1
|
Uddin MJ, Lo JHJ, Gupta MK, Werfel TA, Asaduzzaman A, Oltman CG, Gbur EF, Mohyuddin MT, Nazmin F, Rahman MS, Jashim A, Crews BC, Kingsley PJ, Klendworth JE, Marnett LJ, Duvall CL, Cook RS. Polymeric Nanoparticles Enable Targeted Visualization of Drug Delivery in Breast Cancer. Mol Pharm 2025. [PMID: 40257460 DOI: 10.1021/acs.molpharmaceut.4c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
We report the coencapsulation of fluorocoxib Q (FQ) and chemocoxib A (CA) in micellar nanoparticles (FQ-CA-NPs) of a new PPS135-b-POEGA17 diblock polymer, which exhibited a hydrodynamic diameter of 109.2 ± 4.1 nm and a zeta potential (ζ) of -1.59 ± 0.3 mV. The uptake of FQ-CA-NPs by 4T1 mouse mammary cancer cells and intracellular cargo release were assessed by fluorescence microscopy that resulted in increased fluorescence in 4T1 cells compared to cells pretreated with celecoxib. The viability of primary human mammary epithelial cells (HMECs) or 4T1 mouse mammary carcinoma cells treated with FQ-CA-NPs were assessed, which showed decreased growth of 4T1 breast cancer cells but showed no effect on the growth of primary human mammary epithelial cells (HMECs). Intravenous dosing of FQ-CA-NPs in mice enabled ROS-induced cargo (FQ and CA) release and fluorescence activation of FQ and resulted in increased fluorescence in breast tumors compared to the tumors of animals pretreated with tempol or celecoxib, and minimum fluorescence was detected in the tumors of animals treated with nothing or empty-NPs. In addition, tumor tissues from treated animals were analyzed ex vivo by liquid chromatography-mass spectrometry (LC-MS)/MS, and identified increased levels of cargo delivery and retention in the tumor compared to tempol- or celecoxib-pretreated animal tumors. These in vivo and ex vivo results confirmed the targeted delivery of loaded NPs followed by ROS-mediated cargo release and fluorescence activation for targeted visualization of drug delivery in breast tumors and CA-induced therapeutic effect in an in vivo tumor growth inhibition assay and an ex vivo hematoxylin and eosin (H&E) staining of tumor tissues. Thus, coencapsulation of FQ and CA into polymeric micellar nanoparticles (FQ-CA-NPs) enabled their ROS-sensitive release followed by fluorescence activation and COX-2-dependent tumor targeting and retention in the visualization of CA delivery in solid breast tumors.
Collapse
Affiliation(s)
- Md Jashim Uddin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Justin Han-Je Lo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Mukesh K Gupta
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232, United States
| | - Thomas A Werfel
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232, United States
| | - Abu Asaduzzaman
- Departments of Electrical and Computer Engineering, Wichita State University School of Engineering, Wichita, Kansas 67260, United States
| | - Connor G Oltman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Eva F Gbur
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232, United States
| | - Mohammed T Mohyuddin
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232, United States
| | - Farhana Nazmin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Md Saidur Rahman
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Ahan Jashim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brenda C Crews
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Philip J Kingsley
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Jamie E Klendworth
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J Marnett
- Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232, United States
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232, United States
| |
Collapse
|
2
|
Wang T, Ji M, Yang P, Zhang J, Peng X, Miao Y, Liu W, Sun J. Cyclooxygenase 2 overexpression suppresses Smad3 and augments ERK1/2 signaling activated by TGFβ1 in endometrial stromal cells: A novel insight into endometriosis pathogenesis. Mol Cell Endocrinol 2025; 599:112470. [PMID: 39864487 DOI: 10.1016/j.mce.2025.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
RESEARCH QUESTION To investigate the underlying mechanisms driving the opposing effects of transforming growth factor-beta 1 (TGFβ1) on the proliferation of control (CESCs) and ectopic (EESCs) endometrial stromal cells. DESIGN Cell proliferation assays (CCK-8 and colony formation) were employed to assess the effects of TGFβ1 on CESC and EESC proliferation. An immortalized human endometrial stromal cell line (HESC) was used to elucidate the mechanisms behind cytostatic effect of TGFβ1 and the potential role of cyclooxygenase (COX)-2 in mediating the modulation of TGFβ1 signaling. RESULTS This study demonstrated that TGFβ1 inhibited the proliferation of CESCs and HESCs while significantly promoting the proliferation of EESCs. In both CESCs and HESCs, TGFβ1-induced growth arrest was primarily mediated by cell cycle arrest rather than apoptosis. Mechanistically, TGFβ1 activated both Smad3 and ERK1/2 signaling pathways, with Smad3 acting to inhibit proliferation and ERK1/2 to promote it. Notably, overexpression of COX-2 in HESCs abolished the cytostatic effect of TGFβ1 by enhancing ERK1/2 signaling and decreasing Smad3 protein levels and its nuclear translocation. Similar effects were observed following prostaglandin E2 (PGE2) treatment. In contrast, inhibition of COX-2 activity in EESCs resulted in increased Smad3 expression, reduced ERK1/2 activation, and a restoration of the cytostatic effect of TGFβ1. CONCLUSION COX-2 modulates the effects of TGFβ1 on endometrial stromal cells by altering the balance between the Smad3 and ERK1/2 signaling pathways, thereby converting TGFβ1 from a growth inhibitor to a proliferation stimulator.
Collapse
Affiliation(s)
- Tao Wang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Mei Ji
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pusheng Yang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiaxin Zhang
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaotong Peng
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yaxin Miao
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenwen Liu
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Sun
- The Gynecology Department, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Leathers TA, Ramarapu R, Rogers CD. Spatiotemporal characterization of cyclooxygenase pathway enzymes during vertebrate embryonic development. Dev Biol 2025; 518:61-70. [PMID: 39581452 PMCID: PMC11890202 DOI: 10.1016/j.ydbio.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Vertebrate development is regulated by several complex well-characterized morphogen signaling pathways, transcription factors, and structural proteins, but less is known about the enzymatic pathways that regulate early development. We have identified that factors from the inflammation-mediating cyclooxygenase (COX) signaling pathway are expressed at early stages of development in avian embryos. Using Gallus gallus (chicken) as a research model, we characterized the spatiotemporal expression of a subset of genes and proteins in the COX pathway during early neural development stages. Specifically, here we show expression patterns of COX-1, COX-2, and microsomal prostaglandin E synthase-2 (mPGES-2) as well as the genes encoding these enzymes (PTGS1, PTGS2, and PTGES-2). Unique expression patterns of individual players within the COX pathway suggest that they may play non-canonical/non-traditional roles in the embryo compared to their roles in the adult. Future work should examine the function of the COX pathway in tissue specification and morphogenesis and determine if these expression patterns are conserved across species.
Collapse
Affiliation(s)
- Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
4
|
Chen PH, Yang TL, Jhou HJ, Lee HL, Dai MS. Post-Diagnostic Aspirin Use in Breast Cancer Treatment: A Systematic Review and Meta-Analysis of Survival Outcomes with Trial Sequential Analysis Validation. Diagnostics (Basel) 2024; 15:44. [PMID: 39795572 PMCID: PMC11719465 DOI: 10.3390/diagnostics15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Breast cancer is a leading cause of cancer-related mortality in women. Aspirin, an affordable anti-inflammatory drug, may have anticancer effects, but its impact on survival outcomes after breast cancer diagnosis remains unclear. This meta-analysis evaluates the role of post-diagnostic aspirin use in breast cancer management. Methods: A systematic review and meta-analysis were conducted using PubMed, EMBASE, and Cochrane Library databases. Twenty studies involving 141,251 participants were included. Survival outcomes assessed were disease-free survival (DFS), overall survival (OS), and breast cancer-specific mortality. Trial sequential analysis (TSA) was used to evaluate the sufficiency of cumulative evidence. Results: Post-diagnostic aspirin use was not significantly associated with DFS (HR: 0.88; 95% CI: 0.69-1.11) or OS (HR: 0.89; 95% CI: 0.74-1.07). However, a significant reduction in breast cancer-specific mortality was observed (HR: 0.77; 95% CI: 0.63-0.93). TSA confirmed that the evidence supporting this association is sufficient. Conclusions: Post-diagnostic aspirin use significantly reduces breast cancer-specific mortality, but it does not improve DFS or OS. These findings underscore the potential therapeutic role of aspirin in breast cancer management. Further randomized controlled trials are needed to validate these results and determine optimal dosing regimens for post-diagnostic use.
