1
|
Galimova E, Rätsep R, Traks T, Chernov A, Gaysina D, Kingo K, Kõks S. Polymorphisms in corticotrophin-releasing hormone-proopiomalanocortin (CRH-POMC) system genes: Neuroimmune contributions to psoriasis disease. J Eur Acad Dermatol Venereol 2023; 37:2028-2040. [PMID: 37319102 DOI: 10.1111/jdv.19257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Skin is a target organ and source of the corticotropin-releasing hormone-proopiomelanocortin (CRH-POMC) system, operating as a coordinator and executor of responses to stress. Environmental stress exacerbates and triggers inflammatory skin diseases through modifying the cellular components of the immune system supporting the importance of CRH-POMC system in the pathogenesis of psoriasis. The aim of this study was to analyse the association of CRH-POMC polymorphisms with psoriasis and evaluate transcript expression of lesional psoriatic and normal skin in RNA-seq data. METHODS Samples of 104 patients with psoriasis and 174 healthy controls were genotyped for 42 single nucleotide polymorphisms (SNPs) of CRH-POMC using Applied Biosystems SNPlex™ method. The transcript quantification was performed using Salmon software v1.3.0. RESULTS This study demonstrated the associations between melanocortin 1 receptor (MC1R) polymorphisms rs2228479, rs3212369, dopachrome tautomerase (DCT) polymorphisms rs7987802, rs2031526, rs9524501 and psoriasis in the Tatar population. Very strong association was evident for the SNP rs7987802 in the DCT gene (pc = 5.95е-006) in psoriasis patients. Additionally, the haplotype analysis provided AT DCT (rs7992630 and rs7987802) and AGA MC1R (rs3212358, 2228479 and 885479) haplotypes significantly associated (pc ˂ 0.05) with psoriasis in the Tatar population, supporting the involvement of DCT and MC1R to the psoriasis susceptibility. Moreover, MC1R-203 and DCT-201 expression levels were decreased in psoriasis lesional skin compared with healthy control skin. CONCLUSIONS This study is the first to identify genetic variants of the MC1R and DCT genes significantly associated with psoriasis in Tatar population. Our results support potential roles of CRH-POMC system genes and DCT in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Elvira Galimova
- Department of Physiology, University of Tartu, Tartu, Estonia
| | - Ranno Rätsep
- Department of Physiology, University of Tartu, Tartu, Estonia
| | - Tanel Traks
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia
| | - Alexandr Chernov
- Department of Life Sciences, Ben-Gurion University, Beer Sheva, Israel
| | - Darya Gaysina
- School of Psychology, University of Sussex, Brighton, UK
| | - Külli Kingo
- Department of Dermatology and Venereology, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Vírseda-González D, Lázaro-Ochaita P, Ribas Despuig G, Avilés-Izquierdo JA. Melanocortin 1 receptor variants and their association with phenotypic characteristics and sporadic multiple primary melanomas in a cohort of 402 Spanish subjects. Exp Dermatol 2023; 32:678-683. [PMID: 36602233 DOI: 10.1111/exd.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
The melanocortin 1 receptor (MC1R) gene is considered to be a major determinant of the risk of melanoma. The role of MC1R polymorphisms as predisposing factors for the development of a second primary melanoma is not well established. The present study analyses the characteristics from subjects with certain MC1R variants without any other genetic predisposition, as well as the risk of second primary melanoma associated with these variants. We performed a prospective longitudinal single-centre study based on follow-up information of 402 patients diagnosed with cutaneous melanoma. MC1R gene was sequenced in all subjects. High-risk variants were defined as those previously associated with melanoma (V60L, V92M, I155T, R160W, R163Q and D294H). 253 (63%) patients had at least one predisposing variant. These individuals had higher proportion of red/blonde hair, multiple primary melanomas and first melanoma diagnosis under the age of 60. Second primary melanomas were detected in 28 (3.8%) subjects. Having more than 25 melanocytic nevi was associated significantly to the development of second primary melanomas. A higher proportion of individuals carrying at least one predisposing MC1R variant develop a second melanoma, although statistical significance was not reached. Therefore, some MC1R polymorphisms might determine clinical and histological differences between patients with cutaneous melanoma and may represent a risk factor for second primary melanoma, although more studies are needed.
Collapse
Affiliation(s)
| | - Pablo Lázaro-Ochaita
- Servicio de Dermatología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Gloria Ribas Despuig
- Grupo de Investigación en Imagen Médica (GIBI230), Hospital Universitario y Politécnico de La Fe, Valencia, Spain
| | | |
Collapse
|
3
|
Matic M, Singh G, Carli F, Oliveira Rosa ND, Miglionico P, Magni L, Gutkind JS, Russell RB, Inoue A, Raimondi F. PRECOGx: exploring GPCR signaling mechanisms with deep protein representations. Nucleic Acids Res 2022; 50:W598-W610. [PMID: 35639758 PMCID: PMC9252787 DOI: 10.1093/nar/gkac426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
In this study we show that protein language models can encode structural and functional information of GPCR sequences that can be used to predict their signaling and functional repertoire. We used the ESM1b protein embeddings as features and the binding information known from publicly available studies to develop PRECOGx, a machine learning predictor to explore GPCR interactions with G protein and β-arrestin, which we made available through a new webserver (https://precogx.bioinfolab.sns.it/). PRECOGx outperformed its predecessor (e.g. PRECOG) in predicting GPCR-transducer couplings, being also able to consider all GPCR classes. The webserver also provides new functionalities, such as the projection of input sequences on a low-dimensional space describing essential features of the human GPCRome, which is used as a reference to track GPCR variants. Additionally, it allows inspection of the sequence and structural determinants responsible for coupling via the analysis of the most important attention maps used by the models as well as through predicted intramolecular contacts. We demonstrate applications of PRECOGx by predicting the impact of disease variants (ClinVar) and alternative splice forms from healthy tissues (GTEX) of human GPCRs, revealing the power to dissect system biasing mechanisms in both health and disease.
Collapse
Affiliation(s)
- Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Gurdeep Singh
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany.,BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Natalia De Oliveira Rosa
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Pasquale Miglionico
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Lorenzo Magni
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of CA, San Diego, La Jolla, CA 92093, USA
| | - Robert B Russell
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany.,BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| |
Collapse
|
4
|
Neitzke-Montinelli V, da Silva Figueiredo Celestino Gomes P, Pascutti PG, Moura-Neto RS, Silva R. Genetic diversity of the melanocortin-1 receptor in an admixed population of Rio de Janeiro: Structural and functional impacts of Cys35Tyr variant. PLoS One 2022; 17:e0267286. [PMID: 35452484 PMCID: PMC9032367 DOI: 10.1371/journal.pone.0267286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The melanocortin-1 receptor (MC1R) is one of the key proteins involved in the regulation of melanin production and several polymorphisms have been associated with different phenotypes of skin and hair color in human and nonhuman species. Most of the knowledge is centered on more homogeneous populations and studies involving an admixed group of people should be encouraged due to the great importance of understanding the human color variation. This work evaluates the MC1R diversity and the possible impacts of MC1R variants in an admixed sample population of Rio de Janeiro, Brazil, which is a product of Native American, African, and European miscegenation. Sequencing of complete coding region and part of the 3´UTR of MC1R gene identified 31 variants including one insertion and three novel synonymous substitutions in sample population grouped according to skin, hair and eye pigmentation levels. In nonmetric multidimensional scaling analysis (NMDS), three main clusters were identified, in which the Brazilian dark skin group remained in the African cluster whereas the intermediate and the light skin color phenotype in the European one. None gathered with Asians since their immigration to Brazil was a recent event. In silico analyses demonstrated that Cys35Tyr, Ile155Thr and Pro256Ser, found in our population, have a negative effect on receptor function probably due to changes on the receptor structure. Notably, Cys35Tyr mutation could potentially impair agonist binding. Altogether, this work contributes to the understanding of the genetic background of color variation on an admixed population and gives insights into the damaging effects of MC1R variants.
Collapse
Affiliation(s)
- Vanessa Neitzke-Montinelli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro G. Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S. Moura-Neto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
5
|
Manganelli M, Guida S, Ferretta A, Pellacani G, Porcelli L, Azzariti A, Guida G. Behind the Scene: Exploiting MC1R in Skin Cancer Risk and Prevention. Genes (Basel) 2021; 12:1093. [PMID: 34356109 PMCID: PMC8305013 DOI: 10.3390/genes12071093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma and non-melanoma skin cancers (NMSCs) are the most frequent cancers of the skin in white populations. An increased risk in the development of skin cancers has been associated with the combination of several environmental factors (i.e., ultraviolet exposure) and genetic background, including melanocortin-1 receptor (MC1R) status. In the last few years, advances in the diagnosis of skin cancers provided a great impact on clinical practice. Despite these advances, NMSCs are still the most common malignancy in humans and melanoma still shows a rising incidence and a poor prognosis when diagnosed at an advanced stage. Efforts are required to underlie the genetic and clinical heterogeneity of melanoma and NMSCs, leading to an optimization of the management of affected patients. The clinical implications of the impact of germline MC1R variants in melanoma and NMSCs' risk, together with the additional risk conferred by somatic mutations in other peculiar genes, as well as the role of MC1R screening in skin cancers' prevention will be addressed in the current review.
