1
|
Luu B, Bangen KJ, Clark AL, Weigand AJ, Rantins P, Garcia ME, Urias U, Merritt VC, Thomas KR. PTSD moderates the association between subjective cognitive decline and Alzheimer's disease biomarkers in older veterans. Aging Ment Health 2025; 29:315-323. [PMID: 39118434 PMCID: PMC11698016 DOI: 10.1080/13607863.2024.2389547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Post-traumatic stress disorder (PTSD) and subjective cognitive decline (SCD) are independent risk factors for Alzheimer's disease (AD) and dementia, but the association of their interaction on AD biomarkers have yet to be characterized. This study aimed to examine the impact of PTSD on the association between SCD and tau and amyloid positron emission tomography (PET) as well as global cognition in older Veterans. METHOD This study included 87 Vietnam-Era Veterans without dementia (42 with PTSD; 45 without PTSD) from the Department of Defense-Alzheimer's Disease Neuroimaging Initiative. All participants had both tau and amyloid PET imaging as well as cognitive testing. SCD was measured using the Everyday Cognition questionnaire. RESULTS While SCD was associated with tau PET, amyloid PET, and global cognition, PTSD moderated these associations for tau and amyloid PET levels. Specifically, Veterans without PTSD had a stronger positive relationship between SCD and AD biomarkers when compared to those with PTSD. CONCLUSION Higher SCD was associated with greater tau and amyloid burden and worse cognitive performance across the sample, though the tau and amyloid associations were stronger for Veterans without PTSD. Results highlight the potential benefit of comprehensive clinical assessments including consideration of mental health among older Veterans with SCD to understand the underlying cause of the cognitive concerns. Additionally, more work is needed to understand alternative mechanisms driving SCD in older Veterans with PTSD.
Collapse
Affiliation(s)
- Britney Luu
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Katherine J. Bangen
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
| | - Alexandra L. Clark
- Department of Psychology, University of Texas at Austin,
Austin, TX, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California, San
Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Peter Rantins
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Mary Ellen Garcia
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
| | - Uriel Urias
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Victoria C. Merritt
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VASDHS,
San Diego, CA, USA
| | - Kelsey R. Thomas
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San
Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Sagar S, Khan D, Kumar R. PET-Computed Tomography-MR Imaging in Central Nervous System Disorders with Cognitive and Motor Impairment. PET Clin 2025; 20:101-111. [PMID: 39477721 DOI: 10.1016/j.cpet.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Neuroimaging, particularly positron emission tomography (PET), plays a crucial role in diagnosing and managing brain disorders by providing insights into diverse neuropathologies such as vascular issues, infections, inflammation, degenerative diseases, and tumors. In dementia, [18F]FDG-PET helps predict Alzheimer's disease (AD) development from mild cognitive impairment, revealing metabolic reductions in specific brain regions. PET's evolution with novel radiotracers and advanced imaging techniques addresses diagnostic challenges and enhances disease monitoring. Despite limitations like off-target binding, PET remains indispensable in clinical neurology, offering noninvasive insights into brain functions, disease progression, and treatment responses.
Collapse
Affiliation(s)
- Sambit Sagar
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Dikhra Khan
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, Delhi, India.
| |
Collapse
|
3
|
Lathe R, Balin B. A historic case of relapsing-remitting Alzheimer's disease in an adolescent attributed to scarlet fever. J Alzheimers Dis Rep 2025; 9:25424823241298530. [PMID: 40034507 PMCID: PMC11864263 DOI: 10.1177/25424823241298530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 03/05/2025] Open
Abstract
We draw attention to a historic case of a boy who suffered from scarlet fever (typically caused by the bacterium Streptococcus pyogenes) at age 7 years and went on to develop the symptoms of Alzheimer's disease (AD). His physicians believed that the subsequent dementia was related to the infection. After death at 24 years of age, postmortem brain examination revealed abundant AD-type senile plaques and fibrils, formally confirming AD. Other potential causes of early-onset dementia are discussed, but these are distinct from patient E.H. This case is pertinent regarding the current debate about the potential role of infection in AD.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Little France, Edinburgh, UK
- Alzheimer's Pathobiome Initiative, Wake Forest, NC, USA
| | - Brian Balin
- Alzheimer's Pathobiome Initiative, Wake Forest, NC, USA
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Weinstein AM, Fang F, Chang CCH, Cohen A, Lopresti BJ, Laymon CM, Nadkarni NK, Aizenstein HJ, Villemagne VL, Kamboh MI, Shaaban CE, Gogniat MA, Wu M, Karikari TK, Ganguli M, Snitz BE. Multimodal neuroimaging biomarkers and subtle cognitive decline in a population-based cohort without dementia. J Alzheimers Dis 2025; 103:570-581. [PMID: 39702989 PMCID: PMC11798718 DOI: 10.1177/13872877241303926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
BACKGROUND The relationship between subtle cognitive decline and Alzheimer's disease (AD) pathology as measured by biomarkers in settings outside of specialty memory clinics is not well characterized. OBJECTIVE To investigate how subtle longitudinal cognitive decline relates to neuroimaging biomarkers in individuals drawn from a population-based study in an economically depressed, small-town area in southwestern Pennsylvania, USA. METHODS A subset of participants without dementia (N = 115, age 76.53 years ± 6.25) from the Monongahela Youghiogheny Healthy Aging Team (MYHAT) study completed neuroimaging including magnetic resonance imaging (MRI) measures of AD-signature region cortical thickness and white matter hyperintensities (WMH), Pittsburgh compound B (PiB)-positron emission tomography (PET) for amyloid-β (Aβ) deposition, and [18F]AV-1451-PET for tau deposition. Neuropsychological evaluations were completed at multiple timepoints up to 11 years prior to neuroimaging. Aβ positivity was determined using a regional approach. We used linear mixed models to examine neuroimaging biomarker associations with retrospective cognitive slopes in five domains and a global cognitive composite. RESULTS Among Aβ(+) participants (38%), there were associations between (i) tau Braak III/IV and language decline (p < 0.05), (ii) cortical thickness and both memory decline (p < 0.001) and global cognitive decline (p < 0.01), and (iii) WMH and decline in executive function (p < 0.05) and global cognition (p < 0.05). Among Aβ(-) participants, there was an association between tau Braak III/IV and decline on tests of attention/psychomotor speed (p < 0.05). CONCLUSIONS These findings confirm an Aβ-dependent early AD biomarker pathway, and suggest a possible Aβ-independent, non-AD process underlying subtle cognitive decline in a population-based sample of older adults without dementia.
Collapse
Affiliation(s)
- Andrea M Weinstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Fang Fang
- Research & Infrastructure Service Enterprise (RISE), Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, 23501 USA
| | - Chung-Chou H Chang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261 USA
| | - Ann Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15260 USA
| | - Neelesh K Nadkarni
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15213 USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15260 USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261 USA
| | - C. Elizabeth Shaaban
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261 USA
| | - Marissa A. Gogniat
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15213 USA
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Mary Ganguli
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, 15261 USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh PA, 15213 USA
| |
Collapse
|
5
|
Pyka-Fościak G, Jasek-Gajda E, Wójcik B, Lis GJ, Litwin JA. Tau Protein and β-Amyloid Associated with Neurodegeneration in Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis (EAE), a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2770. [PMID: 39767677 PMCID: PMC11673016 DOI: 10.3390/biomedicines12122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The levels of β-amyloid precursor protein (β-APP), tau protein, and phosphorylation of tau (p-tau) protein were examined by quantitative immunohistochemistry in the spinal cord sections of mice suffering from experimental autoimmune encephalomyelitis (EAE) in the successive phases of the disease: onset, peak, and chronic. METHODS EAE was induced in C57BL/6 mice by immunization with MOG35-55 peptide. The degree of pathological changes was assessed in cross-sections of the entire spinal cord. RESULTS β-APP expression was observed in the white matter and colocalized with some Iba-1-positive macrophages/microglia. It increased in the peak phase of EAE and remained at the same level in the chronic phase. During the onset and peak phases of EAE, expression of tau protein was observed in nerve fibers and nerve cell perikaryons, with a predominance of nerve fibers, whereas in the chronic phase, tau was labeled mainly in the perikaryons of nerve cells, with its content significantly decreased. P-tau immunostaining was seen only in nerve fibers. CONCLUSIONS The expression of p-tau increased with the progression of EAE, reaching the maximum in the chronic phase. The correlation between these proteins and neurodegeneration/neuroinflammation highlights their potential roles in the progression of neurodegenerative mechanisms in MS.
Collapse
Affiliation(s)
- Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (E.J.-G.)
| | | | | | | | | |
Collapse
|
6
|
Lavrova A, Satoh R, Pham NTT, Nguyen A, Jack CR, Petersen RC, Ross RR, Dickson DW, Lowe VJ, Whitwell JL, Josephs KA. Investigating the feasibility of 18F-flortaucipir PET imaging in the antemortem diagnosis of primary age-related tauopathy (PART): An observational imaging-pathological study. Alzheimers Dement 2024; 20:8605-8614. [PMID: 39417408 DOI: 10.1002/alz.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is characterized by neurofibrillary tangles and minimal β-amyloid deposition, diagnosed postmortem. This study investigates 18F-flortaucipir (FTP) PET imaging for antemortem PART diagnosis. METHODS We analyzed FTP PET scans from 50 autopsy-confirmed PART and 13 control subjects. Temporal lobe uptake was assessed both qualitatively and quantitatively. Demographic and clinicopathological characteristics and voxel-level uptake using SPM12 were compared between FTP-positive and FTP-negative cases. Intra-reader reproducibility was evaluated with Krippendorff's alpha. RESULTS Minimal/mild and moderate FTP uptake was seen in 32% of PART cases and 62% of controls, primarily in the left inferior temporal lobe. No demographic or clinicopathological differences were found between FTP-positive and FTP-negative cases. High intra-reader reproducibility (α = 0.83) was noted. DISCUSSION FTP PET imaging did not show a specific uptake pattern for PART diagnosis, indicating that in vivo PART identification using FTP PET is challenging. Similar uptake in controls suggests non-specific uptake in PART. HIGHLIGHTS 18F-flortaucipir (FTP) PET scans were analyzed for diagnosing PART antemortem. 32% of PART cases had minimal/mild FTP uptake in the left inferior temporal lobe. Similar to PART FTP uptake was found in 62% of control subjects. No specific uptake pattern was found, challenging in vivo PART diagnosis.
Collapse
Affiliation(s)
- Anna Lavrova
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryota Satoh
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Reichard R Ross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Keith CM, Haut MW, Vieira Ligo Teixeira C, Mehta RI, Phelps H, Ward M, Miller M, Navia RO, Coleman MM, Marano G, Wang X, Pockl S, Rajabalee N, Scarisbrick DM, McCuddy WT, D'Haese PF, Rezai A, Wilhelmsen K. Memory consolidation, temporal and parietal atrophy, and metabolism in amyloid-β positive and negative mild cognitive impairment. J Alzheimers Dis 2024; 102:778-791. [PMID: 39670736 DOI: 10.1177/13872877241291223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is classically characterized by alterations in memory consolidation. With the advent of diagnostic biomarkers, some patients clinically diagnosed with AD display biomarkers inconsistent with the diagnosis. OBJECTIVE We aimed to explore differences in memory consolidation and neurodegeneration of the temporal and parietal lobes as a function of amyloid-β status in amnestic mild cognitive impairment (aMCI). METHODS We examined differences in memory consolidation and neurodegeneration between patients diagnosed with amyloid-β positive aMCI (Aβ+ N = 78), amyloid-β negative aMCI (Aβ- N = 48), and healthy participants (HP; N = 41), within a well-characterized clinical cohort. RESULTS Aβ+ exhibited more pronounced consolidation impairments compared to Aβ-, while Aβ- faced more consolidation challenges than HP. Both Aβ+ and Aβ- were similar in hippocampal volume and entorhinal thickness, but Aβ+ had thinner inferior parietal cortex than Aβ-. Using 18F-fluoro-deoxyglucose-positron emission tomography, metabolism in both temporal and parietal regions was lower in Aβ+ relative to Aβ-. CONCLUSIONS These findings suggest pathologies other than AD likely contribute to memory consolidation difficulties in aMCI, and neurodegeneration of the parietal cortex in combination with hypometabolism may contribute to more pronounced consolidation problems in Aβ+.
Collapse
Affiliation(s)
- Cierra M Keith
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
| | - Marc W Haut
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | | | - Rashi I Mehta
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Neuroradiology, West Virginia University, Morgantown, WV, USA
| | - Holly Phelps
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
| | - Melanie Ward
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| | - Mark Miller
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
| | - R Osvaldo Navia
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Michelle M Coleman
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Gary Marano
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Neuroradiology, West Virginia University, Morgantown, WV, USA
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | - Xiaofei Wang
- Department of Radiology, West Virginia University, Morgantown, WV, USA
| | - Stephanie Pockl
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Nafiisah Rajabalee
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - David M Scarisbrick
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
| | - William T McCuddy
- Department of Neuropsychology, Barrow Neurological Institute, St Joseph Hospital and Medical Center, Phoenix, AZ, USA
| | - Pierre-François D'Haese
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Neuroradiology, West Virginia University, Morgantown, WV, USA
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Kirk Wilhelmsen
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Neurology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
8
|
Lahiri D, Seixas-Lima B, Roncero C, Verhoeff NP, Freedman M, Al-Shamaa S, Chertkow H. CAPS: a simple clinical tool for β-amyloid positivity prediction in clinical Alzheimer syndrome. Front Neurol 2024; 15:1422681. [PMID: 39206291 PMCID: PMC11349651 DOI: 10.3389/fneur.2024.1422681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction With the advent of anti-β-amyloid therapies, clinical distinction between Aβ + and Aβ- in cognitive impairment is becoming increasingly important for stratifying referral and better utilization of biomarker assays. Methods Cognitive profile, rate of decline, neuropsychiatric inventory questionnaire (NPI-Q), and imaging characteristics were collected from 52 subjects with possible/probable AD. Results Participants with Aβ+ status had lower baseline MMSE scores (24.50 vs. 26.85, p = 0.009) and higher total NPI-Q scores (2.73 vs. 1.18, p < 0.001). NPI-Q score was found to be the only independent predictor for β-amyloid positivity (p = 0.008). A simple scoring system, namely Clinical β-Amyloid Positivity Prediction Score (CAPS), was developed by using the following parameters: NPI-Q, rapidity of cognitive decline, and white matter microangiopathy. Data from 48 participants were included in the analysis of accuracy of CAPS. CAP Score of 3 or 4 successfully classified Aβ + individuals in 86.7% cases. Discussion Clinical β-Amyloid Positivity Prediction Score is a simple clinical tool for use in primary care and memory clinic settings to predict β-amyloid positivity in individuals with clinical Alzheimer Syndrome can potentially facilitate referral for Anti Aβ therapies.
