1
|
Steinbuch KB, Bucardo M, Tor Y. Emissive Alkylated Guanine Analogs as Probes for Monitoring O 6-Alkylguanine-DNA-transferase Activity. ACS OMEGA 2024; 9:36778-36786. [PMID: 39220506 PMCID: PMC11360037 DOI: 10.1021/acsomega.4c05700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Human O 6-alkylguanine-DNA-transferase (hAGT) is a repair protein that provides protection from mutagenic events caused by O 6-alkylguanine lesions. As this stoichiometric activity is tissue-specific, indicative of tumor status, and correlated to chemotherapeutic success, tracking the activity of hAGT could prove to be informative for disease diagnosis and therapy. Herein, we explore two families of emissive O 6-methyl- and O 6-benzylguanine analogs based on our previously described th G N and tz G N , thieno- and isothiazolo-guanine surrogates, respectively, as potential reporters. We establish that O 6 -Bn th G N and O 6 -Bn tz G N provide a spectral window to optically monitor hAGT activity, can be used as substrates for the widely used SNAP-Tag delivery system, and are sufficiently bright to be visualized in mammalian cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
2
|
Chen YY, Ho HL, Lin SC, Ho TDH, Hsu CY. Upregulation of miR-125b, miR-181d, and miR-221 Predicts Poor Prognosis in MGMT Promoter-Unmethylated Glioblastoma Patients. Am J Clin Pathol 2018. [PMID: 29538610 DOI: 10.1093/ajcp/aqy008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To evaluate the prognostic values of microRNAs (miRNAs) in glioblastoma, and to see if there is an association between miRNAs and MGMT promoter methylation status. METHODS We collected paraffin blocks from resection specimens from 114 glioblastoma patients who had received temozolomide treatment and radiotherapy. Real-time quantitative PCR was performed to determine the expression levels of five miRNAs. RESULTS Upregulation of miR 125b-5p, miR 181d-3p, miR 221-3p, miR-222-3p, and miR 224-5p was observed in 13.2%, 5.3%, 12.3%, 32.5%, and 78.9% of the cases, respectively. The expression level of miRNAs was not significantly different in tumors with MGMT promoter methylation vs tumors without such methylation. Upregulation of miR 125b-5p, miR 181d-3p, or miR 221-3p was significantly associated with shorter survival in MGMT-unmethylated glioblastoma patients. CONCLUSIONS miR 125b-5p, miR 181d-3p, and miR 221-3p are useful in predicting poor prognosis in patients with MGMT-unmethylated glioblastomas.
Collapse
Affiliation(s)
- Yen-Ying Chen
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tiffany Dai-Hwa Ho
- Departments of Computer Science and Statistics, Duke University, Durham, NC, Taiwan
| | - Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
3
|
Hsu CY, Ho HL, Lin SC, Ho TDH, Ho DMT. The MGMT promoter single-nucleotide polymorphism rs1625649 had prognostic impact on patients with MGMT methylated glioblastoma. PLoS One 2017; 12:e0186430. [PMID: 29036186 PMCID: PMC5643071 DOI: 10.1371/journal.pone.0186430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/29/2017] [Indexed: 01/02/2023] Open
Abstract
Promoter methylation is the most significant mechanism to regulate O6-methylguanine-DNA-methyltransferase (MGMT) expression. Single-nucleotide polymorphisms (SNPs) in the MGMT promoter region may also play a role. The aim of this study was to evaluate the clinical significance of SNPs in the MGMT promoter region of glioblastoma. Genomic DNAs from 118 glioblastomas were collected for polymerase chain reaction (PCR) amplification. Sanger sequencing was used to sequence the MGMT promoter region to detect SNPs. The results were correlated with MGMT status and patient survival. Rs1625649 was the only polymorphic SNP located at the MGMT promoter region in 37.5% of glioblastomas. Homozygous rs1625649 (AA genotype) was correlated with a higher MGMT methylation level and a lower protein expression, but the result was not statistically significant. In patients with MGMT methylated glioblastoma, cases with homozygous rs1625649 (AA genotype) were significantly associated with a lack of MGMT protein expression and a better progression-free survival (PFS) than the cases with wild type rs1625649 (CC genotype) or heterozygous rs1625649 (CA genotype). The survival impact was significant in multivariate analyses. In conclusion, the MGMT promoter homozygous rs1625649 (AA genotype) was found to correlate with a better PFS in patients with MGMT methylated glioblastoma.
Collapse
Affiliation(s)
- Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Ling Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tiffany Dai-Hwa Ho
- Department of Computer Science and Department of Statistics, Duke University, Durham, United States of America
| | - Donald Ming-Tak Ho
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Comparative Assessment of 4 Methods to Analyze MGMT Status in a Series of 121 Glioblastoma Patients. Appl Immunohistochem Mol Morphol 2017; 25:497-504. [DOI: 10.1097/pai.0000000000000331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Neves M, Ribeiro J, Medeiros R, Sousa H. Genetic polymorphism in DNMTs and gastric cancer: A systematic review and meta-analysis. Porto Biomed J 2016; 1:164-172. [PMID: 32258570 DOI: 10.1016/j.pbj.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
Highlights Single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs) modulate protein expression and affect DNA methylation.Aberrant DNA methylation, have been associated with gastric carcinogenesis.DNMT2 rs11254413 is associated with protection for GC development.DNMT3A rs7560488, DNMT3A rs36012910 and, specially, DNMT1 rs16999593 are associated with increased susceptibility for GC development. Abstract Epigenetics alterations, including aberrant DNA methylation, have been associated with gastric carcinogenesis. Single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs) may influence protein expression and therefore affect DNA regulation and susceptibility for Gastric Cancer (GC).We have performed a systematic review and meta-analysis involving 11 studies and a total of 24 SNPs in DNMTs were analyzed. According to literature, only 4 SNPs, DNMT1 rs16999593, DNMT2 rs11254413 and DNMT3A rs7560488 and DNMT3A rs36012910, were associated with GC. DNMT1 rs16999593 and DNMT3A rs7560488C allele and DNMT3A rs36012910 G allele showed an increased risk for GC. On the other hand, DNMT2 rs11254413 G allele presented a protective effect for GC. Additionally, the meta-analysis evaluated the SNPs analyzed in more than one study (n = 6). Results revealed that only DNMT1 rs16999593 had a statistically significant association with GC development (OR = 1.31; 95% CI = 1.08-1.60; p = 0.006 for TC + CC genotypes).Our study suggests that DNMT2 rs11254413, DNMT3A rs7560488, DNMT3A rs36012910 and, specially, DNMT1 rs16999593 may have an association with GC development. Nevertheless, further studies are need using different populations to clarify this association with GC risk.