Collapse
Affiliation(s)
- Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.C.); (T.-L.Y.)
| | - Tung-Lung Yang
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.C.); (T.-L.Y.)
| | - Hong-Jie Jhou
- Department of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Hsu-Lin Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.C.); (T.-L.Y.)
| | - Ming-Shen Dai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (P.-H.C.); (T.-L.Y.)
| |
Collapse
|
5
|
Tobe-Nishimoto A, Morita Y, Nishimura J, Kitahira Y, Takayama S, Kishimoto S, Matsumiya-Matsumoto Y, Matsunaga K, Imai T, Uzawa N. Tumor microenvironment dynamics in oral cancer: unveiling the role of inflammatory cytokines in a syngeneic mouse model. Clin Exp Metastasis 2024; 41:891-908. [PMID: 39126553 PMCID: PMC11607012 DOI: 10.1007/s10585-024-10306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The process of cervical lymph node metastasis is dependent on the phenotype of the tumor cells and their interaction with the host microenvironment and immune system; conventional research methods that focus exclusively on tumor cells are limited in their ability to elucidate the metastatic mechanism. In cancer tissues, a specialized environment called the tumor microenvironment (TME) is established around tumor cells, and inflammation in the TME has been reported to be closely associated with the development and progression of many types of cancer and with the response to anticancer therapy. In this study, to elucidate the mechanism of metastasis establishment, including the TME, in the cervical lymph node metastasis of oral cancer, we established a mouse-derived oral squamous cell carcinoma cervical lymph node highly metastatic cell line and generated a syngeneic orthotopic transplantation mouse model. In the established highly metastatic cells, epithelial-mesenchymal transition (EMT) induction was enhanced compared to that in parental cells. In the syngeneic mouse model, lymph node metastasis was observed more frequently in tumors of highly metastatic cells than in parental cells, and Cyclooxygenase-2 (COX-2) expression and lymphatic vessels in primary tumor tissues were increased, suggesting that this model is highly useful. Moreover, in the established highly metastatic cells, EMT induction was enhanced compared to that in the parent cell line, and CCL5 and IL-6 secreted during inflammation further enhanced EMT induction in cancer cells. This suggests the possibility of a synergistic effect between EMT induction and inflammation. This model, which allows for the use of two types of cells with different metastatic and tumor growth potentials, is very useful for oral cancer research involving the interaction between cancer cells and the TME in tumor tissues and for further searching for new therapeutic agents.
Collapse
Affiliation(s)
- Ayano Tobe-Nishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yoshihiro Morita
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Junya Nishimura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yukiko Kitahira
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shun Takayama
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Satoko Kishimoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yuka Matsumiya-Matsumoto
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomoaki Imai
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Tran-Guzman A, Khan A, Culty M. Differential roles of cyclooxygenase enzymes in the regulation of murine juvenile undifferentiated spermatogonia. Andrology 2024; 12:899-917. [PMID: 37772683 DOI: 10.1111/andr.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Acetaminophen and ibuprofen are widely administered to babies due to their presumed safety as over-the-counter drugs. However, no reports exist on the effects of cyclooxygenase inhibitors on undifferentiated spermatogonia and spermatogonial stem cells. Infancy represents a critical period for spermatogonial stem cell formation and disrupting spermatogonial stem cells or their precursors may be associated with infertility and testicular cancer formation. OBJECTIVES The goal of this study was to examine the molecular and functional impact of cyclooxygenase inhibition and silencing on early steps of undifferentiated spermatogonia (u spg) and spermatogonial stem cell development, to assess the potential reproductive risk of pharmaceutical cyclooxygenase inhibitors. METHODS The effects of cyclooxygenase inhibition were assessed using the mouse C18-4 undifferentiated juvenile spermatogonial cell line model, previously shown to include cells with spermatogonial stem cell features, by measuring prostaglandins, cell proliferation, and differentiation, using cyclooxygenase 1- and cyclooxygenase 2-selective inhibitors NS398, celecoxib, and FR122047, acetaminophen, and ibuprofen. Cyclooxygenase 1 gene silencing was achieved using a stable short-hairpin RNA approach and clone selection, then assessing gene and protein expression in RNA sequencing, quantitative real-time polymerase chain reaction, and immunofluorescence studies. RESULTS Cyclooxygenase 2 inhibitors NS398 and celecoxib, as well as acetaminophen, but not ibuprofen, dose-dependently decreased retinoic acid-induced expression of the spg differentiation gene Stra8, while NS398 decreased the spg differentiation marker Kit, suggesting that cyclooxygenase 2 is positively associated with spg differentiation. In contrast, short-hairpin RNA-based cyclooxygenase 1 silencing in C18-4 cells altered cellular morphology and upregulated Stra8 and Kit, implying that cyclooxygenase 1 prevented spg differentiation. Furthermore, RNA sequencing analysis of cyclooxygenase 1 knockdown cells indicated the activation of several signaling pathways including the TGFb, Wnt, and Notch pathways, compared to control C18-4 cells. Notch pathway genes were upregulated by selective cyclooxygenase inhibitors, acetaminophen and ibuprofen. CONCLUSION We report that cyclooxygenase 1 and 2 differentially regulate undifferentiated spermatogonia/spermatogonial stem cell differentiation. Cyclooxygenases regulate Notch3 expression, with the Notch pathway targeted by PGD2. These data suggest an interaction between the eicosanoid and Notch signaling pathways that may be critical for the development of spermatogonial stem cells and subsequent spermatogenesis, cautioning about using cyclooxygenase inhibitors in infants.
Collapse
Affiliation(s)
- Amy Tran-Guzman
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Amina Khan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Baker A, Kartsonaki C. Aspirin Use and Survival Among Patients With Breast Cancer: A Systematic Review and Meta-Analysis. Oncologist 2024; 29:e1-e14. [PMID: 37358878 PMCID: PMC10769789 DOI: 10.1093/oncolo/oyad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Previous meta-analyses have indicated that aspirin could affect breast cancer outcomes, particularly when taken post-diagnostically. However, several recent studies appear to show little to no association between aspirin use and breast cancer mortality, all-cause mortality, or recurrence. AIMS This study aims to conduct an updated systematic review and meta-analysis on the associations of pre-diagnostic and post-diagnostic aspirin use with the aforementioned breast cancer outcomes. It also looks, through subgroup analyses and meta-regressions, at a range of variables that could explain the associations between aspirin use and breast cancer outcomes. RESULTS In total, 24 papers and 149 860 patients with breast cancer were included. Pre-diagnostic aspirin use was not associated with breast-cancer-specific mortality (HR 0.98, 95% CI, 0.80-1.20, P = .84) or recurrence (HR 0.94, 95% CI, 0.88-1.02, P = .13). Pre-diagnostic aspirin was associated with non-significantly higher all-cause mortality (HR 1.27, 95% CI, 0.95-1.72, P = .11). Post-diagnostic aspirin was not significantly associated with all-cause mortality (HR 0.87, 95% CI, 0.71-1.07, P = .18) or recurrence (HR 0.89, 95% CI, 0.67-1.16, P = .38). Post-diagnostic aspirin use was significantly associated with lower breast-cancer-specific mortality (HR 0.79, 95% CI, 0.64-0.98, P = .032). CONCLUSIONS The only significant association of aspirin with breast cancer outcomes is lower breast-cancer-specific mortality in patients who used aspirin post-diagnostically. However, factors such as selection bias and high inter-study heterogeneity mean that this result should not be treated as conclusive, and more substantial evidence such as that provided by RCTs is needed before any decisions on new clinical uses for aspirin should be made.
Collapse
Affiliation(s)
- Adam Baker
- Department of Medical Sciences, Worcester College, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Wang D, Wu H, Wu Q, Liu Q, Li Y, Wu J, Nie J. Veratricplatin inhibits the progression of hypopharyngeal squamous cell carcinoma FaDu cells in vitro and in vivo. Cancer Chemother Pharmacol 2023; 92:211-221. [PMID: 37432399 DOI: 10.1007/s00280-023-04560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) ranks as the sixth most prevalent cancer. In recent years, the modification of platinum(II) into platinum(IV) derivative compounds, by introducing biologically active molecules, has been extensively employed to develop novel platinum-based prodrugs. We investigated the anti-proliferative activity against HNSCC of a new veratric acid (COX-2 inhibitor)-platinum(IV) complex. METHODS In this study, a new veratric acid (COX-2 inhibitor)-platinum(IV) complex, termed veratricplatin, was synthesized. We evaluated the anti-tumor effect of in vitro and in vivo by western blotting, flow cytometry and DNA damage analysis. RESULTS Veratricplatin displayed remarkable anti-proliferative activity against various cancer cell lines, including A549, FaDu, HeLa, and MCF-7. Furthermore, veratricplatin demonstrated significantly stronger cytotoxicity than either platinum(II) or veratric acid monotherapy or their combination. Importantly, the synthesized prodrug exhibited less toxicity toward normal cells (MRC-5), while dramatically enhanced DNA damage in FaDu cells inducing apoptosis. Moreover, veratricplatin markedly reduced the migration ability of FaDu cells compared to the control or monotherapy. In vivo, veratricplatin displayed potent anti-tumor activity with no apparent toxicity in BALB/c nude mice bearing FaDu tumors. In addition, tissue immunofluorescence analysis revealed that veratricplatin could substantially inhibit the formation of tumor blood vessels. CONCLUSION Veratricplatin demonstrated remarkable drug efficacy, in terms of increased cytotoxicity in vitro and high efficiency with low toxicity in vivo.