Collapse
Affiliation(s)
- Durjoy Lahiri
- Baycrest Academy for Research and Education/Rotman Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, India
| | - Bruna Seixas-Lima
- Baycrest Academy for Research and Education/Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| | - Carlos Roncero
- Baycrest Academy for Research and Education/Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| | - Nicolaas Paul Verhoeff
- Baycrest Academy for Research and Education/Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| | - Morris Freedman
- Baycrest Academy for Research and Education/Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| | - Sarmad Al-Shamaa
- Baycrest Academy for Research and Education/Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| | - Howard Chertkow
- Baycrest Academy for Research and Education/Rotman Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Chang H, Huang C, Huang S, Hsu S, Lin K, Ho T, Wu H, Chang C. Distinct biological property of tau in tau-first cognitive proteinopathy: Evidence by longitudinal clinical neuroimaging profiles and compared with late-onset Alzheimer disease. Psychiatry Clin Neurosci 2024; 78:446-455. [PMID: 38864501 PMCID: PMC11488611 DOI: 10.1111/pcn.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Tau-first cognitive proteinopathy (TCP) denotes a clinical phenotype of Alzheimer disease (AD) showing Florzolotau(18F) positron emission tomography (PET) positivity but a negative amyloid status. AIM We explored the biological property of tau using longitudinal cognitive and neuroimaging data in TCP and compared with late-onset AD (LOAD). METHOD We enrolled 56 patients with LOAD, 34 patients with TCP, and 26 cognitive unimpaired controls. All of the participants had historical data of 2 to 4 three-dimensional T1 images and 2 to 6 annual cognitive evaluations over a follow-up period of 7 years. Tau topography was measured using Florzolotau(18F) PET. In the LOAD and TCP groups, we constructed tau or gray matter clusters covarying with the cognitive measurements. We used mediator analysis to explore the regional tau load as predictor, gray matter partitions as mediators, and significant cognitive test scores as outcomes. Longitudinal cognitive decline and cortical thickness degeneration pattern were analyzed using a linear mixed-effects model. RESULTS The TCP group had longitudinal declines in nonexecutive domains. The deterministic factor predicting the short-term memory score in TCP was the hippocampal volume and not directly via the medial and lateral temporal tau load. These features formed the conceptual differences with LOAD. DISCUSSION The biological properties of tau and the longitudinal cognitive-imaging trajectory support the conceptual distinction between TCP and LOAD. TCP represents one specific entity featuring salient short-term memory impairment, declines in nonexecutive domains, a slower gray matter degenerative pattern, and a restricted impact of tau.
Collapse
Affiliation(s)
- Hsin‐I. Chang
- Department of Neurology, Cognition and Aging CenterKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Chi‐Wei Huang
- Department of Neurology, Cognition and Aging CenterKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shu‐Hua Huang
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Shih‐Wei Hsu
- Department of RadiologyKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
| | - Kun‐Ju Lin
- Department of Nuclear MedicineLin‐Kou Chang Gung Memorial Hospital, Chang Gung UniversityTaoyuanTaiwan
| | - Tsung‐Ying Ho
- Department of Nuclear MedicineLin‐Kou Chang Gung Memorial Hospital, Chang Gung UniversityTaoyuanTaiwan
| | - Hsiu‐Chuan Wu
- Department of NeurologyLin‐Kou Chang Gung Memorial Hospital, Chang Gung UniversityTaoyuanTaiwan
| | - Chiung‐Chih Chang
- Department of Neurology, Cognition and Aging CenterKaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiungTaiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- School of Medicine, College of Medicine, National Sun Yat‐sen UniversityKaohsiungTaiwan
| |
Collapse
|
10
|
Chang HI, Huang KL, Huang CG, Huang CW, Huang SH, Lin KJ, Chang CC. Clinical Significance of the Plasma Biomarker Panels in Amyloid-Negative and Tau PET-Positive Amnestic Patients: Comparisons with Alzheimer's Disease and Unimpaired Cognitive Controls. Int J Mol Sci 2024; 25:5607. [PMID: 38891795 PMCID: PMC11171590 DOI: 10.3390/ijms25115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The purpose of this study was to investigate whether plasma biomarkers can help to diagnose, differentiate from Alzheimer disease (AD), and stage cognitive performance in patients with positron emission tomography (PET)-confirmed primary age-related tauopathy, termed tau-first cognitive proteinopathy (TCP) in this study. In this multi-center study, we enrolled 285 subjects with young-onset AD (YOAD; n = 55), late-onset AD (LOAD; n = 96), TCP (n = 44), and cognitively unimpaired controls (CTL; n = 90) and analyzed plasma Aβ42/Aβ40, pTau181, neurofilament light (NFL), and total-tau using single-molecule assays. Amyloid and tau centiloids reflected pathological burden, and hippocampal volume reflected structural integrity. Receiver operating characteristic curves and areas under the curves (AUCs) were used to determine the diagnostic accuracy of plasma biomarkers compared to hippocampal volume and amyloid and tau centiloids. The Mini-Mental State Examination score (MMSE) served as the major cognitive outcome. Logistic stepwise regression was used to assess the overall diagnostic accuracy, combining fluid and structural biomarkers and a stepwise linear regression model for the significant variables for MMSE. For TCP, tau centiloid reached the highest AUC for diagnosis (0.79), while pTau181 could differentiate TCP from YOAD (accuracy 0.775) and LOAD (accuracy 0.806). NFL reflected the clinical dementia rating in TCP, while pTau181 (rho = 0.3487, p = 0.03) and Aβ42/Aβ40 (rho = -0.36, p = 0.02) were significantly correlated with tau centiloid. Hippocampal volume (unstandardized β = 4.99, p = 0.01) outperformed all of the fluid biomarkers in predicting MMSE scores in the TCP group. Our results support the superiority of tau PET to diagnose TCP, pTau181 to differentiate TCP from YOAD or LOAD, and NFL for functional staging.
Collapse
Affiliation(s)
- Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-I.C.); (C.-W.H.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Chung-Gue Huang
- Department of Medical Laboratory, Linkou Chang Gung Memorial Hospital, Department of Medical Bio-Technology and Laboratory Science, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-I.C.); (C.-W.H.)
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (H.-I.C.); (C.-W.H.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80404, Taiwan
| |
Collapse
|
11
|
Robinson CG, Lee J, Min PH, Przybelski SA, Josephs KA, Jones DT, Graff‐Radford J, Boeve BF, Knopman DS, Jack CR, Petersen RC, Machulda MM, Fields JA, Lowe VJ. Significance of a positive tau PET scan with a negative amyloid PET scan. Alzheimers Dement 2024; 20:1923-1932. [PMID: 38159060 PMCID: PMC10947949 DOI: 10.1002/alz.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION The implications of positive tau positron emission tomography (T) with negative beta amyloid positron emission tomography (A) are not well understood. We investigated cognitive performance in participants who were T+ but A-. METHODS We evaluated 98 participants from the Mayo Clinic who were T+ and A-. Participants were matched 2:1 to A- and T- cognitively unimpaired (CU) controls. Cognitive test scores were compared between different groups. RESULTS The A-T+ group demonstrated lower performance than the A-T- group on the Mini-Mental Status Exam (MMSE) (p < 0.001), Wechsler Memory Scale-Revised Logical Memory I (p < 0.001) and Logical Memory II (p < 0.001), Auditory Verbal Learning Test (AVLT) delayed recall (p = 0.004), category fluency (animals p = 0.005; vegetables p = 0.021), Trail Making Test A and B (p < 0.001), and others. There were no significant differences in demographic features or apolipoprotein E (APOE) e4 genotype between CU A-T+ and CI A-T+. DISCUSSION A-T+ participants show an association with lower cognitive performance.
Collapse
Affiliation(s)
| | - Jeyeon Lee
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Paul H. Min
- Departments of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | - David T. Jones
- Departments of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | | | | - Mary M. Machulda
- Departments of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Julie A. Fields
- Departments of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Val J. Lowe
- Departments of RadiologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
12
|
Chen X, Toueg TN, Harrison TM, Baker SL, Jagust WJ. Regional Tau Deposition Reflects Different Pathways of Subsequent Neurodegeneration and Memory Decline in Cognitively Normal Older Adults. Ann Neurol 2024; 95:249-259. [PMID: 37789559 PMCID: PMC10843500 DOI: 10.1002/ana.26813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE Tau pathology is recognized as a primary contributor to neurodegeneration and clinical symptoms in Alzheimer's disease (AD). This study aims to localize the early tau pathology in cognitively normal older people that is predictive of subsequent neurodegeneration and memory decline, and delineate factors underlying tau-related memory decline in individuals with and without β-amyloid (Aβ). METHODS A total of 138 cognitively normal older individuals from the Berkeley Aging Cohort Study underwent 11 C-Pittsburgh Compound-B (PiB) positron emission tomography (PET) to determine Aβ positivity and 18 F-Flortaucipir (FTP) PET to measure tau deposition, with prospective cognitive assessments and structural magnetic resonance imaging. Voxel-wise FTP analyses examined associations between baseline tau deposition and longitudinal memory decline, longitudinal hippocampal atrophy, and longitudinal cortical thinning in AD signature regions. We also examined whether hippocampal atrophy and cortical thinning mediate tau effects on future memory decline. RESULTS We found Aβ-dependent tau associations with memory decline in the entorhinal and temporoparietal regions, Aβ-independent tau associations with hippocampal atrophy within the medial temporal lobe (MTL), and that widespread tau was associated with mean cortical thinning in AD signature regions. Tau-related memory decline was mediated by hippocampal atrophy in Aβ- individuals and by mean cortical thinning in Aβ+ individuals. INTERPRETATION Our results suggest that tau may affect memory through different mechanisms in normal aging and AD. Early tau deposition independent of Aβ predicts subsequent hippocampal atrophy that may lead to memory deficits in normal older individuals, whereas elevated cortical tau deposition is associated with cortical thinning that may lead to more severe memory decline in AD. ANN NEUROL 2024;95:249-259.
Collapse
Affiliation(s)
- Xi Chen
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tyler N Toueg
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
13
|
Siew JJ, Chen HM, Chiu FL, Lee CW, Chang YM, Chen HL, Nguyen TNA, Liao HT, Liu M, Hagar HT, Sun YC, Lai HL, Kuo MH, Blum D, Buée L, Jin LW, Chen SY, Ko TM, Huang JR, Kuo HC, Liu FT, Chern Y. Galectin-3 aggravates microglial activation and tau transmission in tauopathy. J Clin Invest 2024; 134:e165523. [PMID: 37988169 PMCID: PMC10786694 DOI: 10.1172/jci165523] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid-β plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a β-galactoside-binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic. Here, we showed that Gal3 was upregulated in the microglia of humans and mice with tauopathy. pTau triggered the release of Gal3 from human induced pluripotent stem cell-derived microglia in both its free and extracellular vesicular-associated (EV-associated) forms. Both forms of Gal3 increased the accumulation of pathogenic tau in recipient cells. Binding of Gal3 to pTau greatly enhanced tau fibrillation. Besides Gal3, pTau was sorted into EVs for transmission. Moreover, pTau markedly enhanced the number of EVs released by iMGL in a Gal3-dependent manner, suggesting a role of Gal3 in biogenesis of EVs. Single-cell RNA-Seq analysis of the hippocampus of a mouse model of tauopathy (THY-Tau22) revealed a group of pathogenic tau-evoked, Gal3-associated microglia with altered cellular machineries implicated in neurodegeneration, including enhanced immune and inflammatory responses. Genetic removal of Gal3 in THY-Tau22 mice suppressed microglia activation, reduced the level of pTau and synaptic loss in neurons, and rescued memory impairment. Collectively, Gal3 is a potential therapeutic target for tauopathy.
