1
|
Huang YK, Wang TM, Chen CY, Li CY, Wang SC, Irshad K, Pan Y, Chang KC. The role of ALDH1A1 in glioblastoma proliferation and invasion. Chem Biol Interact 2024; 402:111202. [PMID: 39128802 DOI: 10.1016/j.cbi.2024.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
High-grade gliomas, including glioblastoma multiforme (GBM), continue to be a leading aggressive brain tumor in adults, marked by its rapid growth and invasive nature. Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), an enzyme, plays a significant role in tumor progression, yet its function in high-grade gliomas is still poorly investigated. In this study, we evaluated ALDH1A1 levels in clinical samples of GBM. We also assessed the prognostic significance of ALDH1A1 expression in GBM and LGG (low grade glioma) patients using TCGA (The Cancer Genome Atlas) database analysis. The MTT and transwell assays were utilized to examine cell growth and the invasive capability of U87 cells, respectively. We quantitatively examined markers for cell proliferation (Ki-67 and cyclin D1) and invasion (MMP2 and 9). A Western blot test was conducted to determine the downstream signaling of ALDH1A1. We found a notable increase in ALDH1A1 expression in high-grade gliomas compared to their low-grade counterparts. U87 cells that overexpressed ALDH1A1 showed increased cell growth and invasion. We found that ALDH1A1 promotes the phosphorylation of AKT, and inhibiting AKT phosphorylation mitigates the ALDH1A1's effects on tumor growth and migration. In summary, our findings suggest ALDH1A1 as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Ming Wang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chi-Yu Chen
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Lou Q, Chen F, Li B, Zhang M, Yin F, Liu X, Zhang Z, Zhang X, Fan C, Gao Y, Yang Y. Malignant growth of arsenic-transformed cells depends on activated Akt induced by reactive oxygen species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:284-298. [PMID: 34974760 DOI: 10.1080/09603123.2021.2023113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Arsenic is an identified carcinogen for humans.In this study, chronic exposure of human hepatocyte L-02 to low-doses of inorganic arsenic caused cell malignant proliferation. Meanwhile, compared with normal L-02 cells, arsenic-transformed malignant cells, L-02-As displayed more ROS and significantly higher Cyclin D1 expression as well as aerobic glycolysis. Moreover, Akt activation is followed by the upregulation of Cyclin D1 and HK2 expression in L-02-As cells, since inhibition of Akt activity by Ly294002 attenuated the colony formation in soft agar and decreased the levels of Cyclin D1 and HK2. In addition, scavenging of ROS by NAC resulted in a decreased expression of phospho-Akt, HK2 and Cyclin D1, and attenuates the ability of anchorage-independent growth ofL-02-As cells, suggested that ROS mediated the Akt activation in L-02-As cells. In summary, our results demonstrated that ROS contributes to the malignant phenotype of arsenic-transformed human hepatocyte L-02-As via the activation of Akt pathway.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fuxun Chen
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Bingyang Li
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenlu Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Hashemzehi M, Rahmani F, Khoshakhlagh M, Avan A, Asgharzadeh F, Barneh F, Moradi-Marjaneh R, Soleimani A, Fiuji H, Ferns GA, Ryzhikov M, Jafari M, Khazaei M, Hassanian SM. Angiotensin receptor blocker Losartan inhibits tumor growth of colorectal cancer. EXCLI JOURNAL 2021; 20:506-521. [PMID: 33883980 PMCID: PMC8056058 DOI: 10.17179/excli2020-3083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
The renin-angiotensin system (RAS) is up-regulated in patients with colorectal cancer (CRC) and is reported to be associated with poor prognosis and chemo-resistance. Here we explored the therapeutic potential of targeting RAS in CRC using Losartan, an angiotensin receptor blocker. An integrative-systems biology approach was used to explore a proteome-level dataset of a gene signature that is modulated by Losartan. The anti-proliferative activity of Losartan was evaluated using 2- and 3-dimensional cell culture models. A xenograft model of colon cancer was used to investigate tumor growth with Losartan alone and in combination with 5-FU followed by histological staining (Hematoxylin & Eosin and Masson trichrome staining), biochemical analyses, gene expression analyses by RT-PCR, western blot/IHC, or MMP Gelatin Zymography studies. Effects on cell cycle and cell death were assessed by flow cytometry. Losartan inhibited cell growth and suppressed cell cycle progression, causing an increase in CRC cells in the G1 phase. Losartan significantly reduced tumor growth and enhanced tumor cell necrosis. An impact on the inflammatory response, including up-regulation of pro-inflammatory cytokines and chemokines in CRC cells are potential mechanisms that could partially explain Losartan's anti-proliferative effects. Moreover, metastasis and angiogenesis were reduced in Losartan-treated mice as observed by inhibited matrix metalloproteinase-2 and -9 activities and decreased tumor vasculature. These data demonstrate the therapeutic potential of combining chemotherapeutic regimens with Losartan to synergistically enhance its activity and target the renin-angiotensin system as a new approach in colorectal cancer treatment.
Collapse
Affiliation(s)
- Milad Hashemzehi
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iranshahr University of Medical Sciences, Iranshahr, Iran.,Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Farzad Rahmani
- Iranshahr University of Medical Sciences, Iranshahr, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Khoshakhlagh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Barneh
- Faculty of Paramedical Sciences, Beheshti University of Medical Sciences, Tehran, Iran; Current address: Princess Maxima Center for Pediatric Oncology, 3584, CS, Utrecht, The Netherlands
| | - Reyhaneh Moradi-Marjaneh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | | | - Mohieddin Jafari
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Merckaert T, Zwaenepoel O, Gevaert K, Gettemans J. An AKT2-specific nanobody that targets the hydrophobic motif induces cell cycle arrest, autophagy and loss of focal adhesions in MDA-MB-231 cells. Biomed Pharmacother 2020; 133:111055. [PMID: 33378961 DOI: 10.1016/j.biopha.2020.111055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
The AKT kinase family is a high-profile target for cancer therapy. Despite their high degree of homology the three AKT isoforms (AKT1, AKT2 and AKT3) are non-redundant and can even have opposing functions. Small-molecule AKT inhibitors affect all three isoforms which severely limits their usefulness as research tool or therapeutic. Using AKT2-specific nanobodies we examined the function of endogenous AKT2 in breast cancer cells. Two AKT2 nanobodies (Nb8 and Nb9) modulate AKT2 and reduce MDA-MB-231 cell viability/proliferation. Nb8 binds the AKT2 hydrophobic motif and reduces IGF-1-induced phosphorylation of this site. This nanobody also affects the phosphorylation and/or expression levels of a wide range of proteins downstream of AKT, resulting in a G0/G1 cell cycle arrest, the induction of autophagy, a reduction in focal adhesion count and loss of stress fibers. While cell cycle progression is likely to be regulated by more than one isoform, our results indicate that both the effects on autophagy and the cytoskeleton are specific to AKT2. By using an isoform-specific nanobody we were able to map a part of the AKT2 pathway. Our results confirm AKT2 and the hydrophobic motif as targets for cancer therapy. Nb8 can be used as a research tool to study AKT2 signalling events and aid in the design of an AKT2-specific inhibitor.
Collapse
Affiliation(s)
- Tijs Merckaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Tech Lane Ghent Science Park 75, 9052 Ghent, Belgium.
| |
Collapse
|
5
|
CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Mol Neurobiol 2020; 57:2085-2100. [DOI: 10.1007/s12035-019-01861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
6
|
Chen Y, Liu X, Wang H, Liu S, Hu N, Li X. Akt Regulated Phosphorylation of GSK-3β/Cyclin D1, p21 and p27 Contributes to Cell Proliferation Through Cell Cycle Progression From G1 to S/G2M Phase in Low-Dose Arsenite Exposed HaCat Cells. Front Pharmacol 2019; 10:1176. [PMID: 31680960 PMCID: PMC6798184 DOI: 10.3389/fphar.2019.01176] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a toxic environmental contaminant. Long-term exposure to arsenic through drinking water induces human cancers. However, it is as yet uncertain about the mechanisms of arsenic induced carcinogenesis. Although the effects of low-dose arsenicals on proliferation and cell cycle have been revealed by short time exposure, the evidences for long-term exposure were seldom reported. The detailed mechanism has been unclear and supplemented constantly. In the present study, we used normal human keratinocytes (HaCat) to study the effects of long-term, low-dose sodium arsenite (NaAsO2) exposure on cell proliferation with emphasis on the Akt regulated cell cycle signaling pathways. Treatment of NaAsO2 resulted in increased cell proliferation and promotion of cell cycle progression from G1 to S/G2M phase, both of which could be attenuated by MK2206, a highly selective inhibitor of Akt. Along with the increased expression of phospho-Akt (p-Akt, Ser 473), increased expression of p-GSK-3β (Ser 9), p-p21 (Thr 145), p-p27 (Thr 157) and total cyclin D1, and decreased expression of p-cyclin D1 (Thr 286), p21 and p27 were also found in the NaAsO2 exposed cells. Treatment of MK2206 markedly reversed the expression of all of the above proteins. Our findings indicated that the phosphorylated activation of Akt played a role in the proliferation of HaCat cells upon long-term, low-dose NaAsO2 exposure through the phosphorylative regulation of its downstream cell cycle regulating factors of GSK-3β/cyclin D1, p21 and p27, which could induce the promotion of cell cycle progression from G1 to S/G2M phase.