Collapse
Affiliation(s)
- Dongbo Wang
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Huina Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Qian Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Qi Liu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yamei Li
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| | - Jing Nie
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| |
Collapse
|
10
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
11
|
Perioperative escape from dormancy of spontaneous micro-metastases: A role for malignant secretion of IL-6, IL-8, and VEGF, through adrenergic and prostaglandin signaling. Brain Behav Immun 2023; 109:175-187. [PMID: 36646396 DOI: 10.1016/j.bbi.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
We recently showed that a minimally-invasive removal of MDA-MB-231HM primary tumors (PTs) and elimination of their secreted factors (including IL-6, IL-8, VEGF, EGF, PDGF-aa, MIF, SerpinE1, and M-CSF), caused regression of spontaneous micro-metastases into a non-growing dormant state. To explore the underlying mechanisms and potential clinical ramifications of this phenomenon, we herein used the MDA-MB-231HM human breast cancer cell-line, in-vitro, and in vivo following orthotopic implantation in immune-deficient BALB/C nu/nu mice. Employing bioluminescence imaging, we found that adding laparotomy to minimally-invasive removal of the PT caused an outbreak of micro-metastases. However, perioperative β-adrenergic and COX-2 inhibition, using propranolol + etodolac, maintained metastatic dormancy following laparotomy. In-vitro, β-adrenergic agonists (epinephrine or metaproterenol) and prostaglandin-E2 markedly increased MDA-MB-231HM secretion of the pro-metastatic factors IL-6, IL-8, and VEGF, whereas cortisol reduced their secretion, effects that were maintained even 12 h after the washout of these agonists. In-vivo, laparotomy elevated IL-6 and IL-8 levels in both plasma and ex-vivo PT spontaneous secretion, whereas perioperative propranolol + etodolac administration blocked these effects. Similar trends were evident for EGF and MIF. Promoter-based bioinformatics analyses of excised PT transcriptomes implicated elevated NF-kB activity and reduced IRF1 activity in the gene regulatory effects of laparotomy, and these effects were inhibited by pre-surgical propranolol + etodolac. Taken together, our findings suggest a novel mechanism of post-operative metastatic outbreak, where surgery-induced adrenergic and prostanoid signaling increase the secretion of pro-metastatic factors, including IL-6, IL-8, and VEGF, from PT and possibly residual malignant tissue, and thereby prevent residual disease from entering dormancy.
Collapse
|
12
|
Burns TA, Watts MR, Belknap JK, van Eps AW. Digital lamellar inflammatory signaling in an experimental model of equine preferential weight bearing. J Vet Intern Med 2023; 37:681-688. [PMID: 36840365 DOI: 10.1111/jvim.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/03/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Supporting limb laminitis (SLL) is a complication of severe orthopedic disease in horses and is often life-limiting, yet the pathophysiology remains obscure. HYPOTHESIS/OBJECTIVES To investigate the role of digital lamellar inflammatory signaling in the pathophysiology of SLL using a model of unilateral weight bearing, hypothesizing that there would be evidence of lamellar inflammation in limbs subjected to the model. ANIMALS Thirteen healthy adult Standardbred horses were used for this study (11 geldings, 2 mares; mean age 6.5 ± 2.5 years; mean body weight 458.3 ± 32.8 kg). METHODS Randomized controlled experimental study. A steel shoe with a custom insert was applied to a randomly selected front foot of 7 horses; 6 horses were unshod and served as controls. After 92 hours, all horses were humanely euthanized, and digital lamellar samples were collected. Lamellar protein and mRNA were isolated and used to perform western blot and PCR. RESULTS Lamellar concentrations of IL-6 mRNA were higher in SL tissue than IL HIND tissue (median [25%-75%] normalized copy number 191 [111-3060] and 48 [25-74], respectively; P=.003), and lamellar concentrations of COX-2 mRNA were higher in SL tissue than CON tissue (normalized copy number 400 [168-634] and 125 [74-178], respectively; P=.007). Lamellar concentrations of IL-1B, IL-10, and COX-1 mRNA were not significantly different between groups. The concentrations of phosphorylated (activated) STAT1 and STAT3 proteins were higher in SL (0.5 [0.35-0.87] and 1.35 [1.1-1.7], respectively) compared to CON (0.24 [0.09-0.37] and 0.31 [0.16-037]) and UL HIND (0.27 [0.19-0.37] and 0.38 [0.24-0.5]); P=0.01 and P<0.001. CONCLUSIONS AND CLINICAL IMPORTANCE Lamellar inflammatory signaling was higher in tissue from horses subjected to prolonged unilateral weight-bearing, suggesting that these pathways could be relevant to the pathophysiology of SLL.
Collapse
Affiliation(s)
- Teresa A Burns
- The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Mauria R Watts
- The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - James K Belknap
- The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Andrew W van Eps
- School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia.,School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
13
|
Matherne MG, Phillips ES, Embrey SJ, Burke CM, Machado HL. Emerging functions of C/EBPβ in breast cancer. Front Oncol 2023; 13:1111522. [PMID: 36761942 PMCID: PMC9905667 DOI: 10.3389/fonc.2023.1111522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Breast tumorigenesis relies on complex interactions between tumor cells and their surrounding microenvironment, orchestrated by tightly regulated transcriptional networks. C/EBPβ is a key transcription factor that regulates the proliferation and differentiation of multiple cell types and modulates a variety of biological processes such as tissue homeostasis and the immune response. In addition, C/EBPβ has well-established roles in mammary gland development, is overexpressed in breast cancer, and has tumor-promoting functions. In this review, we discuss context-specific roles of C/EBPβ during breast tumorigenesis, isoform-specific gene regulation, and regulation of the tumor immune response. We present challenges in C/EBPβ biology and discuss the importance of C/EBPβ isoform-specific gene regulation in devising new therapeutic strategies.
Collapse
Affiliation(s)
- Megan G. Matherne
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Emily S. Phillips
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Samuel J. Embrey
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Caitlin M. Burke
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States
| | - Heather L. Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States,*Correspondence: Heather L. Machado,
| |
Collapse
|
14
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
15
|
Prodjinotho UF, Gres V, Henkel F, Lacorcia M, Dandl R, Haslbeck M, Schmidt V, Winkler AS, Sikasunge C, Jakobsson PJ, Henneke P, Esser-von Bieren J, Prazeres da Costa C. Helminthic dehydrogenase drives PGE 2 and IL-10 production in monocytes to potentiate Treg induction. EMBO Rep 2022; 23:e54096. [PMID: 35357743 PMCID: PMC9066053 DOI: 10.15252/embr.202154096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2023] Open
Abstract
Immunoregulation of inflammatory, infection‐triggered processes in the brain constitutes a central mechanism to control devastating disease manifestations such as epilepsy. Observational studies implicate the viability of Taenia solium cysts as key factor determining severity of neurocysticercosis (NCC), the most common cause of epilepsy, especially in children, in Sub‐Saharan Africa. Viable, in contrast to decaying, cysts mostly remain clinically silent by yet unknown mechanisms, potentially involving Tregs in controlling inflammation. Here, we show that glutamate dehydrogenase from viable cysts instructs tolerogenic monocytes to release IL‐10 and the lipid mediator PGE2. These act in concert, converting naive CD4+ T cells into CD127−CD25hiFoxP3+CTLA‐4+ Tregs, through the G protein‐coupled receptors EP2 and EP4 and the IL‐10 receptor. Moreover, while viable cyst products strongly upregulate IL‐10 and PGE2 transcription in microglia, intravesicular fluid, released during cyst decay, induces pro‐inflammatory microglia and TGF‐β as potential drivers of epilepsy. Inhibition of PGE2 synthesis and IL‐10 signaling prevents Treg induction by viable cyst products. Harnessing the PGE2‐IL‐10 axis and targeting TGF‐ß signaling may offer an important therapeutic strategy in inflammatory epilepsy and NCC.
