1
|
Alishahi F, Beam CR, Gatz M, Schneider LS, Nation DA, Yassine HN, Kaplan H, Ganesan S, Pappas I, Davis DW, Zandi E. High precision and cost-effective multiplex quantification of amyloid-β40, amyloid-β42, p181Tau, p217Tau, neurofilament light chain, and glial fibrillary acidic protein from plasma and serum. J Alzheimers Dis 2025:13872877251340999. [PMID: 40356374 DOI: 10.1177/13872877251340999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
BackgroundCurrent methods to quantify blood biomarkers for Alzheimer's disease (AD) are expensive and are not widely available.ObjectiveTo develop a low-cost, sensitive, and accurate multiplex assay to quantify Aβ40, Aβ42, p181Tau, p217Tau, NfL, and GFAP biomarkers in plasma and serum based on a widely available technology.MethodsWe used commercial antibodies to Aβ40, Aβ42, p181Tau, p217Tau, NfL, and GFAP, and xMAP Luminex technology, and developed the multiplex 5ADCSI to quantify these biomarkers from plasma and serum. The utility of 5ADCSI was tested in matched cerebrospinal fluid (CSF) and plasma or serum of a cohort of cognitively normal (CN: n = 35), with mild cognitive impairment (MCI: n = 17), and with AD (n = 11) individuals.ResultsThe 5ADCSI demonstrated high specificity and sensitivity, with excellent precision. In clinical samples, moderate to strong correlation is observed between CSF and plasma or serum for Aβ42/40 (r = 0.78), p181Tau/Aβ42 (r = 0.57), p217Tau/Aβ42 (r = 0.72), p181Tau (r = 0.59), p217Tau (r = 0.75), and GFAP (r = 0.59). The AUC of receiver-operator characteristic curve for differentiating CN from AD for plasma/serum and CSF are 0.75, and 0.80 for Aβ42/40, 0.95, 0.91 for p217Tau, 0.76, 0.81 for p181Tau, and 0.73 and 0.78for GFAP, respectively.ConclusionsThe 5ADCSI assay is highly specific, sensitive, and accurate. The wide availability of the base technology of 5ADCSI is an advantage over other similar methods and would allow cost-effective large-scale studies for validation of blood biomarkers for early diagnosis of AD.
Collapse
Affiliation(s)
- Farshad Alishahi
- University of Southern California, Los Angeles, CA, USA
- Department of Molecular Microbiology & Immunology and Norris Cancer Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Christopher R Beam
- University of Southern California, Los Angeles, CA, USA
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Margaret Gatz
- University of Southern California, Los Angeles, CA, USA
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA, USA
| | - Lon S Schneider
- University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, Los Angeles, CA, USA
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel A Nation
- University of Southern California, Los Angeles, CA, USA
- Leonard Davis School of Gerontology, Los Angeles, CA, USA
| | - Hussein N Yassine
- University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, Los Angeles, CA, USA
| | - Hillard Kaplan
- Economic Science Institute, Argyros College of Business and Economics, Chapman University, Orange, CA, USA
| | - Suchita Ganesan
- University of Southern California, Los Angeles, CA, USA
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, USA
| | - Ioannis Pappas
- University of Southern California, Los Angeles, CA, USA
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, USA
| | - Deborah Winders Davis
- Department of Pediatrics, University of Louisville School of Medicine, and Norton Children's Research Institute affiliated with the University of Louisville School of Medicine, Louisville, KY, USA
| | - Ebrahim Zandi
- University of Southern California, Los Angeles, CA, USA
- Department of Molecular Microbiology & Immunology and Norris Cancer Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Becker B, Gobom J, Brinkmalm G, Andreasson U, Meda FJ, Zetterberg H, Blennow K. Novel insights into the molecular nature of neurofilament light polypeptide species in cerebrospinal fluid. Brain Commun 2025; 7:fcaf129. [PMID: 40248348 PMCID: PMC12003950 DOI: 10.1093/braincomms/fcaf129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/11/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
The quantification of neurofilament light polypeptide (NFL) in biofluids is being clinically used to detect and grade general neuronal damage in neurodegenerative diseases and quantify neuronal injury during acute events like traumatic brain injury. Specific assays that target only particular molecular breakdown products of neurofilaments have the potential to distinguish between various pathologies. Nevertheless, the molecular structure of neurofilament light polypeptide in cerebrospinal fluid remains to be elucidated. We characterized neurofilament light polypeptide in cerebrospinal fluid by size-exclusion chromatography, Western blotting and mass spectrometry. Neurofilament light polypeptide in cerebrospinal fluid was found to be composed of aggregates of fragments of the full-length molecule. These aggregates were sensitive to reduction by dithiothreitol and dissociated to monomeric fragments of 6-12 kDa (Western blot), covering most of the coiled-coil domains of neurofilament light polypeptide. Since only cysteine residues can form disulfide bonds, this points to a role of the single cysteine 322 for maintaining the stability of the aggregates. The sequence region covered by the identified fragments ended just a few amino acids C-terminally of the coiled-coil region at a site which had been previously mapped to a calpain cleavage site in the glial fibrillary acidic protein, which is highly homologous to neurofilament light polypeptide in the coiled-coil region. This cleavage site was also confirmed to be present in bovine neurofilament light polypeptide by in vitro digestion of purified neurofilament light polypeptide with calpain-1. The difference of the molecular weights of the reduced and non-reduced forms of neurofilament light polypeptide suggests that neurofilament light polypeptide in CSF consists of disulfide-linked aggregated fragments, most likely tetramers, or alternately dimers in a complex with another binding partner.
Collapse
Affiliation(s)
- Bruno Becker
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Johan Gobom
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
| | - Francisco J Meda
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
- UCL Institute of Neurology, Department of Molecular Neuroscience, University College London, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London NW1 3BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, S-43180 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-43180 Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, FR-75013 Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, PR China
| |
Collapse
|
3
|
Kahn OI, Dominguez SL, Glock C, Hayne M, Vito S, Sengupta Ghosh A, Adrian M, Burgess BL, Meilandt WJ, Friedman BA, Hoogenraad CC. Secreted neurofilament light chain after neuronal damage induces myeloid cell activation and neuroinflammation. Cell Rep 2025; 44:115382. [PMID: 40056413 DOI: 10.1016/j.celrep.2025.115382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/20/2024] [Accepted: 02/11/2025] [Indexed: 03/10/2025] Open
Abstract
Neurofilament light chain (NfL) is a neuron-specific cytoskeletal protein that provides structural support for axons and is released into the extracellular space following neuronal injury. While NfL has been extensively studied as a disease biomarker, the underlying release mechanisms and role in neurodegeneration remain poorly understood. Here, we find that neurons secrete low baseline levels of NfL, while neuronal damage triggers calpain-driven proteolysis and release of fragmented NfL. Secreted NfL activates microglial cells, which can be blocked with anti-NfL antibodies. We utilize in vivo single-cell RNA sequencing to profile brain cells after injection of recombinant NfL into the mouse hippocampus and find robust macrophage and microglial responses. Consistently, NfL knockout mice ameliorate microgliosis and delay symptom onset in the SOD1 mouse model of amyotrophic lateral sclerosis (ALS). Our results show that released NfL can activate myeloid cells in the brain and is, thus, a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga I Kahn
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sara L Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Caspar Glock
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Margaret Hayne
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steve Vito
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Max Adrian
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Braydon L Burgess
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Brad A Friedman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA; Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Casper C Hoogenraad
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Uzgiris AJ, Ladic LA, Pfister SX. Advances in neurofilament light chain analysis. Adv Clin Chem 2025; 126:31-71. [PMID: 40185536 DOI: 10.1016/bs.acc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
This chapter provides a comprehensive summary of clinical laboratory testing for neurofilament light chain (NfL) in neurologic disease. A primer on the NfL structure and function is presented with its potential use as a biomarker. The most widely utilized methods for NfL in biologic samples are highlighted and examined. Limitations of current knowledge are considered, as are outstanding questions related to dissemination and standardization of testing. Herein we focus on methods available today and those in development for clinical use. In the final section, a broad vision is presented of how NfL may be utilized in the future to improve diagnosis and treatment of neurologic diseases as well as for maintaining health.