Collapse
Affiliation(s)
- Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Shiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Nannan Hu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Yamawaki Y, Shirawachi S, Mizokami A, Nozaki K, Ito H, Asano S, Oue K, Aizawa H, Yamawaki S, Hirata M, Kanematsu T. Phospholipase C-related catalytically inactive protein regulates lipopolysaccharide-induced hypothalamic inflammation-mediated anorexia in mice. Neurochem Int 2019; 131:104563. [PMID: 31589911 DOI: 10.1016/j.neuint.2019.104563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
Peripheral lipopolysaccharide (LPS) injection induces systemic inflammation through the activation of the inhibitor of nuclear factor kappa B (NF-κB) kinase (IKK)/NF-κB signaling pathway, which promotes brain dysfunction resulting in conditions including anorexia. LPS-mediated reduction of food intake is associated with activation of NF-κB signaling and phosphorylation of the transcription factor signal transducer and activator of transcription 3 (STAT3) in the hypothalamus. We recently reported phospholipase C-related catalytically inactive protein (PRIP) as a new negative regulator of phosphatidylinositol 3-kinase/AKT signaling. AKT regulates the IKK/NF-κB signaling pathway; therefore, this study aimed to investigate the role of PRIP/AKT signaling in LPS-mediated neuroinflammation-induced anorexia. PRIP gene (Prip1 and Prip2) knockout (Prip-KO) mice intraperitoneally (ip) administered with LPS exhibited increased anorexia responses compared with wild-type (WT) controls. Although few differences were observed between WT and Prip-KO mice in LPS-elicited plasma pro-inflammatory cytokine elevation, hypothalamic pro-inflammatory cytokines were significantly upregulated in Prip-KO rather than WT mice. Hypothalamic AKT and IKK phosphorylation and IκB degradation were significantly increased in Prip-KO rather than WT mice, indicating further promotion of AKT-mediated NF-κB signaling. Consistently, hypothalamic STAT3 was further phosphorylated in Prip-KO rather than WT mice. Furthermore, suppressor of cytokine signaling 3 (Socs3), a negative feedback regulator for STAT3 signaling, and cyclooxogenase-2 (Cox2), a candidate molecule in LPS-induced anorexigenic responses, were upregulated in the hypothalamus in Prip-KO rather than WT mice. Pro-inflammatory cytokines were upregulated in hypothalamic microglia isolated from Prip-KO rather than WT mice. Together, these findings indicate that PRIP negatively regulates LPS-induced anorexia caused by pro-inflammatory cytokine expression in the hypothalamus, which is mediated by AKT-activated NF-κB signaling. Importantly, hypothalamic microglia participate in this PRIP-mediated process. Elucidation of PRIP-mediated neuroinflammatory responses may provide novel insights into the pathophysiology of many brain dysfunctions.
Collapse
Affiliation(s)
- Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Laboratory of Advanced Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Satomi Shirawachi
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Akiko Mizokami
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kanako Nozaki
- Department of Neurobiology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hikaru Ito
- Department of Neurobiology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan; Center for Experimental Animals, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kana Oue
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Dental Anesthesiology, Division of Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masato Hirata
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan; Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Li X, Guo S, Xiong XK, Peng BY, Huang JM, Chen MF, Wang FY, Wang JN. Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-κB pathway. J Cancer 2019; 10:4509-4521. [PMID: 31528215 PMCID: PMC6746132 DOI: 10.7150/jca.31045] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
While cisplatin is a first-line chemotherapeutic drug commonly used to treat patients with oral squamous cell carcinoma (OSCC), the cisplatin-resistance poses a major challenge for its clinical application. Recent studies have shown that quercetin, a natural flavonoid found in various plants and foods possesses an anti-cancer effect. The following study examined the combined effect of quercetin and cisplatin on OSCC apoptosis in vitro and in vivo (using a mice tumor model). We found that quercetin promotes cisplatin-induced apoptosis in human OSCC (cell lines Tca-8113 and SCC-15) by down-regulating NF-κB. Pretreatment of cancer cells with quercetin inhibited the phosphorylation Akt and IKKβ, and led to the suppression of NF-κB and anti-apoptotic protein xIAP. In addition, we observed that the pretreatment of cancer cells with quercetin improves extrinsic and intrinsic apoptosis by activating caspase-8 and caspase-9, respectively. Our in vivo data also indicated that the combination of quercetin and cisplatin may inhibit the xenograft growth in mice. To sum up, our results provide a new evidence for the application of quercetin and cisplatin in OSCC therapy.
Collapse
Affiliation(s)
- Xin Li
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Shu Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, Guangdong Province, P.R. China, 510655
| | - Xi-Kun Xiong
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Bao-Ying Peng
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Jun-Ming Huang
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Mei-Fen Chen
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Feng-Yan Wang
- Guangdong Provincial Center for Disease Control and Prevention, 160 Qunxian Road, Dashi, Panyu District, Guangzhou, Guangdong Province, P.R. China, 511430
| | - Jian-Ning Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, 56, Ling Yuan Xi Road, Guangzhou, Guangdong Province, P.R. China, 510055
| |
Collapse
|
9
|
Park HS, Seo CS, Wijerathne CUB, Jeong HY, Moon OS, Seo YW, Won YS, Son HY, Lim JH, Kwun HJ. Effect of Veratrum maackii on Testosterone Propionate-Induced Benign Prostatic Hyperplasia in Rats. Biol Pharm Bull 2019; 42:1-9. [DOI: 10.1248/bpb.b18-00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hee-Seon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine
| | - Charith UB Wijerathne
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Hye-Yun Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Og-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Jong-Hwan Lim
- HUONS Research Center, Hanyang University in ERICA Campus
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| |
Collapse
|
10
|
Chen QY, Costa M. PI3K/Akt/mTOR Signaling Pathway and the Biphasic Effect of Arsenic in Carcinogenesis. Mol Pharmacol 2018; 94:784-792. [PMID: 29769245 PMCID: PMC5994485 DOI: 10.1124/mol.118.112268] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Arsenic is a naturally occurring, ubiquitous metalloid found in the Earth's crust. In its inorganic form, arsenic is highly toxic and carcinogenic and is widely found across the globe and throughout the environment. As an International Agency for Research on Cancer-defined class 1 human carcinogen, arsenic can cause multiple human cancers, including liver, lung, urinary bladder, skin, kidney, and prostate. Mechanisms of arsenic-induced carcinogenesis remain elusive, and this review focuses specifically on the role of the PI3K/AKT/mTOR pathway in promoting cancer development. In addition to exerting potent carcinogenic responses, arsenic is also known for its therapeutic effects against acute promyelocytic leukemia. Current literature suggests that arsenic can achieve both therapeutic as well as carcinogenic effects, and this review serves to examine the paradoxical effects of arsenic, specifically through the PI3K/AKT/mTOR pathway. Furthermore, a comprehensive review of current literature reveals an imperative need for future studies to establish and pinpoint the exact conditions for which arsenic can, and through what mechanisms it is able to, differentially regulate the PI3K/AKT/mTOR pathway to maximize the therapeutic and minimize the carcinogenic properties of arsenic.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| |
Collapse
|
11
|
Shrestha S, Sorolla A, Fromont J, Blancafort P, Flematti GR. Crambescidin 800, Isolated from the Marine Sponge Monanchora viridis, Induces Cell Cycle Arrest and Apoptosis in Triple-Negative Breast Cancer Cells. Mar Drugs 2018; 16:E53. [PMID: 29419736 PMCID: PMC5852481 DOI: 10.3390/md16020053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is currently the only group of breast cancers without an effective targeted therapy. Marine sponges have historically been a source of compounds with anticancer activity. In this study, we screened extracts from twenty marine sponges collected off the coast of Western Australia for cytotoxic activity against TNBC cells. One very active extract derived from the sponge Monanchora viridis was selected for bioactivity-guided fractionation. Through multiple steps of purification, we isolated a potent cytotoxic compound, which was identified as crambescidin 800 (C800). We found that C800 exhibited cytotoxic potency in a panel of breast cancer cells, of which TNBC and luminal cancer cell models were the most sensitive. In addition, C800 induced cell cycle arrest at the G2/M phase, resulting in a decline in the expression of cyclin D1, CDK4, and CDK6 in TNBC cells. This effect was associated with the inhibition of phosphorylation of Akt, NF-κB, and MAPK pathways, resulting in apoptosis in TNBC cells.
Collapse
Affiliation(s)
- Sumi Shrestha
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia.
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Crawley 6009, Western Australia, Australia.
| | - Anabel Sorolla
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Crawley 6009, Western Australia, Australia.
| | - Jane Fromont
- Western Australian Museum, Welshpool 6106, Western Australia, Australia.
| | - Pilar Blancafort
- Cancer Epigenetics, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Crawley 6009, Western Australia, Australia.
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia.
| |
Collapse
|
12
|
Kao YT, Wu CH, Wu SY, Lan SH, Liu HS, Tseng YS. Arsenic treatment increase Aurora-A overexpression through E2F1 activation in bladder cells. BMC Cancer 2017; 17:277. [PMID: 28420331 PMCID: PMC5394624 DOI: 10.1186/s12885-017-3253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/01/2017] [Indexed: 12/17/2022] Open
Abstract
Background Arsenic is a widely distributed metalloid compound that has biphasic effects on cultured cells. In large doses, arsenic can be toxic enough to trigger cell death. In smaller amounts, non-toxic doses may promote cell proliferation and induces carcinogenesis. Aberration of chromosome is frequently detected in epithelial cells and lymphocytes of individuals from arsenic contaminated areas. Overexpression of Aurora-A, a mitotic kinase, results in chromosomal instability and cell transformation. We have reported that low concentration (≦1 μM) of arsenic treatment increases Aurora-A expression in immortalized bladder urothelial E7 cells. However, how arsenic induces carcinogenesis through Aurora-A activation remaining unclear. Methods Bromodeoxyuridine (BrdU) staining, MTT assay, and flow cytometry assay were conducted to determine cell proliferation. Messenger RNA and protein expression levels of Aurora-A were detected by reverse transcriptional-PCR and Western blotting, respectively. Centrosome of cells was observed by immunofluorescent staining. The transcription factor of Aurora-A was investigated by promoter activity, chromosome immunoprecipitation (ChIP), and small interfering RNA (shRNA) assays. Mouse model was utilized to confirm the relationship between arsenic and Aurora-A. Results We reveal that low dosage of arsenic treatment increased cell proliferation is associated with accumulated cell population at S phase. We also detected increased Aurora-A expression at mRNA and protein levels in immortalized bladder urothelial E7 cells exposed to low doses of arsenic. Arsenic-treated cells displayed increased multiple centrosome which is resulted from overexpressed Aurora-A. Furthermore, the transcription factor, E2F1, is responsible for Aurora-A overexpression after arsenic treatment. We further disclosed that Aurora-A expression and cell proliferation were increased in bladder and uterus tissues of the BALB/c mice after long-term arsenic (1 mg/L) exposure for 2 months. Conclusion We reveal that low dose of arsenic induced cell proliferation is through Aurora-A overexpression, which is transcriptionally regulated by E2F1 both in vitro and in vivo. Our findings disclose a new possibility that arsenic at low concentration activates Aurora-A to induce carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ting Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Han Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hui Lan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ya-Shih Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical technology, Tainan, Taiwan.