Collapse
Affiliation(s)
- Michele Manganelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
- DMMT-Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefania Guida
- Department of Surgical-Medical-Dental and Morphological Science with Interest Transplant-Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Anna Ferretta
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Dermatology Clinic, Sapienza University of Rome, 00161 Rome, Italy;
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (L.P.); (A.A.)
| | - Gabriella Guida
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari-“Aldo Moro”, 70125 Bari, Italy; (M.M.); (A.F.)
| |
Collapse
|
6
|
Löw K, Roulin A, Kunz S. A proopiomelanocortin-derived peptide sequence enhances plasma stability of peptide drugs. FEBS Lett 2020; 594:2840-2866. [PMID: 32506501 DOI: 10.1002/1873-3468.13855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
Bioactive peptide drugs hold promise for therapeutic application due to their high potency and selectivity but display short plasma half-life. Examination of selected naturally occurring peptide hormones derived from proteolytic cleavage of the proopiomelanocortin (POMC) precursor lead to the identification of significant plasma-stabilizing properties of a 12-amino acid serine-rich orphan sequence NSSSSGSSGAGQ in human γ3-melanocyte-stimulating hormone (MSH) that is homologous to previously discovered NSn GGH (n = 4-24) sequences in owls. Notably, transfer of this sequence to des-acetyl-α-MSH and the therapeutically relevant peptide hormones neurotensin and glucagon-like peptide-1 likewise enhance their plasma stability without affecting receptor signaling. The stabilizing effect of the sequence module is independent of plasma components, suggesting a direct effect in cis. This natural sequence module may provide a possible strategy to enhance plasma stability, complementing existing methods of chemical modification.
Collapse
Affiliation(s)
- Karin Löw
- Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Switzerland
| |
Collapse
|
7
|
Calbet-Llopart N, Pascini-Garrigos M, Tell-Martí G, Potrony M, Martins da Silva V, Barreiro A, Puig S, Captier G, James I, Degardin N, Carrera C, Malvehy J, Etchevers HC, Puig-Butillé JA. Melanocortin-1 receptor (MC1R) genotypes do not correlate with size in two cohorts of medium-to-giant congenital melanocytic nevi. Pigment Cell Melanoma Res 2020; 33:685-694. [PMID: 32323445 DOI: 10.1111/pcmr.12883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 01/29/2023]
Abstract
Congenital melanocytic nevi (CMN) are cutaneous malformations whose prevalence is inversely correlated with projected adult size. CMN are caused by somatic mutations, but epidemiological studies suggest that germline genetic factors may influence CMN development. In CMN patients from the U.K., genetic variants in MC1R, such as p.V92M and loss-of-function variants, have been previously associated with larger CMN. We analyzed the association of MC1R variants with CMN characteristics in two distinct cohorts of medium-to-giant CMN patients from Spain (N = 113) and from France, Norway, Canada, and the United States (N = 53), similar at the clinical and phenotypical level except for the number of nevi per patient. We found that the p.V92M or loss-of-function MC1R variants either alone or in combination did not correlate with CMN size, in contrast to the U.K. CMN patients. An additional case-control analysis with 259 unaffected Spanish individuals showed a higher frequency of MC1R compound heterozygous or homozygous variant genotypes in Spanish CMN patients compared to the control population (15.9% vs. 9.3%; p = .075). Altogether, this study suggests that MC1R variants are not associated with CMN size in these non-UK cohorts. Additional studies are required to define the potential role of MC1R as a risk factor in CMN development.
Collapse
Affiliation(s)
- Neus Calbet-Llopart
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mirella Pascini-Garrigos
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Gemma Tell-Martí
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Vanessa Martins da Silva
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alicia Barreiro
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Guillaume Captier
- Plastic pediatric surgery, University of Montpellier Hospital, Montpellier, France
| | - Isabelle James
- Service de Chirurgie Réparatrice de l'Enfant, Clinique du Val d'Ouest, Ecully, France
| | - Nathalie Degardin
- Service de Chirurgie Plastique Réparatrice, Hôpital de la Timone Enfants, Marseille, France.,Faculté de Médecine, Marseille Medical Genetics, Aix-Marseille Univ, INSERM, U1251, Marseille, France
| | - Cristina Carrera
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Heather C Etchevers
- Faculté de Médecine, Marseille Medical Genetics, Aix-Marseille Univ, INSERM, U1251, Marseille, France
| | - Joan Anton Puig-Butillé
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Molecular Biology CORE, Biomedical Diagnostic Center (CDB), Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Smit AK, Collazo-Roman M, Vadaparampil ST, Valavanis S, Del Rio J, Soto B, Flores I, Dutil J, Kanetsky PA. MC1R variants and associations with pigmentation characteristics and genetic ancestry in a Hispanic, predominately Puerto Rican, population. Sci Rep 2020; 10:7303. [PMID: 32350296 PMCID: PMC7190662 DOI: 10.1038/s41598-020-64019-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/06/2020] [Indexed: 12/29/2022] Open
Abstract
Skin cancer risk information based on melanocortin-1 receptor (MC1R) variants could inform prevention and screening recommendations for Hispanics, but limited evidence exists on the impact of MC1R variants in Hispanic populations. We studied Hispanic subjects, predominately of Puerto Rican heritage, from Tampa, Florida, US, and Ponce, PR. Blood or saliva samples were collected by prospective recruitment or retrieved from biobanks for genotyping of MC1R variants and ancestry informative markers. Participant demographic and self-reported phenotypic information was collected via biobank records or questionnaires. We determined associations of MC1R genetic risk categories and phenotypic variables and genetic ancestry. Over half of participants carried MC1R variants known to increase risk of skin cancer, and there was diversity in the observed variants across sample populations. Associations between MC1R genetic risk groups and some pigmentation characteristics were identified. Among Puerto Ricans, the proportion of participants carrying MC1R variants imparting elevated skin cancer risk was consistent across quartiles of European, African, and Native American genetic ancestry. These findings demonstrate that MC1R variants are important for pigmentation characteristics in Hispanics and that carriage of high risk MC1R alleles occurs even among Hispanics with stronger African or Native American genetic ancestry.
Collapse
Affiliation(s)
- Amelia K Smit
- Cancer Epidemiology and Prevention Research, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Melanoma Institute Australia (MIA), The University of Sydney, Sydney, Australia
| | | | - Susan T Vadaparampil
- Department of Health Outcomes and Behavior, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stella Valavanis
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jocelyn Del Rio
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brenda Soto
- Public Health Program, Ponce Health Science University, Ponce, Puerto Rico
| | - Idhaliz Flores
- Cancer Biology Division, Ponce Research Institute, Ponce Health Science University, Ponce, Puerto Rico
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Science University, Ponce, Puerto Rico
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
9
|
Hernando B, Ibañez MV, Deserio-Cuesta JA, Soria-Navarro R, Vilar-Sastre I, Martinez-Cadenas C. Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples. Forensic Sci Int Genet 2018; 33:38-47. [DOI: 10.1016/j.fsigen.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/01/2022]
|
10
|
Polymorphisms in MC1R and ASIP genes and their association with coat color phenotypes in llamas (Lama glama). Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Hepp D, Gonçalves GL, de Freitas TRO. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene. PLoS One 2015; 10:e0121812. [PMID: 25794181 PMCID: PMC4368538 DOI: 10.1371/journal.pone.0121812] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/04/2015] [Indexed: 12/13/2022] Open
Abstract
The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.
Collapse
Affiliation(s)
- Diego Hepp
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul—Câmpus Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Gislene Lopes Gonçalves
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Instituto de Alta Investigación, Universidad de Tarapacá, Antofagasta, 1520 Arica, Chile
| | | |
Collapse
|
12
|
Guida S, Bartolomeo N, Zanna PT, Grieco C, Maida I, De Summa S, Tommasi S, Guida M, Azzariti A, Foti C, Filotico R, Guida G. Sporadic melanoma in South-Eastern Italy: the impact of melanocortin 1 receptor (MC1R) polymorphism analysis in low-risk people and report of three novel variants. Arch Dermatol Res 2015; 307:495-503. [PMID: 25736238 DOI: 10.1007/s00403-015-1552-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Environmental and genetic risk factors are involved in the development of melanoma. The role of the melanocortin 1 receptor (MC1R) gene has been investigated and differences according to geographic areas have been described. To evaluate the role of some clinical and genetic risk factors in melanoma development, we performed a case-control study involving 101 melanoma patients and 103 controls coming from South-Eastern Italy (Puglia), after achieving informed consent. We confirmed the role of known clinical risk factors for melanoma. Furthermore, 42 MC1R polymorphisms were observed. Three of these variants (L26V, H232L, D294Y) were not previously reported in the literature. Their predicted impact on receptor function was evaluated using bioinformatic tools. We report an overall frequency of MC1R variants in our population higher than in Northern or Central Italy. The most common polymorphism found was V60L, that has been recently reported to spread among South Mediterranean population. This variant influenced phenotypic characteristics of our population while it did not impinge on melanoma risk. An increased risk of melanoma was associated with two or more MC1R variants, when at least one was RHC, compared to people carrying the MC1R consensus sequence or a single MC1R polymorphism. Interestingly, we observed an increased risk of melanoma in subjects with darker skin and lower nevus count, usually considered at low risk, when carrying MC1R polymorphisms.