Collapse
Affiliation(s)
- Arejas J Uzgiris
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States.
| | - Lance A Ladic
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States
| | - Sophia X Pfister
- Siemens Healthcare Diagnostics Inc., Tarrytown, NY, United States
| |
Collapse
|
5
|
Petzold A. Proteolysis-Based Biomarker Repertoire of the Neurofilament Proteome. J Neurochem 2025; 169:e70023. [PMID: 40066701 PMCID: PMC11894590 DOI: 10.1111/jnc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/15/2025]
Abstract
Neurodegeneration presents a significant challenge in ageing populations, often being detected too late for effective intervention. Biomarkers have shown great potential in addressing this issue, with neurofilament (Nf) proteins emerging as validated biomarkers presently transitioning from research to routine laboratory use. Whilst advances in large-scale quantitative analyses have enabled the targeted study of proteolytic Nf fragments in blood, the complete landscape of the Nf proteolytic breakdown remains unknown. This study presents a comprehensive atlas of the human Nf isoform (Z) degradome, based on the number of known cleavage sites (x). The full scale of the Nf degradome is described by the formula: Z = ((x + 1) × (x + 2)/2) - 1. The resulting neurofilament degradome atlas (NDA) was validated through a triple-layer approach using in vitro data (open access at: https://doi.org/10.5522/04/25689378.v1). The NDA offers valuable applications in biomarker detection, targeted antibody development, exploration of autoimmunity and understanding Nf aggregate formation. Analysis of the Nf degradome reveals novel insights into neurodegenerative diseases by investigating peptide pools affected by genetic mutations in the Nf genome and alterations in proteolytic pathways. The annotated NDA is publicly available as a database resource, supporting advancements in affinity-based biomarker tests through informed peptide selection and minimising biases in label-free approaches. In conclusion, this study highlights the biological significance of a dynamic pool of coexisting proteolytic Nf peptides, providing a framework that can be applied to other proteins.
Collapse
Affiliation(s)
- Axel Petzold
- Queen Square Institute of Neurology, UCL and The National Hospital for Neurology and NeurosurgeryLondonUK
| |
Collapse
|
6
|
Li H, Yang D, Liu S, Zhu Z, Shi M, Xu T, Chen J, Zhang Y, He J, Zhong C, Bu X. Effects of early antihypertensive treatment on cognitive function in patients with acute ischemic stroke with different neurofilament light chain levels. J Stroke Cerebrovasc Dis 2025; 34:108206. [PMID: 39708937 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND It is unclear whether the extent of neuroaxonal damage, as measured by circulating levels of neurofilament light chain (NfL), would modify the effects of early antihypertensive therapy on cognitive performance following stroke. This study aimed to investigate the effects of early blood pressure reduction on the risk of post-stroke cognitive impairment (PSCI) among patients with different plasma NfL levels. METHODS A total of 622 eligible patients from a pre-planned ancillary study of CATIS (China Antihypertensive Trial in Acute Ischemic Stroke) were included in this study. The electrochemiluminescence immunoassay technique was used to evaluate Plasma NfL levels at baseline, and the Mini-Mental State Examination (MMSE) in Chinese was used to assess cognition at the 3-month follow-up. An MMSE score of less than 27 was considered as PSCI. RESULTS The effect of antihypertensive therapy on PSCI differed according to NfL levels at the 3-month follow-up. In the low NfL group, compared with the control group, antihypertensive treatment reduced the risk of PSCI [adjusted odds ratio (OR), 95 % confidence interval (CI): 0.50 (0.31-0.81)]. However, in the high NfL group, antihypertensive treatment increased the risk of PSCI compared with the control group [adjusted OR, 95 % CI: 1.93 (1.16-3.20)]. CONCLUSIONS Antihypertensive therapy in the acute phase reduced the risk of PSCI in patients with low plasma NfL levels, but increased the risk in patients with high NfL levels.
Collapse
Affiliation(s)
- Hong Li
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Deyu Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shudong Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, PR China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, PR China
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, PR China
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, PR China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, PR China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
7
|
Bamford AR, Parkin GM, Corey-Bloom J, Thomas EA. Comparisons of neurodegenerative disease biomarkers across different biological fluids from patients with Huntington's disease. J Neurol 2025; 272:158. [PMID: 39849121 PMCID: PMC11759467 DOI: 10.1007/s00415-024-12785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 01/25/2025]
Abstract
Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays. In addition, salivary levels of NfL, t-tau, and GFAP were quantified from a larger cohort (n = 95). We found both positive and negative correlations in the levels of these biomarkers among different biofluids. Most notably, in contrast to the significant positive correlations observed between CSF and plasma levels for NfL and GFAP, we detected significant negative correlations between the CSF and saliva levels of NfL and GFAP. With regard to clinical measures, both plasma and CSF levels of NfL were significantly positively correlated with Total Motor Score and chorea, whereas saliva levels of NfL showed significant correlations in the opposite direction. Additional correlations between salivary biomarkers with clinical data, adjusting for age, sex and CAG repeat length, confirmed that salivary NfL was significantly negatively associated with chorea scores in manifest HD, but not premanifest (PM), individuals. In contrast, salivary t-tau was positively associated with measures of cognition in PM participants. These findings suggest that salivary levels of NfL and t-tau proteins may exemplify non-invasive biomarkers for disease symptoms at different stages of illness. Further, these findings highlight the notion that different forms of disease proteins exist in different biological fluids.
Collapse
Affiliation(s)
- Alison R Bamford
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
| | - Georgia M Parkin
- Phoenix Australia - Centre for Posttraumatic Mental Health, Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Jody Corey-Bloom
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Elizabeth A Thomas
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA.