Collapse
Affiliation(s)
- Marco Neves
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Research Department, Portuguese League Against Cancer (LPCC-NRNorte), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Research Department, Portuguese League Against Cancer (LPCC-NRNorte), Porto, Portugal.,Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Research Centre (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| |
Collapse
|
6
|
Hsu CY, Ho HL, Lin SC, Chang-Chien YC, Chen MH, Hsu SPC, Yen YS, Guo WY, Ho DMT. Prognosis of glioblastoma with faint MGMT methylation-specific PCR product. J Neurooncol 2015; 122:179-88. [PMID: 25575938 DOI: 10.1007/s11060-014-1701-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Abstract
Methylation-specific polymerase chain reaction (MSP) for the promoter methylation status of O(6)-methylguanine-DNA-methyltranferase (MGMT) gene theoretically provides a positive or negative result. However, the faint MSP product is difficult to interpret. The aim of this study was to evaluate the significance of faint MSP product in glioblastoma (GBM). Critical concentrations of methylated control DNA, i.e., 100, 1, 0.5 and 0 % were run parallel with 116 newly diagnosed GBMs in order to standardize the interpretation and to distinguish positive (+), equivocal (±), and negative (-; unmethylated) results. Cases with the faint MSP product and its intensity between those of 1 and 0.5 % DNA controls were considered equivocal (±). MGMT methylation quantifications were also determined by quantitative real-time MSP (qMSP) and pyrosequencing (PSQ), and protein expression was detected by immunohistochemistry. There were significant correlations between MSP and all the aforementioned studies. The concordance rates between the MSP+ and qMSP+ cases, as well as the MSP- and qMSP- cases were 100 %, and the MSP± cases comprised 76.5 % of qMSP+ cases and 23.5 % of qMSP- cases. PSQ study showed that heterogeneous methylation was more frequently encountered in the MSP± cases. Multivariate analyses disclosed that although the overall survival of the MSP± cases was indistinct from that of the MSP+ cases, its progression free survival was significantly worse and was indistinct from that of the MSP- cases. In conclusion, GBMs with faint MGMT MSP products should be distinguished from MSP+ cases as their behaviors were different.
Collapse
Affiliation(s)
- Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Sec 2, Shih-Pai Road, Taipei, 11217, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu J, Zhang R, Chen F, Yu C, Sun Y, Jia C, Zhang L, Salahuddin T, Li X, Lang J, Song X. MGMT Leu84Phe polymorphism contributes to cancer susceptibility: evidence from 44 case-control studies. PLoS One 2013; 8:e75367. [PMID: 24086516 PMCID: PMC3784571 DOI: 10.1371/journal.pone.0075367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/13/2013] [Indexed: 02/05/2023] Open
Abstract
Background O6-methylguanine-DNA methyltransferase is one of the few proteins to directly remove alkylating agents in the human DNA direct reversal repair pathway. A large number of case-control studies have been conducted to explore the association between MGMT Leu84Phe polymorphism and cancer risk. However, the results were not consistent. Methods We carried out a meta-analysis of 44 case-control studies to clarify the association between the Leu84Phe polymorphism and cancer risk. Results Overall, significant association of the T allele with cancer susceptibility was verified with meta-analysis under a recessive genetic model (P<0.001, OR=1.30, 95%CI 1.24-1.50) and TT versus CC comparison (P=0.001, OR=1.29, 95% CI 1.12-1.50). In subgroup analysis, a significant increased risk was found for lung cancer (TT versus CC, P=0.027, OR=1.67, 95% CI 1.06-2.63; recessive genetic model, P=0.32, OR=1.64, 95% CI 1.04-2.58), whereas risk of colorectal cancer was significantly low under a dominant genetic model (P=0.019, OR=0.84, 95% CI 0.72-0.97). Additionally, a significant association between TT genetic model and total cancer risk was found in the Caucasian population (TT versus CC, P=0.014, OR=1.29, 95% CI 1.05-1.59; recessive genetic model, P=0.009, OR=1.31, 95% CI 1.07-1.61), but not in the Asian population. An increased risk for lung cancer was also verified in the Caucasian population (TT versus CC, P=0.035, OR=1.62, 95% CI 1.04-2.53; recessive genetic model, P=0.048, OR=1.57, 95% CI 1.01-2.45). Conclusions These results suggest that MGMT Leu84Phe polymorphism might contribute to the susceptibility of certain cancers.
Collapse
Affiliation(s)
- Jun Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Renxia Zhang
- Department of Anesthesia, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
| | - Fei Chen
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cuicui Yu
- Department of Anesthesia, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
| | - Yan Sun
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
| | - Chuanliang Jia
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
- Binzhou Medical School, Yantai, Shandong, China
| | - Lijing Zhang
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
- Qingdao Medical School, Qingdao, Shandong, China
| | - Taufiq Salahuddin
- Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Xiaodong Li
- The 3People’s Hospital of Jinan, Jinan, Shandong, China
| | - Juntian Lang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (XS); (J. Lang)
| | - Xicheng Song
- Department of Otolaryngology Head and Neck Surgery, Yuhuangding Hospital, Medical School of Qingdao University, Yantai, Shandong, China
- * E-mail: (XS); (J. Lang)
| |
Collapse
|
8
|
|
9
|
Fang Q, Loktionova NA, Moschel RC, Javanmard S, Pauly GT, Pegg AE. Differential inactivation of polymorphic variants of human O6-alkylguanine-DNA alkyltransferase. Biochem Pharmacol 2007; 75:618-26. [PMID: 17996846 DOI: 10.1016/j.bcp.2007.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/25/2022]
Abstract
The human DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) is an important source of resistance to some therapeutic alkylating agents and attempts to circumvent this resistance by the use of hAGT inhibitors have reached clinical trials. Several human polymorphisms in the MGMT gene that encodes hAGT have been described including L84F and the linked double alteration I143V/K178R. We have investigated the inactivation of these variants and the much rarer variant W65C by O(6)-benzylguanine, which is currently in clinical trials, and a number of other second generation hAGT inhibitors that contain folate derivatives (O(4)-benzylfolic acid, the 3' and 5' folate esters of O(6)-benzyl-2'-deoxyguanosine and the folic acid gamma ester of O(6)-(p-hydroxymethyl)benzylguanine). The I143V/K178R variant was resistant to all of these compounds. The resistance was due solely to the I143V change. These results suggest that the frequency of the I143V/K178R variant among patients in the clinical trials with hAGT inhibitors and the correlation with response should be considered.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
10
|
Povey AC, Margison GP, Santibáñez-Koref MF. Lung cancer risk and variation in MGMT activity and sequence. DNA Repair (Amst) 2007; 6:1134-44. [PMID: 17569600 DOI: 10.1016/j.dnarep.2007.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (MGMT) repairs DNA adducts that result from alkylation at the O(6) position of guanine. These lesions are mutagenic and toxic and can be produced by a variety of agents including the tobacco-specific nitrosamines, carcinogens present in cigarette smoke. Here, we review some of our work in the context of inter-individual differences in MGMT expression and their potential influence on lung cancer risk. In humans there are marked inter-individual differences in not only levels of DNA damage in the lung (N7-methylguanine) that can arise from exposure to methylating agents but also in MGMT activity in lung tissues. In the presence of such exposure, this variability in MGMT activity may alter cancer susceptibility, particularly as animal models have demonstrated that the complete absence of MGMT activity predisposes to alkylating-agent induced cancer while overexpression is protective. Recent studies have uncovered a series of polymorphisms that affect protein activity or are associated with differences in expression levels. The associations between these (and other) polymorphisms and cancer risk are inconsistent, possibly because of small sample sizes and inter-study differences in lung cancer histology. We have recently analysed a consecutive series of case-control studies and found evidence that lung cancer risk was lower in subjects with the R178 allele.