Collapse
Affiliation(s)
| | | | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hsiao-Tien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yung-Chen Sun
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille, France
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | | | - Tai-Ming Ko
- Institute of Biomedical Sciences
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
14
|
Gogola A, Cohen AD, Snitz B, Minhas D, Tudorascu D, Ikonomovic MD, Shaaban CE, Doré V, Matan C, Bourgeat P, Mason NS, Leuzy A, Aizenstein H, Mathis CA, Lopez OL, Lopresti BJ, Villemagne VL. Implementation and Assessment of Tau Thresholds in Non-Demented Individuals as Predictors of Cognitive Decline in Tau Imaging Studies. J Alzheimers Dis 2024; 100:S75-S92. [PMID: 39121123 PMCID: PMC11776372 DOI: 10.3233/jad-240543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background Tau accumulation in Alzheimer's disease is associated with short term clinical progression and faster rates of cognitive decline in individuals with high amyloid-β deposition. Defining an optimal threshold of tau accumulation predictive of cognitive decline remains a challenge. Objective We tested the ability of regional tau PET sensitivity and specificity thresholds to predict longitudinal cognitive decline. We also tested the predictive performance of thresholds in the proposed new NIA-AA biological staging for Alzheimer's disease where multiple levels of tau positivity are used to stage participants. Methods 18F-flortaucipir scans from 301 non-demented participants were processed and sampled. Four cognitive measures were assessed longitudinally. Regional standardized uptake value ratios were split into infra- and suprathreshold groups at baseline using previously derived thresholds. Survival analysis, log rank testing, and Generalized Estimation Equations assessed the relationship between the application of regional sensitivity/specificity thresholds and change in cognitive measures as well as tau threshold performance in predicting cognitive decline within the new NIA-AA biological staging. Results The meta temporal region was best for predicting risk of short-term cognitive decline in suprathreshold, as compared to infrathreshold participants. When applying multiple levels of tau positivity, each subsequent level of tau identified cognitive decline at earlier timepoints. Conclusions When using 18F-flortaucipir, meta temporal suprathreshold classification was associated with increased risk of cognitive decline, suggesting that abnormal tau deposition in the cortex predicts decline. Likewise, the application of multiple levels of tau clearly predicts the distinctive cognitive trajectories in the new NIA-AA biological staging framework.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth Snitz
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Milos D. Ikonomovic
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - C. Elizabeth Shaaban
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation Health & Biosecurity, Melbourne, VIC, Australia
| | - Cristy Matan
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pierrick Bourgeat
- Commonwealth Scientific and Industrial Research Organisation Health & Biosecurity, Melbourne, VIC, Australia
| | - N. Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Antoine Leuzy
- Critical Path for Alzheimer’s Disease (CPAD) Consortium, Critical Path Institute, Tucson, AZ, USA
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chester A. Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L. Lopez
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J. Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor L. Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular Imaging & Therapy, Austin Health, Melbourne, VIC, Australia
| | | |
Collapse
|
15
|
Thomas KR, Clark AL, Weigand AJ, Edwards L, Durazo AA, Membreno R, Luu B, Rantins P, Ly MT, Rotblatt LJ, Bangen KJ, Jak AJ. Cognition and Amyloid-β in Older Veterans: Characterization and Longitudinal Outcomes of Data-Derived Phenotypes. J Alzheimers Dis 2024; 99:417-427. [PMID: 38669550 PMCID: PMC11412577 DOI: 10.3233/jad-240077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Within older Veterans, multiple factors may contribute to cognitive difficulties. Beyond Alzheimer's disease (AD), psychiatric (e.g., PTSD) and health comorbidities (e.g., TBI) may also impact cognition. Objective This study aimed to derive subgroups based on objective cognition, subjective cognitive decline (SCD), and amyloid burden, and then compare subgroups on clinical characteristics, biomarkers, and longitudinal change in functioning and global cognition. Methods Cluster analysis of neuropsychological measures, SCD, and amyloid PET was conducted on 228 predominately male Vietnam-Era Veterans from the Department of Defense-Alzheimer's Disease Neuroimaging Initiative. Cluster-derived subgroups were compared on baseline characteristics as well as 1-year changes in everyday functioning and global cognition. Results The cluster analysis identified 3 groups. Group 1 (n = 128) had average-to-above average cognition with low amyloid burden. Group 2 (n = 72) had the lowest memory and language, highest SCD, and average amyloid burden; they also had the most severe PTSD, pain, and worst sleep quality. Group 3 (n = 28) had the lowest attention/executive functioning, slightly low memory and language, elevated amyloid and the worst AD biomarkers, and the fastest rate of everyday functioning and cognitive decline. CONCLUSIONS Psychiatric and health factors likely contributed to Group 2's low memory and language performance. Group 3 was most consistent with biological AD, yet attention/executive function was the lowest score. The complexity of older Veterans' co-morbid conditions may interact with AD pathology to show attention/executive dysfunction (rather than memory) as a prominent early symptom. These results could have important implications for the implementation of AD-modifying drugs in older Veterans.
Collapse
Affiliation(s)
- Kelsey R Thomas
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra L Clark
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren Edwards
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Alin Alshaheri Durazo
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Rachel Membreno
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Britney Luu
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Peter Rantins
- VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Monica T Ly
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lindsay J Rotblatt
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amy J Jak
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Steward A, Biel D, Dewenter A, Roemer S, Wagner F, Dehsarvi A, Rathore S, Otero Svaldi D, Higgins I, Brendel M, Dichgans M, Shcherbinin S, Ewers M, Franzmeier N. ApoE4 and Connectivity-Mediated Spreading of Tau Pathology at Lower Amyloid Levels. JAMA Neurol 2023; 80:1295-1306. [PMID: 37930695 PMCID: PMC10628846 DOI: 10.1001/jamaneurol.2023.4038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Importance For the Alzheimer disease (AD) therapies to effectively attenuate clinical progression, it may be critical to intervene before the onset of amyloid-associated tau spreading, which drives neurodegeneration and cognitive decline. Time points at which amyloid-associated tau spreading accelerates may depend on individual risk factors, such as apolipoprotein E ε4 (ApoE4) carriership, which is linked to faster disease progression; however, the association of ApoE4 with amyloid-related tau spreading is unclear. Objective To assess if ApoE4 carriers show accelerated amyloid-related tau spreading and propose amyloid positron emission tomography (PET) thresholds at which tau spreading accelerates in ApoE4 carriers vs noncarriers. Design, Setting, and Participants This cohort study including combined ApoE genotyping, amyloid PET, and longitudinal tau PET from 2 independent samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 237; collected from April 2015 to August 2022) and Avid-A05 (n = 130; collected from December 2013 to July 2017) with a mean (SD) tau PET follow-up time of 1.9 (0.96) years in ADNI and 1.4 (0.23) years in Avid-A05. ADNI is an observational multicenter Alzheimer disease neuroimaging initiative and Avid-A05 an observational clinical trial. Participants classified as cognitively normal (152 in ADNI and 77 in Avid-A05) or mildly cognitively impaired (107 in ADNI and 53 in Avid-A05) were selected based on ApoE genotyping, amyloid-PET, and longitudinal tau PET data availability. Participants with ApoE ε2/ε4 genotype or classified as having dementia were excluded. Resting-state functional magnetic resonance imaging connectivity templates were based on 42 healthy participants in ADNI. Main Outcomes and Measures Mediation of amyloid PET on the association between ApoE4 status and subsequent tau PET increase through Braak stage regions and interaction between ApoE4 status and amyloid PET with annual tau PET increase through Braak stage regions and connectivity-based spreading stages (tau epicenter connectivity ranked regions). Results The mean (SD) age was 73.9 (7.35) years among the 237 ADNI participants and 70.2 (9.7) years among the 130 Avid-A05 participants. A total of 107 individuals in ADNI (45.1%) and 45 in Avid-A05 (34.6%) were ApoE4 carriers. Across both samples, we found that higher amyloid PET-mediated ApoE4-related tau PET increased globally (ADNI b, 0.15; 95% CI, 0.05-0.28; P = .001 and Avid-A05 b, 0.33; 95% CI, 0.14-0.54; P < .001) and in earlier Braak regions. Further, we found a significant association between ApoE4 status by amyloid PET interaction and annual tau PET increases consistently through early Braak- and connectivity-based stages where amyloid-related tau accumulation was accelerated in ApoE4carriers vs noncarriers at lower centiloid thresholds, corrected for age and sex. Conclusions and Relevance The findings in this study indicate that amyloid-related tau accumulation was accelerated in ApoE4 carriers at lower amyloid levels, suggesting that ApoE4 may facilitate earlier amyloid-driven tau spreading across connected brain regions. Possible therapeutic implications might be further investigated to determine when best to prevent tau spreading and thus cognitive decline depending on ApoE4 status.
Collapse
Affiliation(s)
- Anna Steward
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sebastian Roemer
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Neurology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | | | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
17
|
Burnham SC, Iaccarino L, Pontecorvo MJ, Fleisher AS, Lu M, Collins EC, Devous MD. A review of the flortaucipir literature for positron emission tomography imaging of tau neurofibrillary tangles. Brain Commun 2023; 6:fcad305. [PMID: 38187878 PMCID: PMC10768888 DOI: 10.1093/braincomms/fcad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
Alzheimer's disease is defined by the presence of β-amyloid plaques and neurofibrillary tau tangles potentially preceding clinical symptoms by many years. Previously only detectable post-mortem, these pathological hallmarks are now identifiable using biomarkers, permitting an in vivo definitive diagnosis of Alzheimer's disease. 18F-flortaucipir (previously known as 18F-T807; 18F-AV-1451) was the first tau positron emission tomography tracer to be introduced and is the only Food and Drug Administration-approved tau positron emission tomography tracer (Tauvid™). It has been widely adopted and validated in a number of independent research and clinical settings. In this review, we present an overview of the published literature on flortaucipir for positron emission tomography imaging of neurofibrillary tau tangles. We considered all accessible peer-reviewed literature pertaining to flortaucipir through 30 April 2022. We found 474 relevant peer-reviewed publications, which were organized into the following categories based on their primary focus: typical Alzheimer's disease, mild cognitive impairment and pre-symptomatic populations; atypical Alzheimer's disease; non-Alzheimer's disease neurodegenerative conditions; head-to-head comparisons with other Tau positron emission tomography tracers; and technical considerations. The available flortaucipir literature provides substantial evidence for the use of this positron emission tomography tracer in assessing neurofibrillary tau tangles in Alzheimer's disease and limited support for its use in other neurodegenerative disorders. Visual interpretation and quantitation approaches, although heterogeneous, mostly converge and demonstrate the high diagnostic and prognostic value of flortaucipir in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Ming Lu
- Avid, Eli Lilly and Company, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
18
|
Gogola A, Lopresti BJ, Tudorascu D, Snitz B, Minhas D, Doré V, Ikonomovic MD, Shaaban CE, Matan C, Bourgeat P, Mason NS, Aizenstein H, Mathis CA, Klunk WE, Rowe CC, Lopez OL, Cohen AD, Villemagne VL. Biostatistical Estimation of Tau Threshold Hallmarks (BETTH) Algorithm for Human Tau PET Imaging Studies. J Nucl Med 2023; 64:1798-1805. [PMID: 37709531 PMCID: PMC10626371 DOI: 10.2967/jnumed.123.265941] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
A methodology for determining tau PET thresholds is needed to confidently detect early tau deposition. We compared multiple threshold-determining methods in participants who underwent either 18F-flortaucipir or 18F-MK-6240 PET scans. Methods: 18F-flortaucipir (n = 798) and 18F-MK-6240 (n = 216) scans were processed and sampled to obtain regional SUV ratios. Subsamples of the cohorts were based on participant diagnosis, age, amyloid-β status (positive or negative), and neurodegeneration status (positive or negative), creating older-adult (age ≥ 55 y) cognitively unimpaired (amyloid-β-negative, neurodegeneration-negative) and cognitively impaired (mild cognitive impairment/Alzheimer disease, amyloid-β-positive, neurodegeneration-positive) groups, and then were further subsampled via matching to reduce significant differences in diagnostic prevalence, age, and Mini-Mental State Examination score. We used the biostatistical estimation of tau threshold hallmarks (BETTH) algorithm to determine sensitivity and specificity in 6 composite regions. Results: Parametric double receiver operating characteristic analysis yielded the greatest joint sensitivity in 5 of the 6 regions, whereas hierarchic clustering, gaussian mixture modeling, and k-means clustering all yielded perfect joint specificity (2.00) in all regions. Conclusion: When 18F-flortaucipir and 18F-MK-6240 are used, Alzheimer disease-related tau status is best assessed using 2 thresholds, a sensitivity one based on parametric double receiver operating characteristic analysis and a specificity one based on gaussian mixture modeling, delimiting an uncertainty zone indicating participants who may require further evaluation.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beth Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Davneet Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent Doré
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania; and
| | - C Elizabeth Shaaban
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cristy Matan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pierrick Bourgeat
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Costoya-Sánchez A, Moscoso A, Silva-Rodríguez J, Pontecorvo MJ, Devous MD, Aguiar P, Schöll M, Grothe MJ. Increased Medial Temporal Tau Positron Emission Tomography Uptake in the Absence of Amyloid-β Positivity. JAMA Neurol 2023; 80:1051-1061. [PMID: 37578787 PMCID: PMC10425864 DOI: 10.1001/jamaneurol.2023.2560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Importance An increased tau positron emission tomography (PET) signal in the medial temporal lobe (MTL) has been observed in older individuals in the absence of amyloid-β (Aβ) pathology. Little is known about the longitudinal course of this condition, and its association with Alzheimer disease (AD) remains unclear. Objective To study the pathologic and clinical course of older individuals with PET-evidenced MTL tau deposition (TMTL+) in the absence of Aβ pathology (A-), and the association of this condition with the AD continuum. Design, Setting, and Participants A multicentric, observational, longitudinal cohort study was conducted using pooled data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), Harvard Aging Brain Study (HABS), and the AVID-A05 study, collected between July 2, 2015, and August 23, 2021. Participants in the ADNI, HABS, and AVID-A05 studies (N = 1093) with varying degrees of cognitive performance were deemed eligible if they had available tau PET, Aβ PET, and magnetic resonance imaging scans at baseline. Of these, 128 participants did not meet inclusion criteria based on Aβ PET and tau PET biomarker profiles (A+ TMTL-). Exposures Tau and Aβ PET, magnetic resonance imaging, cerebrospinal fluid biomarkers, and cognitive assessments. Main Outcomes and Measures Cross-sectional and longitudinal measures for tau and Aβ PET, cortical atrophy, cognitive scores, and core AD cerebrospinal fluid biomarkers (Aβ42/40 and tau phosphorylated at threonine 181 p-tau181 available in a subset). Results Among the 965 individuals included in the study, 503 were women (52.1%) and the mean (SD) age was 73.9 (8.1) years. A total of 51% of A- individuals and 78% of A+ participants had increased tau PET signal in the entorhinal cortex (TMTL+) compared with healthy younger (aged <39 years) controls. Compared with A- TMTL-, A- TMTL+ participants showed statistically significant, albeit moderate, longitudinal (mean [SD], 1.83 [0.84] years) tau PET increases that were largely limited to the temporal lobe, whereas those with A+ TMTL+ showed faster and more cortically widespread tau PET increases. In contrast to participants with A+ TMTL+, those with A- TMTL+ did not show any noticeable Aβ accumulation over follow-up (mean [SD], 2.36 [0.76] years). Complementary cerebrospinal fluid analysis confirmed longitudinal p-tau181 increases in A- TMTL+ in the absence of increased Aβ accumulation. Participants with A- TMTL+ had accelerated MTL atrophy, whereas those with A+ TMTL+ showed accelerated atrophy in widespread temporoparietal brain regions. Increased MTL tau PET uptake in A- individuals was associated with cognitive decline, but at a significantly slower rate compared with A+ TMTL+. Conclusions and Relevance In this study, individuals with A- TMTL+ exhibited progressive tau accumulation and neurodegeneration, but these processes were comparably slow, remained largely restricted to the MTL, were associated with only subtle changes in global cognitive performance, and were not accompanied by detectable accumulation of Aβ biomarkers. These data suggest that individuals with A- TMTL+ are not on a pathologic trajectory toward AD.