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Mondésert E, Schraen-Maschke S, Quadrio I, Bousiges O, Bouvier D, Delaby C, Bedel A, Lehmann S, Fourier A. A French multicenter analytical evaluation of the automated Lumipulse G sNfL blood assay (Fujirebio®) and its comparison to four other immunoassays for serum neurofilament light chain assessment in clinical settings. Clin Chim Acta 2025; 565:120007. [PMID: 39454987 DOI: 10.1016/j.cca.2024.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVES Measurement of serum neurofilament light chain (sNfL) protein is becoming a key biomarker for many neurological diseases. Several immunoassays have been developed to meet these clinical needs, revealing significant differences in terms of variability and results. Here, we propose a French multicenter comparison of 5 sNfL assays. METHODS 6 replicates of 3 pools with low (10 pg/mL), medium (30 pg/mL) and high (100 pg/mL) sNfL values and one replicate of 12 samples with growing sNfL values were analyzed by six independent French clinical laboratories. The analytical performances of the sNfL blood assay (Fujirebio®) on Lumipulse G were first evaluated then compared to four other immunoassays: NF-light V2 (Quanterix®) on SiMOA HD-X, Human NF-L (Biotechne®) on Ella, R-Plex Human Neurofilament L (MSD®) on Sector 2400; manual ELISA test using Uman Diagnostic/Quanterix®. RESULTS Inter-center comparison of the Lumipulse blood assay revealed limited but significant differences in the mean sNfL values across low, medium, and high pools between each city (p < 0.001) and between the two different batches used. Coefficients of variation of pools ranged from 2.0 to 16.9 %. Z-score of sNfL results of the 12 samples ranged from -1.70 to +1.71. Inter-technique comparison showed a systematic difference of sNfL values, with a overestimation of MSD and Ella over other tests. Nonetheless, results were all significantly correlated (p < 0.001). CONCLUSION The automated Lumipulse assay produced comparable sNfL values across laboratories; but further adjustments are needed to harmonize sNfL results. Biologists and physicians should be aware of the variability in results between different immunoassay suppliers.
Collapse
Affiliation(s)
- Etienne Mondésert
- Laboratoire de Biochimie Protéomique Clinique (LBPC), Université de Montpellier, CHU de Montpellier, Institut des Neurosciences de Montpellier (INM), INSERM, Montpellier, France; Département de Biochimie, Université de Montpellier, CHU de Montpellier, Montpellier, France.
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Isabelle Quadrio
- Biochimie et Biologie Moléculaire-LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France; Equipe BIORAN, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Bron, France
| | - Olivier Bousiges
- Laboratoire de biochimie et biologie moléculaire (LBBM), Pôle de biologie Hôpital de Hautepierre-CHU de Strasbourg, CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France
| | - Damien Bouvier
- Service de Biochimie et Génétique Moléculaire, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Constance Delaby
- Laboratoire de Biochimie Protéomique Clinique (LBPC), Université de Montpellier, CHU de Montpellier, Institut des Neurosciences de Montpellier (INM), INSERM, Montpellier, France; Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aurélie Bedel
- Université de Bordeaux, INSERM BRIC U1312, Eq 8 BioGO, France; Service de Biochimie, CHU Bordeaux, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique (LBPC), Université de Montpellier, CHU de Montpellier, Institut des Neurosciences de Montpellier (INM), INSERM, Montpellier, France
| | - Anthony Fourier
- Biochimie et Biologie Moléculaire-LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France; Equipe BIORAN, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Bron, France
| |
Collapse
|
9
|
Coppens S, Gogishvili D, Faustinelli V, Scollo E, Hopley C, Abeln S, Dalby P, Goenaga-Infante H, Luckau L, Vialaret J, Lehmann S, Hirtz C, Illes-Toth E. Neurofilament Light Chain under the Lens of Structural Mass Spectrometry. ACS Chem Neurosci 2025; 16:141-151. [PMID: 39746934 PMCID: PMC11740998 DOI: 10.1021/acschemneuro.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Neurofilament light chain (NfL) is an early nonspecific biomarker in neurodegenerative diseases and traumatic brain injury, indicating axonal damage. This work describes the detailed structural characterization of a selected primary calibrator with the potential to be used in future reference measurement procedure (RMP) development for the accurate quantification of NfL. As a part of the described workflow, the sequence, higher-order structure as well as solvent accessibility, and hydrogen-bonding profile were assessed under three different conditions in KPBS, artificial cerebrospinal fluid, and artificial cerebrospinal fluid in the presence of human serum albumin. The results revealed that NfL is a structurally heterogeneous protein, eliciting a large conformational flexibility. Its structural ensemble changed when it was diluted with an aqueous buffer versus a surrogate matrix, artificial cerebrospinal fluid (aCSF), and/or aCSF with human serum albumin. Various regions of protection and deprotection in the protein head, central helical, and tail domains that experienced altered solvent accessibility and conformational changes caused by different solvent conditions were identified. Moreover, interfacial residues, which may play a role in a potential direct interaction between NfL and human serum albumin, emerged from hydrogen-deuterium exchange mass spectrometry (HDX-MS). These data pinpointed distinct regions of the protein that may participate in such an interaction. Overall, critical quality attributes of a potential primary calibrator for NfL measurements are provided. These findings will ultimately inform ongoing biochemical and clinical assay development procedures and manufacturing practices, giving careful consideration during sample handling and method development.
Collapse
Affiliation(s)
- Salomé Coppens
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Dea Gogishvili
- Bioinformatics,
Computer Science Department, Vrije Universiteit
Amsterdam, Amsterdam 1081 HV, Netherlands
- AI
Technology for Life, Department of Computing and Information Sciences,
Biology Department, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Valentina Faustinelli
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
- Department
of Biochemical Engineering, University College
London, Bernard Katz Building, Gower Street, WC1E 6BT London, U.K.
| | - Emanuele Scollo
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| | - Christopher Hopley
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| | - Sanne Abeln
- Bioinformatics,
Computer Science Department, Vrije Universiteit
Amsterdam, Amsterdam 1081 HV, Netherlands
| | - Paul Dalby
- Department
of Biochemical Engineering, University College
London, Bernard Katz Building, Gower Street, WC1E 6BT London, U.K.
| | | | - Luise Luckau
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| | - Jérôme Vialaret
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Sylvain Lehmann
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Christophe Hirtz
- PPC,
IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier 34295, France
| | - Eva Illes-Toth
- National
Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
| |
Collapse
|
10
|
Frick EA, Emilsson V, Jonmundsson T, Steindorsdottir AE, Johnson ECB, Puerta R, Dammer EB, Shantaraman A, Cano A, Boada M, Valero S, García-González P, Gudmundsson EF, Gudjonsson A, Pitts R, Qiu X, Finkel N, Loureiro JJ, Orth AP, Seyfried NT, Levey AI, Ruiz A, Aspelund T, Jennings LL, Launer LJ, Gudmundsdottir V, Gudnason V. Serum proteomics reveal APOE-ε4-dependent and APOE-ε4-independent protein signatures in Alzheimer's disease. NATURE AGING 2024; 4:1446-1464. [PMID: 39169269 PMCID: PMC11485263 DOI: 10.1038/s43587-024-00693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
A deeper understanding of the molecular processes underlying late-onset Alzheimer's disease (LOAD) could aid in biomarker and drug target discovery. Using high-throughput serum proteomics in the prospective population-based Age, Gene/Environment Susceptibility-Reykjavik Study (AGES) cohort of 5,127 older Icelandic adults (mean age, 76.6 ± 5.6 years), we identified 303 proteins associated with incident LOAD over a median follow-up of 12.8 years. Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status, were implicated in neuronal processes and overlapped with LOAD protein signatures in brain and cerebrospinal fluid. We identified 17 proteins whose associations with LOAD were strongly dependent on APOE-ε4 carrier status, with mostly consistent associations in cerebrospinal fluid. Remarkably, four of these proteins (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated due to LOAD, a finding replicated in external cohorts and possibly reflecting a response to disease onset. These findings highlight dysregulated pathways at the preclinical stages of LOAD, including those both independent of and dependent on APOE-ε4 status.