Collapse
Affiliation(s)
- Andrew C Povey
- Centre for Occupational and Environmental Health, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
11
|
Bugni JM, Han J, Tsai MS, Hunter DJ, Samson LD. Genetic association and functional studies of major polymorphic variants of MGMT. DNA Repair (Amst) 2007; 6:1116-26. [PMID: 17569599 DOI: 10.1016/j.dnarep.2007.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA repair protein, O(6)-methylguanine DNA-methyltransferase (MGMT) prevents mutations and cell death that result from aberrant alkylation of DNA. The polymorphic variants Leu84Phe, Ile143Val, and Lys178Arg are frequent in the human population. We review here studies of these and other MGMT polymorphisms and their association with risk for lung, breast, colorectal and endometrial cancer with a consideration of gene-environment interactions. In addition, we review studies of the effects of polymorphic variation on alkyltransferase activity and expression. It is formally possible that polymorphic variation could modify functions of MGMT other than its alkyltransferase activity. While it was previously reported that an alkylated form of MGMT modifies Estrogen Receptor alpha activity, from our studies we conclude that this regulation is not a major function of MGMT. Overall, the effects of polymorphic variation on protein function are subtle, and further investigation is required to provide a comprehensive mechanism that explains the observed associations of these variants with risk for cancer.
Collapse
Affiliation(s)
- James M Bugni
- Biological Engineering Division, Biology Department, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
This article summarizes the current understanding of known variant forms of the MGMT gene that encode an altered protein. Epidemiological studies have been carried out to test whether these alterations are associated with altered cancer risk. Laboratory studies using recombinant proteins and cells expressing the known variants have investigated the possible effects of these sequence alterations on the ability of the encoded O(6)-alkylguanine-DNA alkyltransferase protein to protect cells from alkylation damage and to respond to therapeutic inactivators currently undergoing trials for cancer chemotherapy.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
13
|
Abraham J, Earl HM, Pharoah PD, Caldas C. Pharmacogenetics of cancer chemotherapy. Biochim Biophys Acta Rev Cancer 2006; 1766:168-83. [PMID: 17141416 DOI: 10.1016/j.bbcan.2006.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/10/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
Significant heterogeneity in the efficacy and toxicity of chemotherapeutic agents is observed within cancer populations. Pharmacogenetics (PGx) is the study of inheritance in interindividual variation in drug disposition. The allure of pharmacogenetics, in the treatment of cancer patients, comes from the potential for individualisation of cancer therapy, minimizing toxicity, while maximizing efficacy. In this review we will focus on the current and potential clinical applications of pharmacogenetics in cancer therapy by citing relevant examples and discussing the possible approaches which may be used to establish a reliable, reproducible and cost-effective test for clinically relevant genetic polymorphisms, using easily accessible biological samples (e.g., blood and tumour samples). Ideally, routine management of patients would include analysis of their single nucleotide polymorphism linkage disequilibrium (SNP-LD) profile prior to treatment, allowing stratification of patients into treatment groups, thus individualising their therapy. In order to achieve this ambition, a combination of different approaches (candidate gene, genome-wide and pathway driven) will be required from scientists and clinician scientists, as well as an increased understanding and incorporation of pharmacogenetic aims and endpoints into current and future clinical trials.
Collapse
Affiliation(s)
- Jean Abraham
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 2XZ, UK.
| | | | | | | |
Collapse
|
14
|
Tranah GJ, Bugni J, Giovannucci E, Ma J, Fuchs C, Hines L, Samson L, Hunter DJ. O6-Methylguanine-DNA Methyltransferase Leu84Phe and Ile143Val Polymorphisms and Risk of Colorectal Cancer in the Nurses’ Health Study and Physicians’ Health Study (United States). Cancer Causes Control 2006; 17:721-31. [PMID: 16633920 DOI: 10.1007/s10552-006-0005-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE O6-methylguanine-DNA methyltransferase (MGMT) removes mutagenic adducts from the O6-position of guanine in DNA. Unrepaired O6-methylguanines result in G:C to A:T transitions in mutated K-ras and p53 in colorectal tumors. Two non-synonymous MGMT coding region variants, Leu84Phe and Ile143Val, lie in close proximity to the reactive 145Cys residue and to a conserved estrogen receptor interacting helix. METHODS We assessed the association between the MGMT Leu84Phe and Ile143Val polymorphisms and risk of colorectal cancer in two nested case-control studies: one each in the Nurses' Health Study (NHS) and the Physicians' Health Study (PHS) cohorts. RESULTS Among 197 female cases and 2,500 controls from the NHS, the variant 143Val allele was significantly associated with reduced risk of colorectal cancer [odds ratio (OR) = 0.52, 95% confidence interval (CI) 0.33-0.80]. In women, statistically significant gene-environment interactions were found between the Leu84Phe polymorphism and alcohol intake (P = 0.03), BMI (P = 0.04) and postmenopausal hormone use (P = 0.03). The Leu84Phe and Ile143Val polymorphisms were not significantly associated with risk of colorectal cancer among 271 male cases and 451 controls from the PHS. CONCLUSIONS Our results suggest that the common Leu84Phe and Ile143Val polymorphisms in MGMT influence risk of colorectal cancer in women possibly through modulating estrogen receptor-dependent transcriptional activation, which has previously been shown to occur in response to DNA alkylation damage.
Collapse
Affiliation(s)
- Gregory J Tranah
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chae MH, Jang JS, Kang HG, Park JH, Park JM, Lee WK, Kam S, Lee EB, Son JW, Park JY. O6-alkylguanine-DNA alkyltransferase gene polymorphisms and the risk of primary lung cancer. Mol Carcinog 2006; 45:239-49. [PMID: 16385589 DOI: 10.1002/mc.20171] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
O6-alkylguanine-DNA alkyltransferase (AGT) plays an important role in the repair of O6-alkylguanine adducts, which are major mutagenic lesions produced by environmental carcinogens. Polymorphisms in the AGT gene may affect the capacity to repair DNA damage and thereby have influence on individual's susceptibility to smoking-related cancer. To test this hypothesis, we investigated the potential association of AGT polymorphisms (485C > A, Leu53Leu (C > T) and Leu84Phe] with the risk of lung cancer in a Korean population. The AGT genotypes were determined in 432 lung cancer patients and in 432 healthy controls who were frequency-matched for age and gender. The 485 AA genotype was associated with a significantly increased risk for overall lung cancer as compared with the 485 CC genotype and the combined 485 CC + CA genotype, respectively (adjusted odds ratio (OR) = 1.83, 95% confidence interval (CI) = 1.12-2.99, P = 0.02, and Bonferroni corrected P-value (Pc) = 0.04; and adjusted OR = 1.67, 95% CI = 1.05-2.66, P = 0.03, respectively). When the lung cancer cases were categorized by the tumor histology, the 485 AA genotype was associated with a significantly increased risk of adenocarcinoma (AC) and small cell carcinoma (SmCC), respectively, as compared with the combined 485 CC + CA genotype (adjusted OR = 2.54, 95% CI = 1.39-4.66, P = 0.003; and adjusted OR = 2.19, 95% CI = 1.06-4.55, P = 0.04, respectively). However, the genotype distributions of the Leu53Leu and Leu84Phe polymorphisms were not significantly different between the lung cancer cases and the controls. On a promoter assay, the 485C > A polymorphism did not have an effect on the promoter activity of the AGT gene. These results suggest that the effect of the AGT 485C > A polymorphism on the risk of lung cancer may be secondary to linkage disequilibrium (LD) with either another AGT variant or with a true susceptibility gene, and that the AGT 485C > A polymorphism could be used as a marker for the genetic susceptibility to lung cancer.