Collapse
Affiliation(s)
- Ulrich Fabien Prodjinotho
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vitka Gres
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Matthew Lacorcia
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ramona Dandl
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Martin Haslbeck
- Department of Chemistry, Technical University Munich (TUM), Garching, Germany
| | - Veronika Schmidt
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Andrea Sylvia Winkler
- Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Department of Neurology, University Hospital, Klinikum rechts der Isar, Technical University Munich (TUM), Munich, Germany.,Center for Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Chummy Sikasunge
- Department of Paraclinicals, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska University Hospital, Stockholm, Sweden
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Clarissa Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,Center for Global Health, TUM School of Medicine, Technical University of Munich (TUM), Munich, Germany.,German Center for Infection and Research (DZIF), Munich, Germany
| |
Collapse
|
16
|
Nizioł M, Ościłowska I, Baszanowska W, Pałka J, Besio R, Forlino A, Miltyk W. Recombinant Prolidase Activates EGFR-Dependent Cell Growth in an Experimental Model of Inflammation in HaCaT Keratinocytes. Implication for Wound Healing. Front Mol Biosci 2022; 9:876348. [PMID: 35433830 PMCID: PMC9006112 DOI: 10.3389/fmolb.2022.876348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to investigate the proliferative capacity of recombinant human prolidase (rhPEPD) in a human model of inflammation induced by IL-1β in HaCaT keratinocytes. In this report, we provide evidence that IL-1β stimulates keratinocyte proliferation, and rhPEPD significantly augmented this process through activation of epidermal growth factor receptor (EGFR) and downstream signaling proteins as phosphorylated Akt, ERK1/2, and STAT3, which are implicated in keratinocyte migration, proliferation, and epithelialization during the wound healing process. Inhibition of PEPD-dependent EGFR signaling by gefitinib supported the finding. Moreover, during activation of EGFR in the presence of IL-1β the epithelial-to-mesenchymal transition (EMT) occurred via downregulation of E-cadherin and upregulation of N-cadherin. The phenomenon was accompanied by an increase in the activity of matrix metalloproteinase-9 (MMP-9), suggesting extracellular matrix (ECM) remodeling during the inflammatory process. MMP-9 activation may result from nuclear translocation of NF-κB through IKK-mediated IκBα degradation. Interestingly, some mutated variants of PEPD (rhPEPD-G448R, rhPEPD-231delY, and rhPEPD-E412K) evoked the ability to induce EGFR-dependent HaCaT cell proliferation. To the best of our knowledge, this is the first report on the cross-talk between PEPD and IL-1β in the process of keratinocyte proliferation. The data suggest that both enzymatically active and inactive rhPEPD may activate EGFR-dependent cell growth in an experimental model of inflammation in HaCaT keratinocytes and the knowledge may be useful for further approaches for therapy of wound healing disorders.
Collapse
Affiliation(s)
- Magdalena Nizioł
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| | - Ilona Ościłowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Pałka
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Roberta Besio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Wojciech Miltyk,
| |
Collapse
|
17
|
Nii T, Tabata Y. Immunosuppressive mesenchymal stem cells aggregates incorporating hydrogel microspheres promote an in vitro invasion of cancer cells. Regen Ther 2022; 18:516-522. [PMID: 34977285 PMCID: PMC8668441 DOI: 10.1016/j.reth.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The objective of this study is to design a co-culture system of cancer cells and three-dimensional (3D) mesenchymal stem cells (MSC) aggregates for the in vitro evaluation of cancer invasion. Methods First, the MSC of an immunosuppressive phenotype (MSC2) were prepared by the MSC stimulation of polyriboinosinic polyribocytidylic acid. By simple mixing MSC2 and gelatin hydrogel microspheres (GM) in a U-bottomed well of 96 well plates which had been pre-coated with poly (vinyl alcohol), 3D MSC2 aggregates incorporating GM were obtained. The amount of chemokine (C–C motif) ligand 5 (CCL5) secreted from the MSC2 aggregates incorporating GM. Finally, an invasion assay was performed to evaluate the cancer invasion rate by co-cultured cancer cells and the 3D MSC2 incorporating GM. Results The amount of CCL5 secreted for the 3D MSC2 aggregates incorporating GM was significantly higher than that of two-dimensional (2D) MSC, 2D MSC2, and 3D MSC aggregates incorporating GM. When MDA-MB-231 human breast cancer cells were co-cultured with the 3D MSC2 aggregates incorporating GM, the invasion rate of cancer cells was significantly high compared with that of 2D MSC or 2D MSC2 and 3D MSC aggregates incorporating GM. In addition, high secretion of matrix metalloproteinase-2 was observed for the 3D MSC2 aggregates/cancer cells system. Conclusions It is concluded that the co-culture system of 3D MSC2 aggregates incorporating GM and cancer cells is promising to evaluate the invasion of cancer cells in vitro. This invasion model is an important tool for anti-cancer drug screening. Mesenchymal stem cells of an immunosuppressive phenotype (MSC2) were obtained. 3D MSC2 aggregates incorporating gelatin hydrogel microspheres were prepared. 3D MSC2 aggregates promoted the invasion rate of cancer cells.
Collapse
Key Words
- (CCL)5, chemokine (C–C motif) ligand
- 2D, two-dimensional
- 3D, three-dimensional
- Anti-cancer drug screening
- CAF, cancer-associated fibroblasts
- Cancer invasion model
- DDW, double-distilled water
- DMEM, Dulbecco's modified Eagle's medium
- ELISA, enzyme-linked immunosolvent assay
- FCS, fetal calf serum
- GM, gelatin hydrogel microspheres
- Gelatin hydrogel microspheres
- MEM, minimum essential medium
- MMP, matrix metalloproteinase
- MSC, mesenchymal stem cells
- MSC2, MSC of an immunosuppressive phenotype
- Mesenchymal stem cells
- PBS, phosphate buffered-saline
- PVA, poly (vinyl alcohol)
- TAM, tumor-associated macrophages
- Three-dimensional cell culture
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
18
|
Silveira TL, Pang LY, Di Domenico A, Veloso ES, Silva ILD, Puerto HLD, Ferreria E, Argyle DJ. COX-2 Silencing in Canine Malignant Melanoma Inhibits Malignant Behaviour. Front Vet Sci 2021; 8:633170. [PMID: 34513965 PMCID: PMC8427276 DOI: 10.3389/fvets.2021.633170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Metastatic melanoma is a very aggressive form of cancer in both humans and dogs. Dogs primarily develop oral melanoma of mucosal origin. Although oral melanoma in humans is rare, both diseases are highly aggressive with frequent metastases. This disease represents a “One Health” opportunity to improve molecular and mechanistic understanding of melanoma progression. Accumulating evidence suggests that cyclooxygenase-2 (COX-2) may play a critical role in the malignant behaviour of melanoma. In this study we analysed 85 histologically confirmed melanomas from canine patients and showed that COX-2 is overexpressed in both oral and cutaneous melanomas and that COX-2 expression correlates with established markers of poor prognosis. To determine the role of COX-2 in melanoma we developed two melanoma cell lines with stable integration of an inducible doxycycline-regulated expression vector containing a COX-2 targeted micro-RNA (miRNA). Using this system, we showed that cellular proliferation, migration and invasion are COX-2 dependent, establishing a direct relationship between COX-2 expression and malignant behaviour in canine melanoma. We have also developed a powerful molecular tool to aid further dissection of the mechanisms by which COX-2 regulates melanoma progression.
Collapse
Affiliation(s)
- Tatiany L Silveira
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alexandra Di Domenico
- Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Emerson S Veloso
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Istéfani L D Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen L Del Puerto
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Enio Ferreria
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies, Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Gómez-Valenzuela F, Escobar E, Pérez-Tomás R, Montecinos VP. The Inflammatory Profile of the Tumor Microenvironment, Orchestrated by Cyclooxygenase-2, Promotes Epithelial-Mesenchymal Transition. Front Oncol 2021; 11:686792. [PMID: 34178680 PMCID: PMC8222670 DOI: 10.3389/fonc.2021.686792] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) corresponds to a complex and dynamic interconnection between the extracellular matrix and malignant cells and their surrounding stroma composed of immune and mesenchymal cells. The TME has constant cellular communication through cytokines that sustain an inflammatory profile, which favors tumor progression, angiogenesis, cell invasion, and metastasis. Although the epithelial-mesenchymal transition (EMT) represents a relevant metastasis-initiating event that promotes an invasive phenotype in malignant epithelial cells, its relationship with the inflammatory profile of the TME is poorly understood. Previous evidence strongly suggests that cyclooxygenase-2 (COX-2) overexpression, a pro-inflammatory enzyme related to chronic unresolved inflammation, is associated with common EMT-signaling pathways. This review article summarizes how COX-2 overexpression, within the context of the TME, orchestrates the EMT process and promotes initial metastatic-related events.