Collapse
Affiliation(s)
| | - Valur Emilsson
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | - Erik C B Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Raquel Puerta
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
| | - Eric B Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Anantharaman Shantaraman
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Cano
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Agustin Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Thor Aspelund
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - Valborg Gudmundsdottir
- Icelandic Heart Association, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
11
|
Chen CH, Liang HH, Wang CC, Yang YT, Lin YH, Chen YL. Unlocking early detection of Alzheimer's disease: The emerging role of nanomaterial-based optical sensors. J Food Drug Anal 2024; 32:296-324. [PMID: 39636776 PMCID: PMC11464041 DOI: 10.38212/2224-6614.3520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder that affects millions of individuals worldwide. Researchers have conducted numerous studies to find accurate biomarkers for early AD diagnosis and develop more effective treatments. The main pathological hallmarks of AD are amyloid beta and Tau proteins. Other biomarkers, such as DNA, RNA, and proteins, can also be helpful in early AD diagnosis. To diagnose and treat AD promptly, it is essential to accurately measure the concentration of biomarkers in the cerebrospinal fluid or blood. However, due to the low concentrations of these biomarkers in the body, highly sensitive analytical techniques are required. To date, sensors have become increasingly important due to their high sensitivity, swift detection, and adaptable manipulation features. These qualities make them an excellent substitute for conventional instruments. Nanomaterials are commonly employed in sensors to amplify signals and improve sensitivity. This review paper summarized the integration of nanomaterials in optical sensor systems, including colorimetric, fluorescent, and surface-enhanced Raman scattering sensors for AD biomarkers detection.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| | - Hsin-Hua Liang
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378,
Taiwan
| | - Yi-Ting Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| |
Collapse
|
12
|
Melendez J, Sung YJ, Orr M, Yoo A, Schindler S, Cruchaga C, Bateman R. An interpretable machine learning-based cerebrospinal fluid proteomics clock for predicting age reveals novel insights into brain aging. Aging Cell 2024; 23:e14230. [PMID: 38923730 PMCID: PMC11488306 DOI: 10.1111/acel.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Machine learning can be used to create "biologic clocks" that predict age. However, organs, tissues, and biofluids may age at different rates from the organism as a whole. We sought to understand how cerebrospinal fluid (CSF) changes with age to inform the development of brain aging-related disease mechanisms and identify potential anti-aging therapeutic targets. Several epigenetic clocks exist based on plasma and neuronal tissues; however, plasma may not reflect brain aging specifically and tissue-based clocks require samples that are difficult to obtain from living participants. To address these problems, we developed a machine learning clock that uses CSF proteomics to predict the chronological age of individuals with a 0.79 Pearson correlation and mean estimated error (MAE) of 4.30 years in our validation cohort. Additionally, we analyzed proteins highly weighted by the algorithm to gain insights into changes in CSF and uncover novel insights into brain aging. We also demonstrate a novel method to create a minimal protein clock that uses just 109 protein features from the original clock to achieve a similar accuracy (0.75 correlation, MAE 5.41). Finally, we demonstrate that our clock identifies novel proteins that are highly predictive of age in interactions with other proteins, but do not directly correlate with chronological age themselves. In conclusion, we propose that our CSF protein aging clock can identify novel proteins that influence the rate of aging of the central nervous system (CNS), in a manner that would not be identifiable by examining their individual relationships with age.
Collapse
Affiliation(s)
- Justin Melendez
- Tracy Family SILQ CenterWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
- Department of BiostatisticsWashington University in St. LouisSt. LouisMissouriUSA
| | - Miranda Orr
- Department of Internal MedicineWake Forest School of Medicine Section of Gerontology and Geriatric Medicine Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Andrew Yoo
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Suzanne Schindler
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Randall Bateman
- Tracy Family SILQ CenterWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
13
|
Coulton JB, He Y, Barthélemy NR, Jiang H, Holtzman DM, Bateman RJ. Multi-peptide characterization of plasma neurofilament light chain in preclinical and mild Alzheimer's disease. Brain Commun 2024; 6:fcae247. [PMID: 39165480 PMCID: PMC11334934 DOI: 10.1093/braincomms/fcae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Although neurofilament light chain is a well-known marker of neuronal damage, its characterization at the proteoform level is underdeveloped. Here, we describe a new method to profile and quantify neurofilament light chain in plasma at the peptide level, using three in-house monoclonal antibodies targeting distinct protein domains and nano-liquid chromatography coupled to high-resolution tandem mass spectrometry. This study profiled and compared plasma neurofilament light chain to CSF in 102 older individuals (73.9 ± 6.3 years old), 37 of which had a clinical dementia rating greater than 0. We observed elevated neurofilament light chain in preclinical Alzheimer's disease plasma for two measures (NfL101 and NfL324) and CSF for seven measures (NfL92, NfL101, NfL117, NfL137, NfL148, NfL165 and NfL530). We found five plasma peptides (NfL92, NfL101, NfL117, NfL324 and NfL530) significantly associated with age and two (NfL148 and NfL324) with body mass index.
Collapse
Affiliation(s)
- John B Coulton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Azcue N, Tijero-Merino B, Acera M, Pérez-Garay R, Fernández-Valle T, Ayo-Mentxakatorre N, Ruiz-López M, Lafuente JV, Gómez Esteban JC, Del Pino R. Plasma Neurofilament Light Chain: A Potential Biomarker for Neurological Dysfunction in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomedicines 2024; 12:1539. [PMID: 39062112 PMCID: PMC11274366 DOI: 10.3390/biomedicines12071539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disorder characterized by heterogeneous symptoms, which lack specific biomarkers for its diagnosis. This study aimed to investigate plasma neurofilament light chain (NfL) levels as a potential biomarker for ME/CFS and explore associations with cognitive, autonomic, and neuropathic symptoms. Here, 67 ME/CFS patients and 43 healthy controls (HCs) underwent comprehensive assessments, including neuropsychological evaluation, autonomic nervous system (ANS) testing, and plasma NfL level analysis. ME/CFS patients exhibited significantly higher plasma NfL levels compared to HC (F = 4.30, p < 0.05). Correlations were observed between NfL levels and cognitive impairment, particularly in visuospatial perception (r = -0.42; p ≤ 0.001), verbal memory (r = -0.35, p ≤ 0.005), and visual memory (r = -0.26; p < 0.05) in ME/CFS. Additionally, higher NfL levels were associated with worsened autonomic dysfunction in these patients, specifically in parasympathetic function (F = 9.48, p ≤ 0.003). In ME/CFS patients, NfL levels explained up to 17.2% of the results in cognitive tests. Unlike ME/CFS, in HC, NfL levels did not predict cognitive performance. Elevated plasma NfL levels in ME/CFS patients reflect neuroaxonal damage, contributing to cognitive dysfunction and autonomic impairment. These findings support the potential role of NfL as a biomarker for neurological dysfunction in ME/CFS. Further research is warranted to elucidate underlying mechanisms and clinical implications.