Collapse
MESH Headings
- Adenocarcinoma/enzymology
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adult
- Carcinoma, Large Cell/enzymology
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/pathology
- Carcinoma, Small Cell/enzymology
- Carcinoma, Small Cell/genetics
- Carcinoma, Small Cell/pathology
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- DNA Damage
- DNA Repair
- Female
- Genetic Predisposition to Disease
- Genotype
- Humans
- Lung Neoplasms/enzymology
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- O(6)-Methylguanine-DNA Methyltransferase/metabolism
- Polymorphism, Genetic/genetics
- Promoter Regions, Genetic/genetics
- Risk Factors
Collapse
Affiliation(s)
- Myung Hwa Chae
- Cancer Research Institute, Kyungpook National University Hospital, Samduk, Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Soejima H, Zhao W, Mukai T. Epigenetic silencing of the MGMT gene in cancer. Biochem Cell Biol 2005; 83:429-37. [PMID: 16094446 DOI: 10.1139/o05-140] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Silencing of the O6-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, plays a critical role in the development of cancer. The gene product, functioning normally, removes a methyl group from mutagenic O6-methylguanine, which is produced by alkylating agents and can make a mismatched pair with thymine, leading to transition mutation through DNA replication. MGMT is epigenetically silenced in various human tumors. It is well known that DNA hypermethylation at the promoter CpG island plays a pivotal role in the epigenetic silencing of tumor suppressor genes. MGMT silencing, however, occurs without DNA hypermethylation in some cancer cells. Dimethylation of histone H3 lysine 9 and binding of methyl-CpG binding proteins are common and essential in MGMT-silenced cells. Silencing of MGMT has been shown to be a poor prognostic factor but a good predictive marker for chemotherapy when alkylating agents are used. In this review, we describe recent advances in understanding the silencing of MGMT and its role in carcinogenesis; epigenetic mechanisms; and clinical implications.
Collapse
Affiliation(s)
- Hidenobu Soejima
- Division of Molecular Biology and Genetics, Department of Molecular Sciences, Saga University, Japan.
| | | | | |
Collapse
|
17
|
Abstract
The same doses of medication cause considerable heterogeneity in efficacy and toxicity across human populations. Genetic factors are thought to represent important determinants of drug efficacy and toxicity. Pharmacogenetics focuses on the prediction of the response of tumor and normal tissue to standard therapy by genetic profiling and, thereby, to select the most appropriate medication at optimal doses for each individual patient. In the present review, we discuss the relevance of single nucleotide polymorphisms (SNP) in genes, whose gene products act upstream of the actual drug target sites, that is, drug transporters and drug metabolizing phase I and II enzymes, or downstream of them, that is, apoptosis-regulating genes and chemokines. SNPs in relevant genes, which encode for proteins that interact with anticancer drugs, were also considered, that is, enzymes of DNA biosynthesis and metabolism, DNA repair enzymes, and proteins of the mitotic spindle. A significant body of evidence supports the concept of predicting drug efficacy and toxicity by SNP genotyping. As the efficacy of cancer chemotherapy, as well as the drug-related toxicity in normal tissues is multifactorial in nature, sophisticated approaches such as genome-wide linkage analyses and integrate drug pathway profiling may improve the predictive power compared with genotyping of single genes. The implementation of pharmacogenetics into clinical routine diagnostics including genotype-based recommendations for treatment decisions and risk assessment for practitioners represents a challenge for the future.
Collapse
Affiliation(s)
- Thomas Efferth
- German Cancer Research Center, M070, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | | |
Collapse
|
18
|
Robert J, Morvan VL, Smith D, Pourquier P, Bonnet J. Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 2005; 54:171-96. [PMID: 15890268 DOI: 10.1016/j.critrevonc.2005.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/01/2005] [Accepted: 01/28/2005] [Indexed: 12/16/2022] Open
Abstract
The sequencing of the human genome has allowed the identification of thousands of gene polymorphisms, most often single nucleotide polymorphims (SNP), which may play an important role in the expression level and activity of the corresponding proteins. When these polymorphisms occur at the level of drug metabolising enzymes or transporters, the disposition of the drug may be altered and, consequently, its efficacy may be compromised or its toxicity enhanced. Polymorphisms can also occur at the level of proteins directly involved in drug action, either when the protein is the target of the drug or when the protein is involved in the repair of drug-induced lesions. There again, these polymorphisms may lead to alterations in drug efficacy and/or toxicity. The identification of functional polymorphisms in patients undergoing chemotherapy may help the clinician prescribe the optimal drug combination or schedule and predict with more accuracy the response to these prescriptions. We have recorded in this review the polymorphisms that have been identified up till now in genes involved in anticancer drug activity. Some of them appear especially important in predicting drug toxicity and should be determined in routine before drug administration; this is the case of the most common variations of thiopurine methyltransferase for 6-mercaptopurine and of dihydropyrimidine dehydrogenase for fluorouracil. Other appear determinant for drug response, such as the common SNPs found in glutathione S-transferase P1 or xereoderma pigmentosum group D enzyme for the activity of oxaliplatin. However, confusion factors may exist between the role of gene polymorphisms in cancer risk or overall prognosis and their role in drug response.
Collapse
Affiliation(s)
- Jacques Robert
- Institut Bergonié and Université Victor Segalen Bordeaux 2, 229 cours de l'Argonne, 33076 Bordeaux-Cedex, France.
| | | | | | | | | |
Collapse
|
19
|
Yang M, Coles BF, Caporaso NE, Choi Y, Lang NP, Kadlubar FF. Lack of association between Caucasian lung cancer risk and O6-methylguanine-DNA methyltransferase-codon 178 genetic polymorphism. Lung Cancer 2004; 44:281-6. [PMID: 15140540 DOI: 10.1016/j.lungcan.2003.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 11/25/2003] [Accepted: 12/04/2003] [Indexed: 11/19/2022]
Abstract
The formation of DNA adducts is thought to be a critical step for the induction of chemically induced cancer. O(6)-Methylguanine-DNA methyltransferase (MGMT) is a ubiquitously expressed enzyme that repairs DNA adducts formed by alkylating carcinogens. Thus, genetic polymorphisms of the MGMT that could result in differences in MGMT activity are potential risk factors for cancer. In the present study, we established a convenient and reliable genotyping method for the MGMT codon 178 polymorphism, a Lys (AAG) to Arg (AGG) substitution, using restriction fragment length polymorphism (RFLP), and studied differences in the distribution of this polymorphism in 92 Caucasian lung cancer patients and 85 controls. Frequencies of the "A" and "G" alleles (MGMT codon 178, AAG and AGG, respectively) were 0.91 and 0.09, respectively. The genetic polymorphism of the MGMT codon 178 was linked with that of the MGMT codon 143 (P < 0.05). The distribution of the MGMT codon 178 genetic polymorphism was not significantly different between lung cancer patients and controls. Thus, our study suggests that the MGMT codon 178 (and possibly 143) polymorphisms do not appear to markedly affect lung cancer risk for this population. In addition, we found an apparent 10bp-deletion in the intron before exon 5 by DNA sequencing. Because this "deletion" was observed in all sequenced samples (N = 20), the previously reported human (Caucasian) MGMT gene sequence should be revised to exclude this 10bp segment.