Collapse
Affiliation(s)
- S Guida
- Dermatology Unit, Department of Biomedical Science and Human Oncology, University of Bari 'A. Moro', Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pasquali E, García-Borrón JC, Fargnoli MC, Gandini S, Maisonneuve P, Bagnardi V, Specchia C, Liu F, Kayser M, Nijsten T, Nagore E, Kumar R, Hansson J, Kanetsky PA, Ghiorzo P, Debniak T, Branicki W, Gruis NA, Han J, Dwyer T, Blizzard L, Landi MT, Palmieri G, Ribas G, Stratigos A, Council M, Autier P, Little J, Newton-Bishop J, Sera F, Raimondi S. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project. Int J Cancer 2015; 136:618-631. [PMID: 24917043 PMCID: PMC4378685 DOI: 10.1002/ijc.29018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022]
Abstract
The MC1R gene is a key regulator of skin pigmentation. We aimed to evaluate the association between MC1R variants and the risk of sporadic cutaneous melanoma (CM) within the M-SKIP project, an international pooled-analysis on MC1R, skin cancer and phenotypic characteristics. Data included 5,160 cases and 12,119 controls from 17 studies. We calculated a summary odds ratio (SOR) for the association of each of the nine most studied MC1R variants and of variants combined with CM by using random-effects models. Stratified analysis by phenotypic characteristics were also performed. Melanoma risk increased with presence of any of the main MC1R variants: the SOR for each variant ranged from 1.47 (95%CI: 1.17-1.84) for V60L to 2.74 (1.53-4.89) for D84E. Carriers of any MC1R variant had a 66% higher risk of developing melanoma compared with wild-type subjects (SOR; 95%CI: 1.66; 1.41-1.96) and the risk attributable to MC1R variants was 28%. When taking into account phenotypic characteristics, we found that MC1R-associated melanoma risk increased only for darker-pigmented Caucasians: SOR (95%CI) was 3.14 (2.06-4.80) for subjects with no freckles, no red hair and skin Type III/IV. Our study documents the important role of all the main MC1R variants in sporadic CM and suggests that they have a direct effect on melanoma risk, independently on the phenotypic characteristics of carriers. This is of particular importance for assessing preventive strategies, which may be directed to darker-pigmented Caucasians with MC1R variants as well as to lightly pigmented, fair-skinned subjects.
Collapse
Affiliation(s)
- Elena Pasquali
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - José C. García-Borrón
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | | | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Vincenzo Bagnardi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
- Department of Statistics and Quantitative Methods, University of Milan Bicocca, Milan, Italy
| | - Claudia Specchia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
- Universidad Católica de Valencia, Valencia, Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Johan Hansson
- Department of Oncology and Pathology, Cancer Center, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Kanetsky
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Genetics of Rare Hereditary Cancers, IRCCS AOU San Martino –IST, Genoa
| | - Tadeusz Debniak
- Department of Genetic and Pathology, Pomeranian Medical University, Polabska, Poland
| | | | - Nelleke A. Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jiali Han
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Terry Dwyer
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Leigh Blizzard
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Istituto di Chimica Biomolecolare, CNR, Sassari, Italy
| | - Gloria Ribas
- Dptd. Oncologia medica y hematologia, Fundación Investigación Clínico de Valencia Instituto de Investigación Sanitaria- INCLIVA, Valencia, Spain
| | - Alexander Stratigos
- Department of Dermatology, University of Athens, Andreas Sygros Hospital, Athens, Greece
| | - M.Laurin Council
- Division of Dermatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Julian Little
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
14
|
Ibarrola-Villava M, Kumar R, Nagore E, Benfodda M, Guedj M, Gazal S, Hu HH, Guan J, Rachkonda PS, Descamps V, Basset-Seguin N, Bensussan A, Bagot M, Saiag P, Schadendorf D, Martin-Gonzalez M, Mayor M, Grandchamp B, Ribas G, Nadem S. Genes involved in the WNT and vesicular trafficking pathways are associated with melanoma predisposition. Int J Cancer 2014; 136:2109-19. [DOI: 10.1002/ijc.29257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Maider Ibarrola-Villava
- Department of Haematology and Medical Oncology; Biomedical Research Institute INCLIVA; Valencia 46010 Spain
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology; German Cancer Research Center; Heidelberg 69120 Germany
| | - Eduardo Nagore
- Department of Dermatology; Instituto Valenciano de Oncologia; Valencia 46009 Spain
| | - Meriem Benfodda
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| | - Mickael Guedj
- Laboratoire Statistiques et Genomes; Evry 91000 France
| | - Steven Gazal
- UMR S738; Faculté de Médecine Xavier Bichat; Paris 75018 France
| | - Hui-Han Hu
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| | - Jian Guan
- Division of Molecular Genetic Epidemiology; German Cancer Research Center; Heidelberg 69120 Germany
| | | | - Vincent Descamps
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Bichat, APHP; Paris 75018 France
| | - Nicole Basset-Seguin
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Bichat, APHP; Paris 75018 France
| | - Armand Bensussan
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
| | - Martine Bagot
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Department of Dermatology; Hopital Saint Louis, APHP; Paris 75010 France
| | - Philippe Saiag
- Department of Dermatology; Hopital Ambroise Paré, APHP; Paris 92100 France
| | - Dirk Schadendorf
- Department of Dermatology; University Hospital Essen; Esse 45147 Germany
| | | | - Matias Mayor
- Department of Dermatology; Hospital La Paz; Madrid 28046 Spain
| | | | - Gloria Ribas
- Department of Haematology and Medical Oncology; Biomedical Research Institute INCLIVA; Valencia 46010 Spain
| | - Soufir Nadem
- Inserm U976; Centre de Recherche Sur la Peau, Hopital Saint Louis, Université Paris 7; Paris 75010 France
- Département de Génétique; Hôpital Bichat, APHP; Paris 75018 France
| |
Collapse
|
15
|
Ding Q, Hu Y, Xu S, Wang CC, Li H, Zhang R, Yan S, Wang J, Jin L. Neanderthal origin of the haplotypes carrying the functional variant Val92Met in the MC1R in modern humans. Mol Biol Evol 2014; 31:1994-2003. [PMID: 24916031 DOI: 10.1093/molbev/msu180] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Skin color is one of the most visible and important phenotypes of modern humans. Melanocyte-stimulating hormone and its receptor played an important role in regulating skin color. In this article, we present evidence of Neanderthal introgression encompassing the melanocyte-stimulating hormone receptor gene MC1R. The haplotypes from Neanderthal introgression diverged with the Altai Neanderthal 103.3 ka, which postdates the anatomically modern human-Neanderthal divergence. We further discovered that all of the putative Neanderthal introgressive haplotypes carry the Val92Met variant, a loss-of-function variant in MC1R that is associated with multiple dermatological traits including skin color and photoaging. Frequency of this Neanderthal introgression is low in Europeans (∼5%), moderate in continental East Asians (∼30%), and high in Taiwanese aborigines (60-70%). As the putative Neanderthal introgressive haplotypes carry a loss-of-function variant that could alter the function of MC1R and is associated with multiple traits related to skin color, we speculate that the Neanderthal introgression may have played an important role in the local adaptation of Eurasians to sunlight intensity.
Collapse
Affiliation(s)
- Qiliang Ding
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ya Hu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuhua Xu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chuan-Chao Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruyue Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, ChinaCAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
16
|
Peña-Vilabelda M, García-Casado Z, Requena C, Traves V, López-Guerrero J, Guillén C, Kumar R, Nagore E. Clinical Characteristics of Patients With Cutaneous Melanoma According to Variants in the Melanocortin 1 Receptor Gene. ACTAS DERMO-SIFILIOGRAFICAS 2014. [DOI: 10.1016/j.adengl.2013.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
17
|
Clinical characteristics of patients with cutaneous melanoma according to variants in the melanocortin 1 receptor gene. ACTAS DERMO-SIFILIOGRAFICAS 2013; 105:159-71. [PMID: 24238329 DOI: 10.1016/j.ad.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Patients with cutaneous melanoma who are carriers of polymorphisms in the melanocortin 1 receptor gene (MC1R) have distinctive clinical characteristics. The objective of this study was to determine the clinical characteristics associated with differing degrees of functional impairment of the melanocortin 1 receptor, as determined by the number and type (R and r) of MC1R polymorphisms. MATERIAL AND METHODS In total, 1044 consecutive patients with melanoma diagnosed in our hospital after January 2000 were selected from the melanoma database. These patients were divided into 3 groups according to a score based on nonsynonymous MC1R polymorphisms. The frequencies of epidemiologic, phenotypic, and histologic variables and personal and family history of cancer were compared. RESULTS Patients with a score of 3 or more were more likely to develop melanoma before the age of 50 years (odds ratio [OR]=1.47), have a tumor on the head or neck (OR=3.04), have a history of basal cell carcinoma or cutaneous squamous cell carcinoma (OR=1.70), have atypical nevi (OR=1.74), and have nevi associated with the melanoma (OR=1.87). CONCLUSIONS The use of a scoring system for MC1R polymorphisms allowed us to identify associations between the degree of functional impairment of the melanogenesis pathway and the clinical characteristics of the patients and melanoma presentation.
Collapse
|
18
|
Ibarrola-Villava M, Peña-Chilet M, Llorca-Cardeñosa MJ, Oltra S, Cadenas CM, Bravo J, Ribas G. Modeling MC1R rare variants: a structural evaluation of variants detected in a Mediterranean case-control study. J Invest Dermatol 2013; 134:1146-1149. [PMID: 24335900 DOI: 10.1038/jid.2013.469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maider Ibarrola-Villava
- Department of Haematology and Medical Oncology, INCLIVA Health Research Institute, Valencia, Spain
| | - Maria Peña-Chilet
- Department of Haematology and Medical Oncology, INCLIVA Health Research Institute, Valencia, Spain
| | - Marta J Llorca-Cardeñosa
- Department of Haematology and Medical Oncology, INCLIVA Health Research Institute, Valencia, Spain
| | - Sara Oltra
- Department of Haematology and Medical Oncology, INCLIVA Health Research Institute, Valencia, Spain
| | | | - Jeronimo Bravo
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain.
| | - Gloria Ribas
- Department of Haematology and Medical Oncology, INCLIVA Health Research Institute, Valencia, Spain.
| |
Collapse
|
19
|
MC1R gene variants and sporadic malignant melanoma susceptibility in the Canary Islands population. Arch Dermatol Res 2013; 306:51-8. [PMID: 24170137 DOI: 10.1007/s00403-013-1420-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Several MC1R variants are associated with increased risk of malignant melanoma (MM) in a variety of populations. We aim to examine the influence of the MC1R variants (RHC: D84E, R151C, R160W; NRHC: V60L, R163Q and the synonymous polymorphism T314T) on the MM risk in a population from the Canary Islands. Overall, 1,046 Caucasian individuals were included in the study. A thousand of them were genotyped for MC1R variants: 509 were sporadic MM patients and 491 were healthy control subjects from general population. The analysis was adjusted for age, sex, hair colour, eye colour, skin phototype and ancestry. We found that carriers of the R151C and R163Q variants were at an increased risk for melanoma OR 2.76 (1.59-4.78) and OR 5.62 (2.54-12.42), respectively. The risk of carrying RHC variants was 3.04 (1.90-4.86). Current study confirms the increased MM risk for R151C carriers. It also supports the association between R163Q variant and MM risk in the population on the Canary Islands, as opposed to reported on northern populations. These results highlight the importance of the sample population selection in this kind of studies.