Collapse
Affiliation(s)
- Naiara Azcue
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
| | - Beatriz Tijero-Merino
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
- Department of Neurology, Cruces University Hospital-OSAKIDETZA, 48903 Barakaldo, Spain
- CIBERNED-CIBER, Institute Carlos III, 28029 Madrid, Spain
| | - Marian Acera
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
| | - Raquel Pérez-Garay
- Clinical Analysis Service, Cruces University Hospital, 48903 Barakaldo, Spain;
| | - Tamara Fernández-Valle
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
- Department of Neurology, Cruces University Hospital-OSAKIDETZA, 48903 Barakaldo, Spain
| | - Naia Ayo-Mentxakatorre
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
| | - Marta Ruiz-López
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
- Department of Neurology, Cruces University Hospital-OSAKIDETZA, 48903 Barakaldo, Spain
| | - Jose Vicente Lafuente
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Juan Carlos Gómez Esteban
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
- Department of Neurology, Cruces University Hospital-OSAKIDETZA, 48903 Barakaldo, Spain
- CIBERNED-CIBER, Institute Carlos III, 28029 Madrid, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
| | - Rocio Del Pino
- Neurodegenerative Diseases Group, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain; (N.A.); (B.T.-M.); (M.A.); (T.F.-V.); (N.A.-M.); (M.R.-L.)
| |
Collapse
|
15
|
Mousele C, Holden D, Gnanapavan S. Neurofilaments in neurologic disease. Adv Clin Chem 2024; 123:65-128. [PMID: 39181624 DOI: 10.1016/bs.acc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.
Collapse
|
16
|
Machacek M, Garcia-Montoya E, McColgan P, Sanwald-Ducray P, Mazer NA. NfL concentration in CSF is a quantitative marker of the rate of neurodegeneration in aging and Huntington's disease: a semi-mechanistic model-based analysis. Front Neurosci 2024; 18:1420198. [PMID: 39022122 PMCID: PMC11253127 DOI: 10.3389/fnins.2024.1420198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The concentrations of neurofilament light chain (NfL) in cerebrospinal fluid (CSF) and plasma have become key biomarkers of many neurodegenerative diseases, including Huntington's Disease (HD). However, the relationship between the dynamics of NfL concentrations in CSF and the time-course of neurodegeneration (whole brain atrophy) has not yet been described in a quantitative and mechanistic manner. Here, we present a novel semi-mechanistic model, which postulates that the amount of NfL entering the CSF corresponds to the amount of NfL released from damaged neurons, whose degeneration results in a decrease in brain volume. In mathematical terms, the model expresses the NfL concentration in CSF in terms of the NfL concentration in brain tissue, the rate of change of whole brain volume and the CSF flow rate. To test our model, we used a non-linear mixed effects approach to analyze NfL and brain volume data from the HD-CSF study, a 24-month prospective study of individuals with premanifest HD, manifest HD and healthy controls. The time-course of whole brain volume, obtained from MRI, was represented empirically by a 2nd order polynomial, from which its rate of change was computed. CSF flow rates in healthy and HD populations were taken from recent literature data. By estimating the NfL concentration in brain tissue, the model successfully described the time-course of the NfL concentration in CSF in both HD subjects and healthy controls. Furthermore, the model-derived estimate of NfL concentration in brain agreed well with recent direct experimental measurements. The consistency of our model with the NfL and brain volume data suggests that the NfL concentration in CSF reflects the rate, rather than the extent, of neurodegeneration and that the increase in NfL concentration over time is a measure of the accelerating rate of neurodegeneration associated with aging and HD. For HD subjects, the degree of acceleration was found to increase markedly with the number of CAG repeats on their HTT gene. The application of our semi-mechanistic NfL model to other neurodegenerative diseases is discussed.
Collapse
Affiliation(s)
| | | | - Peter McColgan
- Roche Products Limited, Welwyn Garden City, United Kingdom
| | - Patricia Sanwald-Ducray
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Norman Alan Mazer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- NAM Consulting, Pfeffingen, Switzerland
| |
Collapse
|
17
|
Bayoumy S, Verberk IMW, Vermunt L, Willemse E, den Dulk B, van der Ploeg AT, Pajkrt D, Nitz E, van den Hout JMP, van der Post J, Wolf NI, Beerepoot S, Groen EJN, Tüngler V, Teunissen CE. Neurofilament light protein as a biomarker for spinal muscular atrophy: a review and reference ranges. Clin Chem Lab Med 2024; 62:1252-1265. [PMID: 38215341 DOI: 10.1515/cclm-2023-1311] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality, characterized by progressive neuromuscular degeneration resulting from mutations in the survival motor neuron (SMN1) gene. The availability of disease-modifying therapies for SMA therapies highlights the pressing need for easily accessible and cost-effective blood biomarkers to monitor treatment response and for better disease management. Additionally, the wide implementation of newborn genetic screening programs in Western countries enables presymptomatic diagnosis of SMA and immediate treatment administration. However, the absence of monitoring and prognostic blood biomarkers for neurodegeneration in SMA hinders effective disease management. Neurofilament light protein (NfL) is a promising biomarker of neuroaxonal damage in SMA and reflects disease progression in children with SMA undergoing treatment. Recently, the European Medicines Agency issued a letter of support endorsing the potential utilization of NfL as a biomarker of pediatric neurological diseases, including SMA. Within this review, we comprehensively assess the potential applications of NfL as a monitoring biomarker for disease severity and treatment response in pediatric-onset SMA. We provide reference ranges for normal levels of serum based NfL in neurologically healthy children aged 0-18 years. These reference ranges enable accurate interpretation of NfL levels in children and can accelerate the implementation of NfL into clinical practice.
