the way for leveraging the endocannabinoid system to regulate neuroinflammation as a potential therapeutic approach for psychiatric disorders.
Collapse
Affiliation(s)
- Guanbo Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing 102206, China; School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Haizhen Liang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lan Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenjuan Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
8
|
Tejero A, León-Navarro DA, Martín M. Effect of Xanthohumol, a Bioactive Natural Compound from Hops, on Adenosine Pathway in Rat C6 Glioma and Human SH-SY5Y Neuroblastoma Cell Lines. Nutrients 2024; 16:1792. [PMID: 38892725 PMCID: PMC11174739 DOI: 10.3390/nu16111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Xanthohumol (Xn) is an antioxidant flavonoid mainly extracted from hops (Humulus lupulus), one of the main ingredients of beer. As with other bioactive compounds, their therapeutic potential against different diseases has been tested, one of which is Alzheimer's disease (AD). Adenosine is a neuromodulatory nucleoside that acts through four different G protein-coupled receptors: A1 and A3, which inhibit the adenylyl cyclases (AC) pathway, and A2A and A2B, which stimulate this activity, causing either a decrease or an increase, respectively, in the release of excitatory neurotransmitters such as glutamate. This adenosinergic pathway, which is altered in AD, could be involved in the excitotoxicity process. Therefore, the aim of this work is to describe the effect of Xn on the adenosinergic pathway using cell lines. For this purpose, two different cellular models, rat glioma C6 and human neuroblastoma SH-SY5Y, were exposed to a non-cytotoxic 10 µM Xn concentration. Adenosine A1 and A2A, receptor levels, and activities related to the adenosine pathway, such as adenylate cyclase, protein kinase A, and 5'-nucleotidase, were analyzed. The adenosine A1 receptor was significantly increased after Xn exposure, while no changes in A2A receptor membrane levels or AC activity were reported. Regarding 5'-nucleotidases, modulation of their activity by Xn was noted since CD73, the extracellular membrane attached to 5'-nucleotidase, was significantly decreased in the C6 cell line. In conclusion, here we describe a novel pathway in which the bioactive flavonoid Xn could have potentially beneficial effects on AD as it increases membrane A1 receptors while modulating enzymes related to the adenosine pathway in cell cultures.
Collapse
Affiliation(s)
| | - David Agustín León-Navarro
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical Sciences and Technologies, Institute of Biomedicine, IDISCAM, University of Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain; (A.T.); (M.M.)
| | | |
Collapse
|
9
|
Shen T, Cui G, Chen H, Huang L, Song W, Zu J, Zhang W, Xu C, Dong L, Zhang Y. TREM-1 mediates interaction between substantia nigra microglia and peripheral neutrophils. Neural Regen Res 2024; 19:1375-1384. [PMID: 37905888 PMCID: PMC11467918 DOI: 10.4103/1673-5374.385843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia-mediated neuroinflammation is considered a pathological feature of Parkinson’s disease. Triggering receptor expressed on myeloid cell-1 (TREM-1) can amplify the inherent immune response, and crucially, regulate inflammation. In this study, we found marked elevation of serum soluble TREM-1 in patients with Parkinson’s disease that positively correlated with Parkinson’s disease severity and dyskinesia. In a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease, we found that microglial TREM-1 expression also increased in the substantia nigra. Further, TREM-1 knockout alleviated dyskinesia in a mouse model of Parkinson’s disease and reduced dopaminergic neuronal injury. Meanwhile, TREM-1 knockout attenuated the neuroinflammatory response, dopaminergic neuronal injury, and neutrophil migration. Next, we established an in vitro 1-methyl-4-phenyl-pyridine-induced BV2 microglia model of Parkinson’s disease and treated the cells with the TREM-1 inhibitory peptide LP17. We found that LP17 treatment reduced apoptosis of dopaminergic neurons and neutrophil migration. Moreover, inhibition of neutrophil TREM-1 activation diminished dopaminergic neuronal apoptosis induced by lipopolysaccharide. TREM-1 can activate the downstream CARD9/NF-κB proinflammatory pathway via interaction with SYK. These findings suggest that TREM-1 may play a key role in mediating the damage to dopaminergic neurons in Parkinson’s disease by regulating the interaction between microglia and peripheral neutrophils.
Collapse
Affiliation(s)
- Tong Shen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Long Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Wei Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yongmei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A 2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson's disease. Chin J Traumatol 2024; 27:125-133. [PMID: 37679245 PMCID: PMC11138351 DOI: 10.1016/j.cjtee.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine exerts its dual functions of homeostasis and neuromodulation in the brain by acting at mainly 2 G-protein coupled receptors, called A1 and A2A receptors. The adenosine A2A receptor (A2AR) antagonists have been clinically pursued for the last 2 decades, leading to final approval of the istradefylline, an A2AR antagonist, for the treatment of OFF-Parkinson's disease (PD) patients. The approval paves the way to develop novel therapeutic methods for A2AR antagonists to address 2 major unmet medical needs in PD and traumatic brain injury (TBI), namely neuroprotection or improving cognition. In this review, we first consider the evidence for aberrantly increased adenosine signaling in PD and TBI and the sufficiency of the increased A2AR signaling to trigger neurotoxicity and cognitive impairment. We further discuss the increasing preclinical data on the reversal of cognitive deficits in PD and TBI by A2AR antagonists through control of degenerative proteins and synaptotoxicity, and on protection against TBI and PD pathologies by A2AR antagonists through control of neuroinflammation. Moreover, we provide the supporting evidence from multiple human prospective epidemiological studies which revealed an inverse relation between the consumption of caffeine and the risk of developing PD and cognitive decline in aging population and Alzheimer's disease patients. Collectively, the convergence of clinical, epidemiological and experimental evidence supports the validity of A2AR as a new therapeutic target and facilitates the design of A2AR antagonists in clinical trials for disease-modifying and cognitive benefit in PD and TBI patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, The State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325035, Zhejiang Province, China.
| |
Collapse
|
11
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Ndzie Noah ML, Mprah R, Wowui PI, Adekunle AO, Adu-Amankwaah J, Tan R, Gong Z, Li T, Fu L, Machuki JO, Zhang S, Sun H. CD73/adenosine axis exerts cardioprotection against hypobaric hypoxia-induced metabolic shift and myocarditis in a sex-dependent manner. Cell Commun Signal 2024; 22:166. [PMID: 38454449 PMCID: PMC10918954 DOI: 10.1186/s12964-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Clinical and experimental studies have shown that the myocardial inflammatory response during pathological events varies between males and females. However, the cellular and molecular mechanisms of these sex differences remain elusive. CD73/adenosine axis has been linked to anti-inflammatory responses, but its sex-specific cardioprotective role is unclear. The present study aimed to investigate whether the CD73/adenosine axis elicits sex-dependent cardioprotection during metabolic changes and myocarditis induced by hypobaric hypoxia. METHODS For 7 days, male and female mice received daily injections of the CD73 inhibitor adenosine 5'- (α, β-methylene) diphosphate (APCP) 10 mg/kg/day while they were kept under normobaric normoxic and hypobaric hypoxic conditions. We evaluated the effects of hypobaric hypoxia on the CD73/adenosine axis, myocardial hypertrophy, and cardiac electrical activity and function. In addition, metabolic homeostasis and immunoregulation were investigated to clarify the sex-dependent cardioprotection of the CD73/adenosine axis. RESULTS Hypobaric hypoxia-induced cardiac dysfunction and adverse remodeling were more pronounced in male mice. Also, male mice had hyperactivity of the CD73/adenosine axis, which aggravated myocarditis and metabolic shift compared to female mice. In addition, CD73 inhibition triggered prostatic acid phosphatase ectonucleotidase enzymatic activity to sustain adenosine overproduction in male mice but not in female mice. Moreover, dual inhibition prostatic acid phosphatase and CD73 enzymatic activities in male mice moderated adenosine content, alleviating glycolytic shift and proinflammatory response. CONCLUSION The CD73/adenosine axis confers a sex-dependent cardioprotection. In addition, extracellular adenosine production in the hearts of male mice is influenced by prostatic acid phosphatase and tissue nonspecific alkaline phosphatase.