Collapse
Affiliation(s)
- Alejandro Costoya-Sánchez
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodríguez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Michael J. Pontecorvo
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Michael D. Devous
- Avid Radiopharmaceuticals, Philadelphia, Pennsylvania
- Eli Lilly and Company, Indianapolis, Indiana
| | - Pablo Aguiar
- Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, Instituto de Investigación Sanitaria de Santiago de Compostel, Travesía da Choupana s/n, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Michel J. Grothe
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
20
|
Jagust WJ, Teunissen CE, DeCarli C. The complex pathway between amyloid β and cognition: implications for therapy. Lancet Neurol 2023; 22:847-857. [PMID: 37454670 DOI: 10.1016/s1474-4422(23)00128-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 07/18/2023]
Abstract
For decades, the hypothesis that brain deposition of the amyloid β protein initiates Alzheimer's disease has dominated research and clinical trials. Targeting amyloid β is starting to produce therapeutic benefit, although whether amyloid-lowering drugs will be widely and meaningfully effective is still unclear. Despite extensive in-vivo biomarker evidence in humans showing the importance of an amyloid cascade that drives cognitive decline, the amyloid hypothesis does not fully account for the complexity of late-life cognitive impairment. Multiple brain pathological changes, inflammation, and host factors of resilience might also be involved in contributing to the development of dementia. This variability suggests that the benefits of lowering amyloid β might depend on how strongly an amyloid pathway is manifest in an individual in relation to other coexisting pathophysiological processes. A new approach to research and treatment, which fully considers the multiple factors that drive cognitive decline, is necessary.
Collapse
Affiliation(s)
- William J Jagust
- School of Public Health, and Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Wuestefeld A, Pichet Binette A, Berron D, Spotorno N, van Westen D, Stomrud E, Mattsson-Carlgren N, Strandberg O, Smith R, Palmqvist S, Glenn T, Moes S, Honer M, Arfanakis K, Barnes LL, Bennett DA, Schneider JA, Wisse LEM, Hansson O. Age-related and amyloid-beta-independent tau deposition and its downstream effects. Brain 2023; 146:3192-3205. [PMID: 37082959 PMCID: PMC10393402 DOI: 10.1093/brain/awad135] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Amyloid-β (Aβ) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe. However, there is evidence that, independently of Aβ, age-related tau pathology might be present outside of the medial temporal lobe. We therefore aimed to study age-related Aβ-independent tau deposition outside the medial temporal lobe in two large cohorts and to investigate potential downstream effects of this on cognition and structural measures. We included 545 cognitively unimpaired adults (40-92 years) from the BioFINDER-2 study (in vivo) and 639 (64-108 years) from the Rush Alzheimer's Disease Center cohorts (ex vivo). 18F-RO948- and 18F-flutemetamol-PET standardized uptake value ratios were calculated for regional tau and global/regional Aβ in vivo. Immunohistochemistry was used to estimate Aβ load and tangle density ex vivo. In vivo medial temporal lobe volumes (subiculum, cornu ammonis 1) and cortical thickness (entorhinal cortex, Brodmann area 35) were obtained using Automated Segmentation for Hippocampal Subfields packages. Thickness of early and late neocortical Alzheimer's disease regions was determined using FreeSurfer. Global cognition and episodic memory were estimated to quantify cognitive functioning. In vivo age-related tau deposition was observed in the medial temporal lobe and in frontal and parietal cortical regions, which was statistically significant when adjusting for Aβ. This was also observed in individuals with low Aβ load. Tau deposition was negatively associated with cortical volumes and thickness in temporal and parietal regions independently of Aβ. The associations between age and cortical volume or thickness were partially mediated via tau in regions with early Alzheimer's disease pathology, i.e. early tau and/or Aβ pathology (subiculum/Brodmann area 35/precuneus/posterior cingulate). Finally, the associations between age and cognition were partially mediated via tau in Brodmann area 35, even when including Aβ-PET as covariate. Results were validated in the ex vivo cohort showing age-related and Aβ-independent increases in tau aggregates in and outside the medial temporal lobe. Ex vivo age-cognition associations were mediated by medial and inferior temporal tau tangle density, while correcting for Aβ density. Taken together, our study provides support for primary age-related tauopathy even outside the medial temporal lobe in vivo and ex vivo, with downstream effects on structure and cognition. These results have implications for our understanding of the spreading of tau outside the medial temporal lobe, also in the context of Alzheimer's disease. Moreover, this study suggests the potential utility of tau-targeting treatments in primary age-related tauopathy, likely already in preclinical stages in individuals with low Aβ pathology.
Collapse
Affiliation(s)
- Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, SE-222 42 Lund, Sweden
- Image and Function, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Department of Neurology, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Department of Neurology, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| | - Trevor Glenn
- Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Svenja Moes
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lisa L Barnes
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Laura E M Wisse
- Department of Diagnostic Radiology, Clinical Sciences, Lund University, SE-222 42 Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, SE-222 42 Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-205 02 Malmö, Sweden
| |
Collapse
|
22
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. How Many Alzheimer-Perusini's Atypical Forms Do We Still Have to Discover? Biomedicines 2023; 11:2035. [PMID: 37509674 PMCID: PMC10377159 DOI: 10.3390/biomedicines11072035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer-Perusini's (AD) disease represents the most spread dementia around the world and constitutes a serious problem for public health. It was first described by the two physicians from whom it took its name. Nowadays, we have extensively expanded our knowledge about this disease. Starting from a merely clinical and histopathologic description, we have now reached better molecular comprehension. For instance, we passed from an old conceptualization of the disease based on plaques and tangles to a more modern vision of mixed proteinopathy in a one-to-one relationship with an alteration of specific glial and neuronal phenotypes. However, no disease-modifying therapies are yet available. It is likely that the only way to find a few "magic bullets" is to deepen this aspect more and more until we are able to draw up specific molecular profiles for single AD cases. This review reports the most recent classifications of AD atypical variants in order to summarize all the clinical evidence using several discrimina (for example, post mortem neurofibrillary tangle density, cerebral atrophy, or FDG-PET studies). The better defined four atypical forms are posterior cortical atrophy (PCA), logopenic variant of primary progressive aphasia (LvPPA), behavioral/dysexecutive variant and AD with corticobasal degeneration (CBS). Moreover, we discuss the usefulness of such classifications before outlining the molecular-genetic aspects focusing on microglial activity or, more generally, immune system control of neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Via Michele Miraglia, 98139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
23
|
Shcherbinin S, Morris A, Higgins IA, Tunali I, Lu M, Deveau C, Southekal S, Kotari V, Evans CD, Arora AK, Collins EC, Pontecorvo M, Mintun MA, Sims JR. Tau as a diagnostic instrument in clinical trials to predict amyloid in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12415. [PMID: 37600216 PMCID: PMC10432878 DOI: 10.1002/trc2.12415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is characterized by the presence of both amyloid and tau pathology. In vivo diagnosis can be made with amyloid and tau positron emission tomography (PET) imaging. Emergent evidence supports that amyloid and tau accumulation are associated and that amyloid accumulation may precede that of tau. This report further investigates the relationship between amyloid and tau to assess whether elevated cortical tau can predict elevated amyloid in participants with early symptomatic AD. METHODS Florbetapir F18 and flortaucipir F18 uptake were evaluated from baseline PET scans collected in three multi-center studies with cognitively impaired participants, including A05 (N = 306; NCT02016560), TB (N = 310; TRAILBLAZER-ALZ; NCT03367403), and TB2 (N = 1165; TRAILBLAZER-ALZ 2; NCT04437511). Images were assessed using visual and quantitative approaches to establish amyloid (A+) and tau (T+) positivity, as well as a combination method (tauVQ) to establish T+. Associations between global amyloid and tau were evaluated with positive and negative predictive values (PPV, NPV) and likelihood ratios (LR+, LR-). Predictive values within subgroups according to ethnicity, race, cognitive score, age, and sex were also evaluated. The relationship between regional tau (four target and two reference regions were tested) and global amyloid was investigated in A05 participant scans using receiver-operating characteristic (ROC) curves. RESULTS PPV for amyloid positivity was ≥93% for all three trials using various A+ and T+ definitions, including visual, quantitative, and combination methods. Population characteristics did not have an impact on A+ predictability. Regional analyses (early tau (Eτ) volume of interest (VOI), temporal, parietal, frontal) revealed significant area under the ROC curve in Eτ VOI compared to frontal region, regardless of reference region and consistent among visual and quantitative A+ definitions (p < 0.001). DISCUSSION These findings suggest that a positive tau PET scan is associated (≥93%) with amyloid positivity in individuals with early symptomatic AD, with the potential benefits of reducing clinical trial and health care expenses, radiation exposure, and participant time. Highlights Positron emission tomography (PET) evaluates candidates for Alzheimer's disease (AD) research. A positive tau PET scan is associated (≥93%) with amyloid positivity.A positive amyloid PET is not necessarily associated with tau positivity.Tau PET could be the sole diagnostic tool to confirm candidates for AD trials.
Collapse
Affiliation(s)
| | - Amanda Morris
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | | | | | - Ming Lu
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | | | - Sudeepti Southekal
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | - Vikas Kotari
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | | | - Anupa K. Arora
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | - Emily C. Collins
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | - Michael Pontecorvo
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | - Mark A. Mintun
- Eli Lilly and CompanyIndianapolisIndianaUSA
- Avid RadiopharmaceuticalsPhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
24
|
Delvenne A, Gobom J, Tijms B, Bos I, Reus LM, Dobricic V, Kate MT, Verhey F, Ramakers I, Scheltens P, Teunissen CE, Vandenberghe R, Schaeverbeke J, Gabel S, Popp J, Peyratout G, Martinez-Lage P, Tainta M, Tsolaki M, Freund-Levi Y, Lovestone S, Streffer J, Barkhof F, Bertram L, Blennow K, Zetterberg H, Visser PJ, Vos SJB. Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected non-Alzheimer's disease pathophysiology. Alzheimers Dement 2023; 19:807-820. [PMID: 35698882 DOI: 10.1002/alz.12713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS Individuals were classified based on CSF amyloid beta (Aβ)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.
Collapse
Affiliation(s)
- Aurore Delvenne
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
| | - Mara Ten Kate
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Centers (AUMC), Amsterdam Neuroscience, the Netherlands
| | - Rik Vandenberghe
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jolien Schaeverbeke
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Silvy Gabel
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Julius Popp
- Old Age Psychiatry, University Hospital Lausanne, Lausanne, Switzerland
- Department of Geriatric Psychiatry, Psychiatry University Hospital Zürich, Zürich, Switzerland
| | | | | | - Mikel Tainta
- Fundación CITA-Alzhéimer Fundazioa, San Sebastian, Spain
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Department of Neurobiology, Caring Sciences and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry in Region Örebro County and School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Old Age Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Simon Lovestone
- University of Oxford, Oxford, United Kingdom (currently at Johnson and Johnson Medical Ltd.), London, UK
| | - Johannes Streffer
- Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Belgium
- UCB Biopharma SPRL, Brain-l'Alleud, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Institutes of Neurology & Healthcare Engineering, UCL London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Centrum Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
25
|
Jann K, Boudreau J, Albrecht D, Cen SY, Cabeen RP, Ringman JM, Wang DJ. FMRI Complexity Correlates with Tau-PET and Cognitive Decline in Late-Onset and Autosomal Dominant Alzheimer's Disease. J Alzheimers Dis 2023; 95:437-451. [PMID: 37599531 PMCID: PMC10578217 DOI: 10.3233/jad-220851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Neurofibrillary tangle pathology detected with tau-PET correlates closely with neuronal injury and cognitive symptoms in Alzheimer's disease (AD). Complexity of rs-fMRI has been demonstrated to decrease with cognitive decline in AD. OBJECTIVE We hypothesize that the rs-fMRI complexity provides an index for tau-related neuronal injury and cognitive decline in the AD process. METHODS Data was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI3) and the Estudio de la Enfermedad de Alzheimer en Jalisciences (EEAJ) study. Associations between tau-PET and rs-fMRI complexity were calculated. Potential pathways relating complexity to cognitive function mediated through tau-PET were assessed by path analysis. RESULTS We found significant negative correlations between rs-fMRI complexity and tau-PET in medial temporal lobe of both cohorts, and associations of rs-fMRI complexity with cognitive scores were mediated through tau-PET. CONCLUSION The association of rs-fMRI complexity with tau-PET and cognition, suggests that a reduction in complexity is indicative of tau-related neuropathology and cognitive decline in AD processes.