Collapse
|
20
|
Martínez-Cadenas C, López S, Ribas G, Flores C, García O, Sevilla A, Smith-Zubiaga I, Ibarrola-Villaba M, Pino-Yanes MDM, Gardeazabal J, Boyano D, García de Galdeano A, Izagirre N, de la Rúa C, Alonso S. Simultaneous purifying selection on the ancestral MC1R allele and positive selection on the melanoma-risk allele V60L in south Europeans. Mol Biol Evol 2013; 30:2654-65. [PMID: 24045876 DOI: 10.1093/molbev/mst158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In humans, the geographical apportionment of the coding diversity of the pigmentary locus melanocortin-1 receptor (MC1R) is, unusually, higher in Eurasians than in Africans. This atypical observation has been interpreted as the result of purifying selection due to functional constraint on MC1R in high UV-B radiation environments. By analyzing 3,142 human MC1R alleles from different regions of Spain in the context of additional haplotypic information from the 1000 Genomes (1000G) Project data, we show that purifying selection is also strong in southern Europe, but not so in northern Europe. Furthermore, we show that purifying and positive selection act simultaneously on MC1R. Thus, at least in Spain, regions at opposite ends of the incident UV-B radiation distribution show significantly different frequencies for the melanoma-risk allele V60L (a mutation also associated to red hair and fair skin and even blonde hair), with higher frequency of V60L at those regions of lower incident UV-B radiation. Besides, using the 1000G south European data, we show that the V60L haplogroup is also characterized by an extended haplotype homozygosity (EHH) pattern indicative of positive selection. We, thus, provide evidence for an adaptive value of human skin depigmentation in Europe and illustrate how an adaptive process can simultaneously help to maintain a disease-risk allele. In addition, our data support the hypothesis proposed by Jablonski and Chaplin (Human skin pigmentation as an adaptation to UVB radiation. Proc Natl Acad Sci U S A. 2010;107:8962-8968), which posits that habitation of middle latitudes involved the evolution of partially depigmented phenotypes that are still capable of suitable tanning.
Collapse
|
21
|
Peña-Chilet M, Blanquer-Maceiras M, Ibarrola-Villava M, Martinez-Cadenas C, Martin-Gonzalez M, Gomez-Fernandez C, Mayor M, Aviles JA, Lluch A, Ribas G. Genetic variants in PARP1 (rs3219090) and IRF4 (rs12203592) genes associated with melanoma susceptibility in a Spanish population. BMC Cancer 2013; 13:160. [PMID: 23537197 PMCID: PMC3704782 DOI: 10.1186/1471-2407-13-160] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/20/2013] [Indexed: 12/24/2022] Open
Abstract
Background Few high penetrance genes are known in Malignant Melanoma (MM), however, the involvement of low-penetrance genes such as MC1R, OCA2, ASIP, SLC45A2 and TYR has been observed. Lately, genome-wide association studies (GWAS) have been the ideal strategy to identify new common, low-penetrance susceptibility loci. In this case–control study, we try to validate in our population nine melanoma associated markers selected from published GWAS in melanoma predisposition. Methods We genotyped the 9 markers corresponding to 8 genes (PARP1, MX2, ATM, CCND1, NADSYN1, CASP8, IRF4 and CYP2R1) in 566 cases and 347 controls from a Spanish population using KASPar probes. Genotypes were analyzed by logistic regression and adjusted by phenotypic characteristics. Results We confirm the protective role in MM of the rs3219090 located on the PARP1 gene (p-value 0.027). Additionally, this SNP was also associated with eye color (p-value 0.002). A second polymorphism, rs12203592, located on the IRF4 gene was associated with protection to develop MM for the dominant model (p-value 0.037). We have also observed an association of this SNP with both lentigines (p-value 0.014) and light eye color (p-value 3.76 × 10-4). Furthermore, we detected a novel association with rs1485993, located on the CCND1 gene, and dark eye color (p-value 4.96 × 10-4). Finally, rs1801516, located on the ATM gene, showed a trend towards a protective role in MM similar to the one firstly described in a GWAS study. Conclusions To our knowledge, this is the first time that these SNPs have been associated with MM in a Spanish population. We confirmed the proposed role of rs3219090, located on the PARP1 gene, and rs12203592, located on the IRF4 gene, as protective to MM along the same lines as have previous genome-wide associated works. Finally, we have seen associations between IRF4, PARP1, and CCND1 and phenotypic characteristics, confirming previous results for the IRF4 gene and presenting novel data for the last two, suggesting that pigmentation characteristics correlated with eye color are potential mediators between PARP1 and MM protection.
Collapse
|
22
|
Herraiz C, Journé F, Ghanem G, Jiménez-Cervantes C, García-Borrón JC. Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells. Int J Biochem Cell Biol 2012; 44:2244-52. [PMID: 23000456 DOI: 10.1016/j.biocel.2012.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/15/2012] [Accepted: 09/12/2012] [Indexed: 12/21/2022]
Abstract
Melanocortin 1 receptor (MC1R), a major determinant of skin phototype frequently mutated in melanoma, is a Gs protein-coupled receptor that regulates pigment production in melanocytes. MC1R stimulation activates cAMP synthesis and the extracellular signal-regulated (ERK) ERK1 and ERK2. In human melanocytes, ERK activation by MC1R relies on cAMP-independent transactivation of the c-KIT receptor. Thus MC1R functional coupling to the cAMP and ERK pathways may involve different structural requirements giving raise to biased effects of skin cancer-associated mutations. We evaluated the impact of MC1R mutations on ERK activation, cAMP production and agonist binding. We found that MC1R mutations impair cAMP production much more often than ERK activation, suggesting less stringent requirements for functional coupling to the ERK pathway. We examined the crosstalk of the cAMP and ERK pathways in HBL human melanoma cells (wild-type for MC1R, NRAS and BRAF). ERK activation by constitutively active upstream effectors or pharmacological inhibition had little effect on MC1R-stimulated cAMP synthesis. High cAMP levels were compatible with normal ERK activation but, surprisingly, the adenylyl cyclase activator forskolin abolished ERK activation by MC1R, most likely by a cAMP-independent mechanism. These results indicate little crosstalk of the cAMP and ERK pathways in HBL melanoma cells. Finally, we studied cAMP accumulation in a panel of 22 human melanoma cell lines stimulated with MC1R agonists or forskolin. cAMP synthesis was often inhibited, even in cells wild-type for MC1R and NRAS. Therefore, the cAMP pathway is more frequently impaired in melanoma than could be predicted by the MC1R or NRAS genotype.
Collapse
Affiliation(s)
- Cecilia Herraiz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Campus de Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
23
|
Raimondi S, Gandini S, Fargnoli MC, Bagnardi V, Maisonneuve P, Specchia C, Kumar R, Nagore E, Han J, Hansson J, Kanetsky PA, Ghiorzo P, Gruis NA, Dwyer T, Blizzard L, Fernandez-de-Misa R, Branicki W, Debniak T, Morling N, Landi MT, Palmieri G, Ribas G, Stratigos A, Cornelius L, Motokawa T, Anno S, Helsing P, Wong TH, Autier P, García-Borrón JC, Little J, Newton-Bishop J, Sera F, Liu F, Kayser M, Nijsten T. Melanocortin-1 receptor, skin cancer and phenotypic characteristics (M-SKIP) project: study design and methods for pooling results of genetic epidemiological studies. BMC Med Res Methodol 2012; 12:116. [PMID: 22862891 PMCID: PMC3502117 DOI: 10.1186/1471-2288-12-116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/23/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. DESIGN AND METHODS Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. DISCUSSION Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields.