Collapse
Affiliation(s)
- Marie Louise Ndzie Noah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Prosperl Ivette Wowui
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | | | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | | | - Shijie Zhang
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
13
|
Chen L, Jiang C, Xu Q, Jin J, A S, Wang X, Li X, Hu Y, Sun H, Lu X, Duan S, Gao Z, Wang W, Wang Y. Biphasic release of betamethasone from an injectable HA hydrogel implant for alleviating lumbar disc herniation induced sciatica. Acta Biomater 2024; 176:173-189. [PMID: 38244658 DOI: 10.1016/j.actbio.2024.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Epidural steroid injection (ESI) is a common therapeutic approach for managing sciatica caused by lumbar disc herniation (LDH). However, the short duration of therapeutic efficacy and the need for repeated injections pose challenges in LDH treatment. The development of a controlled delivery system capable of prolonging the effectiveness of ESI and reducing the frequency of injections, is highly significant in LDH clinical practice. In this study, we utilized a thiol-ene click chemistry to create a series of injectable hyaluronic acid (HA) based release systems loaded with diphasic betamethasone, including betamethasone dipropionate (BD) and betamethasone 21-phosphate disodium (BP) (BD/BP@HA). BD/BP@HA hydrogel implants demonstrated biocompatibility and biodegradability to matched neuronal tissues, avoiding artificial compression following injection. The sustained release of betamethasone from BD/BP@HA hydrogels effectively inhibited both acute and chronic neuroinflammation by suppressing the nuclear factor kappa-B (NF-κB) pathway. In a mouse model of LDH, the epidural administration of BD/BP@HA efficiently alleviated LDH-induced sciatica for at least 10 days by inhibiting the activation of macrophages and microglia in dorsal root ganglion and spinal dorsal horn, respectively. The newly developed HA hydrogels represent a valuable platform for achieving sustained drug release. Additionally, we provide a simple paradigm for fabricating BD/BP@HA for epidural injection, demonstrating greater and sustained efficiency in alleviating LDH-induced sciatica compared to traditional ESI and displaying potentials for clinical translation. This system has the potential to revolutionize drug delivery for co-delivery of both soluble and insoluble drugs, thereby making a significant impact in the pharmaceutical industry. STATEMENT OF SIGNIFICANCE: Lumbar disc herniation (LDH) is a common degenerative disorder leading to sciatica and spine surgery. Although epidural steroid injection (ESI) is routinely used to alleviate sciatica, the efficacy is short and repeated injections are required. There remains challenging to prolong the efficacy of ESI. Herein, an injectable hyaluronic acid (HA) hydrogel implant by crosslinking acrylated-modified HA (HA-A) with thiol-modified HA (HA-SH) was designed to achieve a biphasic release of betamethasone. The hydrogel showed biocompatibility and biodegradability to match neuronal tissues. Notably, compared to traditional ESI, the hydrogel better alleviated sciatica in vivo by synergistically inhibiting the neuroinflammation in central and peripheral nervous systems. We anticipate the injectable HA hydrogel implant has the potential for clinical translation in treating LDH-induced sciatica.
Collapse
Affiliation(s)
- Lunhao Chen
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chao Jiang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qian Xu
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland; School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sigen A
- School of Medicine, Anhui University of Science and Technology, Huainan, China; The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Xi Wang
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Xiaolin Li
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland
| | - Yaling Hu
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital, University School of Medicine, Hangzhou 310003, China
| | - Huankun Sun
- Zhejiang Provincial Key Laboratory of Pancreatic Diseases, The First Affiliated Hospital, University School of Medicine, Hangzhou 310003, China
| | - Xuan Lu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shumin Duan
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Gao
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China.
| | - Wenxin Wang
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan, China; School of Medicine, Anhui University of Science and Technology, Huainan, China; The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04V1W8, Ireland.
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
14
|
Zhou X, Lv M, Duan Z, Liu W, Yan F, Liu J, Cui Y. CHTOP Promotes Microglia-Mediated Inflammation by Regulating Cell Metabolism and Inflammatory Gene Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:677-688. [PMID: 38117276 DOI: 10.4049/jimmunol.2300572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
During the initiation of the inflammatory response of microglia, the expression of many inflammation- and cell metabolism-related genes alters. However, how the transcription of inflammation- and metabolism-related genes are coordinately regulated during inflammation initiation is poorly understood. In this study, we found that LPS stimulation induced the expression of the chromatin target of PRMT1 (protein arginine methyltransferase 1) (CHTOP) in microglia. Knocking down CHTOP in microglia decreased proinflammatory cytokine expression. In addition, CHTOP knockdown altered cell metabolism, as both the upregulated genes were enriched in cell metabolism-related pathways and the metabolites profile was greatly altered based on untargeted metabolomics analysis. Mechanistically, CHTOP could directly bind the regulatory elements of inflammation and cell metabolism-related genes to regulate their transcription. In addition, knocking down CHTOP increased neuronal viability in vitro and alleviated microglia-mediated neuroinflammation in a systemic LPS treatment mouse model. Collectively, these data revealed CHTOP as a novel regulator to promote microglia-mediated neuroinflammation by coordinately regulating the transcription of inflammation and cell metabolism-related genes.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhongying Duan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiake Liu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Pugel AD, Schoenfeld AM, Alsaifi SZ, Holmes JR, Morrison BE. The Role of NAD + and NAD +-Boosting Therapies in Inflammatory Response by IL-13. Pharmaceuticals (Basel) 2024; 17:226. [PMID: 38399441 PMCID: PMC10893221 DOI: 10.3390/ph17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson's disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13.
Collapse
Affiliation(s)
- Anton D. Pugel
- Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA;
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Sara Z. Alsaifi
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Jocelyn R. Holmes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Brad E. Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| |
Collapse
|
16
|
Mihajlovic K, Bukvic MA, Dragic M, Scortichini M, Jacobson KA, Nedeljkovic N. Anti-inflammatory potency of novel ecto-5'-nucleotidase/CD73 inhibitors in astrocyte culture model of neuroinflammation. Eur J Pharmacol 2023; 956:175943. [PMID: 37541364 PMCID: PMC10527948 DOI: 10.1016/j.ejphar.2023.175943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Three novel cytosine-derived α,β-methylene diphosphonates designated MRS4598, MRS4552, and MRS4602 were tested in the range of 1 × 10-9 to 1 × 10-3 M for their efficacy and potency in inhibiting membrane-bound ecto-5'-nucleotidase/CD73 activity in primary astrocytes in vitro. The compounds were also tested for their ability to attenuate the reactive astrocyte phenotype induced by proinflammatory cytokines. The main findings are as follows: A) The tested compounds induced concentration-dependent inhibition of CD73 activity, with maximal inhibition achieved at ∼1 × 10-3M; B) All compounds showed high inhibitory potency, as reflected by IC50 values in the submicromolar range; C) All compounds showed high binding capacity, as reflected by Ki values in the low nanomolar range; D) Among the tested compounds, MRS4598 showed the highest inhibitory efficacy and potency, as reflected by IC50 and Ki values of 0.11 μM and 18.2 nM; E) Neither compound affected astrocyte proliferation and cell metabolic activity at concentrations near to IC50; E) MRS4598 was able to inhibit CD73 activity in reactive astrocytes stimulated with TNF-α and to induce concentration-dependent inhibition of CD73 in reactive astrocytes stimulated with IL-1β, with an order of magnitude higher IC50 value; F) MRS4598 was the only compound tested that was able to induce shedding of the CD73 from astrocyte membranes and to enhance astrocyte migration in the scratch wound migration assay, albeit at concentration well above its IC50 value. Given the role of CD73 in neurodegenerative diseases, MRS4598, MRS4552, and MRS4602 are promising pharmacological tools for the treatment of neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Marija Adzic Bukvic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia.
| |
Collapse
|
17
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
18
|
Abstract
The adenosine A2A receptor (A2AR) is abundantly expressed in the brain, including both neurons and glial cells. While the expression of A2AR is relative low in glia, its levels elevate robustly in astrocytes and microglia under pathological conditions. Elevated A2AR appears to play a detrimental role in a number of disease states, by promoting neuroinflammation and astrocytic reaction to contribute to the progression of neurodegenerative and psychiatric diseases.
Collapse
Affiliation(s)
- Zhihua Gao
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China; Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, West Wenyi Road, Hangzhou, P.R. China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
19
|
Zhu H, Zhang M, Ye Y, Liu Z, Wang J, Wu X, Lv X. CD73 mitigates hepatic damage in alcoholic steatohepatitis by regulating PI3K/AKT-mediated hepatocyte pyroptosis. Biochem Pharmacol 2023; 215:115753. [PMID: 37611643 DOI: 10.1016/j.bcp.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Alcohol use is a major risk factor for death and disability, resulting in a significant global disease burden. Alcoholic steatohepatitis (ASH) reflects an acute exacerbation of alcoholic liver disease (ALD) and is a growing health care and economic burden worldwide. Pyroptosis plays a central role in the pathogenesis of ASH. Nt5e (CD73) is a cell surface ecto-5'-nucleotidase, which is a key enzyme that converts the proinflammatory signal ATP to the anti-inflammatory mediator adenosine (ADO). Studies have found that CD73 is involved in multiple diseases and can alleviate gasdermin D (GSDMD)-mediated pyroptosis; however, its role and mechanism in ASH are not explicit. AIM To investigate the role and mechanisms of CD73-mediated hepatocyte pyroptosis in alcohol-induced liver injury through in vivo and in vitro experiments. METHODS CD73 knockout (CD73-/-) mice, wild-type (WT) mice, and AML-12 cells were used to evaluate the effect of CD73 on hepatocyte pyroptosis in vivo and in vitro. A combination of molecular and histological methods was performed to assess pyroptosis and investigate the mechanism both in vivo and in vitro. RESULTS The protein expression of CD73 and pyroptosis pathway-associated genes was increased significantly in hepatocyte injury model both in vivo and in vitro. In vivo, CD73 knockout dramatically aggravated inflammatory damage, lipid accumulation, and hepatocyte pyroptosis in the liver. In vitro, overexpression of CD73 by pEGFP-C1/CD73 can decrease NLRP3 inflammasome activation and pyroptosis in hepatocytes. Further analysis revealed that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is a possible mechanism of CD73 regulation. Meanwhile, this pathological process was inhibited after the use of PI3K inhibitors. CONCLUSION Our results show a novel function of CD73 regulates hepatocytes pyroptosis and highlights the therapeutic opportunity for reducing the disease process in ALD.