Collapse
Affiliation(s)
- Kay Jann
- Laboratory of Functional MRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julia Boudreau
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Albrecht
- Laboratory of NeuroImaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Y. Cen
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryan P. Cabeen
- Laboratory of NeuroImaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Danny J.J. Wang
- Laboratory of Functional MRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
26
|
Endo H, Tagai K, Ono M, Ikoma Y, Oyama A, Matsuoka K, Kokubo N, Hirata K, Sano Y, Oya M, Matsumoto H, Kurose S, Seki C, Shimizu H, Kakita A, Takahata K, Shinotoh H, Shimada H, Tokuda T, Kawamura K, Zhang M, Oishi K, Mori S, Takado Y, Higuchi M. A Machine Learning-Based Approach to Discrimination of Tauopathies Using [ 18 F]PM-PBB3 PET Images. Mov Disord 2022; 37:2236-2246. [PMID: 36054492 PMCID: PMC9805085 DOI: 10.1002/mds.29173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/03/2022] [Accepted: 07/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We recently developed a positron emission tomography (PET) probe, [18 F]PM-PBB3, to detect tau lesions in diverse tauopathies, including mixed three-repeat and four-repeat (3R + 4R) tau fibrils in Alzheimer's disease (AD) and 4R tau aggregates in progressive supranuclear palsy (PSP). For wider availability of this technology for clinical settings, bias-free quantitative evaluation of tau images without a priori disease information is needed. OBJECTIVE We aimed to establish tau PET pathology indices to characterize PSP and AD using a machine learning approach and test their validity and tracer capabilities. METHODS Data were obtained from 50 healthy control subjects, 46 patients with PSP Richardson syndrome, and 37 patients on the AD continuum. Tau PET data from 114 regions of interest were subjected to Elastic Net cross-validation linear classification analysis with a one-versus-the-rest multiclass strategy to obtain a linear function that discriminates diseases by maximizing the area under the receiver operating characteristic curve. We defined PSP- and AD-tau scores for each participant as values of the functions optimized for differentiating PSP (4R) and AD (3R + 4R), respectively, from others. RESULTS The discriminatory ability of PSP- and AD-tau scores assessed as the area under the receiver operating characteristic curve was 0.98 and 1.00, respectively. PSP-tau scores correlated with the PSP rating scale in patients with PSP, and AD-tau scores correlated with Mini-Mental State Examination scores in healthy control-AD continuum patients. The globus pallidus and amygdala were highlighted as regions with high weight coefficients for determining PSP- and AD-tau scores, respectively. CONCLUSIONS These findings highlight our technology's unbiased capability to identify topologies of 3R + 4R versus 4R tau deposits. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Hironobu Endo
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kenji Tagai
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Maiko Ono
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Yoko Ikoma
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Asaka Oyama
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kiwamu Matsuoka
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Naomi Kokubo
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kosei Hirata
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Yasunori Sano
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Masaki Oya
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Hideki Matsumoto
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan,Department of Oral and Maxillofacial RadiologyTokyo Dental CollegeTokyoJapan
| | - Shin Kurose
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Chie Seki
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Keisuke Takahata
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | | | - Hitoshi Shimada
- Department of Functional Neurology & Neurosurgery, Center for Integrated Human Brain Science, Brain Research InstituteNiigata UniversityNiigataJapan
| | - Takahiko Tokuda
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kazunori Kawamura
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Ming‐Rong Zhang
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yuhei Takado
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Institute for Quantum Medical Science, Quantum Life and Medical Science DirectorateNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
27
|
Weigand AJ, Edwards L, Thomas KR, Bangen KJ, Bondi MW. Comprehensive characterization of elevated tau PET signal in the absence of amyloid-beta. Brain Commun 2022; 4:fcac272. [PMID: 36382220 PMCID: PMC9651027 DOI: 10.1093/braincomms/fcac272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/07/2022] [Accepted: 10/24/2022] [Indexed: 02/03/2023] Open
Abstract
Recently proposed biomarker-only diagnostic frameworks propose that amyloid-beta is necessary for placement on the Alzheimer's disease continuum, whereas tau in the absence of amyloid-beta is considered to be a non-Alzheimer's disease pathologic change. Similarly, the pathologic designation of tau in the absence of amyloid-beta is characterized as primary age-related tauopathy and separable from Alzheimer's disease. Our study sought to identify an early-to-moderate tau stage with minimal amyloid-beta using PET imaging and characterize these individuals in terms of clinical, cognitive and biological features. Seven hundred and three participants from the Alzheimer's Disease Neuroimaging Initiative were classified into one of the four groups (A-/T-, A-/T+, A+/T- and A+/T+) based on PET positivity or negativity for cortical amyloid-beta (A-/A+) and early-to-moderate stage (i.e. meta-temporal) tau (T-/T+). These groups were then compared on demographic and clinical features, vascular risk, multi-domain neuropsychological performance, multi-domain subjective cognitive complaints, apolipoprotein E epsilon-4 carrier status and cortical thickness across Alzheimer's disease-vulnerable regions. The proportion of participants classified in each group was as follows: 47.23% A-/T-, 13.51% A-/T+, 12.23% A+/T- and 27.03% A+/T+. Results indicated that the A-/T+ and A+/T+ groups did not statistically differ on age, sex, depression levels, vascular risk and cortical thickness across temporal and parietal regions. Additionally, both A-/T+ and A+/T+ groups showed significant associations between memory performance and cortical thickness of temporal regions. Despite the different pathologic terminology used for A-/T+ and A+/T+, these groups did not statistically differ on a number of clinical, cognitive and biomarker features. Although it remains unclear whether A-/T+ reflects a pathologic construct separable from Alzheimer's disease, our results provide evidence that this group typically characterized as 'non-Alzheimer's pathologic change' or 'primary age-related tauopathy' should be given increased attention, given some similarities in cognitive and biomarker characteristics to groups traditionally considered to be on the Alzheimer's continuum.
Collapse
Affiliation(s)
- Alexandra J Weigand
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, CA 92120, USA
| | - Lauren Edwards
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, CA 92120, USA
| | - Kelsey R Thomas
- VA San Diego Healthcare System, San Diego, CA 92161, USA,Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Katherine J Bangen
- VA San Diego Healthcare System, San Diego, CA 92161, USA,Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Mark W Bondi
- Correspondence to: Mark W. Bondi, PhD ABPP-CN, VA San Diego Healthcare System (116B) 3350 La Jolla Village Drive, San Diego, CA 92161, USA E-mail:
| | | |
Collapse
|
28
|
Quintas-Neves M, Teylan MA, Morais-Ribeiro R, Almeida F, Mock CN, Kukull WA, Crary JF, Oliveira TG. Divergent magnetic resonance imaging atrophy patterns in Alzheimer's disease and primary age-related tauopathy. Neurobiol Aging 2022; 117:1-11. [PMID: 35640459 DOI: 10.1016/j.neurobiolaging.2022.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Our study compared brain MRI with neuropathological findings in patients with primary age-related tauopathy (PART) and Alzheimer's disease (AD), while assessing the relationship between brain atrophy and clinical impairment. We analyzed 233 participants: 32 with no plaques ("definite" PART-BRAAK stage higher than 0 and CERAD 0), and 201 cases within the AD spectrum, with 25 with sparse (CERAD 1), 76 with moderate (CERAD 2), and 100 with severe (CERAD 3) degrees of neuritic plaques. Upon correcting for age, sex, and age difference at MRI and death, there were significantly higher levels of atrophy in CERAD 3 compared to CERAD 1-2 and a trend compared to PART (p = 0.06). In the anterior temporal region, there was a trend for higher levels of atrophy in PART compared to Alzheimer's disease spectrum cases with CERAD 1 (p = 0.08). We then assessed the correlation between regional brain atrophy and CDR sum of boxes score for PART and AD, and found that overall cognition deficits are directly correlated with regional atrophy in the AD continuum, but not in definite PART. We further observed correlations between regional brain atrophy with multiple neuropsychological metrics in AD, with PART showing specific correlations between language deficits and anterior temporal atrophy. Overall, these findings support PART as an independent pathologic process from AD.
Collapse
Affiliation(s)
- Miguel Quintas-Neves
- Department of Neuroradiology, Hospital de Braga, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Merilee A Teylan
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Rafaela Morais-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francisco Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Charles N Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, WA, USA
| | - John F Crary
- Neuropathology Brain Bank & Research Core, Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiago Gil Oliveira
- Department of Neuroradiology, Hospital de Braga, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
29
|
Thomas KR, Weigand AJ, Edwards LC, Edmonds EC, Bangen KJ, Ortiz G, Walker KS, Bondi MW. Tau levels are higher in objective subtle cognitive decline but not subjective memory complaint. Alzheimers Res Ther 2022; 14:114. [PMID: 35996158 PMCID: PMC9394026 DOI: 10.1186/s13195-022-01060-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The 2018 NIA-AA Alzheimer's Disease (AD) Research Framework states that subtle cognitive decline in cognitively unimpaired individuals can be measured by subjective reports or evidence of objective decline on neuropsychological measures. Both subjective memory complaint (SMC) and objective subtle cognitive decline (Obj-SCD) have been shown to be associated with future cognitive decline and AD biomarkers. We examined whether there are differences in tau PET levels between (a) SMC- vs. SMC+ participants, (b) Obj-SCD- vs. Obj-SCD+ participants, and (c) participants with overlapping vs. discrepant SMC and Obj-SCD classifications. METHODS Cognitively unimpaired participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n = 236) were classified at baseline as positive or negative for SMC (SMC- n = 77; SMC+ n = 159) based on the first 12 items of the Cognitive Change Index and/or classified as positive or negative for Obj-SCD (Obj-SCD- n = 173; Obj-SCD+ n = 63) based on previously defined neuropsychological criteria. Analyses of covariance, adjusting for age, sex, APOE ε4 carrier status, and pulse pressure, examined the group differences in tau PET (AV-1451) using a composite standardized uptake variable ratio (SUVR) for regions consistent with Braak stage III/IV. The chi-squared tests examined the tau positivity rates across the groups. RESULTS Obj-SCD+ participants had higher tau continuous SUVR levels (p = .035, ηp2 = .019) and higher rates of tau positivity (15.8% Obj-SCD- vs. 30.2% Obj-SCD+) than Obj-SCD- participants. Neither tau levels (p = .381, ηp2 = .003) nor rates of tau positivity (18.2% SMC- and 20.1% SMC+) differed between the SMC groups. There was very little agreement between SMC and Obj-SCD classifications (42%; κ = 0.008, p = .862). Participants who were Obj-SCD+ without SMC had the highest tau PET levels and differed from participants who were SMC+ without Obj-SCD (p = .022). Tau levels in participants with both SMC and Obj-SCD did not differ from those with only Obj-SCD (p = .216). Tau positivity rates across the SMC-/Obj-SCD-, SMC+/Obj-SCD-, SMC-/Obj-SCD+, and SMC+/Obj-SCD+ groups were 10.5%, 18.1%, 40.0%, and 25.6%, respectively. CONCLUSION Participants with Obj-SCD had a greater tau PET burden than those without Obj-SCD, but SMC was not associated with higher tau levels. The combination of SMC and Obj-SCD did not have higher tau levels than Obj-SCD alone. Findings add to the evidence that the Obj-SCD classification is associated with AD biomarkers and faster cognitive decline in ADNI participants, but further work is needed to validate this approach in more representative/diverse cohorts.
Collapse
Affiliation(s)
- Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151), San Diego, CA, 92161, USA.
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA.