Collapse
Affiliation(s)
- Fernán Gómez-Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrico Escobar
- Department of Oral Pathology and Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapy - Bellvitge, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Viviana P Montecinos
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Parmar B, Verma U, Khaire K, Danes D, Balakrishnan S. Inhibition of Cyclooxygenase-2 Alters Craniofacial Patterning during Early Embryonic Development of Chick. J Dev Biol 2021; 9:16. [PMID: 33922791 PMCID: PMC8167724 DOI: 10.3390/jdb9020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
A recent study from our lab revealed that the inhibition of cyclooxygenase-2 (COX-2) exclusively reduces the level of PGE2 (Prostaglandin E2) among prostanoids and hampers the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence cranial neural crest cell (CNCC) migration was checked in chick embryos after inhibiting COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1 (E-cadherin), CDH2 (N-cadherin), MSX1 (Msh homeobox 1), and TGF-β (Transforming growth factor beta), observed in the etoricoxib-treated embryos indicate that COX-2, through its downstream effector PGE2, regulates the expression of these factors perhaps to aid the migration of CNCCs. The histological features and levels of FoxD3 (Forkhead box D3), as well as PCNA (Proliferating cell nuclear antigen), further consolidate the role of COX-2 in the migration and survival of CNCCs in developing embryos. The results of the current study indicate that COX-2 plays a pivotal role in orchestrating craniofacial structures perhaps by modulating CNCC proliferation and migration during the embryonic development of chicks.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390002, India; (B.P.); (U.V.); (K.K.); (D.D.)
| |
Collapse
|
21
|
Gynura divaricata Water Extract Presented the Possibility to Enhance Neuronal Regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8818618. [PMID: 33680064 PMCID: PMC7904343 DOI: 10.1155/2021/8818618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 11/20/2022]
Abstract
Gynura divaricata (GD) is an Asian herb widely used as an alternative medicine and functional food for type 2 diabetes. Diabetic neuropathy is considered as an important complication of diabetic patients. This study focused on neuroregenerative effects of GD for use in the prevention of diabetic neuropathy. GD leaves were cut and boiled in water to mimic real-life cooking. The boiled content was filtered through white gauze and lyophilized to preserve as dried powder. Antioxidant assay was performed using DPPH assays. UHPLC-QTOF-MS/MS was employed to test for important compounds in the extract of these herbs. MTT assay was used to test for cell viability. The extracts at concentration of 250 μg/mL were tested with human gingival cell to observe the change of gene expression. The DPPH assay showed that GD water extract at the concentration of 5000 μg/mL could inhibit DPPH radical for 39.2%. The results showed that 5000 µg of GD water extract contained total phenolic content equivalent to 310.9 µg standard gallic acid. UHPLC-QTOF-MS/MS result found phenolic acids and flavonoids as the main components. Human gingival cells treated with 250 μg/mL of GD water extract for 10 days showed upregulation of some neuronal differentiation markers. Staining with Cdr3 dye confirmed the presentation of neuronal progenitors. The extract at the concentration of 250 μg/mL was also tested with apical papilla cells to screen for change of gene expression by RNA sequencing. The result also showed significant upregulation of alpha-internexin (INA). These results indicated that GD water extract might have an inductive effect for neural regeneration and could be used as functional food and supplementation for the prevention or treatment of diabetic neuropathy. This work provided the basic knowledge for further investigations into the benefits of GD for diabetic neuropathy.
Collapse
|
22
|
Ji T, Ji WW, Wang J, Chen HJ, Peng X, Cheng KJ, Qiu D, Yang WJ. A comprehensive review on traditional uses, chemical compositions, pharmacology properties and toxicology of Tetrastigma hemsleyanum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113247. [PMID: 32800929 PMCID: PMC7422820 DOI: 10.1016/j.jep.2020.113247] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetrastigma hemsleyanum Diels et Gilg (T.hemsleyanum), a rare herbal plant distributed in subtropical areas of mainland China, has become a focus of scientific attention in recent years because of its high traditional value, including uses for treatment of children with fever, pneumonia, asthma, rheumatism, hepatitis, menstrual disorders, scrofula, and pharynx pain. AIM This systematic review aims to provide an insightful understanding of traditional uses, chemical composition, pharmacological effect and clinical application of T. hemsleyanum, and lay a foundation for the further study and for the utilization of T. hemsleyanum resource. MATERIALS AND METHODS A domestic and overseas literature search in known databases was conducted for published articles using the relevant keywords. RESULTS One hundred and forty-two chemical constituents identified from T. hemsleyanum have been reported, including flavonoids, phenolic acids, polysaccharide, organic acids, fatty acids, terpenoids, steroids, amino acid and others. Among these components, flavonoids and polysaccharides were the representative active ingredients of T. hemsleyanum, which have been widely investigated. Modern pharmacological studies have shown that these components exhibited various pharmacological activities, such as anti-inflammatory, antioxidant, antivirus, antitumor, antipyretic, anti-hepatic injury, immunomodulatory, antibacterial etc. Moreover, different toxicological studies indicated that the clinical dosage of T. hemsleyanum was safe and reliable. CONCLUSIONS Modern pharmacological studies have well supported and clarified some traditional uses, and T. hemsleyanum has a good prospect for the development of new drugs due to these outstanding properties. However, the present findings did not provide an in-depth evaluation of bioactivity of the extracts, the composition of its active extracts was not clear. Moreover, they were insufficient to satisfactorily explain some mechanisms of action. Data regarding many aspects of T. hemsleyanum, such as links between the traditional uses and bioactivities, pharmacokinetics, quality control standard and the clinical value of active compositions is still limited which need more attention.
Collapse
Affiliation(s)
- Tao Ji
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Wei Wei Ji
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Juan Wang
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Hong Jiang Chen
- Zhejiang Pharmaceutical College, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Xin Peng
- Ningbo Research Institute of Zhejiang University, Ningbo, 315100, Zhejiang, People's Republic of China.
| | - Ke Jun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, Zhejiang, People's Republic of China
| | - Dan Qiu
- Feng Hua Institute of Science and Technology, Ningbo University of Technology, Ningbo, 315100, Zhejiang, People's Republic of China
| | - Wei Jie Yang
- Feng Hua Institute of Science and Technology, Ningbo University of Technology, Ningbo, 315100, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
de Araújo WM, Tanaka MN, Lima PHS, de Moraes CF, Leve F, Bastos LG, Rocha MR, Robbs BK, Viola JPB, Morgado-Diaz JA. TGF-β acts as a dual regulator of COX-2/PGE 2 tumor promotion depending of its cross-interaction with H-Ras and Wnt/β-catenin pathways in colorectal cancer cells. Cell Biol Int 2021; 45:662-673. [PMID: 33300198 DOI: 10.1002/cbin.11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 01/10/2023]
Abstract
Transforming growth factor-β (TGF-β) plays a dual role acting as tumor promoter or suppressor. Along with cyclooxygenase-2 (COX-2) and oncogenic Ras, this multifunctional cytokine is deregulated in colorectal cancer. Despite their individual abilities to promote tumor growth and invasion, the mechanisms of cross regulation between these pathways is still unclear. Here, we investigate the effects of TGF-β, Ras oncogene and COX-2 in the colorectal cancer context. We used colon adenocarcinoma cell line HT-29 and Ras-transformed IEC-6 cells, both treated with prostaglandin E2 (PGE2 ), TGF-β or a combined treatment with these agents. We demonstrated that PGE2 alters the subcellular localization of E-cadherin and β-catenin and enhanced the tumorigenic potential in HT-29 cells. This effect was inhibited by TGF-β, indicating a tumor suppressor role. Conversely, in Ras-transformed IEC-6 cells, TGF-β induced COX-2 expression and increased invasiveness, acting as a tumor promoter. In IEC-6 Ras-transformed cells, TGF-β increased nuclear β-catenin and Wnt/β-catenin activation, opposite to what was seen in the PGE2 and TGF-β joint treatment in HT-29 cells. Together, our findings show that TGF-β increases COX-2 levels and induces invasiveness cooperating with Ras in a Wnt/β-catenin activation-dependent manner. This shows TGF-β dual regulation over COX-2/PGE2 tumor promotion depending on the H-Ras and Wnt/β-catenin pathways activation status in intestinal cancer cells.