Collapse
Affiliation(s)
- Hong Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Mengda Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Ying Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Zhenni Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Jianpeng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xue Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Institute for Liver Diseases of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
20
|
Lopes CR, Silva AC, Silva HB, Canas PM, Agostinho P, Cunha RA, Lopes JP. Adenosine A 2A Receptor Up-Regulation Pre-Dates Deficits of Synaptic Plasticity and of Memory in Mice Exposed to Aβ 1-42 to Model Early Alzheimer's Disease. Biomolecules 2023; 13:1173. [PMID: 37627238 PMCID: PMC10452250 DOI: 10.3390/biom13081173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The intracerebroventricular (icv) injection of amyloid peptides (Aβ) models Alzheimer's disease (AD) in mice, as typified by the onset within 15 days of deficits of memory and of hippocampal long-term potentiation (LTP) that are prevented by the blockade of adenosine A2A receptors (A2AR). Since A2AR overfunction is sufficient to trigger memory deficits, we tested if A2AR were upregulated in hippocampal synapses before the onset of memory deficits to support the hypothesis that A2AR overfunction could be a trigger of AD. Six to eight days after Aβ-icv injection, mice displayed no alterations of hippocampal dependent memory; however, they presented an increased excitability of hippocampal synapses, a slight increase in LTP magnitude in Schaffer fiber-CA1 pyramid synapses and an increased density of A2AR in hippocampal synapses. A2AR blockade with SCH58261 (50 nM) normalized excitability and LTP in hippocampal slices from mice sacrificed 7-8 days after Aβ-icv injection. Fifteen days after Aβ-icv injection, mice displayed evident deficits of hippocampal-dependent memory deterioration, with reduced hippocampal CA1 LTP but no hyperexcitability and a sustained increase in synaptic A2AR, which blockade restored LTP magnitude. This shows that the upregulation of synaptic A2AR precedes the onset of deterioration of memory and of hippocampal synaptic plasticity, supporting the hypothesis that the overfunction of synaptic A2AR could be a trigger of memory deterioration in AD.
Collapse
Affiliation(s)
- Cátia R. Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - António C. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Henrique B. Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (C.R.L.); (A.C.S.); (H.B.S.); (P.M.C.); (P.A.); (J.P.L.)
| |
Collapse
|
21
|
Zhang M, Dai X, Xiang Y, Xie L, Sun M, Shi J. Advances in CD73 inhibitors for immunotherapy: Antibodies, synthetic small molecule compounds, and natural compounds. Eur J Med Chem 2023; 258:115546. [PMID: 37302340 DOI: 10.1016/j.ejmech.2023.115546] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Tumors, a disease with a high mortality rate worldwide, have become a serious threat to human health. Exonucleotide-5'-nucleotidase (CD73) is an emerging target for tumor therapy. Its inhibition can significantly reduce adenosine levels in the tumor microenvironment. It has a better therapeutic effect on adenosine-induced immunosuppression. In the immune response, extracellular ATP exerts immune efficacy by activating T cells. However, dead tumor cells release excess ATP, overexpress CD39 and CD73 on the cell membrane and catabolize this ATP to adenosine. This leads to further immunosuppression. There are a number of inhibitors of CD73 currently under investigation. These include antibodies, synthetic small molecule inhibitors and a number of natural compounds with prominent roles in the anti-tumor field. However, only a small proportion of the CD73 inhibitors studied to date have successfully reached the clinical stage. Therefore, effective and safe inhibition of CD73 in oncology therapy still holds great therapeutic potential. This review summarizes the currently reported CD73 inhibitors, describes their inhibitory effects and pharmacological mechanisms, and provides a brief review of them. It aims to provide more information for further research and development of CD73 inhibitors.
Collapse
Affiliation(s)
- Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xiaoqin Dai
- Department of Traditional Chinese Medicine, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| | - Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
22
|
Chen JF, Choi DS, Cunha RA. Striatopallidal adenosine A 2A receptor modulation of goal-directed behavior: Homeostatic control with cognitive flexibility. Neuropharmacology 2023; 226:109421. [PMID: 36634866 PMCID: PMC10132052 DOI: 10.1016/j.neuropharm.2023.109421] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
Dysfunction of goal-directed behaviors under stressful or pathological conditions results in impaired decision-making and loss of flexibility of thoughts and behaviors, which underlie behavioral deficits ranging from depression, obsessive-compulsive disorders and drug addiction. Tackling the neuromodulators fine-tuning this core behavioral element may facilitate the development of effective strategies to control these deficits present in multiple psychiatric disorders. The current investigation of goal-directed behaviors has concentrated on dopamine and glutamate signaling in the corticostriatal pathway. In accordance with the beneficial effects of caffeine intake on mood and cognitive dysfunction, we now propose that caffeine's main site of action - adenosine A2A receptors (A2AR) - represent a novel target to homeostatically control goal-directed behavior and cognitive flexibility. A2AR are abundantly expressed in striatopallidal neurons and colocalize and interact with dopamine D2, NMDA and metabotropic glutamate 5 receptors to integrate dopamine and glutamate signaling. Specifically, striatopallidal A2AR (i) exert an overall "break" control of a variety of cognitive processes, making A2AR antagonists a novel strategy for improving goal-directed behavior; (ii) confer homeostatic control of goal-directed behavior by acting at multiple sites with often opposite effects, to enhance cognitive flexibility; (iii) integrate dopamine and adenosine signaling through multimeric A2AR-D2R heterocomplexes allowing a temporally precise fine-tuning in response to local signaling changes. As the U.S. Food and Drug Administration recently approved the A2AR antagonist Nourianz® (istradefylline) to treat Parkinson's disease, striatal A2AR-mediated control of goal-directed behavior may offer a new and real opportunity for improving deficits of goal-directed behavior and enhance cognitive flexibility under various neuropsychiatric conditions. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China; Department of Neurology, School of Medicine, Boston University, Boston, MA, USA.
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
23
|
CD73: Friend or Foe in Lung Injury. Int J Mol Sci 2023; 24:ijms24065545. [PMID: 36982618 PMCID: PMC10056814 DOI: 10.3390/ijms24065545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Ecto-5′-nucleotidase (CD73) plays a strategic role in calibrating the magnitude and chemical nature of purinergic signals that are delivered to immune cells. Its primary function is to convert extracellular ATP to adenosine in concert with ectonucleoside triphosphate diphosphohydrolase-1 (CD39) in normal tissues to limit an excessive immune response in many pathophysiological events, such as lung injury induced by a variety of contributing factors. Multiple lines of evidence suggest that the location of CD73, in proximity to adenosine receptor subtypes, indirectly determines its positive or negative effect in a variety of organs and tissues and that its action is affected by the transfer of nucleoside to subtype-specific adenosine receptors. Nonetheless, the bidirectional nature of CD73 as an emerging immune checkpoint in the pathogenesis of lung injury is still unknown. In this review, we explore the relationship between CD73 and the onset and progression of lung injury, highlighting the potential value of this molecule as a drug target for the treatment of pulmonary disease.
Collapse
|
24
|
Zhou X, Zhao R, Lv M, Xu X, Liu W, Li X, Gao Y, Zhao Z, Zhang Z, Li Y, Xu R, Wan Q, Cui Y. ACSL4 promotes microglia-mediated neuroinflammation by regulating lipid metabolism and VGLL4 expression. Brain Behav Immun 2023; 109:331-343. [PMID: 36791893 DOI: 10.1016/j.bbi.2023.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Acyl-CoA synthetase long-chain family member 4 (ACSL4) is an important isozyme in polyunsaturated fatty acid (PUFA) metabolism. The role of ACSL4 in the lipopolysaccharide (LPS)-induced inflammation of microglia, and the effects of ACSL4-mediated inflammation on the progression of Parkinson's disease (PD) are unknown. In this study, we found that ACSL4 expression was increased after LPS stimulation. Knocking down ACSL4 in microglia decreased proinflammatory cytokine production. Mechanistically, ACSL4 reduced vestigial-like family member 4(VGLL4) expression to promote NF-κB signal transduction; and ACSL4 regulated lipid composition after LPS stimulation. In addition, knocking down ACSL4 alleviated neuroinflammation in a systemic LPS model and acute l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) model. These data revealed ACSL4 to be a novel regulator that promotes microglia-mediated neuroinflammation by regulating VGLL4 expression and lipid metabolism.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Rui Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Mengfei Lv
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Xiangyu Xu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Wenhao Liu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Xiaohua Li
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yunyi Gao
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Zhiyuan Zhao
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Zhaolong Zhang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Yuxuan Li
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Rui Xu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao 266000, Shandong, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China; Qingdao Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
25
|
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ, Levit RD. Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 176:98-109. [PMID: 36764383 PMCID: PMC10006353 DOI: 10.1016/j.yjmcc.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
RATIONALE The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.
