1
|
Semenova SA, Nammi D, Garrett GB, Margolin G, Sinclair JL, Maroofian R, Caldecott KW, Burgess HA. Parp1 deletion rescues cerebellar hypotrophy in xrcc1 mutant zebrafish. Sci Rep 2025; 15:17043. [PMID: 40379758 PMCID: PMC12084314 DOI: 10.1038/s41598-025-01870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 05/08/2025] [Indexed: 05/19/2025] Open
Abstract
Defects in DNA single-strand break repair are associated with neurodevelopmental and neurodegenerative disorders. One such disorder is that resulting from mutations in XRCC1, a scaffold protein that plays a central role in DNA single-strand base repair. XRCC1 is recruited at sites of single-strand breaks by PARP1, a protein that detects and is activated by such breaks and is negatively regulated by XRCC1 to prevent excessive PARP binding and activity. Loss of XRCC1 leads to the toxic accumulation and activity of PARP1 at single-strand breaks leading to base excision repair defects, a mechanism that may underlie pathological changes in patients carrying deleterious XRCC1 mutations. Here, we demonstrate that xrcc1 knockdown impairs development of the cerebellar plate in zebrafish. In contrast, parp1 knockdown alone does not significantly affect neural development, and instead rescues the cerebellar defects observed in xrcc1 mutant larvae. These findings support the notion that PARP1 inhibition may be a viable therapeutic candidate in neurological disorders.
Collapse
Affiliation(s)
- Svetlana A Semenova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Deepthi Nammi
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Grace B Garrett
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Gennady Margolin
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jennifer L Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Gureev AP, Nesterova VV, Sadovnikova IS. Long-range PCR as a tool for evaluating mitochondrial DNA damage: Principles, benefits, and limitations of the technique. DNA Repair (Amst) 2025; 146:103812. [PMID: 39848024 DOI: 10.1016/j.dnarep.2025.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.
Collapse
Affiliation(s)
- Artem P Gureev
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Veronika V Nesterova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Irina S Sadovnikova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
3
|
Sahoo SS, Erlacher M, Wlodarski MW. Genetic and clinical spectrum of SAMD9 and SAMD9L syndromes: from variant interpretation to patient management. Blood 2025; 145:475-485. [PMID: 39475954 PMCID: PMC11826520 DOI: 10.1182/blood.2022017717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/18/2024] [Indexed: 01/31/2025] Open
Abstract
ABSTRACT Sterile alpha motif domain-containing protein 9 (SAMD9) and SAMD9-like (SAMD9L) are paralogous genes encoding antiviral proteins that negatively regulate cell proliferation. Heterozygous germ line gain-of-function (GoF) SAMD9/9L variants cause multisystem syndromes with variable manifestations. The unifying features are cytopenia, immunodeficiency, infections, bone marrow failure, myelodysplasia, and monosomy 7. Nonhematopoietic presentations can affect almost every organ system. Growth impairment and adrenal insufficiency are typical in SAMD9, whereas progressive neurologic deficits characterize SAMD9L. Most patients (>90%) carry germ line missense GoF variants. A subgroup of patients presenting with SAMD9L-associated inflammatory disease carry frameshift-truncating variants that are also GoF. Somatic genetic rescue occurs in two-third of patients or more and involves monosomy 7, which may spontaneously disappear (transient monosomy 7) or progress to myelodysplastic syndrome (MDS)/leukemia, and adaptive clones with somatic SAMD9/9L compensatory mutations or uniparental disomy 7q (UPD7q), both associated with remission. This manuscript examines the clinical and genetic spectrum, therapies, and outcome based on 243 published patients compiled in our registry, with additional genetic information on 62 unpublished cases. We consolidate the diverse clinical manifestations and diagnostic challenges of SAMD9/9L syndromes to enhance recognition and improve patient care. We highlight the knowledge gaps in pathomechanisms and emphasize the importance of genetic surveillance assessing disease remission vs disease progression. Insights are provided into variant curation and the necessity of testing for somatic SAMD9/9L mutations and UPD7q. Multidisciplinary care in specialized centers is critical to manage these complex disorders. Future natural history studies, especially in patients with monosomy 7, will help formulate evidence-based surveillance protocols and optimize transplant timing and outcomes.