Collapse
Affiliation(s)
- Mihi Yang
- Department of Preventive Medicine, Cancer Research Institute, College of Medicine, Seoul National University, Chongno-go, South Korea.
| | | | | | | | | | | |
Collapse
|
20
|
Cohet C, Borel S, Nyberg F, Mukeria A, Brüske-Hohlfeld I, Constantinescu V, Benhamou S, Brennan P, Hall J, Boffetta P. Exon 5 polymorphisms in the O6-alkylguanine DNA alkyltransferase gene and lung cancer risk in non-smokers exposed to second-hand smoke. Cancer Epidemiol Biomarkers Prev 2004; 13:320-3. [PMID: 14973087 DOI: 10.1158/1055-9965.epi-03-0120] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The objective of the study was to examine the association of three exon 5 variants in the O(6)-alkylguanine DNA alkyltransferase (AGT) gene involved in the repair of the mutagenic DNA lesion O(6)-alkylguanine formed by nitrosamines, with lung cancer risk in never-smokers. EXPERIMENTAL DESIGN Exon 5 of the AGT gene was sequenced in genomic DNA from 136 cases and 133 hospital- or population-based controls for whom questionnaire information on second-hand smoke and diet was available to determine the frequencies of the Gly(160)Arg, Ile(143)Val, and Lys(178)Arg variant alleles. RESULTS No codon (160)Arg variant alleles were found in the study population. The codon (143)Val and (178)Arg variant alleles, present at allele frequencies of 0.07, showed 100% linkage. The odds ratio (OR) of lung cancer for these variant carriers was 2.05 [95% confidence interval (CI) 1.03-4.07]. The risk varied between the different lung cancer pathologies with an increased risk for adenocarcinoma (OR 2.67, 95% CI 1.21-5.87) or small cell carcinoma (OR 4.83, 95% CI 0.91-25.7) but not for squamous cell carcinoma (OR 1.07, 95% CI 0.27-4.18). Compared with individuals carrying the mutant alleles unexposed to second-hand smoke, the OR for exposed variant carriers was 1.95 (95% CI 0.53-1.15); a similar interaction, although not significative, was observed for low consumption of cruciferous vegetables and for green vegetables and tomatoes. CONCLUSIONS These results point toward a role of AGT polymorphisms in lung cancer susceptibility among never-smokers, in particular among subjects exposed to environmental carcinogens.
Collapse
|
21
|
Li D, Jiao L. Molecular epidemiology of pancreatic cancer. INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2004; 33:3-14. [PMID: 12909734 DOI: 10.1385/ijgc:33:1:3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Currently there is no early diagnostic test and no effective treatment options for this deadly disease. Prevention of pancreatic cancer is difficult because little is known about its etiology. The main modifiable risk factors for pancreatic cancer include cigarette smoking and dietary factors. Information from molecular epidemiological study of pancreatic cancer is very limited. DNA adducts derived from exposure to polycyclic aromatic hydrocarbon, aromatic amines, and heterocyclic amines have been detected in human pancreatic tissues. DNA damages derived from oxidative stress and lipid peroxidation are also present in the pancreas. No study has demonstrated a main effect of carcinogen-metabolizing genes and DNA repair genes on the risk of pancreatic cancer thus far. However, significant effects of these genes have been observed among individuals with known carcinogen exposure, such as smoking. A number of environmental and lifestyle factors, such as smoking, alcohol, coffee consumption, and exposure to organochlorine or hydrocarbon solvent, have been associated with the frequency and spectrum of K-ras mutation in pancreatic tumors. Dietary folate intake and serum levels of folate have been associated with the risk of pancreatic cancer among male smokers. These findings demonstrate the potential of the molecular epidemiology approach in understanding the etiology of pancreatic cancer. Further efforts should be made to understand the interactive relationship between genetic and environmental factors in the etiology of pancreatic cancer, which will in turn be important in identifying the high-risk population for the primary prevention of this deadly disease.
Collapse
Affiliation(s)
- Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 426, Houston, TX 77030, USA.
| | | |
Collapse
|
22
|
Ishikawa T, Zhang SSM, Qin X, Takahashi Y, Oda H, Nakatsuru Y, Ide F. DNA repair and cancer: lessons from mutant mouse models. Cancer Sci 2004; 95:112-7. [PMID: 14965359 PMCID: PMC11158213 DOI: 10.1111/j.1349-7006.2004.tb03190.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage, if the repair process, especially nucleotide excision repair (NER), is compromised or the lesion is repaired by some other error-prone mechanism, causes mutation and ultimately contributes to neoplastic transformation. Impairment of components of the DNA damage response pathway (e.g., p53) is also implicated in carcinogenesis. We currently have considerable knowledge of the role of DNA repair genes as tumor suppressors, both clinically and experimentally. The deleterious clinical consequences of inherited defects in DNA repair system are apparent from several human cancer predisposition syndromes (e.g., NER-compromised xeroderma pigmentosum [XP] and p53-deficient Li-Fraumeni syndrome). However, experimental studies to support the clinical evidence are hampered by the lack of powerful animal models. Here, we review in vivo experimental data suggesting the protective function of DNA repair machinery in chemical carcinogenesis. We specifically focus on the three DNA repair genes, O(6)-methylguanine-DNA methyltransferase gene (MGMT ), XP group A gene (XPA) and p53. First, mice overexpressing MGMT display substantial resistance to nitrosamine-induced hepatocarcinogenesis. In addition, a reduction of spontaneous liver tumors and longer survival times were evident. However, there are no known mutations in the human MGMT and therefore no associated cancer syndrome. Secondly, XPA mutant mice are indeed prone to spontaneous and carcinogen-induced tumorigenesis in internal organs (which are not exposed to sunlight). The concomitant loss of p53 resulted in accelerated onset of carcinogenesis. Finally, p53 null mice are predisposed to brain tumors upon transplacental exposure to a carcinogen. Accumulated evidence in these three mutant mouse models firmly supports the notion that the DNA repair system is vital for protection against cancer.