Collapse
Affiliation(s)
- Sherif Bayoumy
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eline Willemse
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ben den Dulk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dasja Pajkrt
- Organovir Labs, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Nitz
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
| | - Johanna M P van den Hout
- Center for Lysosomal and Metabolic Diseases, Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Julie van der Post
- Organovir Labs, Department of Pediatric Infectious Diseases, Amsterdam University Medical Centers Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Victoria Tüngler
- Department of Neuropediatrics, Medizinische Fakultät, Technische Universität Dresden, Dresden, Germany
- University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Demos-Davies K, Lawrence J, Coffey J, Morgan A, Ferreira C, Hoeppner LH, Seelig D. Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice. Int J Mol Sci 2024; 25:5731. [PMID: 38891920 PMCID: PMC11171684 DOI: 10.3390/ijms25115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a consequence of chemotherapy and extracranial radiation therapy (ECRT). Our prior work demonstrated gliosis in the brain following ECRT in SKH1 mice. The signals that induce gliosis were unclear. Right hindlimb skin from SKH1 mice was treated with 20 Gy or 30 Gy to induce subclinical or clinical dermatitis, respectively. Mice were euthanized at 6 h, 24 h, 5 days, 12 days, and 25 days post irradiation, and the brain, thoracic spinal cord, and skin were collected. The brains were harvested for spatial proteomics, immunohistochemistry, Nanostring nCounter® glial profiling, and neuroinflammation gene panels. The thoracic spinal cords were evaluated by immunohistochemistry. Radiation injury to the skin was evaluated by histology. The genes associated with neurotransmission, glial cell activation, innate immune signaling, cell signal transduction, and cancer were differentially expressed in the brains from mice treated with ECRT compared to the controls. Dose-dependent increases in neuroinflammatory-associated and neurodegenerative-disease-associated proteins were measured in the brains from ECRT-treated mice. Histologic changes in the ECRT-treated mice included acute dermatitis within the irradiated skin of the hindlimb and astrocyte activation within the thoracic spinal cord. Collectively, these findings highlight indirect neuronal transmission and glial cell activation in the pathogenesis of ECRT-related CRCI, providing possible signaling pathways for mitigation strategies.
Collapse
Affiliation(s)
- Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Jessica Coffey
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Amy Morgan
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
| | - Clara Ferreira
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Luke H. Hoeppner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912, USA
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN 55108, USA; (J.L.); (J.C.); (A.M.); (D.S.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
19
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
20
|
Ding EA, Kumar S. Neurofilament Biophysics: From Structure to Biomechanics. Mol Biol Cell 2024; 35:re1. [PMID: 38598299 PMCID: PMC11151108 DOI: 10.1091/mbc.e23-11-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.
Collapse
Affiliation(s)
- Erika A. Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
21
|
Leckey CA, Coulton JB, Giovannucci TA, He Y, Aslanyan A, Laban R, Heslegrave A, Doykov I, Ammoscato F, Chataway J, De Angelis F, Gnanapavan S, Byrne LM, Schott JM, Wild EJ, Barthelémy NR, Zetterberg H, Wray S, Bateman RJ, Mills K, Paterson RW. CSF neurofilament light chain profiling and quantitation in neurological diseases. Brain Commun 2024; 6:fcae132. [PMID: 38707707 PMCID: PMC11069115 DOI: 10.1093/braincomms/fcae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.
Collapse
Affiliation(s)
- Claire A Leckey
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Translational Mass Spectrometry Research Group, UCL Great Ormond Street Hospital Institute of Child Health, University College London, London, WC1N 1EH, UK
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
| | - John B Coulton
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Tatiana A Giovannucci
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Yingxin He
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Aram Aslanyan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Rhiannon Laban
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Ivan Doykov
- Translational Mass Spectrometry Research Group, UCL Great Ormond Street Hospital Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Francesca Ammoscato
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Blizard Institute, Centre for Neuroscience, London, E1 2AT, UK
| | - Jeremy Chataway
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
- National Institute for Health and Care Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
| | - Floriana De Angelis
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
- National Institute for Health and Care Research, University College London Hospitals, Biomedical Research Centre, London, W1T 7DN, UK
| | | | - Lauren M Byrne
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Edward J Wild
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicolas R Barthelémy
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 43180, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43180, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI53792, USA
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Tracy Family SILQ Center, Washington University School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Great Ormond Street Hospital Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, University College London, London, WC1E 6BT, UK
- Department of Neurology, Darent Valley Hospital, Dartford, Kent, DA2 8DA, UK
| |
Collapse
|
22
|
Gobom J, Brinkmalm A, Brinkmalm G, Blennow K, Zetterberg H. Alzheimer's Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol Cell Proteomics 2024; 23:100721. [PMID: 38246483 PMCID: PMC10926085 DOI: 10.1016/j.mcpro.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
23
|
Phillips CL, Faridounnia M, Armao D, Snider NT. Stability dynamics of neurofilament and GFAP networks and protein fragments. Curr Opin Cell Biol 2023; 85:102266. [PMID: 37866019 PMCID: PMC11402464 DOI: 10.1016/j.ceb.2023.102266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023]
Abstract
Neurofilaments (NFs) and GFAP are cytoskeletal intermediate filaments (IFs) that support cellular processes unfolding within the uniquely complex environments of neurons and astrocytes, respectively. This review highlights emerging concepts on the transitions between stable and destabilized IF networks in the nervous system. While self-association between transiently structured low-complexity IF domains promotes filament assembly, the opposing destabilizing actions of phosphorylation-mediated filament severing facilitate faster intracellular transport. Cellular proteases, including caspases and calpains, produce a variety of IF fragments, which may interact with N-degron and C-degron pathways of the protein degradation machinery. The rapid adoption of NF and GFAP-based clinical biomarker tests is contrasted with the lagging understanding of the dynamics between the native IF proteins and their fragments.
Collapse
Affiliation(s)
- Cassandra L Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, USA; Department of Radiology, University of North Carolina at Chapel Hill, USA
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
24
|
Rogers ML, Schultz DW, Karnaros V, Shepheard SR. Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. Brain Commun 2023; 5:fcad287. [PMID: 37946793 PMCID: PMC10631861 DOI: 10.1093/braincomms/fcad287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Amyotrophic lateral sclerosis is a relentless neurodegenerative disease that is mostly fatal within 3-5 years and is diagnosed on evidence of progressive upper and lower motor neuron degeneration. Around 15% of those with amyotrophic lateral sclerosis also have frontotemporal degeneration, and gene mutations account for ∼10%. Amyotrophic lateral sclerosis is a variable heterogeneous disease, and it is becoming increasingly clear that numerous different disease processes culminate in the final degeneration of motor neurons. There is a profound need to clearly articulate and measure pathological process that occurs. Such information is needed to tailor treatments to individuals with amyotrophic lateral sclerosis according to an individual's pathological fingerprint. For new candidate therapies, there is also a need for methods to select patients according to expected treatment outcomes and measure the success, or not, of treatments. Biomarkers are essential tools to fulfil these needs, and urine is a rich source for candidate biofluid biomarkers. This review will describe promising candidate urinary biomarkers of amyotrophic lateral sclerosis and other possible urinary candidates in future areas of investigation as well as the limitations of urinary biomarkers.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - David W Schultz
- Neurology Department and MND Clinic, Flinders Medical Centre, Adelaide 5042, South Australia, Australia
| | - Vassilios Karnaros
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - Stephanie R Shepheard
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| |
Collapse
|
25
|
Massonnet P, Grifnée E, Farré-Segura J, Demeuse J, Huyghebaert L, Dubrowski T, Dufour P, Schoumacher M, Peeters S, Le Goff C, Cavalier E. Concise review on the combined use of immunocapture, mass spectrometry and liquid chromatography for clinical applications. Clin Chem Lab Med 2023; 61:1700-1707. [PMID: 37128992 DOI: 10.1515/cclm-2023-0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Immunocapture is now a well-established method for sample preparation prior to quantitation of peptides and proteins in complex matrices. This short review will give an overview of some clinical applications of immunocapture methods, as well as protocols with and without enzymatic digestion in a clinical context. The advantages and limitations of both approaches are discussed in detail. Challenges related to the choice of mass spectrometer are also discussed. Top-down, middle-down, and bottom-up approaches are discussed. Even though immunocapture has its limitations, its main advantage is that it provides an additional dimension of separation and/or isolation when working with peptides and proteins. Overall, this short review demonstrates the potential of such techniques in the field of proteomics-based clinical medicine and paves the way for better personalized medicine.