Collapse
Affiliation(s)
- Sushree S. Sahoo
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
4
|
Pellerin D, Iruzubieta P, Xu IRL, Danzi MC, Cortese A, Synofzik M, Houlden H, Zuchner S, Brais B. Recent Advances in the Genetics of Ataxias: An Update on Novel Autosomal Dominant Repeat Expansions. Curr Neurol Neurosci Rep 2025; 25:16. [PMID: 39820740 DOI: 10.1007/s11910-024-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE OF REVIEW Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias. This article reviews the recently identified repeat expansion SCAs and describes their molecular basis, epidemiology, and clinical features. RECENT FINDINGS Leveraging advanced bioinformatic tools and long-read sequencing, recent studies have identified novel pathogenic short tandem repeat expansions in FGF14, ZFHX3, and THAP11, associated with SCA27B, SCA4, and SCA51, respectively. SCA27B, caused by an intronic (GAA)•(TTC) repeat expansion, has emerged as one of the most common forms of adult-onset hereditary ataxias, especially in European populations. The coding GGC repeat expansion in ZFHX3 causing SCA4 was identified more than 25 years after the disorder's initial clinical description and appears to be a rare cause of ataxia outside northern Europe. SCA51, caused by a coding CAG repeat expansion, is overall rare and has been described in a small number of patients. The recent identification of three novel pathogenic repeat expansions underscores the importance of this class of genomic variation in the pathogenesis of SCAs. Progress in sequencing technologies holds promise for closing the diagnostic gap in SCAs and guiding the development of therapeutic strategies for ataxia.
Collapse
Affiliation(s)
- David Pellerin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
| | - Pablo Iruzubieta
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Isaac R L Xu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Matt C Danzi
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Matthis Synofzik
- Division of Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
6
|
Garg D, Sharma P, Faruq M, Agarwal A, Garg A, Punith SB, Sidharth S, Srivastava AK. Spinocerebellar ataxia type 49 presenting with ataxia, early onset dystonia, and bradykinesia in an Indian female patient. Parkinsonism Relat Disord 2024; 130:107188. [PMID: 39514912 DOI: 10.1016/j.parkreldis.2024.107188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Divyani Garg
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Pooja Sharma
- Division of Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Mohammed Faruq
- Division of Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India.
| | - Ayush Agarwal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroimaging and Interventional Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - S B Punith
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - S Sidharth
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
7
|
Paucar M, Nilsson D, Engvall M, Laffita-Mesa J, Söderhäll C, Skorpil M, Halldin C, Fazio P, Lagerstedt-Robinson K, Solders G, Angeria M, Varrone A, Risling M, Jiao H, Nennesmo I, Wedell A, Svenningsson P. Spinocerebellar ataxia type 4 is caused by a GGC expansion in the ZFHX3 gene and is associated with prominent dysautonomia and motor neuron signs. J Intern Med 2024; 296:234-248. [PMID: 38973251 DOI: 10.1111/joim.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.
Collapse
Affiliation(s)
- Martin Paucar
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - José Laffita-Mesa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Skorpil
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Fazio
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Göran Solders
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Angeria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hong Jiao
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Inger Nennesmo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Zheng ZH, Cao CY, Cheng B, Yuan RY, Zeng YH, Guo ZB, Qiu YS, Lv WQ, Liang H, Li JL, Zhang WX, Fang MK, Sun YH, Lin W, Hong JM, Gan SR, Wang N, Chen WJ, Du GQ, Fang L. Characteristics of tandem repeat inheritance and sympathetic nerve involvement in GAA-FGF14 ataxia. J Hum Genet 2024; 69:433-440. [PMID: 38866925 DOI: 10.1038/s10038-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.
Collapse
Affiliation(s)
- Ze-Hong Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yan Cao
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Zhang-Bao Guo
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Qi Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Hui Liang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Lan Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei-Xiong Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Min-Kun Fang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Hao Sun
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jing-Mei Hong
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Gan-Qin Du
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Ling Fang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
9
|
Massuyama BK, Gama MTD, Silva TYT, Braga-Neto P, Pedroso JL, Barsottini OGP. Ataxias in Brazil: 17 years of experience in an ataxia center. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38964341 DOI: 10.1055/s-0044-1787800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
BACKGROUND Cerebellar ataxias comprise sporadic and genetic etiologies. Ataxia may also be a presenting feature in hereditary spastic paraplegias (HSPs). OBJECTIVE To report a descriptive analysis of the frequency of different forms of cerebellar ataxia evaluated over 17 years in the Ataxia Unit of Universidade Federal de São Paulo, Brazil. METHODS Charts of patients who were being followed from January 2007 to December 2023 were reviewed. We used descriptive statistics to present our results as frequencies and percentages of the overall analysis. Diagnosed patients were classified according to the following 9 groups: sporadic ataxia, spinocerebellar ataxias (SCAs), other autosomal dominant cerebellar ataxias, autosomal recessive cerebellar ataxias (ARCAs), mitochondrial ataxias, congenital ataxias, X-linked ataxias, HSPs, and others. RESULTS There were 1,332 patients with ataxias or spastic paraplegias. Overall, 744 (55.85%) of all cases were successfully diagnosed: 101 sporadic ataxia, 326 SCAs, 20 of other autosomal dominant cerebellar ataxias, 186 ARCAs, 6 X-linked ataxias, 2 mitochondrial ataxias, 4 congenital ataxias, and 51 HSPs. CONCLUSION This study describes the frequency of cerebellar ataxias in a large group of patients followed for the past 17 years, of whom 55% obtained a definitive clinical or molecular diagnosis. Future demographic surveys in Brazil or Latin American remain necessary.