Collapse
Affiliation(s)
- Takatoshi Ishikawa
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Esteller M, Herman JG. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 2004; 23:1-8. [PMID: 14712205 DOI: 10.1038/sj.onc.1207316] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O(6)-methylguanine DNA methyltransferase (MGMT) is a key enzyme in the DNA repair network. MGMT removes mutagenic and cytotoxic adducts from O(6)-guanine in DNA, the preferred point of attack of many carcinogens (i.e. methylnitrosourea) and alkylating chemotherapeutic agents (i.e. BCNU, temozolamide, etc.). Hypermethylation of the CpG island located in the promoter region of MGMT is primarily responsible for the loss of MGMT function in many tumor types. The methylation-mediated silencing of MGMT has two consequences for cancer. First, tumors with MGMT methylation have a new mutator phenotype characterized by the generation of transition point mutations in genes involved in cancer etiology, such as the tumor suppressor p53 and the oncogene K-ras. Second, MGMT hypermethylation demonstrates the possibility of pharmacoepigenomics: methylated tumors are more sensitive to the killing effects of alkylating drugs used in chemotherapy. These recent results underscore the importance of MGMT in basic and translational cancer research.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Molecular Pathology Program, Spanish National Cancer Center (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain.
| | | |
Collapse
|
24
|
Abstract
The repair of damage to DNA is critical to the survival of a cell. However, not all organisms nor all individuals express a similar response to challenges to their genetic material. Numerous polymorphisms in genes involved in DNA repair have been found in individuals with DNA repair-related disease as well as in the general population. Studies of these variants are critical in understanding the response of the cell to DNA damage. In some cases, these changes predispose the carrier to a greatly increased risk of cancer. In other cases, the effects are subtler and depend on interactions between the alleles of several genes, or with environmental factors. Consequently, the health effects of exposure to genotoxic or carcinogenic compounds or agents can depend on the variations in these genes. This review will highlight some of the effects that variants, found in many of the genes involved in human DNA repair pathways, have on the response to damage, and their role in susceptibility of the cell and organism to environmental genotoxins. This review will concentrate on the mismatch repair, nucleotide repair, base excision repair, strand break repair, and direct alkyl repair pathways.
Collapse
Affiliation(s)
- Johan G de Boer
- Centre for Biomedical Research, University of Victoria, PO Box 3020, STC CSC, Victoria, Canada, BC V8W 3N5.
| |
Collapse
|
25
|
Ma S, Egyházi S, Martenhed G, Ringborg U, Hansson J. Analysis of O(6)-methylguanine-DNA methyltransferase in melanoma tumours in patients treated with dacarbazine-based chemotherapy. Melanoma Res 2002; 12:335-42. [PMID: 12170182 DOI: 10.1097/00008390-200208000-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In a retrospective study we analysed the levels of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) in melanoma metastases in patients receiving dacarbazine (DTIC) either as a single drug or as part of combination chemotherapy regimens, and related the expression levels to the clinical response to treatment. Biopsies of subcutaneous and lymph node metastases obtained before chemotherapy in 65 patients with disseminated malignant melanoma were examined for MGMT protein levels by immunohistochemistry using a monoclonal anti-human MGMT antibody. All patients received chemotherapy with DTIC, given either as a single drug or in combination with vindesine and in some cases cisplatin. DTIC as single agent was given to 44 patients, while 21 received combination chemotherapy. Objective responses to chemotherapy were seen in 12 patients, while 53 patients failed to respond to treatment. The expression of MGMT was determined according to the proportion of antibody-stained tumour cells, using a cut-off level of 50%. In 12 of the patients more than one metastasis was analysed, and in seven of these cases the MGMT expression differed between tumours in the same individual. Among the responders a larger proportion (six out of 12, 50%) had tumours containing less than 50% MGMT-positive tumour cells than among the non-responders (12 out of 53, 23%). These data are consistent with the hypothesis that MGMT contributes to resistance to DTIC-based treatment, although the difference between responders and non-responders with respect to the proportion of MGMT-positive tumour cells was not statistically significant (P = 0.077).
Collapse
Affiliation(s)
- S Ma
- Department of Oncology/Pathology, Radiumhemmet, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
Abstract
The aim of the present paper is to review and evaluate, in a comprehensive manner, the most recent published evidence on the contribution of genetic susceptibility to gastric cancer risk in humans. We have identified all studies available in MEDLINE published up to October 2001. Only studies carried out in humans and comparing gastric cancer cases with at least 1 standard control group were included in the analysis. We were able to find 31 articles based on 25 case-control studies carried out in Caucasian, Asian and African populations. Most of the studies assess the effect of genes involved in detoxifying pathways (n = 12) and inflammatory responses (n = 7). The most widely studied is the GSTM1 null polymorphism. Only a very few studies have evaluated the risk of gastric cancer associated with genes acting on mucosa protection, oxidative damage and DNA repair. The most consistent results are the increased gastric cancer risk associated with IL1B and NAT1 variants, which may account for up to 48% of attributable risk of gastric cancer. Only polymorphisms at HLA-DQ, TNF and CYP2E genes may confer some protective effect against gastric cancer. The most important limitations that preclude definitive conclusions are (i) the lack of appropriate control of potential sources of bias (only 5 population-based studies have been published so far); (ii) the low number of cases analyzed (14 studies included fewer than 99 cases); and (iii) the low number of studies (n = 3) offering concomitant analysis of genetic susceptibility and exposure to relevant cofactors (Helicobacter pylori infection, diet and smoking). We conclude that the scientific data on the role of genetic factors in gastric cancer risk are promising. The lack of association reported so far should be considered with caution due to significant limitations in study design. Cohort studies taking into account simultaneously the different genetic and environmental factors potentially involved in gastric tumorigenesis are needed to ascertain not only the relative contribution of these factors to tumor development but also the contribution of their putative interactions.
Collapse
Affiliation(s)
- Carlos A González
- Epidemiology and Cancer Registry Unit, Catalan Institute of Oncology, Barcelona, Spain.
| | | | | |
Collapse
|
27
|
Mariani L, Piccirilli A, Citti L, Colombo MG, Poliseno L, Rainaldi G. The sensitivity of MCF10A breast epithelial cells to alkylating drugs is enhanced by the inhibition of O6-methylguanine-DNA methyltransferase transcription with a synthetic double strand DNA oligonucleotide. Breast Cancer Res Treat 2002; 73:207-13. [PMID: 12160326 DOI: 10.1023/a:1015808205169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytoxicity of alkylating chemotherapeutic drugs is affected by the cellular content of the enzyme O6_ methylguanine-DNA methyl transferase (MGMT). Since high levels of the enzyme confer the efficient repair of DNA alkylation, the chemotherapeutic potential of alkylating chemicals can be maintained either increasing drug dosage or reducing the amount of endogenous MGMT. This study strives to the latter end by competing away a transcriptional activator of the MGMT gene from its native enhancer sequence using a synthetic double strand DNA oligonucleotide (MEBP-ODN). MEBP-ODN was administered in culture medium to MCF10A human breast epithelial cells expressing high level of MGMT. Reverse transcription-polymerase chain reaction and western blotting analyses showed decrease in both MGMT mRNA and protein content. Concomitantly, MEBP-ObN exposed cells were more sensitive to the alkylating drug mitozolomide than their controls, which were not exposed to MEBP-ODN. These results indicate that the cis-acting MEBP-ODN can efficiently deplete MGMT protein by working as decoy binding site for the transcriptional activator MEBP. This approach represents a successful strategy to counteract the protective role of MGMT repair enzyme during an alkylating drug based chemotherapeutic regimen.