| | - Alexandra J Weigand
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | - Lauren C Edwards
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA
| | | | - Katherine J Bangen
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151), San Diego, CA, 92161, USA
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
| | - Gema Ortiz
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151), San Diego, CA, 92161, USA
| | - Kayla S Walker
- Research Service, VA San Diego Healthcare System, Building 13, 3350 La Jolla Village Drive (151), San Diego, CA, 92161, USA
- San Diego State University, San Diego, CA, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, La Jolla, San Diego, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
30
|
Jiang J, Yang C, Ai JQ, Zhang QL, Cai XL, Tu T, Wan L, Wang XS, Wang H, Pan A, Manavis J, Gai WP, Che C, Tu E, Wang XP, Li ZY, Yan XX. Intraneuronal sortilin aggregation relative to granulovacuolar degeneration, tau pathogenesis and sorfra plaque formation in human hippocampal formation. Front Aging Neurosci 2022; 14:926904. [PMID: 35978952 PMCID: PMC9376392 DOI: 10.3389/fnagi.2022.926904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular β-amyloid (Aβ) deposition and intraneuronal phosphorylated-tau (pTau) accumulation are the hallmark lesions of Alzheimer’s disease (AD). Recently, “sorfra” plaques, named for the extracellular deposition of sortilin c-terminal fragments, are reported as a new AD-related proteopathy, which develop in the human cerebrum resembling the spatiotemporal trajectory of tauopathy. Here, we identified intraneuronal sortilin aggregation as a change related to the development of granulovacuolar degeneration (GVD), tauopathy, and sorfra plaques in the human hippocampal formation. Intraneuronal sortilin aggregation occurred as cytoplasmic inclusions among the pyramidal neurons, co-labeled by antibodies to the extracellular domain and intracellular C-terminal of sortilin. They existed infrequently in the brains of adults, while their density as quantified in the subiculum/CA1 areas increased in the brains from elderly lacking Aβ/pTau, with pTau (i.e., primary age-related tauopathy, PART cases), and with Aβ/pTau (probably/definitive AD, pAD/AD cases) pathologies. In PART and pAD/AD cases, the intraneuronal sortilin aggregates colocalized partially with various GVD markers including casein kinase 1 delta (Ck1δ) and charged multivesicular body protein 2B (CHMP2B). Single-cell densitometry established an inverse correlation between sortilin immunoreactivity and that of Ck1δ, CHMP2B, p62, and pTau among pyramidal neurons. In pAD/AD cases, the sortilin aggregates were reduced in density as moving from the subiculum to CA subregions, wherein sorfra plaques became fewer and absent. Taken together, we consider intraneuronal sortilin aggregation an aging/stress-related change implicating protein sorting deficit, which can activate protein clearance responses including via enhanced phosphorylation and hydrolysis, thereby promoting GVD, sorfra, and Tau pathogenesis, and ultimately, neuronal destruction and death.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Changsha, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Sheng Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wei-Ping Gai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd., Changchun High-Tech Dev. Zone, Changchun, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Ping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Changsha, China
| | - Zhen-Yan Li
- Department of Neurosurgery, Xiangya Hospital, Changsha, China
- *Correspondence: Zhen-Yan Li,
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
- Xiao-Xin Yan,
| |
Collapse
|
31
|
Minoshima S, Cross D, Thientunyakit T, Foster NL, Drzezga A. 18F-FDG PET Imaging in Neurodegenerative Dementing Disorders: Insights into Subtype Classification, Emerging Disease Categories, and Mixed Dementia with Copathologies. J Nucl Med 2022; 63:2S-12S. [PMID: 35649653 DOI: 10.2967/jnumed.121.263194] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Since the invention of 18F-FDG as a neurochemical tracer in the 1970s, 18F-FDG PET has been used extensively for dementia research and clinical applications. FDG, a glucose analog, is transported into the brain via glucose transporters and metabolized in a concerted process involving astrocytes and neurons. Although the exact cellular mechanisms of glucose consumption are still under investigation, 18F-FDG PET can sensitively detect altered neuronal activity due to neurodegeneration. Various neurodegenerative disorders affect different areas of the brain, which can be depicted as altered 18F-FDG uptake by PET. The spatial patterns and severity of such changes can be reproducibly visualized by statistical mapping technology, which has become widely available in the clinic. The differentiation of 3 major neurodegenerative disorders by 18F-FDG PET, Alzheimer disease (AD), frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB), has become standard practice. As the nosology of FTD evolves, frontotemporal lobar degeneration, the umbrella term for pathology affecting the frontal and temporal lobes, has been subclassified clinically into behavioral variant FTD; primary progressive aphasia with 3 subtypes, semantic, nonfluent, and logopenic variants; and movement disorders including progressive supranuclear palsy and corticobasal degeneration. Each of these subtypes is associated with differential 18F-FDG PET findings. The discovery of new pathologic markers and clinicopathologic correlations via larger autopsy series have led to newly recognized or redefined disease categories, such as limbic-predominant age-related TDP-43 encephalopathy, hippocampus sclerosis, primary age-related tauopathy, and argyrophilic grain disease, which have become a focus of investigations by molecular imaging. These findings need to be integrated into the modern interpretation of 18F-FDG PET. Recent pathologic investigations also have revealed a high prevalence, particularly in the elderly, of mixed dementia with overlapping and coexisting pathologies. The interpretation of 18F-FDG PET is evolving from a traditional dichotomous diagnosis of AD versus FTD (or DLB) to a determination of the most predominant underlying pathology that would best explain the patient's symptoms, for the purpose of care guidance. 18F-FDG PET is a relatively low cost and widely available imaging modality that can help assess various neurodegenerative disorders in a single test and remains the workhorse in clinical dementia evaluation.
Collapse
Affiliation(s)
- Satoshi Minoshima
- Department of Radiology and Imaging Sciences, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah;
| | - Donna Cross
- Department of Radiology and Imaging Sciences, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| | - Tanyaluck Thientunyakit
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand
| | - Norman L Foster
- Department of Neurology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Bonn, Germany; and.,Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
32
|
Bhagavati S. Commentary: Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci 2022; 14:895398. [PMID: 35572139 PMCID: PMC9099371 DOI: 10.3389/fnagi.2022.895398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022] Open
|
33
|
Krishnadas N, Doré V, Groot C, Lamb F, Bourgeat P, Burnham SC, Huang K, Goh AMY, Masters CL, Villemagne VL, Rowe CC. Mesial temporal tau in amyloid-β-negative cognitively normal older persons. Alzheimers Res Ther 2022; 14:51. [PMID: 35395950 PMCID: PMC8991917 DOI: 10.1186/s13195-022-00993-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Tau deposition in the mesial temporal lobe (MTL) in the absence of amyloid-β (Aβ-) occurs with aging. The tau PET tracer 18F-MK6240 has low non-specific background binding so is well suited to exploration of early-stage tau deposition. The aim of this study was to investigate the associations between MTL tau, age, hippocampal volume (HV), cognition, and neocortical tau in Aβ- cognitively unimpaired (CU) individuals. METHODS One hundred and ninety-nine Aβ- participants (Centiloid < 25) who were CU underwent 18F-MK6240 PET at age 75 ± 5.2 years. Tau standardized uptake value ratio (SUVR) was estimated in mesial temporal (Me), temporoparietal (Te), and rest of the neocortex (R) regions and four Me sub-regions. Tau SUVR were analyzed as continuous variables and compared between high and low MTL SUVR groups. RESULTS In this cohort with a stable clinical classification of CU for a mean of 5.3 years prior to and at the time of tau PET, MTL tau was visually observed in 9% of the participants and was limited to Braak stages I-II. MTL tau was correlated with age (r = 0.24, p < 0.001). Age contributed to the variance in cognitive scores but MTL tau did not. MTL tau was not greater with subjective memory complaint, nor was there a correlation between MTL tau and Aβ Centiloid value, but high tau was associated with smaller HV. Participants with MTL tau had higher tau SUVR in the neocortex but this was driven by the cerebellar reference region and was not present when using white matter normalization. CONCLUSIONS In an Aβ- CU cohort, tau tracer binding in the mesial temporal lobe was age-related and associated with smaller hippocampi, but not with subjective or objective cognitive impairment.
Collapse
Affiliation(s)
- Natasha Krishnadas
- Florey Department of Neurosciences & Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Vincent Doré
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Melbourne, Victoria, Australia
| | - Colin Groot
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Fiona Lamb
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Pierrick Bourgeat
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Brisbane, QLD, Australia
| | - Samantha C Burnham
- Health and Biosecurity Flagship, The Australian eHealth Research Centre, Melbourne, Victoria, Australia
| | - Kun Huang
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Anita M Y Goh
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, 3010, Australia
- National Ageing Research Institute, Parkville, VIC, 3052, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience & Mental Health, Parkville, VIC, 3052, Australia
| | | | - Christopher C Rowe
- Florey Department of Neurosciences & Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia.
- Florey Institute of Neuroscience & Mental Health, Parkville, VIC, 3052, Australia.
| |
Collapse
|
34
|
Weigand AJ, Maass A, Eglit GL, Bondi MW. What's the cut-point?: a systematic investigation of tau PET thresholding methods. Alzheimers Res Ther 2022; 14:49. [PMID: 35382866 PMCID: PMC8985353 DOI: 10.1186/s13195-022-00986-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Tau positron emission tomography (PET) is increasing in popularity for biomarker characterization of Alzheimer's disease (AD), and recent frameworks rely on tau PET cut-points to stage individuals along the AD continuum. Given the lack of standardization in tau PET thresholding methods, this study sought to systematically canvass and characterize existing studies that have derived tau PET cut-points and then directly assess different methods of tau PET thresholding in terms of their concurrent validity. METHODS First, a literature search was conducted in PubMed to identify studies of AD and related clinical phenotypes that used the Flortaucipir (AV-1451) tau PET tracer to derive a binary cut-point for tau positivity. Of 540 articles screened and 47 full-texts reviewed, 23 cohort studies met inclusion criteria with a total of 6536 participants. Second, we derived and compared tau PET cut-points in a 2 × 2 × 2 design that systematically varied region (temporal meta-ROI and entorhinal cortex), analytic method (receiver operating characteristics and 2 standard deviations above comparison group), and criterion/comparison variable (amyloid-beta negative cognitively unimpaired or cognitively unimpaired only) using a sample of 453 older adults from the Alzheimer's Disease Neuroimaging Initiative. RESULTS For the systematic review, notable variability in sample characteristics, preprocessing methods, region of interest, and analytic approach were observed, which were accompanied by discrepancy in proposed tau PET cut points. The empirical follow-up indicated the cut-point derived based on 2 standard deviations above a either comparison group in either ROI best differentiated tau positive and negative groups on cerebrospinal fluid phosphorylated tau, Mini-Mental State Examination score, and delayed memory performance. CONCLUSIONS Given the impact of discrepant thresholds on tau positivity rates, biomarker staging, and eligibility for future clinical treatment trials, recommendations are offered to select cut-point derivations based on the unique goals and priorities of different studies.
Collapse
Affiliation(s)
- Alexandra J Weigand
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, USA
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Graham L Eglit
- Research Service, VA San Diego Healthcare System, San Diego, USA
- Department of Psychiatry, University of California, San Diego, USA
| | - Mark W Bondi
- Research Service, VA San Diego Healthcare System, San Diego, USA.
- Department of Psychiatry, University of California, San Diego, USA.
- Neuropsychological Assessment Unit, University of California San Diego School of Medicine, VA San Diego Healthcare System (116B), 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.
| |
Collapse
|
35
|
Clouston SAP, Hall CB, Kritikos M, Bennett DA, DeKosky S, Edwards J, Finch C, Kreisl WC, Mielke M, Peskind ER, Raskind M, Richards M, Sloan RP, Spiro A, Vasdev N, Brackbill R, Farfel M, Horton M, Lowe S, Lucchini RG, Prezant D, Reibman J, Rosen R, Seil K, Zeig-Owens R, Deri Y, Diminich ED, Fausto BA, Gandy S, Sano M, Bromet EJ, Luft BJ. Cognitive impairment and World Trade Centre-related exposures. Nat Rev Neurol 2022; 18:103-116. [PMID: 34795448 PMCID: PMC8938977 DOI: 10.1038/s41582-021-00576-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
On 11 September 2001 the World Trade Center (WTC) in New York was attacked by terrorists, causing the collapse of multiple buildings including the iconic 110-story 'Twin Towers'. Thousands of people died that day from the collapse of the buildings, fires, falling from the buildings, falling debris, or other related accidents. Survivors of the attacks, those who worked in search and rescue during and after the buildings collapsed, and those working in recovery and clean-up operations were exposed to severe psychological stressors. Concurrently, these 'WTC-affected' individuals breathed and ingested a mixture of organic and particulate neurotoxins and pro-inflammogens generated as a result of the attack and building collapse. Twenty years later, researchers have documented neurocognitive and motor dysfunctions that resemble the typical features of neurodegenerative disease in some WTC responders at midlife. Cortical atrophy, which usually manifests later in life, has also been observed in this population. Evidence indicates that neurocognitive symptoms and corresponding brain atrophy are associated with both physical exposures at the WTC and chronic post-traumatic stress disorder, including regularly re-experiencing traumatic memories of the events while awake or during sleep. Despite these findings, little is understood about the long-term effects of these physical and mental exposures on the brain health of WTC-affected individuals, and the potential for neurocognitive disorders. Here, we review the existing evidence concerning neurological outcomes in WTC-affected individuals, with the aim of contextualizing this research for policymakers, researchers and clinicians and educating WTC-affected individuals and their friends and families. We conclude by providing a rationale and recommendations for monitoring the neurological health of WTC-affected individuals.
Collapse
Affiliation(s)
- Sean A P Clouston
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Charles B Hall
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Minos Kritikos
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Department of Neurological Sciences, Rush Medical College, Rush University, Chicago, IL, USA
| | - Steven DeKosky
- Evelyn F. and William L. McKnight Brain Institute and Florida Alzheimer's Disease Research Center, Department of Neurology and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jerri Edwards
- Department of Psychiatry and Behavioral Neuroscience, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Caleb Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | - Michelle Mielke
- Specialized Center of Research Excellence on Sex Differences, Department of Neurology, Department of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Elaine R Peskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Murray Raskind
- Veteran's Association VISN 20 Northwest Mental Illness Research, Education, and Clinical Center, Veteran's Affairs Puget Sound Health Care System, Seattle, WA, USA
- Alzheimer's Disease Research Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marcus Richards
- Medical Research Council Unit for Lifelong Health and Ageing, Population Health Sciences, University College London, London, UK
| | - Richard P Sloan
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Avron Spiro
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), Department of Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Center, Center for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert Brackbill
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Mark Farfel
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Lowe
- The World Trade Center Mental Health Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - David Prezant
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan Reibman
- Department of Environmental Medicine, New York University Langone Health, New York, NY, USA
| | - Rebecca Rosen
- World Trade Center Environmental Health Center, Department of Psychiatry, New York University, New York, NY, USA
| | - Kacie Seil
- World Trade Center Health Registry, New York Department of Health and Mental Hygiene, New York, NY, USA
| | - Rachel Zeig-Owens
- World Trade Center Health Program, Fire Department of the City of New York, Brooklyn, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yael Deri
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erica D Diminich
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Bernadette A Fausto
- Center for Molecular & Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Sam Gandy
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Mary Sano
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Department of Psychiatry, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
36
|
Weigand AJ, Macomber AJ, Walker KS, Edwards L, Thomas KR, Bangen KJ, Nation DA, Bondi MW. Interactive Effects of Pulse Pressure and Tau Imaging on Longitudinal Cognition. J Alzheimers Dis 2022; 89:633-640. [PMID: 35938247 PMCID: PMC9904538 DOI: 10.3233/jad-220026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Studies have demonstrated that both tau and cardiovascular risk are associated with cognitive decline, but the possible synergistic effects of these pathologic markers remain unclear. OBJECTIVE To explore the interaction of AD biomarkers with a specific vascular risk marker (pulse pressure) on longitudinal cognition. METHODS Participants included 139 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Biomarkers of tau, amyloid-β (Aβ), and vascular risk (pulse pressure) were assessed. Neuropsychological assessment provided memory, language, and executive function domain composite scores at baseline and 1-year follow-up. Multiple linear regression examined interactive effects of pulse pressure with tau PET independent of Aβ PET and Aβ PET independent of tau PET on baseline and 1-year cognitive outcomes. RESULTS The interaction between pulse pressure and tau PET significantly predicted 1-year memory performance such that the combined effect of high pulse pressure and high tau PET levels was associated with lower memory at follow-up but not at baseline. In contrast, Aβ PET did not significantly interact with pulse pressure to predict baseline or 1-year outcomes in any cognitive domain. Main effects revealed a significant effect of tau PET on memory, and no significant effects of Aβ PET or pulse pressure on any cognitive domain. CONCLUSION Results indicate that tau and an indirect marker of arterial stiffening (pulse pressure) may synergistically contribute to memory decline, whereas Aβ may have a lesser role in predicting cognitive progression. Tau and vascular pathology (particularly in combination) may represent valuable targets for interventions intended to slow cognitive decline.