Collapse
Affiliation(s)
- Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ramusio 1, Milan, 20141, Italy
- Department of Occupational Health, University of Milan, Milan, Italy
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ramusio 1, Milan, 20141, Italy
| | | | - Vincenzo Bagnardi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ramusio 1, Milan, 20141, Italy
- Department of Statistics, University of Milan Bicocca, Milan, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Via Ramusio 1, Milan, 20141, Italy
| | - Claudia Specchia
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | - Jiali Han
- Department of Dermatology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Johan Hansson
- Department of Oncology and Pathology, Cancer Center, Karolinska Institutet, Stockholm, Sweden
| | - Peter A Kanetsky
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Terry Dwyer
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Leigh Blizzard
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Australia
| | - Ricardo Fernandez-de-Misa
- Servicio de Dermatologia, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Tadeusz Debniak
- Department of Genetic and Pathology, Pomeranian Medical University, Polabska, Poland
| | - Niels Morling
- Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Istituto di Chimica Biomolecolare, CNR, Sassari, Italy
| | - Gloria Ribas
- Dptd. Oncologia medica y hematologia, Fundacion Investigation Hospital Clinico Universitario de Valencia- INCLIVA, Valencia, Spain
| | - Alexander Stratigos
- Department of Dermatology, University of Athens, Andreas Sygros Hospital, Athens, Greece
| | - Lynn Cornelius
- Division of Dermatology, Washington University, St. Louis, MO, USA
| | - Tomonori Motokawa
- Dermatological R&D Skin Research Department, POLA Chemical Industries, Yokohama, Japan
| | - Sumiko Anno
- Shibaura Institute of Technology, Tokyo, Japan
| | - Per Helsing
- Department of Dermatology, Oslo University Hospital, Oslo, Norway
| | - Terence H Wong
- Department of Dermatology, University of Edinburgh, Edinburgh, UK
| | | | - José C García-Borrón
- Department of Biochemistry and Molecular Biology, University of Murcia, Murcia, Spain
| | - Julian Little
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK
| | | | - Fan Liu
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tamar Nijsten
- Department of Dermatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Ibarrola-Villava M, Martin-Gonzalez M, Lazaro P, Pizarro A, Lluch A, Ribas G. Role of glutathione S-transferases in melanoma susceptibility: association with GSTP1 rs1695 polymorphism. Br J Dermatol 2012; 166:1176-83. [PMID: 22251241 DOI: 10.1111/j.1365-2133.2012.10831.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glutathione S-transferases (GSTs) GSTM1, GSTT1 and GSTP1 are multifunctional enzymes involved in the detoxification of a wide range of reactive oxygen species produced during melanin synthesis and oxidative stress processes. OBJECTIVES Single nucleotide polymorphisms (SNPs) in GSTP1 and copy number variants in GSTM1 and GSTT1 may be candidate low-penetrance variants with a role in susceptibility to malignant melanoma (MM). METHODS In this case-control study, 562 Spanish patients with sporadic MM and 338 cancer-free control subjects were included, and the role of polymorphisms in these GST genes was investigated. Genotypes were established by quantitative real-time polymerase chain reaction for GSTM1 and GSTT1 while TaqMan probes were used to genotype GSTP1 SNPs. RESULTS The GSTP1 polymorphism rs1695, which encodes the amino acid change p.Ile105Val, was individually associated with MM [odds ratio (OR): 1·32, 95% confidence interval (CI): 1·06-1·63]. Furthermore, individuals carrying one or two MC1R nonsynonymous changes and GSTP1 rs1695 rare allele had an increased risk of developing MM (OR: 3·34, 95% CI: 1·42-8·09 and OR: 20·42, 95% CI: 2·80-417·42, respectively). CONCLUSIONS This is the first time that the GSTP1 rs1695 polymorphism is reported to be associated with MM. In addition, this study is one of the largest GST polymorphism studies undertaken in the Spanish population and the first time that copy number variants have been scrutinized in relation to MM.
Collapse
Affiliation(s)
- M Ibarrola-Villava
- Department of Haematology and Medical Oncology, Fundación Investigación Hospital Clínico Universitario-INCLIVA, 46010 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Avilés JA, Lázaro P, Fernández LP, Benítez J, Ibarrola-Villava M, Ribas G. Phenotypic and histologic characteristics of cutaneous melanoma in patients with melanocortin-1 receptor polymorphisms. ACTAS DERMO-SIFILIOGRAFICAS 2012; 103:44-50. [PMID: 22464597 DOI: 10.1016/j.adengl.2011.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/27/2011] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND The melanocortin-1 receptor (MC1R) is an important risk factor for melanoma due to its role in the production of melanin in response to sun exposure. OBJECTIVES To analyze the phenotypic and histologic characteristics of cutaneous melanoma in patients carrying mutations in MC1R and assess the influence of sun exposure on the occurrence of melanoma. MATERIAL AND METHODS A total of 224 patients with a diagnosis of melanoma seen in the Department of Dermatology at Hospital General Universitario Gregorio Marañón in Madrid, Spain between September 2004 and December 2009 were included in the study. The genomic sequence of MC1R was analyzed by polymerase chain reaction. RESULTS At least one of the following MC1R variants was present in 58% of the patients: V60L, V92M, I155T, R160W, D294H, and R163Q. Carriers of those variants had a history of sunburn (P=.018) and melanomas located on areas with intermittent sun exposure (P=.019), and the majority had a diagnosis of superficial spreading melanoma. These associations were especially significant in patients with the R160W and D294H variants. Carriers of R160W also had melanomas associated with melanocytic nevi (P=.028). CONCLUSIONS The results of our study suggest that there may be a relationship between the expression of certain MC1R variants and sun exposure, history of sunburn, and skin type. They also indicate a higher frequency of superficial spreading melanomas and melanomas associated with melanocytic nevi in patients carrying certain mutations in MC1R.
Collapse
Affiliation(s)
- J A Avilés
- Servicio de Dermatología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
26
|
Ibarrola-Villava M, Hu HH, Guedj M, Fernandez LP, Descamps V, Basset-Seguin N, Bagot M, Benssussan A, Saiag P, Fargnoli MC, Peris K, Aviles JA, Lluch A, Ribas G, Soufir N. MC1R, SLC45A2 and TYR genetic variants involved in melanoma susceptibility in southern European populations: results from a meta-analysis. Eur J Cancer 2012; 48:2183-91. [PMID: 22464347 DOI: 10.1016/j.ejca.2012.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/27/2012] [Accepted: 03/03/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND METHODS Seven genetic biomarkers previously associated with melanoma were analysed in a meta-analysis conducted in three South European populations: five red hair colour (RHC) MC1R alleles, one SLC45A2 variant (p.Phe374Leu) and one thermosensitive TYR variant (p.Arg402Gln). The study included 1639 melanoma patients and 1342 control subjects. RESULTS The estimated odds ratio (OR) associated with carrying at least one MC1R RHC variant was 2.18 (95% confidence interval (CI): 1.86-2.55; p-value=1.02×10(-21)), with an additive effect for carrying two RHC variants (OR: 5.02, 95% CI: 2.88-8.94, p-value=3.91×10(-8)). The SLC45A2 variant, p.Phe374Leu, was significantly and strongly protective for melanoma in the three South European populations studied, with an overall OR value of 0.41 (95% CI: 0.33-0.50; p-value=3.50×10(-17)). The association with melanoma of the TYR variant p.Arg402Gln was also statistically significant (OR: 1.50; 95% CI: 1.11-2.04; p-value=0.0089). Adjustment for all clinical potential confounders showed that melanoma risks attributable to MC1R and SLC45A2 variants strongly persisted (OR: 2.01 95% CI: 1.49-2.72 and OR: 0.50, 95% CI: 0.31-0.80, respectively), while the association of TYR p.Arg402Gln was no longer significant. In addition, stratification of clinical melanoma risk factors showed that the risk of melanoma was strong in those individuals who did not have clinical risk factors. CONCLUSION In conclusion, our results show without ambiguity that in South European populations, MC1R RHC and SCL45A2 p.Phe374Leu variants are strong melanoma risk predictors, notably in those individuals who would not be identified as high risk based on their phenotypes or exposures alone. The use of these biomarkers in clinical practice could be promising and warrants further discussion.
Collapse
Affiliation(s)
- Maider Ibarrola-Villava
- Department of Haematology and Medical Oncology, Fundacion Investigacion Hospital Clinico-INCLIVA, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Características fenotípicas e histológicas de los pacientes con melanoma cutáneo en función de los polimorfismos del MC1R. ACTAS DERMO-SIFILIOGRAFICAS 2012; 103:44-50. [DOI: 10.1016/j.ad.2011.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/25/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022] Open
|
28
|
Scott TL, Wakamatsu K, Ito S, D'Orazio JA. Purification and growth of melanocortin 1 receptor (Mc1r)- defective primary murine melanocytes is dependent on stem cell factor (SFC) from keratinocyte-conditioned media. In Vitro Cell Dev Biol Anim 2011; 45:577-83. [PMID: 19633898 DOI: 10.1007/s11626-009-9232-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/26/2009] [Indexed: 11/29/2022]
Abstract
The melanocortin 1 receptor (MC1R) is a transmembrane G(s)-coupled surface protein found on melanocytes that binds melanocyte-stimulating hormone and mediates activation of adenylyl cyclase and generation of the second messenger cyclic AMP (cAMP). MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-offunction polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase-activating or phosphodiesterase-inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. In this paper, we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R's role in the protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses.
Collapse
Affiliation(s)
- Timothy L Scott
- The Graduate Center for Toxicology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
29
|
Ibarrola-Villava M, Fernandez LP, Alonso S, Boyano MD, Peña-Chilet M, Pita G, Aviles JA, Mayor M, Gomez-Fernandez C, Casado B, Martin-Gonzalez M, Izagirre N, De la Rua C, Asumendi A, Perez-Yarza G, Arroyo-Berdugo Y, Boldo E, Lozoya R, Torrijos-Aguilar A, Pitarch A, Pitarch G, Sanchez-Motilla JM, Valcuende-Cavero F, Tomas-Cabedo G, Perez-Pastor G, Diaz-Perez JL, Gardeazabal J, de Lizarduy IM, Sanchez-Diez A, Valdes C, Pizarro A, Casado M, Carretero G, Botella-Estrada R, Nagore E, Lazaro P, Lluch A, Benitez J, Martinez-Cadenas C, Ribas G. A customized pigmentation SNP array identifies a novel SNP associated with melanoma predisposition in the SLC45A2 gene. PLoS One 2011; 6:e19271. [PMID: 21559390 PMCID: PMC3084811 DOI: 10.1371/journal.pone.0019271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/25/2011] [Indexed: 11/19/2022] Open
Abstract
As the incidence of Malignant Melanoma (MM) reflects an interaction between skin colour and UV exposure, variations in genes implicated in pigmentation and tanning response to UV may be associated with susceptibility to MM. In this study, 363 SNPs in 65 gene regions belonging to the pigmentation pathway have been successfully genotyped using a SNP array. Five hundred and ninety MM cases and 507 controls were analyzed in a discovery phase I. Ten candidate SNPs based on a p-value threshold of 0.01 were identified. Two of them, rs35414 (SLC45A2) and rs2069398 (SILV/CKD2), were statistically significant after conservative Bonferroni correction. The best six SNPs were further tested in an independent Spanish series (624 MM cases and 789 controls). A novel SNP located on the SLC45A2 gene (rs35414) was found to be significantly associated with melanoma in both phase I and phase II (P<0.0001). None of the other five SNPs were replicated in this second phase of the study. However, three SNPs in TYR, SILV/CDK2 and ADAMTS20 genes (rs17793678, rs2069398 and rs1510521 respectively) had an overall p-value<0.05 when considering the whole DNA collection (1214 MM cases and 1296 controls). Both the SLC45A2 and the SILV/CDK2 variants behave as protective alleles, while the TYR and ADAMTS20 variants seem to function as risk alleles. Cumulative effects were detected when these four variants were considered together. Furthermore, individuals carrying two or more mutations in MC1R, a well-known low penetrance melanoma-predisposing gene, had a decreased MM risk if concurrently bearing the SLC45A2 protective variant. To our knowledge, this is the largest study on Spanish sporadic MM cases to date.