Collapse
Affiliation(s)
- Michael N Sayegh
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biological Sciences, Tennessee State University, Nashville, TN, United States of America
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Frederick Strobel
- Department of Chemistry, Emory University, Atlanta, GA, United States of America
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
| |
Collapse
|
26
|
Zhao Y, Liu X, Yang G. Adenosinergic Pathway in Parkinson's Disease: Recent Advances and Therapeutic Perspective. Mol Neurobiol 2023; 60:3054-3070. [PMID: 36786912 DOI: 10.1007/s12035-023-03257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized pathologically by α-synuclein (α-syn) aggregation. In PD, the current mainstay of symptomatic treatment is levodopa (L-DOPA)-based dopamine (DA) replacement therapy. However, the development of dyskinesia and/or motor fluctuations which is relevant to levodopa is restricting its long-term utility. Given that the ability of which is to modulate the striato-thalamo-cortical loops and function to modulate basal ganglia output, the adenosinergic pathway (AP) is qualified as a potential promising non-DA target. As an indispensable component of energy production pathways, AP modulates cellular metabolism and gene regulation in both neurons and neuroglia cells through the recognition and degradation of extracellular adenosine. In addition, AP is geared to the initiation, evolution, and resolution of inflammation as well. Besides the above-mentioned crosstalk between the adenosine and dopamine signaling pathways, the functions of adenosine receptors (A1R, A2AR, A2BR, and A3R) and metabolism enzymes in modulating PD pathological process have been extensively investigated in recent decades. Here we reviewed the emerging findings focused on the function of adenosine receptors, adenosine formation, and metabolism in the brain and discussed its potential roles in PD pathological process. We also recapitulated clinical studies and the preclinical evidence for the medical strategies targeting the Ado signaling pathway to improve motor dysfunction and alleviate pathogenic process in PD. We hope that further clinical studies should consider this pathway in their monotherapy and combination therapy, which would open new vistas to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Xin Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China. .,Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
27
|
Microglia and macrophages contribute to the development and maintenance of sciatica in lumbar disc herniation. Pain 2023; 164:362-374. [PMID: 36170151 DOI: 10.1097/j.pain.0000000000002708] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Lumbar disc herniation (LDH) is a major cause of sciatica. Emerging evidence indicated that inflammation induced by the herniated nucleus pulposus (NP) tissues plays a major role in the pathogenesis of sciatica. However, the underlying mechanisms are still elusive. Although microglia and macrophages have been implicated in nerve injury-induced neuropathic pain, their roles in LDH-induced sciatica largely remain unknown. This study successfully established and modified a mouse model of LDH. We found that nerve root compression using degenerated NP tissues can initiate remarkable and persistent sciatica, with increased and prolonged macrophage infiltration in dorsal root ganglia (DRG) and significant activation of microglia in the spinal dorsal horn. Instead, compression of the nerve root with nondegenerated NP tissues only led to transient sciatica, with transient infiltration and activation of macrophages and microglia. Moreover, continuous treatment of PLX5622, a specific colony-stimulating factor 1 receptor antagonist, ablated both macrophages and microglia, which effectively alleviated LDH-induced sciatica. However, mechanical allodynia reoccurred along with the repopulation of macrophages and microglia after the withdrawal of PLX5622. Using RNA sequencing analysis, the current study depicted transcriptional profile changes of DRG after LDH and identified several macrophage-related potential target candidates. Our results suggested that microglia and macrophages may play an essential role in the development and maintenance of LDH-induced sciatica. Targeting microglia and macrophages may be a promising treatment for chronic LDH-induced sciatica.
Collapse
|
28
|
Pinosanu LR, Capitanescu B, Glavan D, Godeanu S, Cadenas IF, Doeppner TR, Hermann DM, Balseanu AT, Bogdan C, Popa-Wagner A. Neuroglia Cells Transcriptomic in Brain Development, Aging and Neurodegenerative Diseases. Aging Dis 2023; 14:63-83. [PMID: 36818562 PMCID: PMC9937697 DOI: 10.14336/ad.2022.0621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Glia cells are essential for brain functioning during development, aging and disease. However, the role of astroglia plays during brain development is quite different from the role played in the adult lesioned brain. Therefore, a deeper understanding of pathomechanisms underlying astroglia activity in the aging brain and cerebrovascular diseases is essential to guide the development of new therapeutic strategies. To this end, this review provides a comparison between the transcriptomic activity of astroglia cells during development, aging and neurodegenerative diseases, including cerebral ischemia. During fetal brain development, astrocytes and microglia often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis, and synaptic pruning. In the adult brain astrocytes are a critical player in the synapse remodeling by mediating synapse elimination while microglia activity has been associated with changes in synaptic plasticity and remove cell debris by constantly sensing the environment. However, in the lesioned brain astrocytes proliferate and play essential functions with regard to energy supply to the neurons, neurotransmission and buildup of a protective scar isolating the lesion site from the surroundings. Inflammation, neurodegeneration, or loss of brain homeostasis induce changes in microglia gene expression, morphology, and function, generally referred to as "primed" microglia. These changes in gene expression are characterized by an enrichment of phagosome, lysosome, and antigen presentation signaling pathways and is associated with an up-regulation of genes encoding cell surface receptors. In addition, primed microglia are characterized by upregulation of a network of genes in response to interferon gamma. Conclusion. A comparison of astroglia cells transcriptomic activity during brain development, aging and neurodegenerative disorders might provide us with new therapeutic strategies with which to protect the aging brain and improve clinical outcome.
Collapse
Affiliation(s)
- Leonard Radu Pinosanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Bogdan Capitanescu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Daniela Glavan
- Psychiatric clinic, University of Medicine and Pharmacy Craiova, Craiova, Romania.
| | - Sanziana Godeanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Israel Ferna´ndez Cadenas
- Stroke Pharmacogenomics and Genetics group, Sant Pau Hospital Institute of Research, Barcelona, Spain.
| | - Thorsten R. Doeppner
- Department of Neurology, University Hospital Giessen, Giessen, Germany.,University of Göttingen Medical School, Department of Neurology, Göttingen, Germany.
| | - Dirk M. Hermann
- Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.
| | - Adrian-Tudor Balseanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Catalin Bogdan
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Vascular Neurology, Dementia and Ageing Research, Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, Germany.,Correspondence should be addressed to: Dr. Aurel Popa-Wagner () and Dr. Catalin Bogdan (), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
29
|
Lu C, Qu S, Zhong Z, Luo H, Lei SS, Zhong HJ, Su H, Wang Y, Chong CM. The effects of bioactive components from the rhizome of gastrodia elata blume (Tianma) on the characteristics of Parkinson's disease. Front Pharmacol 2022; 13:963327. [PMID: 36532787 PMCID: PMC9748092 DOI: 10.3389/fphar.2022.963327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/07/2022] [Indexed: 08/04/2023] Open
Abstract
Parkinson's disease (PD) is an age-related chronic neurodegenerative disease caused by the death and degeneration of dopaminergic neurons in the substantia nigra of the midbrain. The decrease of the neurotransmitter dopamine in the patient's brain leads to various motor symptoms. PD drugs mainly enhance dopamine levels but cannot prevent or slow down the loss of dopaminergic neurons. In addition, they exhibit significant side effects and addiction issues during long-term use. Therefore, it is particularly urgent to develop novel drugs that have fewer side effects, can improve PD symptoms, and prevent the death of dopaminergic neurons. The rhizome of Gastrodia elata Blume (Tianma) is a well-known medicinal herb and has long been used as a treatment of nervous system-related diseases in China. Several clinical studies showed that formula comprising Tianma could be used as an add-on therapy for PD patients. Pharmacological studies indicated that Tianma and its bioactive components can reduce the death of dopaminergic neurons, α-synuclein accumulation, and neuroinflammation in various PD models. In this review, we briefly summarize studies regarding the effects of Tianma and its bioactive components' effects on major PD features and explore the potential use of Tianma components for the treatment of PD.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuhui Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hai-Jing Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
30
|
Franco R, Lillo A, Navarro G, Reyes-Resina I. The adenosine A 2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin Ther Targets 2022; 26:791-800. [DOI: 10.1080/14728222.2022.2136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Simões AP, Gonçalves FQ, Rial D, Ferreira SG, Lopes JP, Canas PM, Cunha RA. CD73-Mediated Formation of Extracellular Adenosine Is Responsible for Adenosine A 2A Receptor-Mediated Control of Fear Memory and Amygdala Plasticity. Int J Mol Sci 2022; 23:12826. [PMID: 36361618 PMCID: PMC9653840 DOI: 10.3390/ijms232112826] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived extracellular adenosine formed by ecto-5'-nucleotidase or CD73. We now tested whether CD73 is also responsible to provide for the activation of A2AR in controlling fear memory and amygdala long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor αβ-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 μM) to eliminate any modification of ATP/ADP-mediated P2 receptor effects, both AOPCP (100 μM) and the A2AR antagonist, SCH58261 (50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a new therapeutic target to interfere with abnormal fear-like emotional processing.