Collapse
Affiliation(s)
- Laura Mariani
- Laboratorio di Bioterapia Molecolare, Istituto di Mutagenesi e Differenziamento, Area della Ricerca del Consiglio Nazionale delle Ricerche, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Loktionova NA, Pegg AE. Interaction of mammalian O(6)-alkylguanine-DNA alkyltransferases with O(6)-benzylguanine. Biochem Pharmacol 2002; 63:1431-42. [PMID: 11996884 DOI: 10.1016/s0006-2952(02)00906-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human O(6)-alkylguanine-DNA alkyltransferase (hAGT) activity is a major factor in providing resistance to cancer chemotherapeutic alkylating agents. Inactivation of hAGT by O(6)-benzylguanine (BG) is a promising strategy for overcoming this resistance. Previous studies, which have focused on the region encompassed by residues Pro138 to Gly173, have identified more than 100 individual mutations located at 23 discrete sites at which alterations can render AGT less sensitive to BG. We have now extended the examination of possible sites in hAGT at which alterations might lead to BG resistance to include the residues from Val130 to Asn137, which also make up part of the binding pocket into which BG is postulated to fit. A further 21 mutations located at positions Gly132, Met134, Arg135, and Gly136 were found to lower sensitivity to BG. Mutants R135L, R135Y, and G136P were the most strikingly resistant, with a 50-fold increase in the amount of BG needed to obtain 50% inactivation. These results therefore increase the number of sites at which BG resistance can occur in response to a single amino acid change to 27. Although mammalian AGTs are very similar in amino acid sequence, mouse AGT (mAGT) is significantly less sensitive to BG than rat AGT (rAGT) or hAGT. Construction of chimeric proteins in which portions came from the rAGT and the mAGT indicated that the difference in inactivation resided solely in the amino acids located in the sequence from residues 150 to 188. Individual mutations of the three residues where rAGT and mAGT differ in this region showed that the principal reason for the reduced ability of the mAGT to react with BG was the presence of a histidine residue at position 161, which is occupied by asparagine in rAGT and hAGT. These experiments indicate that many minor changes in amino acids forming all parts of the nucleoside binding pocket of AGT can alter its ability to react with BG and that the possibility that polymorphisms or variants may occur reducing the effectiveness of combination therapy with BG and alkylating agents must be considered.
Collapse
Affiliation(s)
- Natalia A Loktionova
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
29
|
Matsukura S, Miyazaki K, Yakushiji H, Ogawa A, Harimaya K, Nakabeppu Y, Sekiguchi M. Expression and prognostic significance of O6-methylguanine-DNA methyltransferase in hepatocellular, gastric, and breast cancers. Ann Surg Oncol 2001; 8:807-16. [PMID: 11776495 DOI: 10.1007/s10434-001-0807-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND O6-Methylguanine-DNA methyltransferase (MGMT) is an enzyme that repairs O6-methylguanine, a promutagenic DNA base damaged by endogenous and environmental alkylating agents. There are few reports that describe whether or not abnormal MGMT expression correlates with the prognosis in human solid cancers. METHODS The expression of MGMT was immunohistochemically evaluated in 60, 62, 105, and 46 paraffin-embedded samples from patients with curatively resected hepatocellular, gastric, colorectal, and breast cancers, respectively. RESULTS The expression of MGMT was a positive predictive factor for overall survival in hepatocellular (P = .005) and gastric cancers (P < .001) and for relapse-free survival in breast cancers (P < .001). MGMT-positive gastric tumors (n = 42) were correlated with the absence of serosal invasion (P = .045), lymph node metastasis (P = .006), intestinal type (P = .018), and low pathological tumor, node, metastasis stage (P < .001). All breast tumors that recurred locally after operation were MGMT negative (P = .004). The clinicopathologic characteristics of colorectal cancers with respect to MGMT expression did not significantly differ. CONCLUSIONS The expression of MGMT is a predictive prognostic marker in patients with hepatocellular, gastric, and breast cancers. These findings may help to establish therapeutic strategies for patients with these types of solid cancer.
Collapse
Affiliation(s)
- S Matsukura
- Department of Surgery, Saga Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The predominant pathway for the repair of O(6)-methylguanine in DNA is via the activity of an alkyltransferase protein that transfers the methyl group to a cysteine acceptor site on the protein itself. This review article describes recent studies on this alkyltransferase. The protein repairs not only methyl groups but also 2-chloroethyl-, benzyl- and pyridyloxobutyl-adducts. It acts on double-stranded DNA by flipping the O(6)-guanine adduct out of the DNA helix and into a binding pocket. The free base, O(6)-benzylguanine, is able to bind in this pocket and react with the cysteine, rendering it an effective inactivator of mammalian alkyltransferases. The alkylated form of the protein is rapidly degraded by the ubiquitin/proteasomal system. Some tumor cells do not express alkyltransferase despite having an intact gene. Methylation of key sites in CpG-rich islands in the promoter region are involved in this silencing and a change in the nuclear localization of an enhancer binding protein may also contribute. The alkyltransferase promoter contains Sp1, GRE and AP-1 sites and is slightly inducible by glucocorticoids and protein kinase C activators. There is a complex relationship between p53 and alkyltransferase expression with p53 mediating a rise in alkyltransferase in response to ionizing radiation but having no clear effect on basal levels. DNA adducts at the O(6)-position of guanine are a major factor in the carcinogenic, mutagenic, apoptopic and clastogenic actions of methylating agents and chloroethylating agents. Studies with transgenic mice in which alkyltransferase levels are increased or decreased confirm the importance of this repair pathway in protecting against carcinogenesis. Alkyltransferase activity in tumors protects them from therapeutic agents such as temozolomide and BCNU. This resistance is abolished by O(6)-benzylguanine and this drug is currently in clinical trials to enhance cancer chemotherapy by these agents. Studies are in progress to reduce the toxicity of such therapy towards the bone marrow by gene therapy to express alkyltransferases with mutations imparting resistance to O(6)-benzylguanine at high levels in marrow stem cells. Several polymorphisms in the human alkyltransferase gene have been identified but the significance of these in terms of alkyltransferase action is currently unknown.
Collapse
Affiliation(s)
- A E Pegg
- Departments of Cellular and Molecular Physiology and Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA, USA.
| |
Collapse
|
31
|
Xu-Welliver M, Leitão J, Kanugula S, Meehan WJ, Pegg AE. Role of codon 160 in the sensitivity of human O6-alkylguanine-DNA alkyltransferase to O6-benzylguanine. Biochem Pharmacol 1999; 58:1279-85. [PMID: 10487529 DOI: 10.1016/s0006-2952(99)00216-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
O6-Alkylguanine-DNA alkyltransferase (AGT) is a DNA repair protein that provides protection from alkylating agents such as dacarbazine, temozolomide, and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), which are used for cancer chemotherapy. O6-Benzylguanine (BG) is an inhibitor of AGT that sensitizes tumors to these agents. BG is currently in clinical trials. It is possible that the presence of resistant forms of AGT may limit the effectiveness of this strategy. Previous studies have shown that the AGT mutant G160R, which may occur naturally as a result of a polymorphism in the AGT gene, is resistant to BG, whereas the mutants G160W and G160A are actually more sensitive to the inhibitor. To examine other mutations at this site, a random sequence was placed at codon 160 in the AGT cDNA, and a plasmid library was constructed to express these sequences in Escherichia coli. After selection with BG and N-methyl-N'-nitro-N-nitrosoguanidine, BG-resistant mutants were obtained and analyzed. Eleven different amino acid substitutions were found to impart BG resistance by this assay. The most resistant mutants contained histidine or arginine, which had EC50 values of 12 and 4.7 microM, respectively, compared with the wild-type EC50 of 0.08 microM, but nine other alterations led to at least a 10-fold rise in the EC50 value. Three additional mutations at codon 160 were constructed by site-directed mutagenesis, and these led to 6- to 11-fold increases in resistance to BG. Comparisons of the properties of mutants G160R and G160E showed that the presence of DNA enhanced the reaction with BG much more strongly when an acidic residue was present at this position. This may account for the lack of selection of the G160E mutation even though it did impart resistance to BG. These results indicate that many alterations of AGT at position 160 can lead to significant resistance to BG.