Collapse
Affiliation(s)
- Wallace M de Araújo
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Marcelo N Tanaka
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Pedro H S Lima
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Cassio F de Moraes
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Fernanda Leve
- Tissue Bioengineering Laboratory (Labio), Division of Metrology Applied to Life Sciences (Dimav), National Institute of Metrology Quality & Technology (Inmetro), Duque de Caxias, Brazil
| | - Lilian G Bastos
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Murilo R Rocha
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| | - Bruno K Robbs
- Basic Science Department, Campus Universitário de Nova Friburgo, Universidade Federal Fluminense, UFF, Rio de Janeiro, RJ, Brazil
| | - João P B Viola
- Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Jose A Morgado-Diaz
- Cellular and Molecular Oncobiology Program, Instituto Nacional de Câncer, INCA, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Hahnvajanawong C, Sahakulboonyarak T, Boonmars T, Reutrakul V, Kerdsin A, Boueroy P. Inhibitory effect of isomorellin on cholangiocarcinoma cells via suppression of NF-κB translocation, the phosphorylated p38 MAPK pathway and MMP-2 and uPA expression. Exp Ther Med 2020; 21:151. [PMID: 33456518 PMCID: PMC7792505 DOI: 10.3892/etm.2020.9583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence indicates that most cancer deaths are caused by tumor invasion and metastasis. Cholangiocarcinoma (CCA) is a tumor of the bile duct epithelium characterized by slow growth, rapid metastasis and poor prognosis. Caged xanthones are extracted from gamboge, a dry resin exuded by Garcinia hanbury. These compounds have been reported to be cytotoxic to several types of cancer cells, without affecting normal cells. The aim of the present study was to determine the effect of isomorellin on the inhibition of CCA cell (KKU-100) viability, migration, invasion and the expression of invasion-regulated proteins. Cytotoxicity of isomorellin was evaluated using a sulforhodamine B assay. The anti-migratory and anti-invasive effects of isomorellin on KKU-100 cells were assessed using wound healing and chamber invasion assays, respectively. Furthermore, the activities of matrix metalloproteinases (MMPs)-2 and -9, and urokinase-type plasminogen activator (uPA) were also investigated. The expression levels of proteins regulating invasion were determined via western blot analysis. The cell viability of KKU-100 cells was decreased following treatment with isomorellin in a dose-dependent manner, with IC50 values at 24, 48 and 72 h of 3.46±0.19, 3.78±0.02 and 4.01±0.01 µM, respectively. Wound healing and chamber invasion assays indicated that isomorellin significantly inhibited KKU-100 cell migration and invasion in a dose-dependent manner. In addition, isomorellin significantly inhibited cancer cell migration and invasion abilities via focal adhesion kinase (FAK), protein kinase C (PKC), the phosphorylated (p)-p38 mitogen-activated protein kinase (MAPK) pathway, and nuclear factor (NF)-κB expression and translocation to the nucleus, thus resulting in downregulation of MMP-2, uPA and cyclooxygenase-2 (COX-2) expression. Therefore, inhibition of MMP-2, uPA and COX-2 expression may result in decreased CCA cell invasion ability. These data demonstrated for the first time that the suppression of KKU-100 cell viability, invasion and migration, and downregulation of NF-κB, MMP-2, uPA and the p-p38 MAPK pathway, may result in isomorellin-mediated anti-invasiveness.
Collapse
Affiliation(s)
- Chariya Hahnvajanawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thitiporn Sahakulboonyarak
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400, Thailand
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Mahidol University, Bangkok 10400, Thailand.,Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| |
Collapse
|
25
|
Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12113147. [PMID: 33121001 PMCID: PMC7692067 DOI: 10.3390/cancers12113147] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids. They also highlight the role of adipose tissue in tumor progression as well as the potential antitumor role of drugs targeting critical steps of lipid metabolic pathways in the context of melanoma. Abstract Metabolic reprogramming contributes to the pathogenesis and heterogeneity of melanoma. It is driven both by oncogenic events and the constraints imposed by a nutrient- and oxygen-scarce microenvironment. Among the most prominent metabolic reprogramming features is an increased rate of lipid synthesis. Lipids serve as a source of energy and form the structural foundation of all membranes, but have also emerged as mediators that not only impact classical oncogenic signaling pathways, but also contribute to melanoma progression. Various alterations in fatty acid metabolism have been reported and can contribute to melanoma cell aggressiveness. Elevated expression of the key lipogenic fatty acid synthase is associated with tumor cell invasion and poor prognosis. Fatty acid uptake from the surrounding microenvironment, fatty acid β-oxidation and storage also appear to play an essential role in tumor cell migration. The aim of this review is (i) to focus on the major alterations affecting lipid storage organelles and lipid metabolism. A particular attention has been paid to glycerophospholipids, sphingolipids, sterols and eicosanoids, (ii) to discuss how these metabolic dysregulations contribute to the phenotype plasticity of melanoma cells and/or melanoma aggressiveness, and (iii) to highlight therapeutic approaches targeting lipid metabolism that could be applicable for melanoma treatment.
Collapse
|
26
|
Mao L, Yang J, Yue J, Chen Y, Zhou H, Fan D, Zhang Q, Buraschi S, Iozzo RV, Bi X. Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis. Matrix Biol 2020; 95:1-14. [PMID: 33065248 DOI: 10.1016/j.matbio.2020.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The tumor microenvironment encompasses a complex cellular network that includes cancer-associated fibroblasts, inflammatory cells, neo-vessels, and an extracellular matrix enriched in angiogenic growth factors. Decorin is one of the main components of the tumor stroma, but it is not expressed by cancer cells. Lack of this proteoglycan correlates with down-regulation of E-cadherin and induction of β-catenin signaling. In this study, we investigated the role of a decorin-deficient tumor microenvironment in colon carcinoma progression and metastasis. We utilized an established model of colitis-associated cancer by administering Azoxymethane/Dextran sodium sulfate to adult wild-type and Dcn-/- mice. We discovered that after 12 weeks, all the animals developed intestinal tumors independently of their genotype. However, the number of intestinal neoplasms was significantly higher in the Dcn-/- microenvironment vis-à-vis wild-type mice. Mechanistically, we found that under unchallenged basal conditions, the intestinal epithelium of the Dcn-/- mice showed a significant increase in the protein levels of epithelial-mesenchymal transition associated factors including Snail, Slug, Twist, and MMP2. In comparison, in the colitis-associated cancer evoked in the Dcn-/- mice, we found that intercellular adhesion molecule 1 (ICAM-1) was also significantly increased, in parallel with epithelial-mesenchymal transition signaling pathway-related factors. Furthermore, a combined Celecoxib/decorin treatment revealed a promising therapeutic efficacy in treating human colorectal cancer cells, in decorin-deficient animals. Collectively, our results shed light on colorectal cancer progression and provide a protein-based therapy, i.e., treatment using recombinant decorin, to target the tumor microenvironment.
Collapse
Affiliation(s)
- Liping Mao
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jinxue Yang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jiaxin Yue
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yang Chen
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Dongdong Fan
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qiuhua Zhang
- Department of Pharmacology, Liaoning University of Traditional Chinese Medicine, Shenyang 110036, China
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
27
|
Davis FM, Tsoi LC, Wasikowski R, denDekker A, Joshi A, Wilke C, Deng H, Wolf S, Obi A, Huang S, Billi AC, Robinson S, Lipinski J, Melvin WJ, Audu CO, Weidinger S, Kunkel SL, Smith A, Gudjonsson JE, Moore BB, Gallagher KA. Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair. JCI Insight 2020; 5:138443. [PMID: 32879137 PMCID: PMC7526451 DOI: 10.1172/jci.insight.138443] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are a primary immune cell involved in inflammation, and their cell plasticity allows for transition from an inflammatory to a reparative phenotype and is critical for normal tissue repair following injury. Evidence suggests that epigenetic alterations play a critical role in establishing macrophage phenotype and function during normal and pathologic wound repair. Here, we find in human and murine wound macrophages that cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) is elevated in diabetes and regulates downstream macrophage-mediated inflammation and host defense. Using single-cell RNA sequencing of human wound tissue, we identify increased NF-κB-mediated inflammation in diabetic wounds and show increased COX-2/PGE2 in diabetic macrophages. Further, we identify that COX-2/PGE2 production in wound macrophages requires epigenetic regulation of 2 key enzymes in the cytosolic phospholipase A2/COX-2/PGE2 (cPLA2/COX-2/PGE2) pathway. We demonstrate that TGF-β-induced miRNA29b increases COX-2/PGE2 production via inhibition of DNA methyltransferase 3b-mediated hypermethylation of the Cox-2 promoter. Further, we find mixed-lineage leukemia 1 (MLL1) upregulates cPLA2 expression and drives COX-2/PGE2. Inhibition of the COX-2/PGE2 pathway genetically (Cox2fl/fl Lyz2Cre+) or with a macrophage-specific nanotherapy targeting COX-2 in tissue macrophages reverses the inflammatory macrophage phenotype and improves diabetic tissue repair. Our results indicate the epigenetically regulated PGE2 pathway controls wound macrophage function, and cell-targeted manipulation of this pathway is feasible to improve diabetic wound repair.