Collapse
Affiliation(s)
- Ana Patrícia Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Francisco Q. Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Daniel Rial
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Samira G. Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - João Pedro Lopes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula M. Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
32
|
He W, Xie X, Li C, Ding H, Ye J. Adenosine A2A Receptor Antagonist Improves Cognitive Impairment by Inhibiting Neuroinflammation and Excitatory Neurotoxicity in Chronic Periodontitis Mice. Molecules 2022; 27:molecules27196267. [PMID: 36234803 PMCID: PMC9571030 DOI: 10.3390/molecules27196267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
The adenosine A2A receptor antagonist SCH58261 has been reported to have anti-inflammatory effects. However, its role in chronic periodontitis (CP)-induced cognitive impairment, which is associated with Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS), remains unclear. This study investigated the role of SCH58261 in mice with CP-induced cognitive impairment. C57BL/6J mice were used to develop CP model by injecting 0.5 mg/kg P. gingivalis LPS into the palatal gingival sulcus of maxillary first molars twice a week for four weeks. The mice were divided into control, P. gingivalis LPS (P-LPS), P-LPS + SCH58261, and SCH58261 groups. The passive avoidance test (PAT) and Morris water maze (MWM) were used to assess cognition in mice. Furthermore, CD73/adenosine, neuroinflammation, glutamate transporters, and glutamate were assessed. Compared with the P-LPS group, 0.1 and 0.5 mg/kg SCH58261 increased latency and decreased error times in PAT, but increased platform crossing number in MWM. SCH58261 inhibited microglial activation, and decreased pro-inflammatory cytokines and glutamate levels, but increased GLT-1 and PSD95 expression in the hippocampus. This was the first report of SCH58261 treatment for CP-induced cognitive impairment, which may be related to its anti-inflammatory activities and anti-glutamate excitatory neurotoxicity. This suggests that SCH58261 can be used as a novel agent to treat cognitive impairment.
Collapse
Affiliation(s)
- Wendan He
- Department of Stomatology, The Affiliated Hospital of Wuhan Traditional Chinese and Western Medicine, Tongji Medical College of HUST, Wuhan 430022, China
- Correspondence: ; Tel.: +86-027-8586-0666
| | - Xianlong Xie
- Department of General Practice, The Affiliated Hospital of Wuhan Traditional Chinese and Western Medicine, Tongji Medical College of HUST, Wuhan 430022, China
| | - Chenxi Li
- Laboratory for Tumor Genetics and Regenerative Medicine, Department of Oral and Maxillofacial Surgery, The Head and Neurocenter, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Huang Ding
- Department of Anesthesiology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Jishi Ye
- Department of Pain, Renmin Hospital, Wuhan University, Wuhan 430060, China
| |
Collapse
|
33
|
Zheng L, Zhang Z, Song K, Xu X, Tong Y, Wei J, Jiang L. Potential biomarkers for inflammatory response in acute lung injury. Open Med (Wars) 2022; 17:1066-1076. [PMID: 35795000 PMCID: PMC9186513 DOI: 10.1515/med-2022-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Acute lung injury (ALI) is a severe respiratory disorder occurring in critical care medicine, with high rates of mortality and morbidity. This study aims to screen the potential biomarkers for ALI. Microarray data of lung tissues from lung-specific geranylgeranyl pyrophosphate synthase large subunit 1 knockout and wild-type mice treated with lipopolysaccharide were downloaded. Differentially expressed genes (DEGs) between ALI and wild-type mice were screened. Functional analysis and the protein-protein interaction (PPI) modules were analyzed. Finally, a miRNA-transcription factor (TF)-target regulation network was constructed. Totally, 421 DEGs between ALI and wild-type mice were identified. The upregulated DEGs were mainly enriched in the peroxisome proliferator-activated receptor signaling pathway, and fatty acid metabolic process, while downregulated DEGs were related to cytokine-cytokine receptor interaction and regulation of cytokine production. Cxcl5, Cxcl9, Ccr5, and Cxcr4 were key nodes in the PPI network. In addition, three miRNAs (miR505, miR23A, and miR23B) and three TFs (PU1, CEBPA, and CEBPB) were key molecules in the miRNA-TF-target network. Nine genes including ADRA2A, P2RY12, ADORA1, CXCR1, and CXCR4 were predicted as potential druggable genes. As a conclusion, ADRA2A, P2RY12, ADORA1, CXCL5, CXCL9, CXCR1, and CXCR4 might be novel markers and potential druggable genes in ALI by regulating inflammatory response.
Collapse
Affiliation(s)
- Lanzhi Zheng
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Zhuoyi Zhang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Youdian Road 54#, Shangcheng District, Hangzhou City, 310006 Zhejiang Province, China
| | - Kang Song
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Xiaoyang Xu
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Yixin Tong
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Jinling Wei
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| | - Lu Jiang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006 Zhejiang Province, China
| |
Collapse
|
34
|
Schädlich IS, Schnapauff O, Pöls L, Schrader J, Tolosa E, Rissiek B, Magnus T. Nt5e deficiency does not affect post-stroke inflammation and lesion size in a murine ischemia/reperfusion stroke model. iScience 2022; 25:104470. [PMID: 35692634 PMCID: PMC9184566 DOI: 10.1016/j.isci.2022.104470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/29/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular ATP released to the ischemic brain parenchyma is quickly metabolized by ectonucleotidases. Among them, the ecto-5′-nucleotidase CD73 encoded by Nt5e generates immunosuppressive adenosine. Genetic deletion of Nt5e led to increased infarct size in the murine photothrombotic stroke model. We aimed at validating this result using the transient middle cerebral artery occlusion (tMCAO) stroke model that represents pathophysiological aspects of penumbra and reperfusion. Three days after tMACO, we did not detect a difference in stroke size between CD73-deficient (CD73−/−) and control mice. Consistent with this finding, CD73−/− and control mice showed comparable numbers and composition of brain-infiltrating leukocytes measured by flow cytometry. Using NanoString technology, we further demonstrated that CD73−/− and control mice do not differ regarding glia cell gene expression profiles. Our findings highlight the potential impact of stroke models on study outcome and the need for cross-validation of originally promising immunomodulatory candidates. Infarct volume on day 3 after tMCAO was comparable among CD73−/− and control mice Brain leukocyte infiltration on day 3 after tMCAO was similar in CD73−/− and control mice Glial RNA expression profile on day 3 after tMCAO was similar in CD73−/− and control mice
Collapse
Affiliation(s)
- Ines Sophie Schädlich
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg-Eppendorf, Germany
| | - Oliver Schnapauff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg-Eppendorf, Germany
| | - Lennart Pöls
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg-Eppendorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg-Eppendorf, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg-Eppendorf, Germany
| |
Collapse
|
35
|
Lu T, Zhang Z, Zhang J, Pan X, Zhu X, Wang X, Li Z, Ruan M, Li H, Chen W, Yan M. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment. J Extracell Vesicles 2022; 11:e12218. [PMID: 35524455 PMCID: PMC9077142 DOI: 10.1002/jev2.12218] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Research on tumour cell‐derived small extracellular vesicles (sEVs) that regulate tumour microenvironment (TME) has provided strategies for targeted therapy of head and neck squamous cell carcinoma (HNSCC). Herein, we demonstrated that sEVs derived from HNSCC cancer cells carried CD73 (sEVsCD73), which promoted malignant progression and mediated immune evasion. The sEVsCD73 phagocytosed by tumour‐associated macrophages (TAMs) in the TME induced immunosuppression. Higher CD73high TAMs infiltration levels in the HNSCC microenvironment were correlated with poorer prognosis, while sEVsCD73 activated the NF‐κB pathway in TAMs, thereby inhibiting immune function by increasing cytokines secretion such as IL‐6, IL‐10, TNF‐α, and TGF‐β1. The absence of sEVsCD73 enhanced the sensitivity of anti‐PD‐1 therapy through reversed immunosuppression. Moreover, circulating sEVsCD73 increased the risk of lymph node metastasis and worse prognosis. Taken together, our study suggests that sEVsCD73 derived from tumour cells contributes to immunosuppression and is a potential predictor of anti‐PD‐1 responses for immune checkpoint therapy in HNSCC.
Collapse
Affiliation(s)
- Tingwei Lu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqin Zhu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ruan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huasheng Li
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yan
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Head and Neck Squamous Cell Carcinoma: NT5E Could Be a Prognostic Biomarker. Appl Bionics Biomech 2022; 2022:3051907. [PMID: 35510041 PMCID: PMC9061055 DOI: 10.1155/2022/3051907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a type of tumour with a relatively poor prognosis. In recent years, immune checkpoint inhibitors, such as CTLA-4 and PD-1/PDL-1 inhibitors, have improved the treatment status of advanced tumours. However, the emergence of drug resistance has brought difficulties to clinical treatment, and new immune checkpoint research is imminent. The hypoxia-adenosine pathway, in which CD73 encoded by the NT5E gene is a key enzyme for adenosine production, has been identified as an immune checkpoint of great potential. Therefore, NT5E may play an important role in HNSCC. We performed a detailed bioinformatics analysis of NT5E in HNSCC, and the results showed that the overexpression of NT5E in HNSCC was associated with poor prognosis. Our further investigation of the coexpression pattern of HNSCC could provide a reference for drug resistance and immunotherapy studies.