| |
Collapse
|
13
|
Feridooni T, Hotchkiss A, Baguma-Nibasheka M, Zhang F, Allen B, Chinni S, Pasumarthi KBS. Effects of β-adrenergic receptor drugs on embryonic ventricular cell proliferation and differentiation and their impact on donor cell transplantation. Am J Physiol Heart Circ Physiol 2017; 312:H919-H931. [PMID: 28283550 DOI: 10.1152/ajpheart.00425.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/06/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
β-Adrenergic receptors (β-ARs) and catecholamines are present in rodents as early as embryonic day (E)10.5. However, it is not known whether β-AR signaling plays any role in the proliferation and differentiation of ventricular cells in the embryonic heart. Here, we characterized expression profiles of β-AR subtypes and established dose-response curves for the nonselective β-AR agonist isoproterenol (ISO) in the developing mouse ventricular cells. Furthermore, we investigated the effects of ISO on cell cycle activity and differentiation of cultured E11.5 ventricular cells. ISO treatment significantly reduced tritiated thymidine incorporation and cell proliferation rates in both cardiac progenitor cell and cardiomyocyte populations. The ISO-mediated effects on DNA synthesis could be abolished by cotreatment of E11.5 cultures with either metoprolol (a β1-AR antagonist) or ICI-118,551 (a β2-AR antagonist). In contrast, ISO-mediated effects on cell proliferation could be abolished only by metoprolol. Furthermore, ISO treatment significantly increased the percentage of differentiated cardiomyocytes compared with that in control cultures. Additional experiments revealed that β-AR stimulation leads to downregulation of Erk and Akt phosphorylation followed by significant decreases in cyclin D1 and cyclin-dependent kinase 4 levels in E11.5 ventricular cells. Consistent with in vitro results, we found that chronic stimulation of recipient mice with ISO after intracardiac cell transplantation significantly decreased graft size, whereas metoprolol protected grafts from the inhibitory effects of systemic catecholamines. Collectively, these results underscore the effects of β-AR signaling in cardiac development as well as graft expansion after cell transplantation.NEW & NOTEWORTHY β-Adrenergic receptor (β-AR) stimulation can decrease the proliferation of embryonic ventricular cells in vitro and reduce the graft size after intracardiac cell transplantation. In contrast, β1-AR antagonists can abrogate the antiproliferative effects mediated by β-AR stimulation and increase graft size. These results highlight potential interactions between adrenergic drugs and cell transplantation.
Collapse
Affiliation(s)
- Tiam Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam Hotchkiss
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Feixiong Zhang
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brittney Allen
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sarita Chinni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
14
|
Zhu P, Liao LY, Zhao TT, Mo XM, Chen GG, Liu ZM. GPER/ERK&AKT/NF-κB pathway is involved in cadmium-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells. Mol Cell Endocrinol 2017; 442:68-80. [PMID: 27940299 DOI: 10.1016/j.mce.2016.12.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 02/06/2023]
Abstract
The higher incidence of thyroid cancer in women during reproductive years compared with men and the increased risk associated with the therapeutic use of estrogen have strongly suggested that estrogen may be involved in the occurrence and development of thyroid cancer. Cadmium (Cd) is a potent metalloestrogen that disrupts the endocrine system by mimicking the effects of 17β-estradiol (E2). In the present study, we demonstrate that similar to E2 and G1, a specific agonist for G protein-coupled estrogen receptor (GPER), Cd induces the proliferation, invasion and migration of human WRO and FRO thyroid cancer cells that have endogenous GPER. Moreover, like E2 and G1, Cd leads to a rapid activation of ERK/AKT, and then nuclear translocation of NF-κB, increased expression of cyclin A and D1, and secretion of IL-8, all of which are significantly attenuated by GPER blockage or knock-down in both WRO and FRO cells. Furthermore, the Cd-induced proliferation, invasion and migration are suppressed either by specific inhibitors for GPER, ERK, AKT and NF-κB, or by knock-down of GPER. These results suggest that GPER/ERK&AKT/NF-κB signaling pathway is involved in the Cd-induced proliferation, invasion and migration of GPER-positive thyroid cancer cells.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ling-Yao Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ting-Ting Zhao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xiao-Mei Mo
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Saneja A, Nayak D, Srinivas M, Kumar A, Khare V, Katoch A, Goswami A, Vishwakarma RA, Sawant SD, Gupta PN. Development and mechanistic insight into enhanced cytotoxic potential of hyaluronic acid conjugated nanoparticles in CD44 overexpressing cancer cells. Eur J Pharm Sci 2016; 97:79-91. [PMID: 27989859 DOI: 10.1016/j.ejps.2016.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023]
Abstract
The overexpression of CD44 in cancer cells reroutes number of oncogenic pathways including the central Pi3K/Akt/NF-kB pathway leading to cancer progression and malignancy. Herein, we developed hyaluronic acid-modified poly(dl-lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles (PLGA-PEG-HA NPs) for targeted delivery of TTQ (thio-tetrazolyl analog of a clinical candidate, IC87114) to CD44 overexpressing cancer cells. The PLGA-PEG co-polymer was synthesized and characterized by NMR and FTIR. The co-polymer based nanoparticles were prepared by solvent evaporation method and hyaluronic acid (HA) was conjugated on to the nanoparticle surface via EDC/NHS chemistry. The PLGA-PEG-HA NPs had a desirable particle size (<200nm) with reduced polydispersibility and exhibited spherical shape under atomic force microscope (AFM). In vitro cytotoxicity and cellular uptake studies demonstrated higher cytotoxicity and enhanced intracellular accumulation of PLGA-PEG-HA NPs compared to PLGA-PEG NPs in high CD44 expressing MiaPaca-2 cells compared to MDA-MB-231 and MCF7 cells. At the molecular level, the PLGA-PEG-HA NPs were found to be inducing premature senescence with increase in senescence associated β-galactosidase activity and senescence specific marker p21 expression through modulation of Pi3K/Akt/NF-kB signaling pathway in MiaPaca-2 cells. These findings collectively indicated that HA-modified nanoparticles might serve as a promising nanocarrier for site-specific drug delivery, and can be explored further to increase the therapeutic efficacy of anticancer drugs via targeting to CD44 over-expressing cancer cells.
Collapse
Affiliation(s)
- Ankit Saneja
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Debasis Nayak
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - M Srinivas
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit Kumar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Vaibhav Khare
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Archana Katoch
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Anindya Goswami
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Ram A Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sanghapal D Sawant
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India; Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
16
|
Luo Q, Li Y, Lai Y, Zhang Z. The role of NF-κB in PARP-inhibitor-mediated sensitization and detoxification of arsenic trioxide in hepatocellular carcinoma cells. J Toxicol Sci 2016; 40:349-63. [PMID: 25972196 DOI: 10.2131/jts.40.349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The therapeutic efficacy of arsenic trioxide (ATO) for treatments of solid tumors is restricted by its drug resistance and chemotoxicity. In this study, we investigated ATO sensitization and detoxification effect of the Poly (ADP ribose) polymerase-1 (PARP-1) inhibitor 4-Amino-1,8-naphthalimide (4AN) in the hepatocellular carcinoma cell line HepG2. We firstly reported that ATO treatment induced the activation of Nuclear factor of κB (NF-κB) and its downstream anti-apoptosis and pro-inflammatory effectors in a PARP-1-dependent manner and thus conferred HepG2 cells with ATO resistance and toxicity. 4AN significantly suppressed the ATO-induced NF-κB activation, which promotes the apoptotic response and alleviates the inflammatory reaction induced by ATO, resulting in sensitization and detoxification against ATO. We also demonstrated that the ATO-induced activation of PARP-1 and NF-κB was closely associated with the oxidative DNA damage mediated by the generated reactive oxygen species (ROS). Furthermore, the attenuation of ATO-induced ROS and the resulting oxidative DNA damage by N-acetyl-L-cysteine (NAC), a potent antioxidant, significantly reduced the activation of PARP-1 and NF-κB in ATO-treated cells. Our study provides novel insights into the mechanism of the PARP-1-mediated NF-κB signaling pathway in ATO resistance and toxicity in anticancer treatments. This study also highlights the application potential of PARP-1 inhibitors in ATO-based anti-cancer treatments and in prevention of NF-κB-mediated therapeutic resistance and toxicity.
Collapse
Affiliation(s)
- Qingying Luo
- Department of Environmental Health, West China School of Public Health, Sichuan University
| | | | | | | |
Collapse
|
17
|
Xu Z, Zeng X, Xu J, Xu D, Li J, Jin H, Jiang G, Han X, Huang C. Isorhapontigenin suppresses growth of patient-derived glioblastoma spheres through regulating miR-145/SOX2/cyclin D1 axis. Neuro Oncol 2015; 18:830-9. [PMID: 26681767 DOI: 10.1093/neuonc/nov298] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant brain tumor, and glioma stem cells (GSCs) are considered a major source of treatment resistance for glioblastoma. Identifying new compounds that inhibit the growth of GSCs and understanding their underlying molecular mechanisms are therefore important for developing novel therapy for GBM. METHODS We investigated the potential inhibitory effect of isorhapontigenin (ISO), an anticancer compound identified in our recent investigations, on anchorage-independent growth of patient-derived glioblastoma spheres (PDGS) and its mechanism of action. RESULTS ISO treatment resulted in significant anchorage-independent growth inhibition, accompanied with cell cycle G0-G1 arrest and cyclin D1 protein downregulation in PDGS. Further studies established that cyclin D1 was downregulated by ISO at transcription levels in a SOX2-dependent manner. In addition, ISO attenuated SOX2 expression by specific induction of miR-145, which in turn suppressed 3'UTR activity of SOX2 mRNA without affecting its mRNA stability. Moreover, ectopic expression of exogenous SOX2 rendered D456 cells resistant to induction of cell cycle G0-G1 arrest and anchorage-independent growth inhibition upon ISO treatment, whereas inhibition of miR-145 resulted in D456 cells resistant to ISO inhibition of SOX2 and cyclin D1 expression. In addition, overexpression of miR-145 mimicked ISO treatment in D456 cells. CONCLUSIONS ISO induces miR-145 expression, which binds to the SOX2 mRNA 3'UTR region and inhibits SOX2 protein translation. Inhibition of SOX2 leads to cyclin D1 downregulation and PDGS anchorage-independent growth inhibition. The elucidation of the miR-145/SOX2/cyclin D1 axis in PDGS provides a significant insight into understanding the anti-GBM effect of ISO compound.