Collapse
Affiliation(s)
- M Xu-Welliver
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | | | |
Collapse
|
32
|
Wada I, Kanada H, Nomura K, Kato Y, Machinami R, Kitagawa T. Failure to detect genetic alteration of the mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) gene in hepatocellular carcinomas in Japan. Hepatology 1999; 29:1718-21. [PMID: 10347113 DOI: 10.1002/hep.510290635] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) suppresses cell growth through binding to the insulin-like growth factor 2 (IGF2) and latent complex of the transforming growth factor-beta (TGF-beta). Recently, it was reported in the United States that loss of heterozygosity (LOH) and mutations in exons 27, 28, and 31 of the M6P/IGF2R gene are frequent in hepatocellular carcinomas (HCCs) and adenomas. In view of the possible importance of this finding, especially for differential diagnosis of small hepatic lesions, we analyzed 43 primary HCCs, 2 adenomatous hyperplasias (AHs), and 3 regenerative nodules (RNs) developing in 42 Japanese patients in Japan for LOH using the polymorphic locus and for mutations by both single strand conformation polymorphism (SSCP) and direct sequencing methods. In the LOH study, 21 out of 22 informative HCCs and all of the informative AHs and RNs showed no allelic loss. In mutational studies of exons 27, 28, and 31, no mutations were detected either by SSCP or direct sequencing analysis in any of the 48 lesions. Thus inactivation of the M6P/IGF2R gene because of genetic alteration does not appear to be essential for hepatocarcinogenesis in Japan.
Collapse
Affiliation(s)
- I Wada
- Department of Pathology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
O6-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that transfers methyl and alkyl lesions from the O6 position of guanine to a cysteine in its structure. The ability of MGMT to also remove precytotoxic O6-alkylguanine lesions induced by chemotherapeutic chloroethylnitrosoureas has made down-regulation of MGMT expression the key component in strategies designed to sensitize tumors to the cytotoxic potential of chloroethylnitrosoureas. The study of how to regulate MGMT expression at the gene, mRNA, and protein levels has contributed not only to the development of effective inhibitors of MGMT action, but also, in a broader sense, to a better understanding of gene regulation and protein structure/function.
Collapse
Affiliation(s)
- R O Pieper
- Division of Hematology/Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
34
|
Rafferty JA, Wibley JE, Speers P, Hickson I, Margison GP, Moody PC, Douglas KT. The potential role of glycine-160 of human O6-alkylguanine-DNA alkyltransferase in reaction with O6-benzylguanine as determined by site-directed mutagenesis and molecular modelling comparisons. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1342:90-102. [PMID: 9366274 DOI: 10.1016/s0167-4838(97)00095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
O6-Alkylguanine DNA-alkyltransferase (ATase) repairs toxic, mutagenic and carcinogenic O6-alkylguanine (O6-alkG) lesions in DNA by a highly conserved reaction involving the stoichiometric transfer of the alkyl group to the active centre cysteine residue of the ATase protein. In the Escherichia coli Ada ATase, which is effectively refactory to inhibition by O6-benzylguanine (O6-BzG), the residue corresponding to glycine-160 (G160) for the mammalian proteins of this class is replaced by a tryptophan (W). Therefore, to investigate the potential role of the G160 of the human ATase (hAT) protein in determining sensitivity to O6-BzG, site-directed mutagenesis was used to produce a mutant protein (hATG160W) substituted at position 160 with a W residue. The hATG160W mutant was found to be stably expressed and was 3- and 5-fold more sensitive than hAT to inactivation by O6-BzG, in the absence and presence of additional calf-thymus DNA respectively. A similar, DNA dependent increased sensitivity of the hATG160W mutant relative to wild-type was also found for O6-methylguanine mediated inactivation. The potential role of the W160 residue in stabilising the binding of the O6-alkG to the protein is discussed in terms of a homology model of the structure of hAT. The region occupied by G/W-160 forms the site of a putative hinge that could be important in the conformational change that is likely to occur on DNA binding. Three sequence motifs have been identified in this region which may influence O6-BzG access to the active site; YSGG or YSGGG in mammals (YAGG in E. coli Ogt, YAGS in Dat from Bacillus subtilis), YRWG in E. coli Ada and Salmonella typhimurium (but YKWS in Saccharomyces cerevisiae) or YRGGF in AdaB from B. Subtilis. Finally,conformational and stereoelectronic analysis of the putative transition states for the alkyl transfer from a series of inactivators of hAT, including O6-BzG was undertaken to rationalise the unexpected weak inhibition shown by the alpha-pi-unsaturated electrophiles.
Collapse
Affiliation(s)
- J A Rafferty
- CRC Department of Carcinogenesis, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Inhibition of DNA repair as a means of increasing the antitumor activity of DNA reactive agents. Adv Drug Deliv Rev 1997; 26:105-118. [PMID: 10837537 DOI: 10.1016/s0169-409x(97)00028-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapeutic alkylnitrosoureas (BCNU, CCNU, streptozotocin) and alkyltriazenes (DTIC, temozolomide) produce a cytotoxic lesion at the O(6)-position of guanine. The DNA repair protein, O(6)-alkylguanine-DNA alkyltransferase removes damage from the O(6)-position in a single-step mechanism without co-factors. There is extensive evidence that this protein is one of the most important factors contributing to alkylnitrosourea and alkyltriazene treatment failure. There is an inverse correlation between the level of this protein and the sensitivity of cells to the cytotoxic effects of O(6)-alkylating agents. Attempts have been made to modulate AGT activity using anti-sense technology, methylating agents, O(6)-alkylguanines, and O(6)-benzylguanine analogs. O(6)-Benzylguanine and its analogs are clearly the most potent direct inactivators of the AGT protein. The mechanism involves O(6)-benzylguanine acting as a low-molecular weight substrate with transfer of the benzyl group to the cysteine residue within the active site of the repair protein. Pretreatment of cells with non-toxic doses of O(6)-benzylguanine results in an increase in the sensitivity to O(6)-alkylating agents. Animal studies revealed that the therapeutic index of BCNU increased when administered in combination with O(6)-benzylguanine. This drug is currently in phase I clinical trials. Evidence from animal studies indicates that myelosuppression may be the dose-limiting toxicity, thus, efforts are aimed at improving the therapeutic index by the stable expression of O(6)-benzylguanine-resistant AGT proteins into targeted normal tissue such as bone marrow. The successful modulation of alkyltransferases brings on an exciting new era for alkylnitrosoureas and alkyltriazenes.
Collapse
|