Collapse
Affiliation(s)
- Maider Ibarrola-Villava
- Servicio de Oncologia Medica y Hematologia, Fundacion Hospital Clinico Universitario-INCLIVA, Valencia, Spain
- Programa Genetica Humana, CNIO, Madrid, Spain
| | | | - Santos Alonso
- Department of Genetica, Antropologia Fisica y Fisiologia Animal, Universidad del Pais Vasco, Leioa, Spain
| | - M. Dolores Boyano
- Department of Biologia Celular e Histologia, Universidad del Pais Vasco, Leioa, Spain
| | - Maria Peña-Chilet
- Servicio de Oncologia Medica y Hematologia, Fundacion Hospital Clinico Universitario-INCLIVA, Valencia, Spain
| | | | - Jose A. Aviles
- Department of Dermatologia, Hospital Gregorio Marañon, Madrid, Spain
| | - Matias Mayor
- Department of Dermatologia, Hospital La Paz, Madrid, Spain
| | | | - Beatriz Casado
- Department of Dermatologia, Hospital La Paz, Madrid, Spain
| | | | - Neskuts Izagirre
- Department of Genetica, Antropologia Fisica y Fisiologia Animal, Universidad del Pais Vasco, Leioa, Spain
| | - Concepcion De la Rua
- Department of Genetica, Antropologia Fisica y Fisiologia Animal, Universidad del Pais Vasco, Leioa, Spain
| | - Aintzane Asumendi
- Department of Biologia Celular e Histologia, Universidad del Pais Vasco, Leioa, Spain
| | - Gorka Perez-Yarza
- Department of Biologia Celular e Histologia, Universidad del Pais Vasco, Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Biologia Celular e Histologia, Universidad del Pais Vasco, Leioa, Spain
| | - Enrique Boldo
- Unidad de Cirugia Oncologica, Hospital Provincial Castellon, Castellon, Spain
| | - Rafael Lozoya
- Unidad de Cirugia Oncologica, Hospital Provincial Castellon, Castellon, Spain
| | | | - Ana Pitarch
- Servicio de Dermatologia, Hospital General Castellon, Castellon, Spain
| | - Gerard Pitarch
- Servicio de Dermatologia, Hospital General Castellon, Castellon, Spain
| | | | | | | | - Gemma Perez-Pastor
- Servicio de Dermatologia, Hospital La Plana, Vila-real, Castellon, Spain
| | | | | | | | | | - Carlos Valdes
- Servicio de Dermatologia, Hospital de Basurto, Bilbao, Spain
| | - Angel Pizarro
- Department of Dermatologia, Hospital La Paz, Madrid, Spain
| | - Mariano Casado
- Department of Dermatologia, Hospital La Paz, Madrid, Spain
| | - Gregorio Carretero
- Department of Dermatologia, Hospital Dr Negrin, Las Palmas de Gran Canaria, Spain
| | | | | | - Pablo Lazaro
- Department of Dermatologia, Hospital Gregorio Marañon, Madrid, Spain
| | - Ana Lluch
- Servicio de Oncologia Medica y Hematologia, Fundacion Hospital Clinico Universitario-INCLIVA, Valencia, Spain
| | | | | | - Gloria Ribas
- Servicio de Oncologia Medica y Hematologia, Fundacion Hospital Clinico Universitario-INCLIVA, Valencia, Spain
- Programa Genetica Humana, CNIO, Madrid, Spain
| |
Collapse
|
30
|
Williams PF, Olsen CM, Hayward NK, Whiteman DC. Melanocortin 1 receptor and risk of cutaneous melanoma: a meta-analysis and estimates of population burden. Int J Cancer 2011; 129:1730-40. [PMID: 21128237 DOI: 10.1002/ijc.25804] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/11/2010] [Indexed: 12/29/2022]
Abstract
Polymorphisms in the melanocortin 1 receptor (MC1R) gene have been associated with increased risks of melanoma, but different approaches to study design, analysis, and reporting have hindered comparisons of findings. We aimed to harmonize the published data by conducting a systematic review and meta-analysis of MC1R variants and thereby estimate relative risks and population attributable fractions (PAFs). We identified 20 analytic studies reporting on 25 populations, which presented quantitative data on melanoma risks associated with any of nine MC1R variants. We separately pooled estimates of risk per person and risk per chromosome using a random effects model. Red hair color (RHC) variants had the highest risk of melanoma [summary odds ratios (OR) 2.44, 95% confidence interval (CI) 1.72-3.45, PAF 16.8% CI 0.119-0.202], but non-RHC variants were also associated with increased risk (summary OR 1.29, 95% CI 1.10-1.51, PAF 7.4% CI 0.030-0.112). The summary risk of melanoma associated with individual variants ranged from OR 2.40 for R142H to 1.18 for V60L, although significant heterogeneity was evident for most variants. PAFs ranged from 0.55% for I155T to 6.28% for R151C. Our findings suggest the nine most common MC1R variants make a sizeable contribution to the burden of melanoma. Melanoma research would be greatly assisted by standardized classifications for MC1R variants and consistent reporting conventions. More compatible and comparable research would allow for more powerful data that could be clinically applied to predict melanoma risk.
Collapse
Affiliation(s)
- Patricia F Williams
- Genetics and Population Health Division, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | |
Collapse
|
31
|
Le Calvez-Kelm F, Lesueur F, Damiola F, Vallée M, Voegele C, Babikyan D, Durand G, Forey N, McKay-Chopin S, Robinot N, Nguyen-Dumont T, Thomas A, Byrnes GB, Hopper JL, Southey MC, Andrulis IL, John EM, Tavtigian SV. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res 2011; 13:R6. [PMID: 21244692 PMCID: PMC3109572 DOI: 10.1186/bcr2810] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/24/2010] [Accepted: 01/18/2011] [Indexed: 12/04/2022] Open
Abstract
Introduction Both protein-truncating variants and some missense substitutions in CHEK2 confer increased risk of breast cancer. However, no large-scale study has used full open reading frame mutation screening to assess the contribution of rare missense substitutions in CHEK2 to breast cancer risk. This absence has been due in part to a lack of validated statistical methods for summarizing risk attributable to large numbers of individually rare missense substitutions. Methods Previously, we adapted an in silico assessment of missense substitutions used for analysis of unclassified missense substitutions in BRCA1 and BRCA2 to the problem of assessing candidate genes using rare missense substitution data observed in case-control mutation-screening studies. The method involves stratifying rare missense substitutions observed in cases and/or controls into a series of grades ordered a priori from least to most likely to be evolutionarily deleterious, followed by a logistic regression test for trends to compare the frequency distributions of the graded missense substitutions in cases versus controls. Here we used this approach to analyze CHEK2 mutation-screening data from a population-based series of 1,303 female breast cancer patients and 1,109 unaffected female controls. Results We found evidence of risk associated with rare, evolutionarily unlikely CHEK2 missense substitutions. Additional findings were that (1) the risk estimate for the most severe grade of CHEK2 missense substitutions (denoted C65) is approximately equivalent to that of CHEK2 protein-truncating variants; (2) the population attributable fraction and the familial relative risk explained by the pool of rare missense substitutions were similar to those explained by the pool of protein-truncating variants; and (3) post hoc power calculations implied that scaling up case-control mutation screening to examine entire biochemical pathways would require roughly 2,000 cases and controls to achieve acceptable statistical power. Conclusions This study shows that CHEK2 harbors many rare sequence variants that confer increased risk of breast cancer and that a substantial proportion of these are missense substitutions. The study validates our analytic approach to rare missense substitutions and provides a method to combine data from protein-truncating variants and rare missense substitutions into a one degree of freedom per gene test.