Collapse
|
37
|
Mori A, Chen JF, Uchida S, Durlach C, King SM, Jenner P. The Pharmacological Potential of Adenosine A 2A Receptor Antagonists for Treating Parkinson's Disease. Molecules 2022; 27:2366. [PMID: 35408767 PMCID: PMC9000505 DOI: 10.3390/molecules27072366] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The adenosine A2A receptor subtype is recognized as a non-dopaminergic pharmacological target for the treatment of neurodegenerative disorders, notably Parkinson's disease (PD). The selective A2A receptor antagonist istradefylline is approved in the US and Japan as an adjunctive treatment to levodopa/decarboxylase inhibitors in adults with PD experiencing OFF episodes or a wearing-off phenomenon; however, the full potential of this drug class remains to be explored. In this article, we review the pharmacology of adenosine A2A receptor antagonists from the perspective of the treatment of both motor and non-motor symptoms of PD and their potential for disease modification.
Collapse
Affiliation(s)
- Akihisa Mori
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | - Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou 325015, China;
| | - Shinichi Uchida
- Kyowa Kirin Co., Ltd., Tokyo 100-0004, Japan; (A.M.); (S.U.)
| | | | | | - Peter Jenner
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| |
Collapse
|
38
|
Wang X, Zhang L, Du J, Wei Y, Wang D, Song C, Chen D, Li B, Jiang M, Zhang M, Zhao H, Kong Y. Decreased CD73+ Double-Negative T Cells and Elevated Level of Soluble CD73 Correlated With and Predicted Poor Immune Reconstitution in HIV-Infected Patients After Antiretroviral Therapy. Front Immunol 2022; 13:869286. [PMID: 35444646 PMCID: PMC9013806 DOI: 10.3389/fimmu.2022.869286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although extensive use of antiretroviral therapy (ART) has made great progress in controlling HIV replication and improving CD4+ T cell recovery, the immune reconstitution remained insufficient in some patients, who were defined as poor immunological responders (PIRs). These PIRs were at a high risk of AIDS-related and non-AIDS complications, resulting in higher morbidity and mortality rate. Thus, it is a major challenge and urgently needed to distinguish PIRs early and improve their immune function in time. Immune activation is a key factor that leads to impaired immune reconstitution in people living with HIV (PLWH) who are receiving effective ART. Double negative T cells (DNT) were reported to associate with the control of immune activation during HIV infection. However, the precise mechanisms by which DNT cells exerted their suppressive capacity during HIV infection remained puzzled. CD73, both a soluble and a membrane-bound form, display immunosuppressive effects through producing adenosine (ADO). Thus, whether DNT cells expressed CD73 and mediated immune suppression through CD73-ADO pathway needs to be investigated. Here, we found a significant downregulation of CD73 expression on DNT cells in treatment-naïve PLWH (TNs) compared to healthy controls, accompanied with increased concentration of sCD73 in plasma. Both the frequency of CD73+ DNT cells and the level of plasma sCD73 recovered after ART treatment. However, PIRs showed decreased percentage of CD73+ DNT cells compared to immunological responders (IRs). The frequency of CD73+ DNT cells was positively correlated with CD4+ T cell count and CD4/CD8 ratio, and negatively correlated with immune activation in PLWH. The level of sCD73 also showed a negative correlation to CD4+ T cell count and CD4/CD8 ratio. More importantly, in the present cohort, a higher level of sCD73 at the time of initiating ART could predict poor immune reconstitution in PLWH after long-term ART. Our findings highlighted the importance of CD73+ DNT cells and sCD73 in the disease progression and immune reconstitution of PLWH, and provided evidences for sCD73 as a potential biomarker of predicting immune recovery.
Collapse
Affiliation(s)
- Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
39
|
Yuan J, Chen L, Wang J, Xia S, Huang J, Zhou L, Feng C, Hu X, Zhou Z, Ran H. Adenosine A2A Receptor Suppressed Astrocyte-Mediated Inflammation Through the Inhibition of STAT3/YKL-40 Axis in Mice With Chronic Cerebral Hypoperfusion-induced White Matter Lesions. Front Immunol 2022; 13:841290. [PMID: 35237278 PMCID: PMC8882648 DOI: 10.3389/fimmu.2022.841290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
White matter lesions are an important pathological manifestation of cerebral small vessel disease, with inflammation playing a pivotal role in their development. The adenosine A2a receptor (ADORA2A) is known to inhibit the inflammation mediated by microglia, but its effect on astrocytes is unknown. Additionally, although the level of YKL-40 (expressed mainly in astrocytes) has been shown to be elevated in the model of white matter lesions induced by chronic cerebral hypoperfusion, the specific regulatory mechanism involved is not clear. In this study, we established in vivo and in vitro chronic cerebral hypoperfusion models to explore whether the ADORA2A regulated astrocyte-mediated inflammation through STAT3/YKL-40 axis and using immunohistochemical, western blotting, ELISA, PCR, and other techniques to verify the effect of astrocytes ADORA2A on the white matter injury. The in vivo experiments showed that activation of the ADORA2A decreased the expression of both STAT3 and YKL-40 in the astrocytes and alleviated the white matter injury, whereas its inhibition had the opposite effects. Similarly, ADORA2A inhibition significantly increased the expression of STAT3 and YKL-40 in astrocytes in vitro, with more proinflammatory cytokines being released by astrocytes. STAT3 inhibition enhanced the inhibitory effect of ADORA2A on YKL-40 synthesis, whereas its activation reversed the phenomenon. These results suggest that the activation of ADORA2A in astrocytes can inhibit the inflammation mediated by the STAT3/YKL-40 axis and thereby reduce white matter injury in cerebral small vessel disease.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Simin Xia
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linke Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengjian Feng
- Department of Medical Engineering, 958th Hospital of the People’s Liberation Army, Chongqing, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| | - Hong Ran
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Hong Ran, ; Zhenhua Zhou, ; Xiaofei Hu,
| |
Collapse
|
40
|
Scortichini M, Idris RM, Moschütz S, Keim A, Salmaso V, Dobelmann C, Oliva P, Losenkova K, Irjala H, Vaittinen S, Sandholm J, Yegutkin GG, Sträter N, Junker A, Müller CE, Jacobson KA. Structure-Activity Relationship of 3-Methylcytidine-5'-α,β-methylenediphosphates as CD73 Inhibitors. J Med Chem 2022; 65:2409-2433. [PMID: 35080883 PMCID: PMC8865918 DOI: 10.1021/acs.jmedchem.1c01852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We recently reported N4-substituted 3-methylcytidine-5'-α,β-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.
Collapse
Affiliation(s)
- Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Riham Mohammed Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Susanne Moschütz
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Antje Keim
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Clemens Dobelmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Paola Oliva
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Samuli Vaittinen
- Department of Pathology, Turku University Hospital and Turku University, 20520 Turku, Finland
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | | | - Norbert Sträter
- Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Anna Junker
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
41
|
Augustin RC, Leone RD, Naing A, Fong L, Bao R, Luke JJ. Next steps for clinical translation of adenosine pathway inhibition in cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-004089. [PMID: 35135866 PMCID: PMC8830302 DOI: 10.1136/jitc-2021-004089] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence supports targeting the adenosine pathway in immuno-oncology with several clinical programs directed at adenosine A2 receptor (A2AR, A2BR), CD73 and CD39 in development. Through a cyclic-AMP-mediated intracellular cascade, adenosine shifts the cytokine and cellular profile of the tumor microenvironment away from cytotoxic T cell inflammation toward one of immune tolerance. A perpetuating cycle of tumor cell proliferation, tissue injury, dysregulated angiogenesis, and hypoxia promote adenosine accumulation via ATP catabolism. Adenosine receptor (eg, A2AR, A2BR) stimulation of both the innate and adaptive cellular precursors lead to immunosuppressive phenotypic differentiation. Preclinical work in various tumor models with adenosine receptor inhibition has demonstrated restoration of immune cell function and tumor regression. Given the broad activity but known limitations of anti-programmed cell death protein (PD1) therapy and other checkpoint inhibitors, ongoing studies have sought to augment the successful outcomes of anti-PD1 therapy with combinatorial approaches, particularly adenosine signaling blockade. Preliminary data have demonstrated an optimal safety profile and enhanced overall response rates in several early phase clinical trials with A2AR and more recently CD73 inhibitors. However, beneficial outcomes for both monotherapy and combinations have been mostly lower than expected based on preclinical studies, indicating a need for more nuanced patient selection or biomarker integration that might predict and optimize patient outcomes. In the context of known immuno-oncology biomarkers such as tumor mutational burden and interferon-associated gene expression, a comparison of adenosine-related gene signatures associated with clinical response indicates an underlying biology related to immunosuppression, angiogenesis, and T cell inflammation. Importantly, though, adenosine associated gene expression may point to a unique intratumoral phenotype independent from IFN-γ related pathways. Here, we discuss the cellular and molecular mechanisms of adenosine-mediated immunosuppression, preclinical investigation of adenosine signaling blockade, recent response data from clinical trials with A2AR, CD73, CD39 and PD1/L1 inhibitors, and ongoing development of predictive gene signatures to enhance combinatorial immune-based therapies.