Collapse
Affiliation(s)
- Alexandra J. Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology
| | | | | | - Lauren Edwards
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology
| | - Kelsey R. Thomas
- Department of Psychiatry, University of California San Diego,VA San Diego Healthcare System; Department of Psychology
| | - Katherine J. Bangen
- Department of Psychiatry, University of California San Diego,VA San Diego Healthcare System; Department of Psychology
| | | | - Mark W. Bondi
- Department of Psychiatry, University of California San Diego,University of California Irvine
| | | |
Collapse
|
37
|
Thomas KR, Bangen KJ, Weigand AJ, Ortiz G, Walker KS, Salmon DP, Bondi MW, Edmonds EC. Cognitive Heterogeneity and Risk of Progression in Data-Driven Subtle Cognitive Decline Phenotypes. J Alzheimers Dis 2022; 90:323-331. [PMID: 36120785 PMCID: PMC9661321 DOI: 10.3233/jad-220684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is increasing recognition of cognitive and pathological heterogeneity in early-stage Alzheimer's disease and other dementias. Data-driven approaches have demonstrated cognitive heterogeneity in those with mild cognitive impairment (MCI), but few studies have examined this heterogeneity and its association with progression to MCI/dementia in cognitively unimpaired (CU) older adults. OBJECTIVE We identified cluster-derived subgroups of CU participants based on comprehensive neuropsychological data and compared baseline characteristics and rates of progression to MCI/dementia or a Dementia Rating Scale (DRS) of ≤129 across subgroups. METHODS Hierarchical cluster analysis was conducted on individual baseline neuropsychological test scores from 365 CU participants in the UCSD Shiley-Marcos Alzheimer's Disease Research Center longitudinal cohort. Cox regressions examined the risk of progression to consensus diagnosis of MCI or dementia, or to DRS score ≤129, by cluster group. RESULTS Cluster analysis identified 5 groups: All-Average (n = 139), Low-Visuospatial (n = 46), Low-Executive (n = 51), Low-Memory/Language (n = 83), and Low-All Domains (n = 46). Subgroups had unique demographic and clinical characteristics. Rates of progression to MCI/dementia or to DRS ≤129 were faster for all subgroups (Low-All Domains progressed the fastest > Low Memory/Language≥Low-Visuospatial and Low-Executive) relative to the All-Average subgroup. CONCLUSION Faster progression in the Low-Visuospatial, Low-Executive, and Low-Memory/Language groups compared to the All-Average group suggests that there are multiple pathways and/or unique subtle cognitive decline profiles that ultimately lead to a diagnosis of MCI/dementia. Use of comprehensive neuropsychological test batteries that assess several domains may be a key first step toward an individualized approach to early detection and fewer missed opportunities for early intervention.
Collapse
Affiliation(s)
- Kelsey R. Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra J. Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Gema Ortiz
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Kayla S. Walker
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- San Diego State University, San Diego, CA, USA
| | - David P. Salmon
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mark W. Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Emily C. Edmonds
- Banner Alzheimer’s Institute, Tucson, AZ, USA
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
38
|
Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 2022; 23:53-66. [PMID: 34815562 PMCID: PMC8840505 DOI: 10.1038/s41583-021-00533-w] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
The current conceptualization of Alzheimer disease (AD) is driven by the amyloid hypothesis, in which a deterministic chain of events leads from amyloid deposition and then tau deposition to neurodegeneration and progressive cognitive impairment. This model fits autosomal dominant AD but is less applicable to sporadic AD. Owing to emerging information regarding the complex biology of AD and the challenges of developing amyloid-targeting drugs, the amyloid hypothesis needs to be reconsidered. Here we propose a probabilistic model of AD in which three variants of AD (autosomal dominant AD, APOE ε4-related sporadic AD and APOE ε4-unrelated sporadic AD) feature decreasing penetrance and decreasing weight of the amyloid pathophysiological cascade, and increasing weight of stochastic factors (environmental exposures and lower-risk genes). Together, these variants account for a large share of the neuropathological and clinical variability observed in people with AD. The implementation of this model in research might lead to a better understanding of disease pathophysiology, a revision of the current clinical taxonomy and accelerated development of strategies to prevent and treat AD.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland.
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland.
| | - Daniele Altomare
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, and Leuven Brain Institute, University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rik van der Kant
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Kaj Blennow
- Cinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences; University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
- Life Science Partners, Amsterdam, Netherlands
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer, IM2A, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institut du Cerveau et de la Moelle Épinière, UMR-S975, INSERM, Paris, France
| |
Collapse
|
39
|
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2021; 129:1-24. [DOI: 10.1007/s00702-021-02449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
|
40
|
Schwarz CG, Knopman DS, Ramanan VK, Lowe VJ, Wiste HJ, Cogswell PM, Utianski RL, Senjem ML, Gunter JR, Vemuri P, Petersen RC, Jack CR. Longitudinally Increasing Elevated Asymmetric Flortaucipir Binding in a Cognitively Unimpaired Amyloid-Negative Older Individual. J Alzheimers Dis 2021; 85:59-64. [PMID: 34776445 PMCID: PMC8842786 DOI: 10.3233/jad-215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the case of a cognitively unimpaired 77-year-old man with elevated, asymmetric, and longitudinally increasing Flortaucipir tau PET despite normal (visually negative) amyloid PET. His atypical tau PET signal persisted and globally increased in a follow-up scan five years later. Across eight years of observations, temporoparietal atrophy was observed consistent with tau PET patterns, but he retained the cognitively unimpaired classification. Altogether, his atypical tau PET signal is not explained by any known risk factors or alternative pathologies, and other imaging findings were not remarkable. He remains enrolled for further observation.
Collapse
Affiliation(s)
| | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.,Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
41
|
Nerattini M, Rubino F, Arnone A, Polito C, Mazzeo S, Lombardi G, Puccini G, Nacmias B, De Cristofaro MT, Sorbi S, Pupi A, Sciagrà R, Bessi V, Berti V. Cerebral amyloid load determination in a clinical setting: interpretation of amyloid biomarker discordances aided by tau and neurodegeneration measurements. Neurol Sci 2021; 43:2469-2480. [PMID: 34739618 DOI: 10.1007/s10072-021-05704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) diagnosis can be hindered by amyloid biomarkers discordances. OBJECTIVE We aim to interpret discordances between amyloid positron emission tomography (Amy-PET) and cerebrospinal fluid (CSF) (Aβ42 and Aβ42/40), using Amy-PET semiquantitative analysis, [18F]fluorodeoxyglucose (FDG)-PET pattern, and CSF assays. METHOD Thirty-six subjects with dementia or mild cognitive impairment, assessed by neuropsychological tests, structural and functional imaging, and CSF assays (Aβ42, Aβ42/40, p-tau, t-tau), were retrospectively examined. Amy-PET and FDG-PET scans were analyzed by visual assessment and voxel-based analysis. SUVR were calculated on Amy-PET scans. RESULTS Groups were defined basing on the agreement among CSF Aβ42 (A), CSF Aβ42/40 Ratio (R), and Amy-PET (P) dichotomic results ( ±). In discordant groups, CSF assays, Amy-PET semiquantification, and FDG-PET patterns supported the diagnosis suggested by any two agreeing amyloid biomarkers. In groups with discordant CSF Aβ42, the ratio always agrees with Amy-PET results, solving both false-negative and false-positive Aβ42 results, with Aβ42 levels close to the cut-off in A + R-P- subjects. The A + R + P- group presented high amyloid deposition in relevant areas, such as precuneus, posterior cingulate cortex (PCC) and dorsolateral frontal inferior cortex at semiquantitative analysis. CONCLUSION The amyloid discordant cases could be overcome by combining CSF Aβ42, CSF ratio, and Amy-PET results. The concordance of any 2 out of the 3 biomarkers seems to reveal the remaining one as a false result. A cut-off point review could avoid CSF Aβ42 false-negative results. The regional semiquantitative Amy-PET analysis in AD areas, such as precuneus and PCC, could increase the accuracy in AD diagnosis.
Collapse
Affiliation(s)
- Matilde Nerattini
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy.
| | - Federica Rubino
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Annachiara Arnone
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Cristina Polito
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Salvatore Mazzeo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Gemma Lombardi
- IRCCS Fondazione Don Carlo Gnocchi, Via Scandicci 269, 50143, Florence, Italy
| | - Giulia Puccini
- Department of Nuclear Medicine, Hospital of Prato, Via Suor Niccolina Infermiera, 20/22, 59100, Prato, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Via Scandicci 269, 50143, Florence, Italy
| | - Maria Teresa De Cristofaro
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Via Scandicci 269, 50143, Florence, Italy
| | - Alberto Pupi
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Roberto Sciagrà
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Valentina Berti
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| |
Collapse
|
42
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
43
|
Pelgrim TA, Beran M, Twait EL, Geerlings MI, Vonk JM. Cross-sectional associations of tau protein biomarkers with semantic and episodic memory in older adults without dementia: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101449. [PMID: 34400308 DOI: 10.1016/j.arr.2021.101449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Pathological tau is suggested to play a role in cognitive deterioration in the preclinical phase of Alzheimer's disease. We investigated cross-sectional associations of tau burden with episodic and semantic memory performance in older adults without dementia. A systematic search in MEDLINE (via PubMed), PsychINFO, and Embase resulted in 24 eligible studies for meta-analysis. Tau burden was assessed using CSF, PET, or histopathological measures. All studies evaluated associations of tau with episodic memory: weighted effect sizes were -0.46 (95 % CI [-0.73; -0.20], p < .001) for episodic composite scores, -0.19 ([-0.36; -0.03], p = .024) for delayed word list recall, and -0.05 ([-0.14; 0.04], p = .257) for logical memory. Fourteen studies evaluated associations of tau with semantic memory: weighted effect sizes were -0.28 ([-0.52; -0.04], p = .023) for semantic composite scores, -0.06 ([-0.16; 0.03], p = .194) for semantic fluency, and 0.06 ([-0.06; 0.18], p = .319) for picture naming. Our findings indicate that tau burden related to both episodic and semantic memory impairment in older individuals without a diagnosis of mild cognitive impairment or manifest dementia, with episodic composite scores showing the strongest association with tau burden. Future potential lies in developing more sensitive scores to detect this subtle cognitive impairment, which could contribute to early identification of individuals in the preclinical phase of Alzheimer's disease, thereby improving early diagnosis and timely intervention.
Collapse
|
44
|
Wolters EE, Dodich A, Boccardi M, Corre J, Drzezga A, Hansson O, Nordberg A, Frisoni GB, Garibotto V, Ossenkoppele R. Clinical validity of increased cortical uptake of [ 18F]flortaucipir on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase biomarker development framework. Eur J Nucl Med Mol Imaging 2021; 48:2097-2109. [PMID: 33547556 PMCID: PMC8175307 DOI: 10.1007/s00259-020-05118-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE In 2017, the Geneva Alzheimer's disease (AD) Biomarker Roadmap initiative adapted the framework of the systematic validation of oncological diagnostic biomarkers to AD biomarkers, with the aim to accelerate their development and implementation in clinical practice. With this work, we assess the maturity of [18F]flortaucipir PET and define its research priorities. METHODS The level of maturity of [18F]flortaucipir was assessed based on the AD Biomarker Roadmap. The framework assesses analytical validity (phases 1-2), clinical validity (phases 3-4), and clinical utility (phase 5). RESULTS The main aims of phases 1 (rationale for use) and 2 (discriminative ability) have been achieved. [18F]Flortaucipir binds with high affinity to paired helical filaments of tau and has favorable kinetic properties and excellent discriminative accuracy for AD. The majority of secondary aims of phase 2 were fully achieved. Multiple studies showed high correlations between ante-mortem [18F]flortaucipir PET and post-mortem tau (as assessed by histopathology), and also the effects of covariates on tracer binding are well studied. The aims of phase 3 (early detection ability) were only partially or preliminarily achieved, and the aims of phases 4 and 5 were not achieved. CONCLUSION Current literature provides partial evidence for clinical utility of [18F]flortaucipir PET. The aims for phases 1 and 2 were mostly achieved. Phase 3 studies are currently ongoing. Future studies including representative MCI populations and a focus on healthcare outcomes are required to establish full maturity of phases 4 and 5.