Collapse
Affiliation(s)
- Philippe Massonnet
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Elodie Grifnée
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Jordi Farré-Segura
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Justine Demeuse
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Loreen Huyghebaert
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Thomas Dubrowski
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Patrice Dufour
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | | | - Stéphanie Peeters
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
| | - Caroline Le Goff
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, Centre de Recherche Intégré sur les Médicaments (CIRM), Liège, Belgium
- Clinical Chemistry, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Coppens S, Lehmann S, Hopley C, Hirtz C. Neurofilament-Light, a Promising Biomarker: Analytical, Metrological and Clinical Challenges. Int J Mol Sci 2023; 24:11624. [PMID: 37511382 PMCID: PMC10380627 DOI: 10.3390/ijms241411624] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Neurofilament-light chain (Nf-L) is a non-specific early-stage biomarker widely studied in the context of neurodegenerative diseases (NDD) and traumatic brain injuries (TBI), which can be measured in biofluids after axonal damage. Originally measured by enzyme-linked immunosorbent assay (ELISA) in cerebrospinal fluid (CSF), Nf-L can now be quantified in blood with the emergence of ultrasensitive assays. However, to ensure successful clinical implementation, reliable clinical thresholds and reference measurement procedures (RMP) should be developed. This includes establishing and distributing certified reference materials (CRM). As a result of the complexity of Nf-L and the number of circulating forms, a clear definition of what is measured when immunoassays are used is also critical to achieving standardization to ensure the long-term success of those assays. The use of powerful tools such as mass spectrometry for developing RMP and defining the measurand is ongoing. Here, we summarize the current methods in use for quantification of Nf-L in biofluid showing potential for clinical implementation. The progress and challenges in developing RMP and defining the measurand for Nf-L standardization of diagnostic tests are addressed. Finally, we discuss the impact of pathophysiological factors on Nf-L levels and the establishment of a clinical cut-off.
Collapse
Affiliation(s)
- Salomé Coppens
- National Measurement Laboratory, LGC Limited, Teddington TW11 0LY, UK
- Univ. Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, 34295 Montpellier, France
| | - Sylvain Lehmann
- Univ. Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, 34295 Montpellier, France
| | | | - Christophe Hirtz
- Univ. Montpellier, IRMB-PPC, INM, CHU Montpellier, INSERM CNRS, 34295 Montpellier, France
| |
Collapse
|
27
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
28
|
Arslan B, Zetterberg H. Neurofilament light chain as neuronal injury marker - what is needed to facilitate implementation in clinical laboratory practice? Clin Chem Lab Med 2023; 61:1140-1149. [PMID: 36880940 DOI: 10.1515/cclm-2023-0036] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neurobiomarkers have attracted significant attention over the last ten years. One promising biomarker is the neurofilament light chain protein (NfL). Since the introduction of ultrasensitive assays, NfL has been developed into a widely used axonal damage marker of relevance to the diagnosis, prognostication, follow-up, and treatment monitoring of a range of neurological disorders, including multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. The marker is increasingly used clinically, as well as in clinical trials. Even if we have validated precise, sensitive, and specific assays for NfL quantification in both cerebrospinal fluid and blood, there are analytical, as well as pre- and post-analytical aspects of the total NfL testing process, including biomarker interpretation, to consider. Although the biomarker is already in use in specialised clinical laboratory settings, a more general use requires some further work. In this review, we provide brief basic information and opinions on NfL as a biomarker of axonal injury in neurological diseases and pinpoint additional work needed to facilitate biomarker implementation in clinical practice.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at The University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, People's Republic of China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Engel S, Halcour J, Ellwardt E, Uphaus T, Steffen F, Zipp F, Bittner S, Luessi F. Elevated neurofilament light chain CSF/serum ratio indicates impaired CSF outflow in idiopathic intracranial hypertension. Fluids Barriers CNS 2023; 20:3. [PMID: 36631830 PMCID: PMC9832777 DOI: 10.1186/s12987-022-00403-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/17/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Impaired cerebrospinal fluid (CSF) homeostasis is central to the pathogenesis of idiopathic intracranial hypertension (IIH), although the precise mechanisms involved are still not completely understood. The aim of the current study was to assess the CSF/serum ratio of neurofilament light chain levels (QNfL) as a potential indicator of functional CSF outflow obstruction in IIH patients. METHODS NfL levels were measured by single molecule array in CSF and serum samples of 87 IIH patients and in three control groups, consisting of 52 multiple sclerosis (MS) patients with an acute relapse, 21 patients with an axonal polyneuropathy (PNP), and 41 neurologically healthy controls (HC). QNfL was calculated as the ratio of CSF and serum NfL levels. Similarly, we also assessed the CSF/serum ratio of glial fibrillary acidic protein (QGFAP) levels to validate the QNfL data. Routine CSF parameters including the CSF/serum albumin ratio (QAlb) were determined in all groups. Lumbar puncture opening pressure of IIH patients was measured by manometry. RESULTS CSF-NfL levels (r = 0.29, p = 0.008) and QNfL (0.40, p = 0.0009), but not serum NfL (S-NfL) levels, were associated with lumbar puncture opening pressure in IIH patients. CSF-NfL levels were increased in IIH patients, MS patients, and PNP patients, whereas sNfL levels were normal in IIH, but elevated in MS and PNP. Remarkably, QNfL (p < 0.0001) as well as QGFAP (p < 0.01) were only increased in IIH patients. QNfL was positively correlated with CSF-NfL levels (r = 0.51, p = 0.0012) and negatively correlated with S-NfL levels (r = - 0.51, p = 0.0012) in HC, while it was only positively associated with CSF-NfL levels in IIH patients (r = 0.71, p < 0.0001). An increase in blood-CSF barrier permeability assessed by QAlb did not lead to a decrease in QNfL in any cohort. CONCLUSIONS The observed elevation of QNfL in IIH patients, which was associated with lumbar puncture opening pressure, indicates a reduced NfL transition from the CSF to serum compartment. This supports the hypothesis of a pressure-dependent CSF outflow obstruction to be critically involved in IIH pathogenesis.