Collapse
Affiliation(s)
- Breno Kazuo Massuyama
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Disciplina de Neurologia Clínica, Setor de Ataxias, São Paulo SP, Brazil
| | - Maria Thereza Drumond Gama
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Disciplina de Neurologia Clínica, Setor de Ataxias, São Paulo SP, Brazil
| | - Thiago Yoshinaga Tonholo Silva
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Disciplina de Neurologia Clínica, Setor de Ataxias, São Paulo SP, Brazil
| | - Pedro Braga-Neto
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Clínica Médica, Fortaleza CE, Brazil
- Universidade Estadual do Ceará, Centro de Ciências da Saúde, Fortaleza CE, Brazil
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Disciplina de Neurologia Clínica, Setor de Ataxias, São Paulo SP, Brazil
| | - Orlando Graziani Povoas Barsottini
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Disciplina de Neurologia Clínica, Setor de Ataxias, São Paulo SP, Brazil
| |
Collapse
|
10
|
Legrand A, Dahoui C, De La Myre Mory C, Noy K, Guiguettaz L, Versapuech M, Loyer C, Pillon M, Wcislo M, Guéguen L, Berlioz-Torrent C, Cimarelli A, Mateo M, Fiorini F, Ricci EP, Etienne L. SAMD9L acts as an antiviral factor against HIV-1 and primate lentiviruses by restricting viral and cellular translation. PLoS Biol 2024; 22:e3002696. [PMID: 38959200 PMCID: PMC11221667 DOI: 10.1371/journal.pbio.3002696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.
Collapse
Affiliation(s)
- Alexandre Legrand
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Dahoui
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Clément De La Myre Mory
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Kodie Noy
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | - Laura Guiguettaz
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
| | - Margaux Versapuech
- Université Paris Cité, CNRS, Inserm, Institut Cochin, INSERM, CNRS, Paris, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Margaux Pillon
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Mégane Wcislo
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Laurent Guéguen
- Laboratoire de Biologie et Biométrie Évolutive (LBBE), CNRS UMR 5558, UCBL1, Villeurbanne, France
| | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Mathieu Mateo
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
- Unité de Biologie des Infections Virales Émergentes, Institut Pasteur, Lyon, Université Paris Cité, Paris, France
| | - Francesca Fiorini
- Retroviruses and structural biochemistry, Molecular Microbiology and Structural Biochemistry (MMSB), IBCP, CNRS UMR 5086, University of Lyon, Lyon, France
| | - Emiliano P. Ricci
- Laboratoire de Biologie et Modélisation de la Cellule (LBMC), Université de Lyon, INSERM U1293, CNRS UMR 5239, ENS de Lyon, UCBL1, Lyon, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
11
|
Chen R, Zhou C, Peng Y, Huang P, Yu Y, Zhu M, Zhou M, Hong D, Tan D. Whole Exome Sequencing Indicating GGCCTG Hexanucleotide Repeat in Patients with Spinocerebellar Ataxia Type 36. NEURODEGENER DIS 2024; 24:71-79. [PMID: 38934198 DOI: 10.1159/000540006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Spinocerebellar ataxia type 36 (SCA36) is caused by large GGCCTG repeat expansion in the NOP56 gene. The genetic diagnosis based on Southern blot is expensive and time-consuming. This study aimed to evaluate the reliability and effectiveness of whole exome sequencing (WES) for routine genetic diagnosis of suspected SCA36 patients. METHODS Pathogenic repeat expansions for SCAs including SCA36 were first analyzed based on WES data using ExpansionHunter in five probands from SCA families, then the results were confirmed by triplet repeat primed polymerase chain reaction (TP-PCR) and Southern blot. RESULTS GGCCTG repeat expansion in NOP56 was indicated in all five probands by WES, then it was found in 11 SCA patients and three asymptomatic individuals by TP-PCR. The sizes of GGCCTG repeat expansions were confirmed to be 1,390-1,556 by Southern blot. The mean age at onset of the patients was 51.0 ± 9.3 (ranging from 41 to 71), and they presented slowly progressive cerebellar ataxia, atrophy and fasciculation in tongue or limb muscles. CONCLUSION The patients were clinically and genetically diagnosed as SCA36. This study proposed that WES could be a rapid, reliable, and cost-effective routine test for the preliminarily detection of SCA36 and other ataxia diseases.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chao Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun Peng