Collapse
Affiliation(s)
- Zhou Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Derek Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Xiaosi Han
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York (Z.X., X.Z., J.X., D.X., J.L., H.J., G.J., C.H.); Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China (Z.X.); Division of Neuro-Oncology, Department of Neurology, University of Alabama, Birmingham, Alabama (X.H.)
| |
Collapse
|
18
|
Leung HW, Zhao SM, Yue GGL, Lee JKM, Fung KP, Leung PC, Tan NH, Lau CBS. RA-XII inhibits tumour growth and metastasis in breast tumour-bearing mice via reducing cell adhesion and invasion and promoting matrix degradation. Sci Rep 2015; 5:16985. [PMID: 26592552 PMCID: PMC4655310 DOI: 10.1038/srep16985] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer cells acquire invasive ability to degrade and adhere to extracellular matrix (ECM) and migrate to adjacent tissues. This ultimately results metastasis. Hence, the present study investigated the in vitro effects of cyclopeptide glycoside, RA-XII on cell adhesion, invasion, proliferation and matrix degradation, and its underlying mechanism in murine breast tumour cells, 4T1. The effect of RA-XII on tumour growth and metastasis in 4T1-bearing mice was also investigated. Our results showed that RA-XII inhibited tumour cell adhesion to collagen, fibronectin and laminin, RA-XII also reduced the expressions of vascular cell adhesion molecule, intracellular adhesion molecule and integrins, and integrin binding. In addition, RA-XII significantly inhibited breast tumour cell migration via interfering cofilin signaling and chemokine receptors. The activities of matrix metalloproteinase-9 and urokinase-type of plasminogen activator, and the expressions of ECM-associated proteinases were attenuated significantly by RA-XII. Furthermore, RA-XII induced G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. RA-XII inhibited the expressions of molecules in PI3K/AKT, NF-kappaB, FAK/pSRC, MAPK and EGFR signaling. RA-XII was also shown to have anti-tumour, anti-angiogenic and anti-metastatic activities in metastatic breast tumour-bearing mice. These findings strongly suggested that RA-XII is a potential anti-metastatic agent for breast cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Adhesion/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cofilin 1/antagonists & inhibitors
- Cofilin 1/genetics
- Cofilin 1/metabolism
- Cyclins/antagonists & inhibitors
- Cyclins/genetics
- Cyclins/metabolism
- Extracellular Matrix Proteins/antagonists & inhibitors
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Female
- G1 Phase Cell Cycle Checkpoints/drug effects
- Gene Expression Regulation, Neoplastic
- Integrins/antagonists & inhibitors
- Integrins/genetics
- Integrins/metabolism
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/metabolism
- Lymphatic Metastasis
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred BALB C
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Neoplasm Invasiveness
- Peptides, Cyclic/pharmacology
- Protein Binding
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Signal Transduction
- Urokinase-Type Plasminogen Activator/antagonists & inhibitors
- Urokinase-Type Plasminogen Activator/genetics
- Urokinase-Type Plasminogen Activator/metabolism
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Hoi-Wing Leung
- Institute of Chinese Medicine
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK)
| | - Si-Meng Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK)
| | - Julia Kin-Ming Lee
- Institute of Chinese Medicine
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK)
| | - Kwok-Pui Fung
- Institute of Chinese Medicine
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK)
| | - Ning-Hua Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine
- State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK)
| |
Collapse
|
19
|
Antiproliferative Effect of Rottlerin on Sk-Mel-28 Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:545838. [PMID: 26161122 PMCID: PMC4464680 DOI: 10.1155/2015/545838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/17/2015] [Indexed: 02/07/2023]
Abstract
Melanoma is the most aggressive and chemoresistant form of skin cancer. Mutated, constitutively active B-RAF is believed to play a crucial role, although the selective B-RAF inhibition has shown poor clinical success, since phenomena of resistance usually occur, likely arising from additional genetic aberrations, such as loss of function of p53 and PTEN, overexpression of cyclin D1, hyperactivation of NF-κB, and downregulation of p21/Cip1. Since all of them are present in the Sk-Mel-28 melanoma cells, this cell line could be an ideal, albeit hard to study, model to develop new therapeutic strategies. In the current study, we tested the cytostatic action of Rottlerin on Sk-Mel-28 melanoma cells, on the basis of the known Rottlerin effects on the main proliferative signaling pathways. We presented evidence that the drug inhibits cell growth by an Akt- and p21/Cip1-independent mechanism, involving the dual inhibition of ERK and NF-κB and downregulation of cyclin D1. In addition, we found that Rottlerin increases ERK phosphorylation, but, surprisingly, this resulted in decreased ERK activity. Pull-down experiments, using Rottlerin-CNBr-conjugated Sepharose beads, revealed that Rottlerin binds to ERK, independently from its phosphorylation status. This direct interaction could in part explain the paradoxical blockage of ERK downstream signaling and growth arrest. We would like to dedicate this paper to the memory of our friend and colleague, prematurely deceased, Claudia Torricelli, who actively contributed to this project
Collapse
|
20
|
Lei M, Lai X, Bai X, Qiu W, Yang T, Liao X, Chuong CM, Yang L, Lian X, Zhong JL. Prolonged overexpression of Wnt10b induces epidermal keratinocyte transformation through activating EGF pathway. Histochem Cell Biol 2015; 144:209-21. [PMID: 25995040 DOI: 10.1007/s00418-015-1330-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/25/2023]
Abstract
Wnt10b is a signaling protein regulating skin development and homeostasis, and the expression of Wnt10b is restricted to epidermal keratinocytes in embryonic and postnatal skin. Recent studies indicate an elevated expression of Wnt10b in skin tumors. However, how Wnt10b regulates skin tumorigenesis remains largely unknown. Here we report that continuous expression of Wnt10b mediates transformation of epidermal keratinocytes through activating genes involved in EGF/MAPK signaling pathways. We first established a prolonged Wnt10b overexpression system in JB6P- cells to represent the elevated Wnt10b expression level in skin keratinocytes. Through expression assays and observations under phase-contrast microscopy, prolonged expression of Wnt10b activated Wnt/β-catenin pathway and induced morphological changes of cells showing longer protrusions and multilayer growth, indicating early-stage cell transformation. Wnt10b also increased cellular proliferation and migration according to BrdU incorporation and cell mobility assays. Furthermore, multi-doses of AdWnt10b treatment to JB6P- cells induced colony formation, stronger invasive ability in transwell system, and anchorage-independent growth in agar gel. In molecular level, AdWnt10b treatment induced increased transcriptional expressions of Egf, downstream Mapk pathway factors, and MMPs. Administration of Wnt antagonist DKK1 blocked the tumor promotion process induced by Wnt10b. Taken together, these findings clearly demonstrate that Wnt10b promotes epidermal keratinocyte transformation through induced Egf pathway.
Collapse
Affiliation(s)
- Mingxing Lei
- Department of Cell Biology, the Third Military Medical University, Chongqing, 400038, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability. Oncotarget 2015; 5:2664-77. [PMID: 24797581 PMCID: PMC4058035 DOI: 10.18632/oncotarget.1872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.
Collapse
|
22
|
Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J, Jin H, Xu D, Gao J, Huang C. NF-κB1 inhibits c-Myc protein degradation through suppression of FBW7 expression. Oncotarget 2015; 5:493-505. [PMID: 24457827 PMCID: PMC3964224 DOI: 10.18632/oncotarget.1643] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NF-κB is a well-known transcription factor in regulation of multiple gene transcription and biological processes, and most of them are relied on its transcriptional activity of the p65/RelA subunit, while biological function of another ubiquitously expressed subunit NF-κB1 (p50) remains largely unknown due to lack transcriptional activation domain. Here we discovered a novel biological function of p50 as a regulator of oncogenic c-Myc protein degradation upon arsenite treatment in a NF-κB transcriptional-independent mechanism. Our results found that p50 was crucial for c-Myc protein induction following arsenite treatment by using specific knockdown and deletion of p50 in its normal expressed cells as well as reconstituting expression of p50 in its deficient cells. Subsequently we showed that p50 upregulated c-Myc protein expression mainly through inhibiting its degradation. We also identified that p50 exhibited this novel property by suppression of FBW7 expression. FBW7 was profoundly upregulated in p50-defecient cells in comparison to that in p50 intact cells, whereas knockdown of FBW7 in p50-/- cells restored arsenite-induced c-Myc protein accumulation, assuring that FBW7 up-regulation was responsible for defect of c-Myc protein expression in p50-/- cells. In addition, we discovered that p50 suppressed fbw7 gene transcription via inhibiting transcription factor E2F1 transactivation. Collectively, our studies demonstrated a novel function of p50 as a regulator of c-Myc protein degradation, contributing to our notion that p50-regulated protein expression through multiple levels at protein translation and degradation, further providing a significant insight into the understanding of biomedical significance of p50 protein.