Collapse
Affiliation(s)
- Ryan C Augustin
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lawrence Fong
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Riyue Bao
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jason J Luke
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA .,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
42
|
Reith MEA, Kortagere S, Wiers CE, Sun H, Kurian MA, Galli A, Volkow ND, Lin Z. The dopamine transporter gene SLC6A3: multidisease risks. Mol Psychiatry 2022; 27:1031-1046. [PMID: 34650206 PMCID: PMC9008071 DOI: 10.1038/s41380-021-01341-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 02/02/2023]
Abstract
The human dopamine transporter gene SLC6A3 has been consistently implicated in several neuropsychiatric diseases but the disease mechanism remains elusive. In this risk synthesis, we have concluded that SLC6A3 represents an increasingly recognized risk with a growing number of familial mutants associated with neuropsychiatric and neurological disorders. At least five loci were related to common and severe diseases including alcohol use disorder (high activity variant), attention-deficit/hyperactivity disorder (low activity variant), autism (familial proteins with mutated networking) and movement disorders (both regulatory variants and familial mutations). Association signals depended on genetic markers used as well as ethnicity examined. Strong haplotype selection and gene-wide epistases support multimarker assessment of functional variations and phenotype associations. Inclusion of its promoter region's functional markers such as DNPi (rs67175440) and 5'VNTR (rs70957367) may help delineate condensate-based risk action, testing a locus-pathway-phenotype hypothesis for one gene-multidisease etiology.
Collapse
Affiliation(s)
- Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York City, NY, 10016, USA
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Sun
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Diseases in Children, UCL Great Ormond Street Institute of Child Health, and Department of Neurology, Great Ormond Street Hospital, London, WC1N 1EH, UK
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20817, USA
- National Institute on Drug Abuse, Bethesda, MD, 20817, USA
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, and Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
43
|
Wang C, Deng H, Wang D, Wang J, Huang H, Qiu J, Li Y, Zou T, Guo L. Changes in metabolomics and lipidomics in brain tissue and their correlations with the gut microbiome after chronic food-derived arsenic exposure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112935. [PMID: 34801923 DOI: 10.1016/j.ecoenv.2021.112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic can cause neurodegenerative diseases of the brain, but the definite mechanism is still unknown. In this study, to discuss the disturbances on brain metabolome and lipidome under subchronic arsenic exposure, we treated mice with the arsenic-containing feed (concentration of total arsenic = 30 mg/kg) prepared in accordance with the proportion of rice arsenicals for 16 weeks and performed metabolomics and lipidomics studies respectively using UHPLC-Triple-TOF-MS/MS and UHPLC-Q Exactive Focus MS/MS on mice brain. In addition, the distributions of arsenical metabolites along the feed-gut-blood-brain chain were analyzed by ICP-MS and HPLC-ICP-MS, and fecal microbial variations were investigated by 16 s sequencing. The data showed that although only a tiny amount of arsenic (DMA=0.101 mg/kg, uAs=0.071 mg/kg) enters the brain through the blood-brain barrier, there were significant changes in brain metabolism, including 118 metabolites and 17 lipids. These different metabolites were involved in 30 distinct pathways, including glycometabolism, and metabolisms of lipid, nucleic acid, and amino acid were previously reported to be correlated with neurodegenerative diseases. Additionally, these different metabolites were significantly correlated with 12 gut bacterial OTUs, among which Lachnospiraceae, Muribaculaceae, Ruminococcaceae, and Erysipelotrichaceae were also previously reported to be related to the distortion of metabolism, indicating that the disturbance of metabolism in the brain may be associated with the disturbance of gut microbes induced by arsenic. Thus, the current study demonstrated that the brain metabolome and lipidome were significantly disturbed under subchronic arsenic exposure, and the disturbances also significantly correlated with some gut microbiome and may be associated with neurodegenerative diseases. Although preliminary, the results shed some light on the pathophysiology of arsenic-caused neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenfei Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China.
| | - Hongyu Deng
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518110, China.
| | - Dongbin Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiating Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510070, China; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 528478, China.
| | - Hairong Huang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jiayi Qiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yinfei Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Tangbin Zou
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
44
|
Gu C, Chen Y, Chen Y, Liu CF, Zhu Z, Wang M. Role of G Protein-Coupled Receptors in Microglial Activation: Implication in Parkinson's Disease. Front Aging Neurosci 2021; 13:768156. [PMID: 34867296 PMCID: PMC8635063 DOI: 10.3389/fnagi.2021.768156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/23/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is one of the prevalent neurodegenerative diseases associated with preferential loss of dopaminergic (DA) neurons in the substantia nigra compacta (SNc) and accumulation of α-synuclein in DA neurons. Even though the precise pathogenesis of PD is not clear, a large number of studies have shown that microglia-mediated neuroinflammation plays a vital role in the process of PD development. G protein-coupled receptors (GPCRs) are widely expressed in microglia and several of them act as regulators of microglial activation upon corresponding ligands stimulations. Upon α-synuclein insults, microglia would become excessively activated through some innate immune receptors. Presently, as lack of ideal drugs for treating PD, certain GPCR which is highly expressed in microglia of PD brain and mediates neuroinflammation effectively could be a prospective source for PD therapeutic intervention. Here, six kinds of GPCRs and two types of innate immune receptors were introduced, containing adenosine receptors, purinergic receptors, metabotropic glutamate receptors, adrenergic receptors, cannabinoid receptors, and melatonin receptors and their roles in neuroinflammation; we highlighted the relationship between these six GPCRs and microglial activation in PD. Based on the existing findings, we tried to expound the implication of microglial GPCRs-regulated neuroinflammation to the pathophysiology of PD and their potential to become a new expectation for clinical therapeutics.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yajing Chen
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yan Chen
- Department of Child and Adolescent Healthcare, Children’s Hospital of Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology, Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Mei Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Emerging roles of dysregulated adenosine homeostasis in brain disorders with a specific focus on neurodegenerative diseases. J Biomed Sci 2021; 28:70. [PMID: 34635103 PMCID: PMC8507231 DOI: 10.1186/s12929-021-00766-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
In modern societies, with an increase in the older population, age-related neurodegenerative diseases have progressively become greater socioeconomic burdens. To date, despite the tremendous effort devoted to understanding neurodegenerative diseases in recent decades, treatment to delay disease progression is largely ineffective and is in urgent demand. The development of new strategies targeting these pathological features is a timely topic. It is important to note that most degenerative diseases are associated with the accumulation of specific misfolded proteins, which is facilitated by several common features of neurodegenerative diseases (including poor energy homeostasis and mitochondrial dysfunction). Adenosine is a purine nucleoside and neuromodulator in the brain. It is also an essential component of energy production pathways, cellular metabolism, and gene regulation in brain cells. The levels of intracellular and extracellular adenosine are thus tightly controlled by a handful of proteins (including adenosine metabolic enzymes and transporters) to maintain proper adenosine homeostasis. Notably, disruption of adenosine homeostasis in the brain under various pathophysiological conditions has been documented. In the past two decades, adenosine receptors (particularly A1 and A2A adenosine receptors) have been actively investigated as important drug targets in major degenerative diseases. Unfortunately, except for an A2A antagonist (istradefylline) administered as an adjuvant treatment with levodopa for Parkinson's disease, no effective drug based on adenosine receptors has been developed for neurodegenerative diseases. In this review, we summarize the emerging findings on proteins involved in the control of adenosine homeostasis in the brain and discuss the challenges and future prospects for the development of new therapeutic treatments for neurodegenerative diseases and their associated disorders based on the understanding of adenosine homeostasis.
Collapse
|
46
|
Cordella F, Sanchini C, Rosito M, Ferrucci L, Pediconi N, Cortese B, Guerrieri F, Pascucci GR, Antonangeli F, Peruzzi G, Giubettini M, Basilico B, Pagani F, Grimaldi A, D’Alessandro G, Limatola C, Ragozzino D, Di Angelantonio S. Antibiotics Treatment Modulates Microglia-Synapses Interaction. Cells 2021; 10:cells10102648. [PMID: 34685628 PMCID: PMC8534187 DOI: 10.3390/cells10102648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
‘Dysbiosis’ of the adult gut microbiota, in response to challenges such as infection, altered diet, stress, and antibiotics treatment has been recently linked to pathological alteration of brain function and behavior. Moreover, gut microbiota composition constantly controls microglia maturation, as revealed by morphological observations and gene expression analysis. However, it is unclear whether microglia functional properties and crosstalk with neurons, known to shape and modulate synaptic development and function, are influenced by the gut microbiota. Here, we investigated how antibiotic-mediated alteration of the gut microbiota influences microglial and neuronal functions in adult mice hippocampus. Hippocampal microglia from adult mice treated with oral antibiotics exhibited increased microglia density, altered basal patrolling activity, and impaired process rearrangement in response to damage. Patch clamp recordings at CA3-CA1 synapses revealed that antibiotics treatment alters neuronal functions, reducing spontaneous postsynaptic glutamatergic currents and decreasing synaptic connectivity, without reducing dendritic spines density. Antibiotics treatment was unable to modulate synaptic function in CX3CR1-deficient mice, pointing to an involvement of microglia–neuron crosstalk through the CX3CL1/CX3CR1 axis in the effect of dysbiosis on neuronal functions. Together, our findings show that antibiotic alteration of gut microbiota impairs synaptic efficacy, suggesting that CX3CL1/CX3CR1 signaling supporting microglia is a major player in in the gut–brain axis, and in particular in the gut microbiota-to-neuron communication pathway.