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanyan Yu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meihong Zhou
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Felício D, Santos M. Spinocerebellar ataxia type 11 (SCA11): TTBK2 variants, functions and associated disease mechanisms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:678-687. [PMID: 36892783 PMCID: PMC10951003 DOI: 10.1007/s12311-023-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare type of autosomal dominant cerebellar ataxia, mainly characterized by progressive cerebellar ataxia, abnormal eye signs and dysarthria. SCA11 is caused by variants in TTBK2, which encodes tau tubulin kinase 2 (TTBK2) protein. Only a few families with SCA11 were described to date, all harbouring small deletions or insertions that result in frameshifts and truncated TTBK2 proteins. In addition, TTBK2 missense variants were also reported but they were either benign or still needed functional validation to ascertain their pathogenic potential in SCA11. The mechanisms behind cerebellar neurodegeneration mediated by TTBK2 pathogenic alleles are not clearly established. There is only one neuropathological report and a few functional studies in cell or animal models published to date. Moreover, it is still unclear whether the disease is caused by TTBK2 haploinsufficiency of by a dominant negative effect of TTBK2 truncated forms on the normal allele. Some studies point to a lack of kinase activity and mislocalization of mutated TTBK2, while others reported a disruption of normal TTBK2 function caused by SCA11 alleles, particularly during ciliogenesis. Although TTBK2 has a proven function in cilia formation, the phenotype caused by heterozygous TTBK2 truncating variants are not clearly typical of ciliopathies. Thus, other cellular mechanisms may explain the phenotype seen in SCA11. Neurotoxicity caused by impaired TTBK2 kinase activity against known neuronal targets, such as tau, TDP-43, neurotransmitter receptors or transporters, may contribute to neurodegeneration in SCA11.
Collapse
Affiliation(s)
- Daniela Felício
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
13
|
Salari M, Etemadifar M, Rashedi R, Mardani S. A Review of Ocular Movement Abnormalities in Hereditary Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:702-721. [PMID: 37000369 DOI: 10.1007/s12311-023-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Cerebellar ataxias are a wide heterogeneous group of disorders that may present with fine motor deficits as well as gait and balance disturbances that have a significant influence on everyday activities. To review the ocular movements in cerebellar ataxias in order to improve the clinical knowledge of cerebellar ataxias and related subtypes. English papers published from January 1990 to May 2022 were selected by searching PubMed services. The main search keywords were ocular motor, oculomotor, eye movement, eye motility, and ocular motility, along with each ataxia subtype. The eligible papers were analyzed for clinical presentation, involved mutations, the underlying pathology, and ocular movement alterations. Forty-three subtypes of spinocerebellar ataxias and a number of autosomal dominant and autosomal recessive ataxias were discussed in terms of pathology, clinical manifestations, involved mutations, and with a focus on the ocular abnormalities. A flowchart has been made using ocular movement manifestations to differentiate different ataxia subtypes. And underlying pathology of each subtype is reviewed in form of illustrated models to reach a better understanding of each disorder.