Collapse
Affiliation(s)
- Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li T, Wang G. Computer-aided targeting of the PI3K/Akt/mTOR pathway: toxicity reduction and therapeutic opportunities. Int J Mol Sci 2014; 15:18856-91. [PMID: 25334061 PMCID: PMC4227251 DOI: 10.3390/ijms151018856] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/21/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022] Open
Abstract
The PI3K/Akt/mTOR pathway plays an essential role in a wide range of biological functions, including metabolism, macromolecular synthesis, cell growth, proliferation and survival. Its versatility, however, makes it a conspicuous target of many pathogens; and the consequential deregulations of this pathway often lead to complications, such as tumorigenesis, type 2 diabetes and cardiovascular diseases. Molecular targeted therapy, aimed at modulating the deregulated pathway, holds great promise for controlling these diseases, though side effects may be inevitable, given the ubiquity of the pathway in cell functions. Here, we review a variety of factors found to modulate the PI3K/Akt/mTOR pathway, including gene mutations, certain metabolites, inflammatory factors, chemical toxicants, drugs found to rectify the pathway, as well as viruses that hijack the pathway for their own synthetic purposes. Furthermore, this evidence of PI3K/Akt/mTOR pathway alteration and related pathogenesis has inspired the exploration of computer-aided targeting of this pathway to optimize therapeutic strategies. Herein, we discuss several possible options, using computer-aided targeting, to reduce the toxicity of molecularly-targeted therapy, including mathematical modeling, to reveal system-level control mechanisms and to confer a low-dosage combination therapy, the potential of PP2A as a therapeutic target, the formulation of parameters to identify patients who would most benefit from specific targeted therapies and molecular dynamics simulations and docking studies to discover drugs that are isoform specific or mutation selective so as to avoid undesired broad inhibitions. We hope this review will stimulate novel ideas for pharmaceutical discovery and deepen our understanding of curability and toxicity by targeting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Tan Li
- Department of Biology, South University of Science and Technology of China, 1088 Xueyuan Rd., Shenzhen 518055, China.
| | - Guanyu Wang
- Department of Biology, South University of Science and Technology of China, 1088 Xueyuan Rd., Shenzhen 518055, China.
| |
Collapse
|
24
|
Zhu J, Zhang J, Huang H, Li J, Yu Y, Jin H, Li Y, Deng X, Gao J, Zhao Q, Huang C. Crucial role of c-Jun phosphorylation at Ser63/73 mediated by PHLPP protein degradation in the cheliensisin a inhibition of cell transformation. Cancer Prev Res (Phila) 2014; 7:1270-81. [PMID: 25281487 DOI: 10.1158/1940-6207.capr-14-0233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cheliensisin A (Chel A), as a novel styryl-lactone isolated from Goniothalamus cheliensis Hu, has been demonstrated to have an inhibition of EGF-induced Cl41 cell transformation via stabilizing p53 protein in a Chk1-dependent manner, suggesting its chemopreventive activity in our previous studies. However, its underlying molecular mechanisms have not been fully characterized yet. In the current study, we found that Chel A treatment could increase c-Jun protein phosphorylation and activation, whereas the inhibition of c-Jun phosphorylation, by ectopic expression of a dominant-negative mutant of c-Jun, TAM67, reversed the Chel A inhibition of EGF-induced cell transformation and impaired Chel A induction of p53 protein and apoptosis. Moreover, our results indicated that Chel A treatment led to a PHLPP downregulation by promoting PHLPP protein degradation. We also found that PHLPP could interact with and bind to c-Jun protein, whereas ectopic PHLPP expression blocked c-Jun activation, p53 protein and apoptotic induction by Chel A, and further reversed the Chel A inhibition of EGF-induced cell transformation. With the findings, we have demonstrated that Chel A treatment promotes a PHLPP protein degradation, which can bind to c-Jun and mediates c-Jun phosphorylation, and further leading to p53 protein induction, apoptotic responses, subsequently resulting in cell transformation inhibition and chemopreventive activity of Chel A.
Collapse
Affiliation(s)
- Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjie Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Haishan Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Yonghui Yu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York. Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Qinshi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York.
| |
Collapse
|
25
|
Lim DY, Lee MH, Shin SH, Chen H, Ryu J, Shan L, Li H, Bode AM, Zhang WD, Dong Z. (+)-2-(1-Hydroxyl-4-oxocyclohexyl) ethyl caffeate suppresses solar UV-induced skin carcinogenesis by targeting PI3K, ERK1/2, and p38. Cancer Prev Res (Phila) 2014; 7:856-65. [PMID: 24845061 DOI: 10.1158/1940-6207.capr-13-0286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For decades, skin cancer incidence has increased, mainly because of oncogenic signaling pathways activated by solar ultraviolet (UV) irradiation (i.e., sun exposure). Solar UV induces multiple signaling pathways that are critical in the development of skin cancer, and therefore the development of compounds capable of targeting multiple molecules for chemoprevention of skin carcinogenesis is urgently needed. Herein, we examined the chemopreventive effects and the molecular mechanism of (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), isolated from Incarvillea mairei var. grandiflora (Wehrhahn) Grierson. HOEC strongly inhibited neoplastic transformation of JB6 Cl41 cells without toxicity. PI3K, ERK1/2, and p38 kinase activities were suppressed by direct binding with HOEC in vitro. Our in silico docking data showed that HOEC binds at the ATP-binding site of each kinase. The inhibition of solar UV-induced PI3K, ERK1/2, and p38 kinase activities resulted in suppression of their downstream signaling pathways and AP1 and NF-κB transactivation in JB6 cells. Furthermore, topical application of HOEC reduced skin cancer incidence and tumor volume in SKH-1 hairless mice chronically exposed to solar UV. In summary, our results show that HOEC exerts inhibitory effects on multiple kinase targets and their downstream pathways activated by solar UV in vitro and in vivo. These findings suggest that HOEC is a potent chemopreventive compound against skin carcinogenesis caused by solar UV exposure.
Collapse
Affiliation(s)
- Do Young Lim
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Mee-Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Seung Ho Shin
- The Hormel Institute, University of Minnesota, Austin, Minnesota; Program in Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota
| | - Hanyoung Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Lei Shan
- Department of Natural Product Chemistry, Second Military Medical University
| | - Honglin Li
- School of Pharmacy, East China University of Science & Technology, Shanghai, PR China; and
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Wei-Dong Zhang
- Department of Natural Product Chemistry, Second Military Medical University;
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota;
| |
Collapse
|
26
|
Guo W, Liu J, Jian J, Li J, Wan Y, Huang C. IKK-β/NF-κB p65 mediates p27(Kip1) protein degradation in arsenite response. Biochem Biophys Res Commun 2014; 447:563-8. [PMID: 24751519 DOI: 10.1016/j.bbrc.2014.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
p27(Kip1) is a potent inhibitor of the cyclin-dependent kinases that drive G1 to S phase transition. Since deregulation of p27(Kip1) is found in many malignancies and is associated with the poor prognosis, elucidation of the molecular bases for regulation of p27(Kip1) expression is of great significance, not only in providing insight into the understanding of biological p27(Kip1), but also in the development of new cancer therapeutic tactics. We here explored the inhibitory regulation of IKKβ on p27(Kip1) expression following arsenite exposure. We found that although the basal level of p27(Kip1) expression in the IKKβ(-/-) cells is much lower than that in the IKKβ(+/+) cells, the deletion of IKKβ in the MEFs led to a marked increase in p27(Kip1) protein induction due to arsenite exposure in comparison to that in the IKKβ(+/+) cells. The IKKβ regulatory effect on p27(Kip1) expression was also verified in the IKKβ(-/-) and IKKβ(-/-) cells with IKKβ reconstitutional expression, IKKβ(-/-) (IKKβ). Further studies indicated that IKKβ-mediated p27(Kip1) downregulation occurred at protein degradation level via p65-dependent and p50-independent manner. Moreover, the results obtained from the comparison of arsenite-induced GSK3β activation among transfectants of WT, IKKβ(-/-) and IKKβ(-/-) (IKKβ), and the utilization of GSKβ shRNA, demonstrated that IKKβ regulation of p27 protein degradation was mediated by GSK3β following arsenite exposure.
Collapse
Affiliation(s)
- Wei Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, United States; Pathology Department, Wuhan University, 185 Donghu Rd., Wuhan, Hubei 430071, China
| | - Jinyi Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, United States
| | - Jinlong Jian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, United States
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, United States
| | - Yu Wan
- Physiology Department, Wuhan University, 185 Donghu Rd., Wuhan, Hubei 430071, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, United States.
| |
Collapse
|
27
|
Amiri M, Jafari M, Azimzadeh Jamalkandi S, Davoodi SM. Atopic dermatitis-associated protein interaction network lead to new insights in chronic sulfur mustard skin lesion mechanisms. Expert Rev Proteomics 2014; 10:449-60. [PMID: 24117202 DOI: 10.1586/14789450.2013.841548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic sulfur mustard skin lesions (CSMSLs) are the most common complications of sulfur mustard exposure; however, its mechanism is not completely understood.According to clinical signs, there are similarities between CSMSL and atopic dermatitis (AD). In this study, proteomic results of AD were reviewed and the AD-associated protein-protein interaction network (PIN) was analyzed. According to centrality measurements, 16 proteins were designated as pivotal elements in AD mechanisms. Interestingly, most of these proteins had been reported in some sulfur mustard-related studies in late and acute phases separately. Based on the gene enrichment analysis, aging, cell response to stress, cancer, Toll- and NOD-like receptor and apoptosis signaling pathways have the greatest impact on the disease. By the analysis of directed protein interaction networks, it is concluded that TNF, IL-6, AKT1, NOS3 and CDKN1A are the most important proteins. It is possible that these proteins play role in the shared complications of AD and CSMSL including xerosis and itching.
Collapse
Affiliation(s)
- Mojtaba Amiri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran,P.O. 1949613711, Iran
| | | | | | | |
Collapse
|
28
|
Chu H, Chen X, Wang H, Du Y, Wang Y, Zang W, Li P, Li J, Chang J, Zhao G, Zhang G. MiR-495 regulates proliferation and migration in NSCLC by targeting MTA3. Tumour Biol 2013; 35:3487-94. [PMID: 24293376 DOI: 10.1007/s13277-013-1460-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/19/2013] [Indexed: 11/25/2022] Open
Abstract
Our previous studies have showed that metastasis-associated protein 3 (MTA 3) is overexpressed in non-small cell lung cancer (NSCLC) tissue, and increased MTA3 mRNA levels is a risk factor of lymph node metastasis. Using bioinformatics analyses, we found that MTA3 was a potential target of miR-495. However, the pathophysiological role of miR-495 and its relevance to the growth and development of NSCLC have yet to be investigated. The purpose of this study was to elucidate the molecular mechanisms by which miR-495 acts as a tumor suppressor in NSCLC. qRT-PCR data showed significant downregulation of miR-495 in 56 NSCLC tissue samples and 5 lung cancer cell lines, compared with their adjacent normal tissue; furthermore, western blotting analysis revealed MTA3 protein was overexpressed in the tumor samples compared with the matched adjacent normal tissue. MiR-495 was shown to not only inhibit the proliferation of lung cancer cells (A549 and Calu-3) but also to inhibit cell migration in vitro. Using western blotting and luciferase assays, MTA3 was identified as a target of miR-495. These findings suggest the importance of miR-495 targeting of MTA3 in the regulation of lung cancer growth and migration.