Collapse
Affiliation(s)
- E E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Centre for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - M Boccardi
- Late Translational Dementia Studies Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | - J Corre
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- CURIC, Centre Universitaire Romand d'Implants Cochléaires, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - A Drzezga
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Research Center Jülich, Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - O Hansson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - R Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Ingala S, De Boer C, Masselink LA, Vergari I, Lorenzini L, Blennow K, Chételat G, Di Perri C, Ewers M, van der Flier WM, Fox NC, Gispert JD, Haller S, Molinuevo JL, Muniz‐Terrera G, Mutsaerts HJMM, Ritchie CW, Ritchie K, Schmidt M, Schwarz AJ, Vermunt L, Waldman AD, Wardlaw J, Wink AM, Wolz R, Wottschel V, Scheltens P, Visser PJ, Barkhof F. Application of the ATN classification scheme in a population without dementia: Findings from the EPAD cohort. Alzheimers Dement 2021; 17:1189-1204. [PMID: 33811742 PMCID: PMC8359976 DOI: 10.1002/alz.12292] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/11/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND We classified non-demented European Prevention of Alzheimer's Dementia (EPAD) participants through the amyloid/tau/neurodegeneration (ATN) scheme and assessed their neuropsychological and imaging profiles. MATERIALS AND METHODS From 1500 EPAD participants, 312 were excluded. Cerebrospinal fluid cut-offs of 1000 pg/mL for amyloid beta (Aß)1-42 and 27 pg/mL for p-tau181 were validated using Gaussian mixture models. Given strong correlation of p-tau and t-tau (R2 = 0.98, P < 0.001), neurodegeneration was defined by age-adjusted hippocampal volume. Multinomial regressions were used to test whether neuropsychological tests and regional brain volumes could distinguish ATN stages. RESULTS Age was 65 ± 7 years, with 58% females and 38% apolipoprotein E (APOE) ε4 carriers; 57.1% were A-T-N-, 32.5% were in the Alzheimer's disease (AD) continuum, and 10.4% suspected non-Alzheimer's pathology. Age and cerebrovascular burden progressed with biomarker positivity (P < 0.001). Cognitive dysfunction appeared with T+. Paradoxically higher regional gray matter volumes were observed in A+T-N- compared to A-T-N- (P < 0.001). DISCUSSION In non-demented individuals along the AD continuum, p-tau drives cognitive dysfunction. Memory and language domains are affected in the earliest stages.
Collapse
Affiliation(s)
- Silvia Ingala
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Casper De Boer
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Larissa A Masselink
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Ilaria Vergari
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Luigi Lorenzini
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders,”Institut Blood and Brain @ Caen‐NormandieCyceronCaenFrance
| | - Carol Di Perri
- Centre for Dementia PreventionEdinburgh Imaging, UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Michael Ewers
- Institute for Stroke and Dementia ResearchKlinikum der Universitat MünchenLudwig‐Maximilians‐Universitat LMUMunichGermany
| | - Wiesje M van der Flier
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Nick C Fox
- Dementia Research CentreDepartment of Neurodegenerative Disease & UK Dementia Research InstituteInstitute of NeurologyUniversity College LondonLondonUK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Sven Haller
- CIRD Centre d'Imagerie Rive DroiteGenevaSwitzerland
| | - José Luís Molinuevo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- Hopsital Clínic‐IDIBAPSAlzheimer's Disease & Other Cognitive Disorders UnitBarcelonaSpain
| | - Graciela Muniz‐Terrera
- Centre for Dementia PreventionEdinburgh Imaging, UK Dementia Research Institute at The University of EdinburghEdinburghUK
| | - Henri JMM Mutsaerts
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
- Ghent Institute for Functional and Metabolic Imaging (GIfMI)Ghent UniversityGhentBelgium
| | - Craig W Ritchie
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Karen Ritchie
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | | | - Adam J Schwarz
- Takeda Pharmaceutical Company LtdCambridgeMassachusettsUSA
| | - Lisa Vermunt
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Adam D Waldman
- Centre for Dementia PreventionEdinburgh Imaging, UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Joanna Wardlaw
- Centre for Dementia PreventionEdinburgh Imaging, UK Dementia Research Institute at The University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Alle Meije Wink
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | | | - Viktor Wottschel
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Philip Scheltens
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
- Department of Psychiatry & NeuropsychologySchool for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
- Institutes of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - the EPAD consortium
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location VUmcVrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamthe Netherlands
| |
Collapse
|
46
|
Guo T, Korman D, Baker SL, Landau SM, Jagust WJ. Longitudinal Cognitive and Biomarker Measurements Support a Unidirectional Pathway in Alzheimer's Disease Pathophysiology. Biol Psychiatry 2021; 89:786-794. [PMID: 32919611 PMCID: PMC9682985 DOI: 10.1016/j.biopsych.2020.06.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) likely plays a primary role in Alzheimer's disease pathogenesis, but longitudinal Aβ, tau, and neurodegeneration (A/T/N) measurements in the same individuals have rarely been examined to verify the temporal dynamics of these biomarkers. METHODS In this study, we investigated the temporal ordering of Aβ, tau, and neurodegeneration using longitudinal biomarkers in nondemented elderly individuals. A total of 395 cognitively unimpaired individuals and 204 individuals with mild cognitive impairment (320 [53%] were female) were classified into 8 A±/T±/N± categories according to the abnormal (+)/normal (-) status of Aβ (18F-florbetapir or 18F-florbetaben) positron emission tomography (PET), 18F-flortaucipir PET, and adjusted hippocampal volume (aHCV). Follow-up Aβ PET, tau PET, and aHCV measurements at 0.6 to 4.1 years were available for 35% to 63% of the sample. Baseline Aβ, tau, and aHCV were compared between different A/T/N profiles. We investigated the associations of baseline and longitudinal Aβ, tau, and neurodegeneration in relation to one another continuously. RESULTS Among T- participants, tau was higher for A+/T-/N- individuals compared with the A-/T-/N- group (p = .02). Among N- participants, neurodegeneration was worse among A+/T+/N- individuals compared with the A-/T-/N- group (p = .001). High baseline Aβ was associated (p < .001) with subsequent tau increase and high baseline tau was associated (p = .002) with subsequent aHCV decrease, whereas high tau and low aHCV at baseline were not associated with subsequent Aβ increase. CONCLUSIONS These findings define a sequence of pathological events in Alzheimer's disease that support a current model of Alzheimer's disease pathogenesis in which Aβ appears early, followed by deposition of abnormal tau aggregates and subsequent neurodegeneration.
Collapse
Affiliation(s)
- Tengfei Guo
- Helen Wills Neuroscience Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Deniz Korman
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Suzanne L Baker
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, California; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
47
|
Buckley RF. Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease. Neurotherapeutics 2021; 18:709-727. [PMID: 33782864 PMCID: PMC8423933 DOI: 10.1007/s13311-021-01026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying treatment in clinical trials. With recent neuroimaging advances, along with the burgeoning availability of longitudinal neuroimaging data and big-data harmonization approaches, a more comprehensive evaluation of the disease has shed light on the topographical staging and temporal sequencing of the disease. Multimodal imaging approaches have also promoted the development of data-driven models of AD-associated pathological propagation of tau proteinopathies. Studies of autosomal dominant, early sporadic, and late sporadic courses of the disease have shed unique insights into the AD pathological cascade, particularly with regard to genetic vulnerabilities and the identification of potential drug targets. Further, neuroimaging markers of b-amyloid, tau, and neurodegeneration have provided a powerful tool for validation of novel fluid cerebrospinal and plasma markers. This review highlights some of the latest advances in the field of human neuroimaging in AD across these topics, particularly with respect to positron emission tomography and structural and functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital & Brigham and Women's, Harvard Medical School, Boston, MA, USA.
- Melbourne School of Psychological Sciences and Florey Institutes, University of Melbourne, Melbourne, VIC, Australia.
- Department of Neurology, Massachusetts General Hospital, 149 13th St, Charlestown, MA, 02129, USA.
| |
Collapse
|
48
|
Sanchez JS, Hanseeuw BJ, Lopera F, Sperling RA, Baena A, Bocanegra Y, Aguillon D, Guzmán-Vélez E, Pardilla-Delgado E, Ramirez-Gomez L, Vila-Castelar C, Martinez JE, Fox-Fuller JT, Ramos C, Ochoa-Escudero M, Alvarez S, Jacobs HIL, Schultz AP, Gatchel JR, Becker JA, Katz SR, Mayblyum DV, Price JC, Reiman EM, Johnson KA, Quiroz YT. Longitudinal amyloid and tau accumulation in autosomal dominant Alzheimer's disease: findings from the Colombia-Boston (COLBOS) biomarker study. Alzheimers Res Ther 2021; 13:27. [PMID: 33451357 PMCID: PMC7811244 DOI: 10.1186/s13195-020-00765-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuroimaging studies of autosomal dominant Alzheimer's disease (ADAD) enable characterization of the trajectories of cerebral amyloid-β (Aβ) and tau accumulation in the decades prior to clinical symptom onset. Longitudinal rates of regional tau accumulation measured with positron emission tomography (PET) and their relationship with other biomarker and cognitive changes remain to be fully characterized in ADAD. METHODS Fourteen ADAD mutation carriers (Presenilin-1 E280A) and 15 age-matched non-carriers from the Colombian kindred underwent 2-3 sessions of Aβ (11C-Pittsburgh compound B) and tau (18F-flortaucipir) PET, structural magnetic resonance imaging, and neuropsychological evaluation over a 2-4-year follow-up period. Annualized rates of change for imaging and cognitive variables were compared between carriers and non-carriers, and relationships among baseline measurements and rates of change were assessed within carriers. RESULTS Longitudinal measurements were consistent with a sequence of ADAD-related changes beginning with Aβ accumulation (16 years prior to expected symptom onset, EYO), followed by entorhinal cortex (EC) tau (9 EYO), neocortical tau (6 EYO), hippocampal atrophy (6 EYO), and cognitive decline (4 EYO). Rates of tau accumulation among carriers were most rapid in parietal neocortex (~ 9%/year). EC tau PET signal at baseline was a significant predictor of subsequent neocortical tau accumulation and cognitive decline within carriers. CONCLUSIONS Our results are consistent with the sequence of biological changes in ADAD implied by cross-sectional studies and highlight the importance of EC tau as an early biomarker and a potential link between Aβ burden and neocortical tau accumulation in ADAD.
Collapse
Affiliation(s)
- Justin S Sanchez
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | - Bernard J Hanseeuw
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Reisa A Sperling
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hoospital, Harvard Medical School, Boston, MA, USA
| | - Ana Baena
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Yamile Bocanegra
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | | | | | | | | | - Jairo E Martinez
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | - Joshua T Fox-Fuller
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
- Boston University, Boston, MA, USA
| | - Claudia Ramos
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | | | | | - Heidi I L Jacobs
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Aaron P Schultz
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Gatchel
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | - J Alex Becker
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | - Samantha R Katz
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | | | - Julie C Price
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
| | | | - Keith A Johnson
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hoospital, Harvard Medical School, Boston, MA, USA
| | - Yakeel T Quiroz
- Massachusetts General Hoospital, Harvard Medical School, Boston, MA, USA.
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia.
| |
Collapse
|
49
|
Tang X, Liu S, Cai J, Chen Q, Xu X, Mo CB, Xu M, Mai T, Li S, He H, Qin J, Zhang Z. Effects of Gene and Plasma Tau on Cognitive Impairment in Rural Chinese Population. Curr Alzheimer Res 2021; 18:56-66. [PMID: 33761861 DOI: 10.2174/1567205018666210324122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sufficient attention was not paid to the effects of microtubule-associated protein tau (MAPT) and plasma tau protein on cognition. OBJECTIVE A total of 3072 people in rural China were recruited. They were provided with questionnaires, and blood samples were obtained. METHODS The MMSE score was used to divide the population into cognitive impairment group and control group. First, logistic regression analysis was used to explore the possible factors influencing cognitive function. Second, 1837 samples were selected for SNP detection through stratified sampling. Third, 288 samples were selected to test three plasma biomarkers (tau, phosphorylated tau, and Aβ-42). RESULTS For the MAPT rs242557, people with AG genotypes were 1.32 times more likely to develop cognitive impairment than those with AA genotypes, and people with GG genotypes were 1.47 times more likely to develop cognitive impairment than those with AG phenotypes. The plasma tau protein concentration was also increased in the population carrying G (P = 0.020). The plasma tau protein was negatively correlated with the MMSE score (P = 0.004). CONCLUSION The mutation of MAPT rs242557 (A > G) increased the risk of cognitive impairment and the concentration of plasma tau protein.
Collapse
Affiliation(s)
- Xu Tang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Shuzhen Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jiansheng Cai
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Quanhui Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Xia Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Chun B Mo
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Min Xu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Tingyu Mai
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Shengle Li
- Guilin Medical University, No. 109, North Second Huancheng Road, Guilin 541004,China
| | - Haoyu He
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Jian Qin
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| | - Zhiyong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021,China
| |
Collapse
|
50
|
Weigand AJ, Thomas KR, Bangen KJ, Eglit GML, Delano-Wood L, Gilbert PE, Brickman AM, Bondi MW. APOE interacts with tau PET to influence memory independently of amyloid PET in older adults without dementia. Alzheimers Dement 2021; 17:61-69. [PMID: 32886451 DOI: 10.1002/alz.12173] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Apolipoprotein E (APOE) interacts with Alzheimer's disease pathology to promote disease progression. We investigated the moderating effect of APOE on independent associations of amyloid and tau positron emission tomography (PET) with cognition. METHODS For 297 nondemented older adults from the Alzheimer's Disease Neuroimaging Initiative, regression equations modeled associations between cognition and (1) cortical amyloid beta (Aβ) PET levels adjusting for tau and (2) medial temporal lobe (MTL) tau PET levels adjusting for Aβ, including interactions with APOE ε4-carrier status. RESULTS Adjusting for tau PET, Aβ was not associated with cognition and did not interact with APOE. In contrast, adjusting for Aβ PET, MTL tau was associated with all cognitive domains. Further, there was a stronger moderating effect of APOE on MTL tau and memory associations in ε4-carriers, even among Aβ-negative individuals. DISCUSSION Findings suggest that APOE may interact with tau independently of Aβ and that elevated MTL tau confers negative cognitive consequences in Aβ-negative ε4 carriers.
Collapse
Affiliation(s)
- Alexandra J Weigand
- San Diego State University/University of California, San Diego Joint Doctoral Program, San Diego
| | - Kelsey R Thomas
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Katherine J Bangen
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Graham M L Eglit
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, California, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Mark W Bondi
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Psychiatry, University of California, San Diego, California, USA
| |
Collapse
|