Collapse
Affiliation(s)
- Mehri Salari
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Etemadifar
- Department of Functional Neurosurgery, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ronak Rashedi
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sayna Mardani
- Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Moraes DBV, Coradine TLC, Silva EVL, Sobreira-Neto MA, Marques W, Gitaí LLG, Tumas V. Genetic Epidemiology and Clinical Characteristics of Patients with Spinocerebellar Ataxias in an Unexplored Brazilian State, Using Strategies for Resource-Limited Settings. CEREBELLUM (LONDON, ENGLAND) 2024; 23:609-619. [PMID: 37454040 DOI: 10.1007/s12311-023-01581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) have a worldwide average prevalence of 2.7 cases per 100,000 individuals, with significant geographic variability. This study aimed to develop resource-limited strategies to detect and characterize the frequency and genetic-clinical profile of SCAs in an unexplored population from Alagoas State, a low Human Development Index state in northeastern Brazil. Active search strategies were employed to identify individuals with a diagnosis or clinical suspicion of SCAs, and a protocol for clinical and molecular evaluation was applied in collaboration with a reference center in Neurogenetics. A total of 73 individuals with SCAs were identified, with a minimum estimated prevalence of 2.17 cases per 100,000 inhabitants. SCA3 was the most common type (75.3%), followed by SCA7 (15.1%), SCA1 (6.8%), and SCA2 (2.7%). Patients with SCA3 subphenotype 2 were the most predominant. Detailed analysis of patients with SCA3 and SCA7 revealed age at onset and clinical features congruent with other studies, with gait disturbance and reduced visual capacity in SCA7 as the main initial manifestations. The study also identified many asymptomatic individuals at risk of developing SCAs. These findings demonstrate that simple and collaborative strategies can enhance the detection capacity of rare diseases such as SCAs in resource-limited settings and that Alagoas State has a minimum estimated prevalence of SCAs similar to the world average.
Collapse
Affiliation(s)
- Débora Beserra Vilar Moraes
- Postgraduate Program, Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Campus Universitário - Rua Bernardino de Campos, 1000 - Centro, Ribeirão Preto, SP, 65470-000, Brazil
| | - Tácio Luis Cavalcante Coradine
- Graduation Course, Faculty of Medicine, Federal University of Alagoas, Campus Universitário, Avenida Lourival Melo Mota S/N, Tabuleiro dos Martins, CEP 57.072-900, Maceió, Alagoas, Brazil
| | - Everton Vieira Lopes Silva
- Graduation Course, Faculty of Medicine, Federal University of Alagoas, Campus Universitário, Avenida Lourival Melo Mota S/N, Tabuleiro dos Martins, CEP 57.072-900, Maceió, Alagoas, Brazil
| | - Manoel Alves Sobreira-Neto
- Division of Neurology, Faculty of Medicine, Federal University of Ceará, Rua Prof. Costa Mendes, 1408 - 4°, Andar, CEP: 60.430-140, Fortaleza, Brazil
| | - Wilson Marques
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Campus Universitário - Rua Bernardino de Campos, 1000 - Centro, Ribeirão Preto, SP, 65470-000, Brazil
| | - Lívia Leite Góes Gitaí
- Division of Neurology, Faculty of Medicine, Federal University of Alagoas, Campus Universitário, Avenida Lourival Melo Mota S/N, Tabuleiro dos Martins, CEP 57.072-900, Maceió, Alagoas, Brazil.
- , Maceió, Brazil.
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Campus Universitário - Rua Bernardino de Campos, 1000 - Centro, Ribeirão Preto, SP, 65470-000, Brazil.
| |
Collapse
|
15
|
Sarasamma S, Karim A, Orengo JP. Zebrafish Models of Rare Neurological Diseases like Spinocerebellar Ataxias (SCAs): Advantages and Limitations. BIOLOGY 2023; 12:1322. [PMID: 37887032 PMCID: PMC10604122 DOI: 10.3390/biology12101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of rare familial neurodegenerative disorders that share the key feature of cerebellar ataxia. Clinical heterogeneity, diverse gene mutations and complex neuropathology pose significant challenges for developing effective disease-modifying therapies in SCAs. Without a deep understanding of the molecular mechanisms involved for each SCA, we cannot succeed in developing targeted therapies. Animal models are our best tool to address these issues and several have been generated to study the pathological conditions of SCAs. Among them, zebrafish (Danio rerio) models are emerging as a powerful tool for in vivo study of SCAs, as well as rapid drug screens. In this review, we will summarize recent progress in using zebrafish to study the pathology of SCAs. We will discuss recent advancements on how zebrafish models can further clarify underlying genetic, neuroanatomical, and behavioral pathogenic mechanisms of disease. We highlight their usefulness in rapid drug discovery and large screens. Finally, we will discuss the advantages and limitations of this in vivo model to develop tailored therapeutic strategies for SCA.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - James P. Orengo
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
17
|