Collapse
Affiliation(s)
- Heying Chu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fang Y, Cao Z, Hou Q, Ma C, Yao C, Li J, Wu XR, Huang C. Cyclin d1 downregulation contributes to anticancer effect of isorhapontigenin on human bladder cancer cells. Mol Cancer Ther 2013; 12:1492-503. [PMID: 23723126 DOI: 10.1158/1535-7163.mct-12-0922] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Isorhapontigenin (ISO) is a new derivative of stilbene compound that was isolated from the Chinese herb Gnetum Cleistostachyum and has been used for treatment of bladder cancers for centuries. In our current studies, we have explored the potential inhibitory effect and molecular mechanisms underlying isorhapontigenin anticancer effects on anchorage-independent growth of human bladder cancer cell lines. We found that isorhapontigenin showed a significant inhibitory effect on human bladder cancer cell growth and was accompanied with related cell cycle G(0)-G(1) arrest as well as downregulation of cyclin D1 expression at the transcriptional level in UMUC3 and RT112 cells. Further studies identified that isorhapontigenin downregulated cyclin D1 gene transcription via inhibition of specific protein 1 (SP1) transactivation. Moreover, ectopic expression of GFP-cyclin D1 rendered UMUC3 cells resistant to induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth by isorhapontigenin treatment. Together, our studies show that isorhapontigenin is an active compound that mediates Gnetum Cleistostachyum's induction of cell-cycle G(0)-G(1) arrest and inhibition of cancer cell anchorage-independent growth through downregulating SP1/cyclin D1 axis in bladder cancer cells. Our studies provide a novel insight into understanding the anticancer activity of the Chinese herb Gnetum Cleistostachyum and its isolate isorhapontigenin.
Collapse
Affiliation(s)
- Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, ZheJiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Activation of the EGFR/Akt/NF-κB/cyclinD1 survival signaling pathway in human cholesteatoma epithelium. Eur Arch Otorhinolaryngol 2013; 271:265-73. [DOI: 10.1007/s00405-013-2403-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/12/2013] [Indexed: 12/17/2022]
|
31
|
Shen L, Ling M, Li Y, Xu Y, Zhou Y, Ye J, Pang Y, Zhao Y, Jiang R, Zhang J, Liu Q. Feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1 are involved in arsenite-induced cell malignant transformation. PLoS One 2013; 8:e57652. [PMID: 23469214 PMCID: PMC3585869 DOI: 10.1371/journal.pone.0057652] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/23/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To establish the functions of miR-21 and the roles of two feedback regulation loops, miR-21-Spry1-ERK/NF-κB and miR-21-Pdcd4-JNK/c-Jun, in arsenite-transformed human embryo lung fibroblast (HELF) cells. METHODS For arsenite-transformed HELF cells, apoptosis, clonogenicity, and capacity for migration were determined by Hoechst staining, assessment of their capacity for anchorage-independent growth, and wound-healing, respectively, after blockage, with inhibitors or with siRNAs, of signal pathways for JNK/c-Jun or ERK/NF-κB. Decreases of miR-21 levels were determined with anti-miR-21, and the up-regulation of Pdcd4 and Spry1 was assessed in transfected cells; these cells were molecularly characterized by RT-PCR, qRT-PCR, Western blots, and immunofluorescence assays. RESULTS MiR-21 was highly expressed in arsenite-transformed HELF cells and normal HELF cells acutely treated with arsenite, an effect that was concomitant with activation of JNK/c-Jun and ERK/NF-κB and down-regulation of Pdcd4 and Spry1 protein levels. However, there were no significant changes in mRNA levels for Pdcd4 and Spry1, which suggested that miR-21 regulates the expressions of Pdcd4 and Spry1 through translational repression. In arsenite-transformed HELF cells, blockages of JNK/c-Jun or ERK/NF-κB with inhibitors or with siRNAs prevented the increases of miR-21and the decreases of the protein levels but not the mRNA levels of Pdcd4 and Spry1. Down-regulation of miR-21 and up-regulations of Pdcd44 or Spry1 blocked the arsenite-induced activations of JNK/c-Jun or ERK/NF-κB, indicating that knockdown of miR-21 inhibits feedback of ERK activation and JNK activation via increases of Pdcd4 and Spry1 protein levels, respectively. Moreover, in arsenite-transformed HELF cells, inhibition of miR-21 promoted cell apoptosis, inhibited clonogenicity, and reduced migration. CONCLUSION The results indicate that miR-21 is both a target and a regulator of ERK/NF-κB and JNK/c-Jun and the feedback regulations of miR-21 and MAPKs via Pdcd4 and Spry1, respectively, are involved in arsenite-induced malignant transformation of HELF cells.
Collapse
Affiliation(s)
- Lu Shen
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Min Ling
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Center for Disease Control and Prevention, Nanjing, Jiangsu, People’s Republic of China
| | - Yuan Li
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Yuan Xu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Yun Zhou
- Department of General Surgery, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jing Ye
- Department of General Surgery, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ying Pang
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Yue Zhao
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Rongrong Jiang
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
| | - Jianping Zhang
- Department of General Surgery, the Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (JZ); (QL)
| | - Qizhan Liu
- Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (JZ); (QL)
| |
Collapse
|
32
|
Elamin MH, Daghestani MH, Omer SA, Elobeid MA, Virk P, Al-Olayan EM, Hassan ZK, Mohammed OB, Aboussekhra A. Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem Toxicol 2012; 53:310-6. [PMID: 23261678 DOI: 10.1016/j.fct.2012.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 12/25/2022]
Abstract
Breast cancer constitutes a major health problem for women worldwide. However, its incidence varies between populations and geographical locations. These variations could be diet-related, since there are several carcinogenic compounds in the modern diet, while natural products contain various anti-cancer elements. Several lines of evidence indicate that, in addition to their clear preventive effect, these compounds could also be used as therapeutic agents. In the present report we have shown that oleuropein, a pharmacologically safe natural product of olive leaf, has potent anti-breast cancer properties. Indeed, oleuropein exhibits specific cytotoxicity against breast cancer cells, with higher effect on the basal-like MDA-MB-231 cells than on the luminal MCF-7 cells. This effect is mediated through the induction of apoptosis via the mitochondrial pathway. Moreover, oleuropein inhibits cell proliferation by delaying the cell cycle at S phase and up-regulated the cyclin-dependent inhibitor p21. Furthermore, oleuropein inhibited the anti-apoptosis and pro-proliferation protein NF-κB and its main oncogenic target cyclin D1. This inhibition could explain the great effect of oleuropein on cell proliferation and cell death of breast cancer cells. Therefore, oleuropein warrants further investigations to prove its utility in preventing/treating breast cancer, especially the less-responsive basal-like type.
Collapse
Affiliation(s)
- Maha H Elamin
- Department of Zoology, College of Science, King Saud University, University Centre for Women Students, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang J, Ouyang W, Li J, Zhang D, Yu Y, Wang Y, Li X, Huang C. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability. Toxicol Appl Pharmacol 2012; 263:218-24. [PMID: 22749963 DOI: 10.1016/j.taap.2012.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/16/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells.
Collapse
Affiliation(s)
- Jingjie Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Haidian District, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ling M, Li Y, Xu Y, Pang Y, Shen L, Jiang R, Zhao Y, Yang X, Zhang J, Zhou J, Wang X, Liu Q. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radic Biol Med 2012; 52:1508-18. [PMID: 22387281 DOI: 10.1016/j.freeradbiomed.2012.02.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/11/2012] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
After acute exposure of cells to arsenic, reactive oxygen species mediate changes in cell behavior, including activation of proliferative signaling. For chronic exposure to arsenic, however, the function of reactive oxygen species in cell transformation remains poorly understood. Although microRNA-21 (miR-21) has been implicated in various aspects of carcinogenesis, its functions and molecular mechanisms in carcinogen-induced tumorigenesis are unclear. The purpose of this study was to determine if miR-21 is involved in arsenite-induced malignant transformation and to characterize the associated signaling pathways. During arsenite-induced transformation of human embryo lung fibroblast (HELF) cells, miR-21 was upregulated, and the extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) signal pathway was activated. Moreover, superoxide radical dismutase (a scavenger of superoxide) and catalase (a scavenger of hydroperoxides) blocked the arsenite-induced effects in HELF cells and mouse embryonic fibroblasts. Blockage of ERK by the inhibitor U0126 or inhibition of NF-κB p65 by siRNA or Bay 11-7082 prevented the increases in miR-21 and the decreases in Spry1, Pten, and Pdcd4, the target proteins of miR-21, induced by arsenite. As determined by a ChIP-qPCR assay, NF-κB p65 regulated miR-21 expression by binding directly to the promoter of miR-21. Further, anti-miR-21 downregulated miR-21 expression and prevented the arsenite-induced activation of ERK via the increase in Spry1, indicating that miR-21 has a feedback effect in regulating ERK activation. Overexpression of miR-21 with an miR-21 mimic and feedback activation of ERK and NF-κB via the decrease in Spry1 promoted the malignancy of HELF cells exposed to arsenite, but knockdown of miR-21 with anti-miR-21 and feedback blockage of ERK and NF-κB activation through an increase in Spry1 decreased anchorage-independent growth of arsenite-transformed cells. Thus, the transformation of HELF cells induced by chronic exposure to arsenite is mediated by increased miR-21 expression, which, in turn, is mediated by reactive oxygen species activation of the ERK/NF-κB pathway.