Collapse
Affiliation(s)
- Federica Cordella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Caterina Sanchini
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Maria Rosito
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- Correspondence: (M.R.); (S.D.A.)
| | - Laura Ferrucci
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
| | - Natalia Pediconi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Barbara Cortese
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy;
| | - Francesca Guerrieri
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, 69373 Lyon, France; (F.G.); (G.R.P.)
| | - Giuseppe Rubens Pascucci
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, 69373 Lyon, France; (F.G.); (G.R.P.)
| | - Fabrizio Antonangeli
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | | | - Bernadette Basilico
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
| | - Francesca Pagani
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- National Research Council-Nanotechnology Institute, 00185 Rome, Italy;
| | - Alfonso Grimaldi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University, 00185 Rome, Italy;
- IRCCS Neuromed, Via Atinese 18, 86077 Pozzilli, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University, 00185 Rome, Italy; (F.C.); (C.S.); (L.F.); (B.B.); (G.D.); (D.R.)
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (N.P.); (G.P.); (F.P.); (A.G.)
- Correspondence: (M.R.); (S.D.A.)
| |
Collapse
|
47
|
Ling ZM, Wang Q, Ma Y, Xue P, Gu Y, Cao MH, Wei ZY. Astrocyte Pannexin 1 Suppresses LPS-Induced Inflammatory Responses to Protect Neuronal SH-SY5Y Cells. Front Cell Neurosci 2021; 15:710820. [PMID: 34475813 PMCID: PMC8406772 DOI: 10.3389/fncel.2021.710820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive astrogliosis is a key hallmark of inflammatory responses in the pathogenesis of brain injury, including Parkinson’s disease (PD), but its role and regulatory mechanisms are not fully understood. Pannexin 1 (Panx 1) is a membrane channel that mediates substance release in many neurodegenerative diseases. However, the role of astrocyte Panx 1 in the regulation of PD-like neuroinflammation remains elusive. Here, we characterized the expression of Panx 1 in isolated primary astrocytes and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. The functions of Panx 1 in inflammatory cytokines expression and the viability of neuronal SH-SY5Y cells were examined in cultured cells treated with lipopolysaccharide (LPS) and 1-methyl-4-phenylpyridinium (MPP+). We found that Panx 1 expression was significantly increased under both LPS- and MPP+-treated conditions. Panx 1 downregulation suppressed LPS-induced pro-inflammatory cytokine expression but did not significantly affect MPP+-induced astrocyte apoptosis or inflammatory cytokine expression through treatment with the Panx 1 inhibitor carbenoxolone (CBX) and Panx 1 siRNA. Moreover, silencing Panx 1 in reactive astrocytes had a potentially protective effect on the viability of neuronal SH-SY5Y cells. Therefore, we propose that Panx 1 may serve as a key regulator in reactive astrocytes to intervene in the inflammatory response and maintain neuronal viability in the context of PD-like conditions.
Collapse
Affiliation(s)
- Zhuo-Min Ling
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Peng Xue
- Medical School of Nantong University, Nantong, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mao-Hong Cao
- Medical School of Nantong University, Nantong, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
48
|
Sánchez-Melgar A, Izquierdo-Ramírez PJ, Palomera-Ávalos V, Pallàs M, Albasanz JL, Martín M. High-Fat and Resveratrol Supplemented Diets Modulate Adenosine Receptors in the Cerebral Cortex of C57BL/6J and SAMP8 Mice. Nutrients 2021; 13:nu13093040. [PMID: 34578918 PMCID: PMC8466958 DOI: 10.3390/nu13093040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative disorders are devastating diseases in which aging is a major risk factor. High-fat diet (HFD) seems to contribute to cognition deterioration, but the underlying mechanisms are poorly understood. Moreover, resveratrol (RSV) has been reported to counteract the loss of cognition associated with age. Our study aimed to investigate whether the adenosinergic system and plasma membrane cholesterol are modulated by HFD and RSV in the cerebral cortex of C57BL/6J and SAMP8 mice. Results show that HFD induced increased A1R and A2AR densities in C57BL/6J, whereas this remained unchanged in SAMP8. Higher activity of 5′-Nucleotidase was found as a common effect induced by HFD in both mice strains. Furthermore, the effect of HFD and RSV on A2BR density was different depending on the mouse strain. RSV did not clearly counteract the HFD-induced effects on the adenosinergic system. Besides, no changes in free-cholesterol levels were detected in the plasma membrane of cerebral cortex in both strains. Taken together, our data suggest a different modulation of adenosine receptors depending on the mouse strain, not related to changes in plasma membrane cholesterol content.
Collapse
Affiliation(s)
- Alejandro Sánchez-Melgar
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| | - Pedro José Izquierdo-Ramírez
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| | - Verónica Palomera-Ávalos
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; (V.P.-Á.); (M.P.)
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; (V.P.-Á.); (M.P.)
| | - José Luis Albasanz
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
- Correspondence:
| | - Mairena Martín
- Regional Center of Biomedical Research, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (A.S.-M.); (P.J.I.-R.); (M.M.)
| |
Collapse
|
49
|
How Are Adenosine and Adenosine A 2A Receptors Involved in the Pathophysiology of Amyotrophic Lateral Sclerosis? Biomedicines 2021; 9:biomedicines9081027. [PMID: 34440231 PMCID: PMC8392384 DOI: 10.3390/biomedicines9081027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Adenosine is extensively distributed in the central and peripheral nervous systems, where it plays a key role as a neuromodulator. It has long been implicated in the pathogenesis of progressive neurogenerative disorders such as Parkinson’s disease, and there is now growing interest in its role in amyotrophic lateral sclerosis (ALS). The motor neurons affected in ALS are responsive to adenosine receptor function, and there is accumulating evidence for beneficial effects of adenosine A2A receptor antagonism. In this article, we focus on recent evidence from ALS clinical pathology and animal models that support dynamism of the adenosinergic system (including changes in adenosine levels and receptor changes) in ALS. We review the possible mechanisms of chronic neurodegeneration via the adenosinergic system, potential biomarkers and the acute symptomatic pharmacology, including respiratory motor neuron control, of A2A receptor antagonism to explore the potential of the A2A receptor as target for ALS therapy.
Collapse
|
50
|
Moreira-de-Sá A, Lourenço VS, Canas PM, Cunha RA. Adenosine A 2A Receptors as Biomarkers of Brain Diseases. Front Neurosci 2021; 15:702581. [PMID: 34335174 PMCID: PMC8322233 DOI: 10.3389/fnins.2021.702581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular adenosine is produced with increased metabolic activity or stress, acting as a paracrine signal of cellular effort. Adenosine receptors are most abundant in the brain, where adenosine acts through inhibitory A1 receptors to decrease activity/noise and through facilitatory A2A receptors (A2AR) to promote plastic changes in physiological conditions. By bolstering glutamate excitotoxicity and neuroinflammation, A2AR also contribute to synaptic and neuronal damage, as heralded by the neuroprotection afforded by the genetic or pharmacological blockade of A2AR in animal models of ischemia, traumatic brain injury, convulsions/epilepsy, repeated stress or Alzheimer's or Parkinson's diseases. A2AR overfunction is not only necessary for the expression of brain damage but is actually sufficient to trigger brain dysfunction in the absence of brain insults or other disease triggers. Furthermore, A2AR overfunction seems to be an early event in the demise of brain diseases, which involves an increased formation of ATP-derived adenosine and an up-regulation of A2AR. This prompts the novel hypothesis that the evaluation of A2AR density in afflicted brain circuits may become an important biomarker of susceptibility and evolution of brain diseases once faithful PET ligands are optimized. Additional relevant biomarkers would be measuring the extracellular ATP and/or adenosine levels with selective dyes, to identify stressed regions in the brain. A2AR display several polymorphisms in humans and preliminary studies have associated different A2AR polymorphisms with altered morphofunctional brain endpoints associated with neuropsychiatric diseases. This further prompts the interest in exploiting A2AR polymorphic analysis as an ancillary biomarker of susceptibility/evolution of brain diseases.
Collapse
Affiliation(s)
- Ana Moreira-de-Sá
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Vanessa S Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|