Tan D, Wei C, Chen Z, Huang Y, Deng J, Li J, Liu Y, Bao X, Xu J, Hu Z, Wang S, Fan Y, Jiang Y, Wu Y, Wu Y, Wang S, Liu P, Zhang Y, Yang Z, Jiang Y, Zhang H, Hong D, Zhong N, Jiang H, Xiong H. CAG Repeat Expansion in THAP11 Is Associated with a Novel Spinocerebellar Ataxia. Mov Disord 2023. [PMID: 37148549 DOI: 10.1002/mds.29412] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND More than 50 loci are associated with spinocerebellar ataxia (SCA), and the most frequent subtypes share nucleotide repeats expansion, especially CAG expansion. OBJECTIVE The objective of this study was to confirm a novel SCA subtype caused by CAG expansion. METHODS We performed long-read whole-genome sequencing combined with linkage analysis in a five-generation Chinese family, and the finding was validated in another pedigree. The three-dimensional structure and function of THAP11 mutant protein were predicted. Polyglutamine (polyQ) toxicity of THAP11 gene with CAG expansion was assessed in skin fibroblasts of patients, human embryonic kidney 293 and Neuro-2a cells. RESULTS We identified THAP11 as the novel causative SCA gene with CAG repeats ranging from 45 to 100 in patients with ataxia and from 20 to 38 in healthy control subjects. Among the patients, the number of CAA interruptions within CAG repeats was decreased to 3 (up to 5-6 in controls), whereas the number of 3' pure CAG repeats was up to 32 to 87 (4-16 in controls), suggesting that the toxicity of polyQ protein was length dependent on the pure CAG repeats. Intracellular aggregates were observed in cultured skin fibroblasts from patients. THAP11 polyQ protein was more intensely distributed in the cytoplasm of cultured skin fibroblasts from patients, which was replicated with in vitro cultured neuro-2a transfected with 54 or 100 CAG repeats. CONCLUSIONS This study identified a novel SCA subtype caused by intragenic CAG repeat expansion in THAP11 with intracellular aggregation of THAP11 polyQ protein. Our findings extended the spectrum of polyQ diseases and offered a new perspective in understanding polyQ-mediated toxic aggregation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, P.R. China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, P.R. China
| | | | - Yidan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Jin Xu
- Center of Ultrastructural Pathology, Lab of Electron Microscopy, Peking University First Hospital, Beijing, P.R. China
| | - Zhengmao Hu
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P.R. China
| | - Suxia Wang
- Center of Ultrastructural Pathology, Lab of Electron Microscopy, Peking University First Hospital, Beijing, P.R. China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Yizheng Jiang
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P.R. China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Yuan Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Panyan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| | - Hong Zhang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, P.R. China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, P.R. China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| |
Collapse
|
18
|
Lin CYR, Kuo SH. Ataxias: Hereditary, Acquired, and Reversible Etiologies. Semin Neurol 2023; 43:48-64. [PMID: 36828010 DOI: 10.1055/s-0043-1763511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
A variety of etiologies can cause cerebellar dysfunction, leading to ataxia symptoms. Therefore, the accurate diagnosis of the cause for cerebellar ataxia can be challenging. A step-wise investigation will reveal underlying causes, including nutritional, toxin, immune-mediated, genetic, and degenerative disorders. Recent advances in genetics have identified new genes for both autosomal dominant and autosomal recessive ataxias, and new therapies are on the horizon for targeting specific biological pathways. New diagnostic criteria for degenerative ataxias have been proposed, specifically for multiple system atrophy, which will have a broad impact on the future clinical research in ataxia. In this article, we aim to provide a review focus on symptoms, laboratory testing, neuroimaging, and genetic testing for the diagnosis of cerebellar ataxia causes, with a special emphasis on recent advances. Strategies for the management of cerebellar ataxia is also discussed.
Collapse
Affiliation(s)
- Chi-Ying R Lin
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas.,Department of Neurology, Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, Texas
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.,Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
19
|
Putka AF, Mato JP, McLoughlin HS. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias. Cells 2023; 12:601. [PMID: 36831268 PMCID: PMC9953858 DOI: 10.3390/cells12040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. First, we highlight the function of oligodendrocytes in healthy conditions and how they are disrupted in polyQ SCA patients and diseased model systems. We then cover the role of Schwann cells in peripheral nerve function and repair as well as their possible role in peripheral neuropathy in polyQ SCAs. Finally, we discuss potential polyQ SCA therapeutic interventions in myelinating glial.