Collapse
Affiliation(s)
- Min Ling
- Institute of Toxicology, Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett 2012; 321:80-8. [PMID: 22381696 DOI: 10.1016/j.canlet.2012.02.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/03/2012] [Accepted: 02/20/2012] [Indexed: 01/04/2023]
Abstract
Since the processes of normal embryogenesis and neoplasia share many of similar pathways, tumor development has been interpreted as an abnormal form of organogenesis. NANOG is a homeodomain-containing transcription factor that functions to maintain self-renewal and proliferation of embryonic stem cells (ESCs). Aberrant expression of NANOG has been observed in many types of human malignancies. However, its potential implication in tumorigenesis has not been fully clarified. In this study, we have employed small interference RNA (RNAi) technology to silence endogenous NANOG expression in breast cancer cells and successfully selected three independent clones with stably inhibited NANOG expression of MCF-7 cells. Functional analysis revealed that down-regulation of NANOG reduced cell proliferation, colony formation and migration ability of MCF-7 cells. Consistently, proliferation of breast cancer MDA-MB-231 cells was also significantly inhibited after the knockdown of NANOG expression. Interestingly, we found that the expression levels of cyclinD1 and c-myc were markedly down-regulated and the cell cycle were blocked at the G0/G1 phases after the knockdown of NANOG, while the expression of cyclinE and signal transducers and activators of transcription3 (STAT3) remained unaffected. In addition, the expression of NANOG and cyclinD1 can be rescued after the transfection of pcDNA3.1 (-)-NANOG expression vector into the three clones. Finally, our chromatin immunoprecipitation (ChIP) experiment showed that NANOG protein can bind to the promoter region of cyclinD1 and regulate cells cycle. Taken together, our findings may not only establish a molecular basis for the role of NANOG in modulating cell cycle progression of breast cancer cells but also suggest a potential target for the treatment of at least some subtypes of breast cancer.
Collapse
|
36
|
Watcharasit P, Visitnonthachai D, Suntararuks S, Thiantanawat A, Satayavivad J. Low arsenite concentrations induce cell proliferation via activation of VEGF signaling in human neuroblastoma SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:53-59. [PMID: 22120617 DOI: 10.1016/j.etap.2011.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/17/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
Arsenic widely contaminates the environment, especially in drinking water. Although it is a known carcinogen in humans, its carcinogenic mechanism has not yet been clarified. Here, we demonstrated that a low concentration of arsenite treatment induced proliferation of human neuroblastoma SH-SY5Y cells as indicated by increases in cell viability and BrdU incorporation. Additionally, arsenite increased VEGF expression and secretion. Inhibition of VEGF-induced signaling by SU4312, the inhibitor of VEGF receptor 2 kinase, and by treatment with anti-VEGF antibody blocked arsenite-induced increases in cell proliferation. Moreover, arsenite caused activation of ERK, a key signaling molecule involved in cell proliferation, and this activation was attenuated by SU4312, suggesting that ERK activation contributes to VEGF-mediated cell proliferation induced by arsenite. Collectively, the present study reveals that a mechanism underlying arsenic-induced cell proliferation may be through induction and activation of VEGF signaling, and this may subsequently contribute to tumor formation.
Collapse
Affiliation(s)
- Piyajit Watcharasit
- Laboratory of Pharmacology, Chulabhorn Research Institute, 54 Moo 4 Vibhavadee-Rangsit Highway, Bangkok 10210, Thailand
| | | | | | | | | |
Collapse
|
37
|
Li Y, Shen L, Xu H, Pang Y, Xu Y, Ling M, Zhou J, Wang X, Liu Q. Up-regulation of cyclin D1 by JNK1/c-Jun is involved in tumorigenesis of human embryo lung fibroblast cells induced by a low concentration of arsenite. Toxicol Lett 2011; 206:113-120. [PMID: 21726611 DOI: 10.1016/j.toxlet.2011.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/15/2011] [Accepted: 06/18/2011] [Indexed: 12/12/2022]
Abstract
Inorganic arsenic, a ubiquitous environmental contaminant, is associated with an increased risk of cancer. There are several hypotheses regarding arsenic-induced carcinogenesis. The mechanism of action remains obscure, although hyper-proliferation of cells is involved. In the present study, the molecular mechanisms underlying the proliferation and malignant transformation of human embryo lung fibroblast (HELF) cells induced by a low concentration of arsenite were investigated. The results reveal that a low concentration of arsenite induces cell proliferation and promotes cell cycle transition from the G(1) to the S phase. Moreover, arsenite activates the JNK1/c-Jun signal pathway, but not JNK2, which up-regulates the expression of cyclin D1/CDK4 and phosphorylates the retinoblastoma (Rb) protein. Blocking of the JNK1/c-Jun signal pathway suppresses the increases of cyclin D1 expression and Rb phosphorylation, which attenuates cell proliferation, reduces the transition from the G1 to the S phase, and thereby inhibits the neoplastic transformation of HELF cells induced by a low concentration of arsenite. Thus, activation of the JNK1/c-Jun pathway up-regulates the expression of cyclin D1, which is involved in the tumorigenesis caused by a low concentration of arsenite.
Collapse
Affiliation(s)
- Yuan Li
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Parrales A, López E, López-Colomé A. Thrombin activation of PI3K/PDK1/Akt signaling promotes cyclin D1 upregulation and RPE cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1758-66. [DOI: 10.1016/j.bbamcr.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/31/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
|
39
|
Carpenter RL, Jiang Y, Jing Y, He J, Rojanasakul Y, Liu LZ, Jiang BH. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochem Biophys Res Commun 2011; 414:533-8. [PMID: 21971544 DOI: 10.1016/j.bbrc.2011.09.102] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 11/18/2022]
Abstract
Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.
Collapse
Affiliation(s)
- Richard L Carpenter
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X, Chen F. miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 2011; 123:411-20. [PMID: 21750348 DOI: 10.1093/toxsci/kfr188] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of trivalent arsenic (As(3+)) on the regulation of the recently identified noncoding small RNAs, mainly microRNAs, has not been explored so far. In the present study, we provide evidence showing that As(3+) is a potent inducer for the expression of miR-190 in human bronchial epithelial cells. The induction of miR-190 by As(3+) is concentration dependent and associated with the expression of the host gene of miR-190, talin 2, a gene encoding a high-molecular-weight cytoskeletal protein. The elevated level of miR-190 induced by As(3+) is capable of downregulating the translation of the PH domain leucine-rich repeat protein phosphatase (PHLPP), a negative regulator of Akt signaling. Such a downregulation is occurred through direct interaction of the miR-190 with the 3'-UTR region of the PHLPP mRNA, leading to a diminished PHLPP protein expression and consequently, an enhanced Akt activation and expression of vascular endothelial growth factor, an Akt-regulated protein. Overexpression of miR-190 itself is able to enhance proliferation and malignant transformation of the cells as determined by anchorage-independent growth of the cells in soft agar. Accordingly, the data presented suggest that induction of miR-190 is one of the key mechanisms in As(3+)-induced carcinogenesis.
Collapse
Affiliation(s)
- Kevin Beezhold
- The Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang Y, Wang Q, Guo X, Miller R, Guo Y, Yang HS. Activation and up-regulation of translation initiation factor 4B contribute to arsenic-induced transformation. Mol Carcinog 2011; 50:528-38. [PMID: 21268130 PMCID: PMC3110507 DOI: 10.1002/mc.20733] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 01/23/2023]
Abstract
Arsenic is a known human carcinogen. However, the mechanism of how arsenic induces cell transformation remains unclear. In this study, we demonstrated that long-term exposure to sodium arsenite at low-dose (2 µM) increases cell proliferation and neoplastic transformation in a mouse epidermal cell model, JB6 promotion-susceptible cells. The phosphorylation of AKT and its downstream targets, 70-kDa ribosomal protein S6 kinase (p70S6K) and translation initiation factor 4B (eIF4B), are increased in the arsenite treated cells, indicating that long-term arsenite treatment activates AKT-p70S6K signaling pathway. In addition, long-term exposure to arsenite up-regulates eIF4B expression and increases the rate of translation. Knockdown of eIF4B expression resulted in inhibition of arsenic-induced cell proliferation, transformation, and translation. Moreover, the expression of c-Myc which is up-regulated by long-term arsenite treatment is inhibited by eIF4B knockdown. Taken together, these results indicate that activation and up-regulation of eIF4B contributes to arsenic-induced transformation in JB6 cells.
Collapse
Affiliation(s)
- Yong Zhang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
- Institute and Department of Urology, Peking University First Hospital, Beijing, China
| | - Qing Wang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
| | - Xiaoling Guo
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
- Department of Oral and Maxillofacial Surgery, and School and Hospital of Stomatology, Shandong University, Jinan, Shandong Province, China
| | - Robert Miller
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
| | - Yinglu Guo
- Institute and Department of Urology, Peking University First Hospital, Beijing, China
| | - Hsin-Sheng Yang
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY40536, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40536, USA
| |
Collapse
|
42
|
Sukumari-Ramesh S, Bentley JN, Laird MD, Singh N, Vender JR, Dhandapani KM. Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int J Dev Neurosci 2011; 29:701-10. [PMID: 21704149 DOI: 10.1016/j.ijdevneu.2011.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022] Open
Abstract
Neuroblastoma (NB) is the most prevalent pediatric solid tumor and a leading cause of cancer-related death in children. In the present study, a novel cytotoxic role for the dietary compounds, curcumin, andrographolide, wedelolactone, dibenzoylmethane, and tanshinone IIA was identified in human S-type NB cells, SK-N-AS and SK-N-BE(2). Mechanistically, cell death appeared apoptotic by flow cytometry; however, these effects proceeded independently from both caspase-3 and p53 activation, as assessed by both genetic (shRNA) and pharmacological approaches. Notably, cell death induced by both curcumin and andrographolide was associated with decreased NFκB activity and a reduction in Bcl-2 and Bcl-xL expression. Finally, curcumin and andrographolide increased cytotoxicity following co-treatment with either cisplatin or doxorubicin, two chemotherapeutic agents widely used in the clinical management of NB. Coupled with the documented safety in humans, dietary compounds may represent a potential adjunct therapy for NB.