Collapse
Affiliation(s)
- Florence Le Calvez-Kelm
- International Agency for Research on Cancer, 150 Cours Albert Thomas, Lyon CEDEX 08, F-69372, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Olsen CM, Carroll HJ, Whiteman DC. Estimating the attributable fraction for melanoma: a meta-analysis of pigmentary characteristics and freckling. Int J Cancer 2010; 127:2430-45. [PMID: 20143394 DOI: 10.1002/ijc.25243] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epidemiologic research has demonstrated convincingly that certain pigmentary characteristics are associated with increased relative risks of melanoma; however there has been no comprehensive review to rank these characteristics in order of their importance on a population level. We conducted a systematic review of the literature and meta-analysis to quantify the contribution of pigmentary characteristics to melanoma, estimated by the population-attributable fraction (PAF). Eligible studies were those that permitted quantitative assessment of the association between histologically confirmed melanoma and hair colour, eye colour, skin phototype and presence of freckling; we identified 66 such studies using citation databases, followed by manual review of retrieved references. We calculated summary relative risks using weighted averages of the log RR, taking into account random effects, and used these to estimate the PAF. The pooled RRs for pigmentary characteristics were: 2.64 for red/red-blond, 2.0 for blond and 1.46 for light brown hair colour (vs. dark); 1.57 for blue/blue-grey and 1.51 for green/grey/hazel eye colour (vs. dark); 2.27, 1.99 and 1.35 for skin phototypes I, II and III respectively (vs. IV); and 1.99 for presence of freckling. The highest PAFs were observed for skin phototypes 1/II (0.27), presence of freckling (0.23), and blond hair colour (0.23). For eye colour, the PAF for blue/blue-grey eye colour was higher than for green/grey/hazel eye colour (0.18 vs. 0.13). The PAF of melanoma associated with red hair colour was 0.10. These estimates of melanoma burden attributable to pigmentary characteristics provide a basis for designing prevention strategies for melanoma.
Collapse
Affiliation(s)
- Catherine M Olsen
- Cancer Control Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD 4029, Australia.
| | | | | |
Collapse
|
33
|
Influence of loss of function MC1R variants in genetic susceptibility of familial melanoma in Spain. Melanoma Res 2010; 20:342-8. [PMID: 20539244 DOI: 10.1097/cmr.0b013e32833b159d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We explored the presence of germline alterations in CDK4 exon 2, CDKN2A and MC1R in a hospital-based study of 89 melanoma cases from 89 families with at least two members affected by cutaneous melanoma. A total of 30% of the melanoma kindreds studied were carriers of CDKN2A variants, and three of these variants were known predominant alleles that have been identified earlier in Mediterranean populations (p.G101W, p.V59G and c.358delG). We observed a higher frequency of nonsynonymous MC1R variants in these Spanish melanoma kindreds (72%) with respect to the general population (60%). We observed a higher frequency of nonsynonymous MC1R variants in this Spanish melanoma kindred (72%) respect to general population (60%). A new classification of MC1R variants based on their functional effects over melanocortin-1 receptor, including the dominant-negative effect of some of them in heterozygotes, suggested an association of loss of function MC1R variants and multiple primary melanoma cases from melanoma kindred (odds ratio: 6.07, 95% confidence interval: 1.35-27.20). This study proposes the relevance of loss of function MC1R variants in the risk of melanoma in multiple primary melanoma cases with family history from areas with low melanoma incidence rate.
Collapse
|
34
|
Ibarrola-Villava M, Fernandez LP, Pita G, Bravo J, Floristan U, Sendagorta E, Feito M, Avilés JA, Martin-Gonzalez M, Lázaro P, Benítez J, Ribas G. Genetic analysis of three important genes in pigmentation and melanoma susceptibility: CDKN2A, MC1R and HERC2/OCA2. Exp Dermatol 2010; 19:836-44. [DOI: 10.1111/j.1600-0625.2010.01115.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Oleksyk TK, Smith MW, O'Brien SJ. Genome-wide scans for footprints of natural selection. Philos Trans R Soc Lond B Biol Sci 2010; 365:185-205. [PMID: 20008396 PMCID: PMC2842710 DOI: 10.1098/rstb.2009.0219] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Detecting recent selected ‘genomic footprints’ applies directly to the discovery of disease genes and in the imputation of the formative events that molded modern population genetic structure. The imprints of historic selection/adaptation episodes left in human and animal genomes allow one to interpret modern and ancestral gene origins and modifications. Current approaches to reveal selected regions applied in genome-wide selection scans (GWSSs) fall into eight principal categories: (I) phylogenetic footprinting, (II) detecting increased rates of functional mutations, (III) evaluating divergence versus polymorphism, (IV) detecting extended segments of linkage disequilibrium, (V) evaluating local reduction in genetic variation, (VI) detecting changes in the shape of the frequency distribution (spectrum) of genetic variation, (VII) assessing differentiating between populations (FST), and (VIII) detecting excess or decrease in admixture contribution from one population. Here, we review and compare these approaches using available human genome-wide datasets to provide independent verification (or not) of regions found by different methods and using different populations. The lessons learned from GWSSs will be applied to identify genome signatures of historic selective pressures on genes and gene regions in other species with emerging genome sequences. This would offer considerable potential for genome annotation in functional, developmental and evolutionary contexts.
Collapse
Affiliation(s)
- Taras K Oleksyk
- Biology Department, University of Puerto Rico at Mayaguez, Mayaguez 00681, Puerto Rico.
| | | | | |
Collapse
|
36
|
Rouzaud F, Oulmouden A, Kos L. The untranslated side of hair and skin mammalian pigmentation: Beyond coding sequences. IUBMB Life 2010; 62:340-6. [PMID: 20222017 DOI: 10.1002/iub.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For several decades, tremendous advances in studying skin and hair pigmentation of mammals have been made using Mendelian genetics principles. A number of loci and their associated traits have been extensively examined, crossings performed, and phenotypes well documented. Continuously improving PCR techniques allowed the molecular cloning and sequencing of the first pigmentation genes at the end of the 20th century, a period followed by an intense effort to detect and describe polymorphisms in the coding regions and correlate allelic combinations with the observed melanogenic phenotypes. However, a number of phenotypes and biological events could not be elucidated solely by analysis of the coding regions of genes. Messenger RNA isolation, characterization and quantification techniques allowed groups to move ahead and investigate molecular mechanisms whose secrets lay within the noncoding regions of pigmentation genes transcripts such as MC1R, ASIP, or Mitf. The untranslated elements contain specific nucleotidic sequences and structures that dramatically influence the mRNA half-life and processing thus impacting protein translation and melanin production. As we are progressively uncovering the complex processes regulating melanocyte biology, unraveling complete mRNA structures and understanding mechanisms beyond coding regions has become critical.
Collapse
Affiliation(s)
- Francois Rouzaud
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
37
|
Scherer D, Nagore E, Bermejo JL, Figl A, Botella-Estrada R, Thirumaran RK, Angelini S, Hemminki K, Schadendorf D, Kumar R. Melanocortin receptor 1 variants and melanoma risk: A study of 2 European populations. Int J Cancer 2009; 125:1868-75. [DOI: 10.1002/ijc.24548] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
39
|
|
40
|
Pérez Oliva AB, Fernéndez LP, Detorre C, Herráiz C, Martínez-Escribano JA, Benítez J, Lozano Teruel JA, García-Borrón JC, Jiménez-Cervantes C, Ribas G. Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients. Hum Mutat 2009; 30:811-22. [PMID: 19338054 DOI: 10.1002/humu.20971] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The melanocortin 1 receptor, a Gs protein-coupled receptor expressed in epidermal melanocytes, is a major determinant of skin pigmentation and phototype and an important contributor to melanoma risk. MC1R activation stimulates synthesis of black, strongly photoprotective eumelanin pigments. Several MC1R alleles are associated with red hair, fair skin, increased sensitivity to ultraviolet radiation, and increased skin cancer risk. The MC1R gene is highly polymorphic, but only a few naturally occurring alleles have been functionally characterized, which complicates the establishment of accurate correlations between the signaling properties of mutant alleles and defined cutaneous phenotypes. We report the functional characterization of six MC1R alleles found in Spanish melanoma patients. Two variants (c.152T>C, p.Val51Ala and c.865T>C, p.Cys289Arg) have never been described, and the others (c.112G>A, p.Val38Met; c.122C>T, p.Ser41Phe; c.383T>C, p.Met128Thr; and c.842A>G, p.Asn281Ser) have not been analyzed for function. p.Asn281Ser corresponds to a functionally silent polymorphism. The other mutations are associated with varying degrees of loss of function (LOF), from moderate decreases in coupling to the cAMP pathway (p.Val38Met and p.Val51Ala) to nearly complete absence of functional coupling (p.Ser41Phe, p.Met128Thr, and p.Cys289Arg). The LOF p.Met128Thr and p.Cys289Arg mutants are trafficked to the cell surface, but are unable to bind agonists efficiently. Conversely, LOF of p.Val38Met, p.Ser41Phe, and p.Val51Ala is due to reduced cell surface expression as a consequence of retention in the endoplasmic reticulum (ER). Therefore, LOF of MC1R alleles is frequently associated with aberrant forward trafficking and accumulation within the ER or with inability to bind properly the activatory ligand.
Collapse
Affiliation(s)
- Ana B Pérez Oliva
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fernandez LP, Milne RL, Pita G, Floristan U, Sendagorta E, Feito M, Avilés JA, Martin-Gonzalez M, Lázaro P, Benítez J, Ribas G. Pigmentation-related genes and their implication in malignant melanoma susceptibility. Exp Dermatol 2009; 18:634-42. [PMID: 19320733 DOI: 10.1111/j.1600-0625.2009.00846.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human pigmentation appears to be one of the main modulators of individual risk of developing malignant melanoma (MM). A large number of genes are known to be involved in rare pigmentary disorders and explain most of the variation in pigmentation phenotypes seen in human populations. This Spanish case-control study included 205 patients with melanoma and 245 control subjects. Thirty-one single nucleotide polymorphisms (SNPs) in genes that had been mainly associated with congenital pigmentation syndromes (ADTB3A, ATRN, CHS1, EDNRB, HPS, KIT, MGRN1, MITF, MLANA, MYO5A, MYO7A, OA1, OCA2, PAX3 and SOX10) were selected. We found that the variant allele of OCA2 R419Q (rs1800407) was associated with increased risk of MM (OR 1.55, 95% CI 1.04-2.31, P = 0.03). This effect on melanoma risk appeared to be stronger among individuals with solar lentigines, or at least 50 nevi. We also describe, for the first time, an association with the variant S1666C (rs2276288) in the MYO7A gene (OR 1.35; 95% CI 1.04-1.76; P = 0.03). Again, this association appeared to be stronger in several phenotypic groups such as individuals with fair skin and those with childhood sunburns. We also found that several variants in the pigmentation genes considered were associated with intermediate phenotypic characteristics. Our findings highlight the potential importance of pigmentation genes in sporadic MM susceptibility.