Collapse
Affiliation(s)
- Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
20
|
Tamura Y, Sassa T, Nishizawa T, Kihara A. Incomplete Elongation of Ultra-long-chain Polyunsaturated Acyl-CoAs by the Fatty Acid Elongase ELOVL4 in Spinocerebellar Ataxia Type 34. Mol Cell Biol 2023; 43:1-17. [PMID: 36748939 PMCID: PMC9980445 DOI: 10.1080/10985549.2023.2169563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by cerebellar atrophy and ataxia. The SCA subtype SCA34 is caused by specific mutations in the gene ELOVL4, which encodes a fatty acid (FA) elongase that synthesizes ultra-long-chain (ULC; ≥C26) FAs. However, the pathogenesis and molecular mechanism that confers dominant inheritance remains unknown. Here, a cell-based assay demonstrated that each of the five known SCA34 mutants produced shorter ULC polyunsaturated FA-containing phosphatidylcholines (ULC-PCs) than wild-type protein, in the following order of severity: Q180P and T233M > W246G > I171T and L168F. Next, we generated knock-in mouse embryonic stem cells that contained heterozygous Q180P, heterozygous W246G, or homozygous W246G mutations. Neuronal differentiation-dependent production of ULC-PCs was reduced in heterozygous Q180P and homozygous W246G cells relative to control cells, and we observed shortening of the FA moiety in all mutant cells. This FA shortening was consistent with our prediction that amino acid residues substituted by SCA34 mutations are located in the transmembrane helices that interact with the ω-end region of the FA moiety of the substrate acyl-CoA. Hence, reduced levels and shortening of ULC-PCs in neurons may cause SCA34, and incomplete elongation of ULC polyunsaturated acyl-CoAs by mutated ELOVL4 may induce dominant inheritance.
Collapse
Affiliation(s)
- Yuka Tamura
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takumi Nishizawa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Saucier J, Al-Qadi M, Amor MB, Ishikawa K, Chamard-Witkowski L. Spinocerebellar ataxia type 31: A clinical and radiological literature review. J Neurol Sci 2023; 444:120527. [PMID: 36563608 DOI: 10.1016/j.jns.2022.120527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant disease, classified amongst pure cerebellar ataxias (ADCA type 3). While SCA31 is the third most prevalent autosomal dominant ataxia in Japan, it is extremely rare in other countries. A literature review was conducted on PubMed, where we included all case reports and studies describing the clinical presentation of original SCA31 cases. The clinical and radiological features of 374 patients issued from 25 studies were collected. This review revealed that the average age of onset was 59.1 ± 3.3 years, with symptoms of slowly progressing ataxia and dysarthria. Other common clinical features were oculomotor dysfunction (38.8%), dysphagia (22.1%), hypoacousia (23.3%), vibratory hypoesthesia (24.3%), and dysreflexia (41.6%). Unfrequently, abnormal movements (7.4%), extrapyramidal symptoms (4.5%) and cognitive impairment (6.9%) may be observed. Upon radiological examination, clinicians can expect a high prevalence of cerebellar atrophy (78.7%), occasionally accompanied by brainstem (9.1%) and cortical (9.1%) atrophy. Although SCA31 is described as a slowly progressive pure cerebellar syndrome characterized by cerebellar signs such as ataxia, dysarthria and oculomotor dysfunction, this study evaluated a high prevalence of extracerebellar manifestations. Extracerebellar signs were observed in 52.5% of patients, primarily consisting of dysreflexia, vibratory hypoesthesia and hypoacousia. Nonetheless, we must consider the old age and longstanding disease course of patients as a confounding factor for extracerebellar sign development, as some may not be directly attributable to SCA31. Clinicians should consider SCA31 in patients with a hereditary, pure cerebellar syndrome and in patients with extracerebellar signs.
Collapse
Affiliation(s)
- Jacob Saucier
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada..
| | - Mohammad Al-Qadi
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Mouna Ben Amor
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Genetic Medicine, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Kinya Ishikawa
- The Center for Personalized Medecine for Healthy Aging, Tokyo, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, 113-8519 Tokyo, Japan
| | - Ludivine Chamard-Witkowski
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Neurology, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
22
|
Clonal Elimination of the Pathogenic Allele as Diagnostic Pitfall in SAMD9L-Associated Neuropathy. Genes (Basel) 2022; 13:genes13122356. [PMID: 36553623 PMCID: PMC9778166 DOI: 10.3390/genes13122356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Heterozygous gain-of-function variants in SAMD9L are associated with ataxia-pancytopenia syndrome (ATXPC) and monosomy 7 myelodysplasia and leukemia syndrome-1 (M7MLS1). Association with peripheral neuropathy has rarely been described. METHODS Whole-exome sequencing (WES) from DNA extracted from peripheral blood was performed in a 10-year-old female presenting with demyelinating neuropathy, her similarly affected mother and the unaffected maternal grandparents. In addition to evaluation of single nucleotide variants, thorough work-up of copy number and exome-wide variant allele frequency data was performed. RESULTS Combined analysis of the mother's and daughter's duo-exome data and analysis of the mother's and her parents' trio-exome data initially failed to detect a disease-associated variant. More detailed analysis revealed a copy number neutral loss of heterozygosity of 7q in the mother and led to reanalysis of the exome data for respective sequence variants. Here, a previously reported likely pathogenic variant in the SAMD9L gene on chromosome 7q (NM_152703.5:c.2956C>T; p.(Arg986Cys)) was identified that was not detected with standard filter settings because of a low percentage in blood cells (13%). The variant also showed up in the daughter at 32%, a proportion well below the expected 50%, which in each case can be explained by clonal selection processes in the blood due to this SAMD9L variant. CONCLUSION The report highlights the specific pitfalls of molecular genetic analysis of SAMD9L and, furthermore, shows that gain-of-function variants in this gene can lead to a clinical picture associated with the leading symptom of peripheral neuropathy. Due to clonal hematopoietic selection, displacement of the mutant allele occurred, making diagnosis difficult.