Collapse
|
43
|
Liu Y, Hock JM, Sullivan C, Fang G, Cox AJ, Davis KT, Davis BH, Li X. Activation of the p38 MAPK/Akt/ERK1/2 signal pathways is required for the protein stabilization of CDC6 and cyclin D1 in low-dose arsenite-induced cell proliferation. J Cell Biochem 2011; 111:1546-55. [PMID: 20862710 DOI: 10.1002/jcb.22886] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (ATO) is a first-line anti-cancer agent for acute promyelocytic leukemia, and induces apoptosis in other solid cancer cell lines including breast cancer cells. However, as with arsenites found in drinking water and used as raw materials for wood preservatives, insecticides, and herbicides, low doses of ATO can induce carcinogenesis after long-term exposure. At 24 h after exposure, ATO (0.01-1 µM) significantly increased cell proliferation and promoted cell cycle progression from the G1 to S/G2 phases in the non-tumorigenic MCF10A breast epithelial cell line. The expression of 14 out of 96 cell-cycle-associated genes significantly increased, and seven of these genes including cell division cycle 6 (CDC6) and cyclin D1 (CCND1) were closely related to cell cycle progression from G1 to S phase. Low-dose ATO steadily increased gene transcript and protein levels of both CDC6 and cyclin D1 in a dose- and time-dependent manner. Low-dose ATO produced reactive oxygen species (ROS), and activated the p38 MAPK, Akt, and ERK1/2 pathways at different time points within 60 min. Small molecular inhibitors and siRNAs inhibiting the activation of p38 MAPK, Akt, and ERK1/2 decreased the ATO-increased expression of CDC6 protein. Inhibiting the activation of Akt and ERK1/2, but not p38 MAPK, decreased the ATO-induced expression of cyclin D1 protein. This study reports for the first time that p38 MAPK/Akt/ERK1/2 activation is required for the protein stabilization of CDC6 in addition to cyclin D1 in ATO-induced cell proliferation and cell cycle modulation from G1 to S phase.
Collapse
Affiliation(s)
- Youhong Liu
- Maine Institute for Human Genetics and Health, 246 Sylvan Road, Maine 04401, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim S, Lee SH, Kang S, Lee L, Park JD, Ryu DY. Involvement of c-Met- and Phosphatidylinositol 3-Kinase Dependent Pathways in Arsenite-Induced Downregulation of Catalase in Hepatoma Cells. Biol Pharm Bull 2011; 34:1748-52. [DOI: 10.1248/bpb.34.1748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Soohee Kim
- College of Veterinary Medicine, Seoul National University
| | - Seung Heon Lee
- College of Veterinary Medicine, Seoul National University
| | - Sukmo Kang
- College of Veterinary Medicine, Seoul National University
| | - Lyon Lee
- College of Veterinary Medicine, Western University of Health Sciences
| | | | - Doug-Young Ryu
- College of Veterinary Medicine, Seoul National University
| |
Collapse
|
45
|
Guo W, Yang Z, Xia Q, Liu J, Yu Y, Li J, Zuo Z, Zhang D, Li X, Shi X, Huang C. Arsenite stabilizes HIF-1α protein through p85α-mediated up-regulation of inducible Hsp70 protein expression. Cell Mol Life Sci 2010; 68:475-88. [PMID: 20835880 DOI: 10.1007/s00018-010-0459-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 06/09/2010] [Accepted: 07/06/2010] [Indexed: 01/21/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) has been reported to regulate over 100 gene expressions in response to hypoxia and other stress conditions. In the present study, we found that arsenite could induce HIF-1α protein accumulation in both mouse epidermal Cl41 cells and mouse embryonic fibroblasts (MEFs). Knockout of p85α, a regulatory subunit of PI-3K, in MEFs (p85α(-/-)) dramatically decreased the arsenite-induced HIF-1α accumulation, indicating that p85α is crucial for arsenite effects on the stabilization of HIF-1α protein. Our further studies suggest that arsenite could induce inducible Hsp70 expression, and transfection of inducible Hsp70 into p85α(-/-) MEFs could restore HIF-1α protein accumulation. Moreover, the results using EMSA and Supershift assays indicate that p85α is crucial for arsenite-induced activation of the heat-shock transcription factor 1 (HSF-1), which is responsible for transcription of inducible Hsp70. Taken together, p85α-mediated HIF-1α stabilization upon arsenite exposure is specifically through HSF-1 activation and subsequent up-regulation of the inducible Hsp70 expression.
Collapse
Affiliation(s)
- Wei Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee KM, Lee DE, Seo SK, Hwang MK, Heo YS, Lee KW, Lee HJ. Phosphatidylinositol 3-kinase, a novel target molecule for the inhibitory effects of kaempferol on neoplastic cell transformation. Carcinogenesis 2010; 31:1338-43. [DOI: 10.1093/carcin/bgq102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Habib GM. Arsenite causes down-regulation of Akt and c-Fos, cell cycle dysfunction and apoptosis in glutathione-deficient cells. J Cell Biochem 2010; 110:363-71. [PMID: 20336670 PMCID: PMC2862122 DOI: 10.1002/jcb.22548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Arsenic is a well-known environmental toxicant but the mechanism by which it causes cytotoxicity is poorly understood. Arsenite induces apoptosis in glutathione (GSH)-deficient GCS-2 cells by causing cell cycle dysfunction and down-regulating critical signaling pathways. This study was designed to examine the effect of arsenite on redox-sensitive phosphatidylinositol 3-kinase (PI3K)/Akt, a signaling pathway involved in cell survival and growth, and transcription factor, activating protein-1 (AP-1). Arsenite significantly diminished Akt and c-Fos levels and caused accelerated degradation of these proteins by ubiquitnation. Arsenite also induced cell cycle arrest and apoptosis. The cell cycle arrest involved the down-regulation of cyclin A2, cyclin D1, cyclin E, cyclin dependent kinases (CDK) 2, CDK4, and CDK6. Apoptosis involved down-regulation of anti-apoptotic proteins Bcl-2, Bcl-xL, survivin, and inhibitor of apoptosis protein (IAP) and up-regulation of pro-apoptotic protein Bax. Taken together, our results suggest that a possible mechanism of arsenite-induced toxicity under low/no GSH conditions, is to negatively regulate GCS-2 cell proliferation by attenuating Akt and AP-1 by ubiquitination and causing cell cycle dysfunction and apoptosis.
Collapse
Affiliation(s)
- Geetha M Habib
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
48
|
Lee DE, Lee KW, Song NR, Seo SK, Heo YS, Kang NJ, Bode AM, Lee HJ, Dong Z. 7,3',4'-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase. J Biol Chem 2010; 285:21458-66. [PMID: 20444693 DOI: 10.1074/jbc.m109.094797] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3',4'-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G(1) phase. As shown by Western blot, 7,3',4'-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G(1) phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3',4'-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3beta/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3',4'-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3',4'-THIF provide a molecular basis for the possible development of new chemoprotective agents.
Collapse
Affiliation(s)
- Dong Eun Lee
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wen W, Ding J, Sun W, Wu K, Ning B, Gong W, He G, Huang S, Ding X, Yin P, Chen L, Liu Q, Xie W, Wang H. Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. Cancer Res 2010; 70:2010-9. [PMID: 20179204 DOI: 10.1158/0008-5472.can-08-4910] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor (HIF) and cyclin D1 are both key mediators of cell growth and proliferation in normal and cancer cells. However, the interrelation between HIF and cyclin D1 remains unclear. In the present study, we observed the inverse correlation between cyclin D1 and HIF-1 in hypoxia condition. Overexpression of the dominant negative mutant of HIF-1alpha (DN-HIF) significantly enhanced cyclin D1 expression upon hypoxia or arsenite exposure, suggesting the negative regulation of cyclin D1 by HIF-1. Furthermore, we found that the impairment of HIF-1 increased cyclin D1 expression in A549 pulmonary cancer cells, which in turn promoted G1-S cell cycle transition and cell proliferation. Cyclin D1 expression was increased in s.c. xenograft of DN-HIF stably transfected A549 cells in nude mice compared with that of control cells. Chromatin immunoprecipitation assay revealed that HIF-1 was able to directly bind to the promoter region of cyclin D1, which indicates that the negative regulation of cyclin D1 by HIF-1 is through a direct mechanism. Inhibition of histone deacetylase (HDAC) by pretreatment of cells with trichostatin A or specific knockdown of HDAC7 by its shRNA antagonized the suppression of cyclin D1 by HIF-1, suggesting that HDAC7 is required for HIF-1-mediated cyclin D1 downregulation. Moreover, we found that 5-fluorouracil-triggered apoptosis of DN-HIF-transfected A549 cells was reduced by sicyclin D1 (cyclin D1-specific interference RNA) introduction, suggesting that clinical observation of HIF-1 overexpression-associated chemoresistance might be, at least partially, due to the negative regulation of cyclin D1.
Collapse
Affiliation(s)
- Wen Wen
- The International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rottlerin inhibits ROS formation and prevents NFkappaB activation in MCF-7 and HT-29 cells. J Biomed Biotechnol 2010; 2009:742936. [PMID: 20168983 PMCID: PMC2820285 DOI: 10.1155/2009/742936] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/09/2009] [Accepted: 11/05/2009] [Indexed: 01/16/2023] Open
Abstract
Rottlerin, a polyphenol isolated from Mallotus Philippinensis, has been recently used as a selective inhibitor of PKC δ, although it can inhibit many kinases and has several biological effects. Among them, we recently found that Rottlerin inhibits the Nuclear Factor κB (NFκB), activated by either phorbol esters or H2O2. Because of the redox sensitivity of NFκB and on the basis of Rottlerin antioxidant property, we hypothesized that Rottlerin could prevent NFκB activation acting as a free radicals scavenger, as other natural polyphenols. The current study confirms the antioxidant property of Rottlerin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in vitro and against oxidative stress induced by H2O2 and by menadione in culture cells. We also demonstrate that Rottlerin prevents TNFα-dependent NFκB activation in MCF-7 cells and in HT-29 cells transfected with the NFκB-driven plasmid pBIIX-LUC, suggesting that Rottlerin can inhibit NFκB via several pathways and in several cell types.
Collapse
|