Collapse
Affiliation(s)
- Sinah Engel
- grid.410607.4Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Johannes Halcour
- grid.410607.4Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Erik Ellwardt
- grid.410607.4Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Timo Uphaus
- grid.410607.4Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Falk Steffen
- grid.410607.4Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Frauke Zipp
- grid.410607.4Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stefan Bittner
- grid.410607.4Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
30
|
Meda FJ, Knowles K, Swift IJ, Sogorb-Esteve A, Rohrer JD, Dittrich A, Skoog I, Kern S, Becker B, Blennow K, Andreasson U, Kvartsberg H, Zetterberg H. Neurofilament light oligomers in neurodegenerative diseases: quantification by homogeneous immunoassay in cerebrospinal fluid. BMJ Neurol Open 2023; 5:e000395. [PMID: 36865081 PMCID: PMC9972422 DOI: 10.1136/bmjno-2022-000395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 03/03/2023] Open
Abstract
Background Neurofilament light (NfL) is a widely used biomarker for neurodegeneration. NfL is prone to oligomerisation, but available assays do not reveal the exact molecular nature of the protein variant measured. The objective of this study was to develop a homogeneous ELISA capable of quantifying oligomeric NfL (oNfL) in cerebrospinal fluid (CSF). Methods A homogeneous ELISA, based on the same capture and detection antibody (NfL21), was developed and used to quantify oNfL in samples from patients with behavioural variant frontotemporal dementia (bvFTD, n=28), non-fluent variant primary progressive aphasia (nfvPPA, n=23), semantic variant PPA (svPPA, n=10), Alzheimer's disease (AD, n=20) and healthy controls (n=20). The nature of NfL in CSF, and the recombinant protein calibrator, was also characterised by size exclusion chromatography (SEC). Results CSF concentration of oNfL was significantly higher in nfvPPA (p<0.0001) and svPPA patients (p<0.05) compared with controls. CSF oNfL concentration was also significantly higher in nfvPPA compared with bvFTD (p<0.001) and AD (p<0.01) patients. SEC data showed a peak fraction compatible with a full-length dimer (~135 kDa) in the in-house calibrator. For CSF, the peak was found in a fraction of lower molecular weight (~53 kDa), suggesting dimerisation of NfL fragments. Conclusions The homogeneous ELISA and SEC data suggest that most of the NfL in both the calibrator and human CSF is present as a dimer. In CSF, the dimer appears to be truncated. Further studies are needed to determine its precise molecular composition.
Collapse
Affiliation(s)
- Francisco J Meda
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kathryn Knowles
- Dementia Research Center, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Imogen J Swift
- Dementia Research Center, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Aitana Sogorb-Esteve
- Dementia Research Center, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Center, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Anna Dittrich
- Neuropsychiatric Epidemiology Unit, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Neuropsychiatric Epidemiology Unit, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
31
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
32
|
Bornhorst JA, Figdore D, Campbell MR, Pazdernik VK, Mielke MM, Petersen RC, Algeciras-Schimnich A. Plasma neurofilament light chain (NfL) reference interval determination in an Age-stratified cognitively unimpaired cohort. Clin Chim Acta 2022; 535:153-156. [PMID: 36041549 DOI: 10.1016/j.cca.2022.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Neurofilament light chain (NfL) is an emerging biomarker of neurodegenerative disease progression. As plasma NfL increases with age, characterization of NfL concentrations in an age-stratified cognitively unimpaired population was assessed. MATERIALS AND METHODS EDTA-plasma samples were measured using the Simoa® NF-light™ Advantage Kit assay. One-sided reference intervals were established from 1100 cognitive normal individuals (588 male, 512 female) aged 20 to 95 years. Of those, 927 samples were obtained from the Mayo Clinic Study of Aging cohort (age > 50 years), and the remainder (age < 50 years) were obtained from individuals without known neurological conditions. All samples were from individuals without known chronic kidney disease, stroke or myocardial infarction, and a body mass index < 30 kg/m2. RESULTS The 97.5th percentile limits for the following age ranges (in years) were (pg/mL): 20 s: ≤8.4, 30 s: ≤11.4, 40 s: ≤15.4, 50 s: ≤20.8, 60 s: ≤28.0, 70 s: ≤37.9, 80+: ≤51.2. Sex had no significant effect on reference intervals. Observed NfL concentrations increased at a rate of 3.1 % per year of age. CONCLUSIONS Characterization of the rate of NfL concentration increase and decade-wide reference intervals from a neurologically well-characterized patient population will aid in interpretation of NfL during the clinical evaluation of a potential neurodegenerative disease.
Collapse
Affiliation(s)
- Joshua A Bornhorst
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester Minnesota, USA
| | - Daniel Figdore
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester Minnesota, USA
| | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester Minnesota, USA
| | - Vanessa K Pazdernik
- Department of Quantitative Health Sciences, Mayo Clinic Rochester Minnesota, USA
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | |
Collapse
|
33
|
A Novel Neurofilament Light Chain ELISA Validated in Patients with Alzheimer's Disease, Frontotemporal Dementia, and Subjective Cognitive Decline, and the Evaluation of Candidate Proteins for Immunoassay Calibration. Int J Mol Sci 2022; 23:ijms23137221. [PMID: 35806226 PMCID: PMC9266977 DOI: 10.3390/ijms23137221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neurofilament light chain (Nf-L) is a well-known biomarker for axonal damage; however, the corresponding circulating Nf-L analyte in cerebrospinal fluid (CSF) is poorly characterized. We therefore isolated new monoclonal antibodies against synthetic peptides, and these monoclonals were characterized for their specificity on brain-specific intermediate filament proteins. Two highly specific antibodies, ADx206 and ADx209, were analytically validated for CSF applications according to well-established criteria. Interestingly, using three different sources of purified Nf-L proteins, a significant impact on interpolated concentrations was observed. With a lower limit of analytical sensitivity of 100 pg/mL using bovine Nf-L as the calibrator, we were able to quantify the Nf-L analyte in each sample, and these Nf-L concentrations were highly correlated to the Uman diagnostics assay (Spearman rho = 0.97, p < 0.001). In the clinical diagnostic groups, the new Nf-L ELISA could discriminate patients with Alzheimer’s disease (AD, n = 20) from those with frontotemporal lobe dementia (FTD, n = 20) and control samples with subjective cognitive decline (SCD, n = 20). Henceforth, this novel Nf-L ELISA with well-defined specificity and epitopes can be used to enhance our understanding of harmonizing the use of Nf-L as a clinically relevant marker for neurodegeneration in CSF.
Collapse
|
34
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
35
|
Leckey CA, Zetterberg H. OUP accepted manuscript. Brain Commun 2022; 4:fcac070. [PMID: 35415606 PMCID: PMC8994106 DOI: 10.1093/braincomms/fcac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Claire A. Leckey
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of
Neurology, London, UK
- Centre for Translational Omics, UCL Great Ormond Street Institute of Child
Health, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of
Neurology, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and
Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal,
Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University
Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay,
Hong Kong, China
- Correspondence to: Henrik Zetterberg UKDRI Fluid Biomarker
Laboratory, Wing 2.3 Cruciform Building, Gower Street London, WC1E 6BT, UK E-mail:
| |
Collapse
|