Collapse
Affiliation(s)
- Frank M Davis
- Section of Vascular Surgery, Department of Surgery.,Department of Microbiology and Immunology
| | | | | | | | - Amrita Joshi
- Section of Vascular Surgery, Department of Surgery
| | - Carol Wilke
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hongping Deng
- Department of Bioengineering, University of Illinois, Champaign, Illinois, USA
| | - Sonya Wolf
- Section of Vascular Surgery, Department of Surgery
| | - Andrea Obi
- Section of Vascular Surgery, Department of Surgery
| | - Steven Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Jay Lipinski
- Section of Vascular Surgery, Department of Surgery
| | | | | | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew Smith
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Bethany B Moore
- Department of Microbiology and Immunology.,Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery.,Department of Microbiology and Immunology
| |
Collapse
|
28
|
Haldar R, Ricon-Becker I, Radin A, Gutman M, Cole SW, Zmora O, Ben-Eliyahu S. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: A randomized controlled trial. Cancer 2020; 126:3991-4001. [PMID: 32533792 DOI: 10.1002/cncr.32950] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Preclinical studies have implicated excess release of catecholamines and prostaglandins in the mediation of prometastatic processes during surgical treatment of cancer. In this study, we tested the combined perioperative blockade of these pathways in patients with colorectal cancer (CRC). METHODS In a randomized, double-blind, placebo-controlled biomarker trial involving 34 patients, the β-blocker propranolol and the COX2-inhibitor etodolac were administered for 20 perioperative days, starting 5 days before surgery. Excised tumors were subjected to whole genome messenger RNA profiling and transcriptional control pathway analyses. RESULTS Drugs were well-tolerated, with minor complications in both the treatment group and the placebo group. Treatment resulted in a significant improvement (P < .05) of tumor molecular markers of malignant and metastatic potential, including 1) reduced epithelial-to-mesenchymal transition, 2) reduced tumor infiltrating CD14+ monocytes and CD19+ B cells, and 3) increased tumor infiltrating CD56+ natural killer cells. Transcriptional activity analyses indicated a favorable drug impact on 12 of 19 a priori hypothesized CRC-related transcription factors, including the GATA, STAT, and EGR families as well as the CREB family that mediates the gene regulatory impact of β-adrenergic- and prostaglandin-signaling. Alterations observed in these transcriptional activities were previously associated with improved long-term clinical outcomes. Three-year recurrence rates were assessed for long-term safety analyses. An intent-to-treat analysis revealed that recurrence rates were 12.5% (2/16) in the treatment group and 33.3% (6/18) in the placebo group (P = .239), and in protocol-compliant patients, recurrence rates were 0% (0/11) in the treatment group and 29.4% (5/17) in the placebo group (P = .054). CONCLUSIONS The favorable biomarker impacts and clinical outcomes provide a rationale for future randomized placebo-controlled trials in larger samples to assess the effects of perioperative propranolol/etodolac treatment on oncological clinical outcomes.
Collapse
Affiliation(s)
- Rita Haldar
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Itay Ricon-Becker
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Arielle Radin
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Mordechai Gutman
- Department of Surgery and Transplantation, Sheba Medical Center, Ramat-Gan, Israel
| | - Steve W Cole
- Departments of Medicine and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Oded Zmora
- Department of Surgery, Shamir Medical Center, Be'er-Ya'akov, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience and School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
29
|
Moon H, White AC, Borowsky AD. New insights into the functions of Cox-2 in skin and esophageal malignancies. Exp Mol Med 2020; 52:538-547. [PMID: 32235869 PMCID: PMC7210257 DOI: 10.1038/s12276-020-0412-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Understanding the cellular and molecular mechanisms of tumor initiation and progression for each cancer type is central to making improvements in both prevention and therapy. Identifying the cancer cells of origin and the necessary and sufficient mechanisms of transformation and progression provide opportunities for improved specific clinical interventions. In the last few decades, advanced genetic manipulation techniques have facilitated rapid progress in defining the etiologies of cancers and their cells of origin. Recent studies driven by various groups have provided experimental evidence indicating the cellular origins for each type of skin and esophageal cancer and have identified underlying mechanisms that stem/progenitor cells use to initiate tumor development. Specifically, cyclooxygenase-2 (Cox-2) is associated with tumor initiation and progression in many cancer types. Recent studies provide data demonstrating the roles of Cox-2 in skin and esophageal malignancies, especially in squamous cell carcinomas (SCCs) occurring in both sites. Here, we review experimental evidence aiming to define the origins of skin and esophageal cancers and discuss how Cox-2 contributes to tumorigenesis and differentiation.
Collapse
Affiliation(s)
- Hyeongsun Moon
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA.
| | - Andrew C White
- Department of Biological Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, 95616, USA
| |
Collapse
|
30
|
Yamamoto S, Miyama T, Komoda T, Sugawara M, Nonomura M, Nakanishi J. A Facile Assay of Epithelial-mesenchymal Transition Based on Cooperativity Quantification of Cellular Autonomous Motions. ANAL SCI 2020; 36:263-267. [PMID: 31588066 DOI: 10.2116/analsci.19p233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial-mesenchymal transition (EMT), a qualitative change in cell migration behavior during cancer invasion and metastasis, is becoming a new target for anticancer drugs. Therefore, it is crucial to develop in vitro assays for the evaluation of the abilities of drug candidates to control EMT progression. We herein report on a method for the quantification of the EMT based on particle image velocimetry and correlation functions. The exponential fitting of the correlation curve gives an index (λ), which represents transforming growth factor (TGF)-β1-induced EMT progression and its suppression by inhibitors. Moreover, real-time monitoring of the λ value illustrates a time-dependent EMT progressing process, which occurs earlier than the bio-chemical changes in an EMT marker protein expression. The results demonstrate the usefulness of the present method for kinetic studies of EMT progression as well as EMT inhibitor screening.
Collapse
Affiliation(s)
- Shota Yamamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS)
| | - Tatsuya Miyama
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Department of Mathematical Information Engineering, College of Industrial Technology, Nihon University
| | - Takafumi Komoda
- Department of Mechanical Engineering, Graduate School of Engineering, Chiba University
| | - Michiko Sugawara
- Department of Mechanical Engineering, Graduate School of Engineering, Chiba University
| | - Makiko Nonomura
- Department of Mathematical Information Engineering, College of Industrial Technology, Nihon University
| | - Jun Nakanishi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS).,Graduate School of Advanced Science and Engineering, Waseda University
| |
Collapse
|
31
|
Lu YB, Sun TJ, Chen YT, Cai ZY, Zhao JY, Miao F, Yang YN, Wang SX. Targeting the Epithelial-to-Mesenchymal Transition in Cancer Stem Cells for a Better Clinical Outcome of Glioma. Technol Cancer Res Treat 2020; 19:1533033820948053. [PMID: 33089751 PMCID: PMC7586027 DOI: 10.1177/1533033820948053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system with a poor prognosis at present due to lack of effective treatment options. Its initiation, migration, and multipotency are affected by cancer stem cell's transition. Previous studies imply that changes in the cancer stem cells can affect the malignant differentiation of the tumor. We found that the epithelial-to-mesenchymal transition (EMT)-related regulatory pathway is an important target for tumor therapy. In this review, we discuss the transition factor of EMT and 3 specific pathways that affect the EMT of cancer stem cells during tumor development. We conclude that targeting the EMT process of cancer stem cells can be a feasible approach in the treatment of glioma.
Collapse
Affiliation(s)
- Yu-bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- *Both authors contributed equally to this study and share first authorship
| | - Tian-Jiao Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- *Both authors contributed equally to this study and share first authorship
| | - Yu-tong Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Zong-Yan Cai
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Jia-Yu Zhao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Feng Miao
- Zhangye People's Hospital Affiliated to Hexi University, Zhangye, Gansu, China
| | - Yong-na Yang
- Department of Neurology, The First People’s Hospital of Lanzhou City, Lanzhou, Gansu, China
| | - Shi-Xin Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Chen YJ, Huang SM, Tai MC, Chen JT, Lee AR, Huang RY, Liang CM. The anti-fibrotic and anti-inflammatory effects of 2,4-diamino-5-(1-hydroxynaphthalen-2-yl)-5H-chromeno[2,3-b] pyriine-3-carbonitrile in corneal fibroblasts. Pharmacol Rep 2019; 72:115-125. [PMID: 32016832 DOI: 10.1007/s43440-019-00026-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although several studies had addressed the anti-inflammatory effects of derivatives of 4H-chromene and chromeno[2,3-b]pyridine in the different types of cells, whether these derivatives would exert beneficial anti-fibrotic effects during corneal fibrotic scar formation was unclear. METHODS We examined the cyclooxygenase-2 (COX-2) expression of 2,4-diamino-5-(1-hydroxynaphthalen-2-yl)-5H-chromeno[2,3-b]pyridine-3-carbonitrile (N1) in the human corneal fibroblasts (HCFs) under the treatment TGF-β1. Signaling pathways underlying the mechanism of the N1 effect on the HCFs were determined. RESULTS Application of N1 significantly decreased COX-2 expression after 2 h and 4 h in the HCFs stimulated with TGF-β1. Notably, reduced production of extracellular matrix proteins under N1 treatment was found, including fibronectin, collagen I, and matrix metallopeptidase 9. Immunoblot analysis showed that treatment with N1 significantly attenuated phosphorylation of both STAT3 and Smad 2 in the TGF-β1-stimulated HCFs. Upregulated mRNA of Smad2 and downregulated mRNA of Smad3 were observed using the quantitative real-time polymerase chain reaction. In addition, N1 induced significant increases in HO-1 and Nrf2 expression, but inhibited phosphorylation of NF-κB in the HCFs treated with TGF-β1. CONCLUSIONS Our findings show for the first time that N1 exerts anti-fibrotic and anti-inflammatory effects through suppression of COX-2, Smad2, STAT3, iNOS and NF-κB expressions as well as upregulation of Nrf2 and HO-1 expressions, which suggests they are potential therapeutic targets in the treatment of corneal fibrosis.