Collapse
|
23
|
Correia JS, Duarte-Silva S, Salgado AJ, Maciel P. Cell-based therapeutic strategies for treatment of spinocerebellar ataxias: an update. Neural Regen Res 2022; 18:1203-1212. [PMID: 36453395 PMCID: PMC9838137 DOI: 10.4103/1673-5374.355981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Spinocerebellar ataxias are heritable neurodegenerative diseases caused by a cytosine-adenine-guanine expansion, which encodes a long glutamine tract (polyglutamine) in the respective wild-type protein causing misfolding and protein aggregation. Clinical features of polyglutamine spinocerebellar ataxias include neuronal aggregation, mitochondrial dysfunction, decreased proteasomal activity, and autophagy impairment. Mutant polyglutamine protein aggregates accumulate within neurons and cause neural dysfunction and death in specific regions of the central nervous system. Spinocerebellar ataxias are mostly characterized by progressive ataxia, speech and swallowing problems, loss of coordination and gait deficits. Over the past decade, efforts have been made to ameliorate disease symptoms in patients, yet no cure is available. Previous studies have been proposing the use of stem cells as promising tools for central nervous system tissue regeneration. So far, pre-clinical trials have shown improvement in various models of neurodegenerative diseases following stem cell transplantation, including animal models of spinocerebellar ataxia types 1, 2, and 3. However, contrasting results can be found in the literature, depending on the animal model, cell type, and route of administration used. Nonetheless, clinical trials using cellular implants into degenerated brain regions have already been applied, with the expectation that these cells would be able to differentiate into the specific neuronal subtypes and re-populate these regions, reconstructing the affected neural network. Meanwhile, the question of how feasible it is to continue such treatments remains unanswered, with long-lasting effects being still unknown. To establish the value of these advanced therapeutic tools, it is important to predict the actions of the transplanted cells as well as to understand which cell type can induce the best outcomes for each disease. Further studies are needed to determine the best route of administration, without neglecting the possible risks of repetitive transplantation that these approaches so far appear to demand. Despite the challenges ahead of us, cell-transplantation therapies are reported to have transient but beneficial outcomes in spinocerebellar ataxias, which encourages efforts towards their improvement in the future.
Collapse
Affiliation(s)
- Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s – PT Government Associate Laboratory, Braga, Guimarães, Portugal,Correspondence to: Patrícia Maciel, .
| |
Collapse
|
24
|
Nahalka J. 1-L Transcription in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:3533-3551. [PMID: 36005139 PMCID: PMC9406503 DOI: 10.3390/cimb44080243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease is a very complex disease and better explanations and models are needed to understand how neurons are affected and microglia are activated. A new model of Alzheimer's disease is presented here, the β-amyloid peptide is considered an important RNA recognition/binding peptide. 1-L transcription revealed compatible sequences with AAUAAA (PAS signal) and UUUC (class III ARE rich in U) in the Aβ peptide, supporting the peptide-RNA regulatory model. When a hypothetical model of fibril selection with the prionic character of amyloid assemblies is added to the peptide-RNA regulatory model, the downregulation of the PI3K-Akt pathway and the upregulation of the PLC-IP3 pathway are well explained. The model explains why neurons are less protected from inflammation and why microglia are activated; why mitochondria are destabilized; why the autophagic flux is destabilized; and why the post-transcriptional attenuation of the axonal signal "noise" is interrupted. For example, the model suggests that Aβ peptide may post-transcriptionally control ELAVL2 (ELAV-like RNA binding protein 2) and DCP2 (decapping mRNA protein 2), which are known to regulate RNA processing, transport, and stability.
Collapse
Affiliation(s)
- Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia;
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|