Collapse
Affiliation(s)
- Lara P Fernandez
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid E-28029, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Barroso E, Fernandez LP, Milne RL, Pita G, Sendagorta E, Floristan U, Feito M, Aviles JA, Martin-Gonzalez M, Arias JI, Zamora P, Blanco M, Lazaro P, Benitez J, Ribas G. Genetic analysis of the vitamin D receptor gene in two epithelial cancers: melanoma and breast cancer case-control studies. BMC Cancer 2008; 8:385. [PMID: 19105801 PMCID: PMC2639605 DOI: 10.1186/1471-2407-8-385] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/23/2008] [Indexed: 12/04/2022] Open
Abstract
Background Vitamin D serum levels have been found to be related to sun exposure and diet, together with cell differentiation, growth control and consequently, cancer risk. Vitamin D receptor (VDR) genotypes may influence cancer risk; however, no epidemiological studies in sporadic breast cancer (BC) or malignant melanoma (MM) have been performed in a southern European population. In this study, the VDR gene has been evaluated in two epithelial cancers BC and MM. Methods We have conducted an analysis in 549 consecutive and non-related sporadic BC cases and 556 controls, all from the Spanish population, and 283 MM cases and 245 controls. Genotyping analyses were carried out on four putatively functional SNPs within the VDR gene. Results An association with the minor allele A of the non-synonymous SNP rs2228570 (rs10735810, FokI, Met1Thr) was observed for BC, with an estimated odds ratio (OR) of 1.26 (95% CI = 1.02–1.57; p = 0.036). The synonymous variant rs731236 (TaqI) appeared to be associated with protection from BC (OR = 0.80, 95%CI = 0.64–0.99; p = 0.047). No statistically significant associations with MM were observed for any SNP. Nevertheless, sub-group analyses revealed an association between rs2228570 (FokI) and absence of childhood sunburns (OR = 0.65, p = 0.003), between the 3'utr SNP rs739837 (BglI) and fair skin (OR = 1.31, p = 0.048), and between the promoter SNP rs4516035 and the more aggressive tumour location in head-neck and trunk (OR = 1.54, p = 0.020). Conclusion In summary, we observed associations between SNPs in the VDR gene and BC risk, and a comprehensive analysis using clinical and tumour characteristics as outcome variables has revealed potential associations with MM. These associations required confirmation in independent studies.
Collapse
Affiliation(s)
- Eva Barroso
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The D84E variant of the α-MSH receptor 1 gene is associated with cutaneous malignant melanoma early onset. J Dermatol Sci 2008; 52:186-92. [DOI: 10.1016/j.jdermsci.2008.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/11/2008] [Accepted: 06/07/2008] [Indexed: 11/19/2022]
|
44
|
Fernandez LP, Milne RL, Pita G, Avilés JA, Lázaro P, Benítez J, Ribas G. SLC45A2: a novel malignant melanoma-associated gene. Hum Mutat 2008; 29:1161-7. [PMID: 18563784 DOI: 10.1002/humu.20804] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human pigmentation appears to be one of the strongest risk factors for malignant melanoma (MM). In humans, there is a long list of genes known to be involved in rare pigmentary disorders such as albinism. These genes explain most of the variation in pigmentation phenotypes seen in human populations, and they do this by regulating the level of synthesis, chemical composition, packaging, and distribution of melanin. This Spanish case-control study included 131 consecutive melanoma patients and 245 control subjects frequency-matched for sex and age. A total of 23 SNPs in six candidate genes (ASP, OCA2, TYR, TYRP1, SILV, and SLC45A) belonging to the pigmentation pathway were genotyped. We found that the variant allele of c.1122C>G, p.Phe374Leu (NCBI dbSNP rs16891982) in SLC45A2 (membrane associated transporter previously known as MATP) was associated with protection from MM (OR, 0.41; 95% CI, 0.24-0.70; P=0.008 after adjustment for multiple testing). This association was validated by the consistent link observed with dark hair, dark skin, dark eye color, and the presence of solar lentigins and childhood sunburns. This is the first time SLC45A2 has been described as a melanoma susceptibility gene in a light-skinned population.
Collapse
Affiliation(s)
- L P Fernandez
- Human Genetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
45
|
F.-de-Misa R, Prez-Mndez LI, Hernndez-Jimnez JG, del Cristo Rodrguez M, Vilar MC, Surez J, Clavere-Martn F. Main pigmentary features andmelanocortin 1 receptor(MC1R) gene polymorphisms in the population of the Canary Islands. Int J Dermatol 2008; 47:806-11. [DOI: 10.1111/j.1365-4632.2008.03680.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Dennis LK, Vanbeek MJ, Beane Freeman LE, Smith BJ, Dawson DV, Coughlin JA. Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol 2008; 18:614-27. [PMID: 18652979 PMCID: PMC2873840 DOI: 10.1016/j.annepidem.2008.04.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 04/07/2008] [Accepted: 04/29/2008] [Indexed: 11/20/2022]
Abstract
PURPOSE Sunburns are an important risk factor for melanoma and those occurring in childhood are often cited as posing the greatest risk. We conducted a meta-analysis to quantify the magnitude of association for melanoma and sunburns during childhood, adolescence, adulthood and over a lifetime. METHODS After reviewing over 1300 article titles and evaluating 270 articles in detail, we pooled odds ratios from 51 independent study populations for "ever" sunburned and risk of cutaneous melanoma. Among these, 26 studies reported results from dose-response analyses. Dose-response analyses were examined using both fixed-effects models and Bayesian random-effects models. RESULTS An increased risk of melanoma was seen with increasing number of sunburns for all time-periods (childhood, adolescence, adulthood, and lifetime). In an attempt to understand how risk between life-periods compares, we also report these same linear models on a scale of five sunburns per decade for each life-period. The magnitude of risk for five sunburns per decade is highest for adult and lifetime sunburns. CONCLUSIONS Overall, these results show an increased risk of melanoma with increasing number of sunburns during all life-periods, not just childhood. Prevention efforts should focus on reducing sunburns during all life-periods.
Collapse
Affiliation(s)
- Leslie K Dennis
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Raimondi S, Sera F, Gandini S, Iodice S, Caini S, Maisonneuve P, Fargnoli MC. MC1R variants, melanoma and red hair color phenotype: A meta-analysis. Int J Cancer 2008; 122:2753-60. [PMID: 18366057 DOI: 10.1002/ijc.23396] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Savage SA, Gerstenblith MR, Goldstein AM, Mirabello L, Fargnoli MC, Peris K, Landi MT. Nucleotide diversity and population differentiation of the melanocortin 1 receptor gene, MC1R. BMC Genet 2008; 9:31. [PMID: 18402696 PMCID: PMC2324112 DOI: 10.1186/1471-2156-9-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/10/2008] [Indexed: 01/27/2023] Open
Abstract
Background The melanocortin 1 receptor gene (MC1R) is responsible for normal pigment variation in humans and is highly polymorphic with numerous population-specific alleles. Some MC1R variants have been associated with skin cancer risk. Results Allele frequency data were compiled on 55 single nucleotide polymorphisms from seven geographically distinct human populations (n = 2306 individuals). MC1R nucleotide diversity, π, was much higher (10.1 × 10-4) than in other genes for all subjects. A large degree of population differentiation, determined by FST, was also present, particularly between Asia and all other populations, due to the p.R163Q (c.488 G>A) polymorphism. The least amount of differentiation was between the United States, Northern Europe, and Southern Europe. Tajima's D statistic suggested the presence of positive selection in individuals from Europe. Conclusion This study further quantifies the degree of population-specific genetic variation and suggests that positive selection may be present in European populations in MC1R.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Fargnoli MC, Fargnoli MC, Pike K, Pfeiffer RM, Tsang S, Rozenblum E, Munroe DJ, Golubeva Y, Calista D, Seidenari S, Massi D, Carli P, Bauer J, Elder DE, Bastian BC, Peris K, Landi MT. MC1R variants increase risk of melanomas harboring BRAF mutations. J Invest Dermatol 2008; 128:2485-90. [PMID: 18368129 DOI: 10.1038/jid.2008.67] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Melanocortin-1 receptor (MC1R) variants have been associated with BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations in non-CSD (chronic solar-damaged) melanomas in an Italian and an American population. We studied an independent Italian population of 330 subjects (165 melanoma patients and 165 controls) to verify and estimate the magnitude of this association and to explore possible effect modifiers. We sequenced MC1R in all subjects and exon 15 of BRAF in 92/165 melanoma patients. Patients with MC1R variants had a high risk of carrying BRAF mutations in melanomas (odds ratio (OR)=7.0, 95% confidence interval (CI)=2.1-23.8) that increased with the number of MC1R variants and variants associated with red hair color. Combining these subjects with the originally reported Italian population (513 subjects overall), MC1R variant carriers had a 5- to 15-fold increased risk of BRAF-mutant melanomas based on carrying one or two variants (P<0.0001, test for trend), and regardless of signs of chronic solar damage. In contrast, no association with BRAF-negative melanomas was found (OR=1.0, 95% CI=0.6-1.6). No characteristics of subjects or melanomas, including age, nevus count, pigmentation, and melanoma thickness or location on chronically or intermittently sun-exposed body sites, substantially modified this association, although results could be affected by the small numbers in some categories. This study confirms that the known MC1R-melanoma risk association is confined to subjects whose melanomas harbor BRAF mutations.
Collapse
|