Collapse
Affiliation(s)
- Ying-Jen Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Ophthalmology, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Number 325, Section 2 Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ming-Cheng Tai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Ophthalmology, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Number 325, Section 2 Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - Jiann-Torng Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Department of Ophthalmology, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Number 325, Section 2 Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China
| | - An-Rong Lee
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chang-Min Liang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,Department of Ophthalmology, School of Medicine, Tri-Service General Hospital, National Defense Medical Center, Number 325, Section 2 Chang-gong Rd, Nei-Hu District, 114, Taipei, Taiwan, Republic of China.
| |
Collapse
|
33
|
Nordin A, Kamal H, Yazid MD, Saim A, Idrus R. Effect of Nigella sativa and its bioactive compound on type 2 epithelial to mesenchymal transition: a systematic review. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:290. [PMID: 31666058 PMCID: PMC6821016 DOI: 10.1186/s12906-019-2706-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nigella sativa or commonly known as black seed or black cumin is one of the most ubiquitous complementary medicine. Epithelial to mesenchymal transition (EMT) of type 2 is defined by the balance between wound healing and tissue fibrosis, which is dependent to the state of inflammation. This systematic review is conducted to provide an overview regarding the reported effect of Nigella sativa and its bioactive compound on the type 2 EMT. METHODS A search was done in EBSCOHOST, OVID and SCOPUS database to obtain potentially relevant articles that were published between 1823 and August 2019. This review includes studies that focus on the effect of Nigella sativa and its bioactive compound on the events related to type 2 EMT. RESULTS A total of 1393 research articles were found to be potentially related to the effect of Nigella sativa and its bioactive compound, thymoquinone on Type 2 EMT. After screening was done, 22 research articles met inclusion criteria and were included in this review. Majority of the studies, reported better wound healing rate or significant prevention of tissue inflammation and organ fibrosis following Nigella sativa or thymoquinone treatments. In terms of wound healing, studies included reported progression of EMT related pathological changes after treatment with Nigella sativa or thymoquinone. Alternatively, in terms of fibrosis and inflammation, studies included reported reversal of pathological changes related to EMT after treatment with Nigella sativa or thymoquinone. CONCLUSION Through this review, Nigella sativa and thymoquinone have been associated with events in Type 2 EMT. They have been shown to promote wound healing, attenuate tissue inflammation, and prevent organ fibrosis via regulation of the EMT process.
Collapse
Affiliation(s)
- Abid Nordin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur Malaysia
- Nordin Kamil Consulting, 30-2, Jalan Dwitasik, Dataran Dwitasik, 56000 Cheras, Kuala Lumpur Malaysia
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur Malaysia
| | - Aminuddin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor Malaysia
| | - Ruszymah Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur Malaysia
| |
Collapse
|
34
|
Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, Saini SK, Kaushik M, Arora A, Kumari U, Bamezai RNK, Dhar PK. miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int 2019; 19:230. [PMID: 31516387 PMCID: PMC6731614 DOI: 10.1186/s12935-019-0933-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Despite several reports describing the dual role of miR-145 as an oncogene and a tumor suppressor in cancer, not much has been resolved and understood. Method In this study, the potential targets of miR-145 were identified bio-informatically using different target prediction tools. The identified target genes were validated in vitro by dual luciferase assay. Wound healing and soft agar colony assay assessed cell proliferation and migration. miR-145 expression level was measured quantitatively by RT-PCR at different stages of breast tumor. Western blot was used to verify the role of miR-145 in EMT transition using key marker proteins. Result Wound healing and soft agar colony assays, using miR-145 over-expressing stably transfected MCF7 cells, unraveled its role as a pro-proliferation candidate in cancerous cells. The association between miR-145 over-expression and differential methylation patterns in representative target genes (DR5, BCL2, TP53, RNF8, TIP60, CHK2, and DCR2) supported the inference drawn. These in vitro observations were validated in a representative set of nodal positive tumors of stage 3 and 4 depicting higher miR-145 expression as compared to early stages. Further, the role of miR-145 in epithelial-mesenchymal (EMT) transition found support through the observation of two key markers, Vimentin and ALDL, where a positive correlation with Vimentin protein and a negative correlation with ALDL mRNA expression were observed. Conclusion Our results demonstrate miR-145 as a pro-cancerous candidate, evident from the phenotypes of aggressive cellular proliferation, epithelial to mesenchymal transition, hypermethylation of CpG sites in DDR and apoptotic genes and upregulation of miR-145 in later stages of tumor tissues.
Collapse
Affiliation(s)
- Siddharth Manvati
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Kailash Chandra Mangalhara
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Rupali Chopra
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gaurav Agarwal
- 3Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rakesh Kumar
- 4School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir India
| | - Sunil Kumar Saini
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monika Kaushik
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Arora
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Usha Kumari
- 5Faculty of Medicine, AIMST University, Bedong, Malaysia
| | - Rameshwar Nath Koul Bamezai
- 2National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pawan Kumar Dhar
- 1School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
35
|
Jensen MS, Mutsaers HAM, Tingskov SJ, Christensen M, Madsen MG, Olinga P, Kwon T, Nørregaard R. Activation of the prostaglandin E 2 EP 2 receptor attenuates renal fibrosis in unilateral ureteral obstructed mice and human kidney slices. Acta Physiol (Oxf) 2019; 227:e13291. [PMID: 31054202 PMCID: PMC6767420 DOI: 10.1111/apha.13291] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 12/18/2022]
Abstract
Aim Renal fibrosis plays a pivotal role in the development and progression of chronic kidney disease, which affects 10% of the adult population. Previously, it has been demonstrated that the cyclooxygenase‐2 (COX‐2)/prostaglandin (PG) system influences the progression of renal injury. Here, we evaluated the impact of butaprost, a selective EP2 receptor agonist, on renal fibrosis in several models of kidney injury, including human tissue slices. Methods We studied the anti‐fibrotic efficacy of butaprost using Madin‐Darby Canine Kidney (MDCK) cells, mice that underwent unilateral ureteral obstruction and human precision‐cut kidney slices. Fibrogenesis was evaluated on a gene and protein level by qPCR and Western blotting. Results Butaprost (50 μM) reduced TGF‐β‐induced fibronectin (FN) expression, Smad2 phosphorylation and epithelial‐mesenchymal transition in MDCK cells. In addition, treatment with 4 mg/kg/day butaprost attenuated the development of fibrosis in mice that underwent unilateral ureteral obstruction surgery, as illustrated by a reduction in the gene and protein expression of α‐smooth muscle actin, FN and collagen 1A1. More importantly, a similar anti‐fibrotic effect of butaprost was observed in human precision‐cut kidney slices exposed to TGF‐β. The mechanism of action of butaprost appeared to be a direct effect on TGF‐β/Smad signalling, which was independent of the cAMP/PKA pathway. Conclusion In conclusion, this study demonstrates that stimulation of the EP2 receptor effectively mitigates renal fibrogenesis in various fibrosis models. These findings warrant further research into the clinical application of butaprost, or other EP2 agonists, for the inhibition of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy University of Groningen Groningen the Netherlands
| | - Tae‐Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine Kyungpook National University Daegu Korea
| | - Rikke Nørregaard
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| |
Collapse
|
36
|
Marzbany M, Bishayee A, Rasekhian M. Increased expression of ZNF 703 in breast cancer tissue: An opportunity for RNAi-NSAID combinatorial therapy. Biotechnol Appl Biochem 2019; 66:808-814. [PMID: 31195426 DOI: 10.1002/bab.1790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to exhibit antitumor activities. Among the very well-known oncogenes in breast cancer is zinc finger protein 703 (ZNF703) and cyclooxygenase-2 (COX-2). Numerous reports indicate a direct link among apoptosis resistance, chemotherapy resistance, and increased expression of ZNF703. In the present study, the expression level of ZNF703 was compared in human breast cancer tissue, healthy breast tissue, and MCF-7 breast cancer cell line by a real-time PCR. We also investigated the inhibitory effect of anti-ZNF703 RNAi interference (RNAi) and ibuprofen, either individually or in combination, on MCF-7 cell survival and apoptosis. Results showed a 93.3% and fourfold increase in the expression of ZNF703 in breast cancer tissue and MCF-7 cell line, respectively. Ibuprofen inhibited the viability of MCF-7 cells in a concentration-dependent manner. Ibuprofen alone or in combination with anti-ZNF703 RNA reduced the expression of ZNF703, induced apoptosis, reduced mitochondrial membrane potential, and elevated BAX and LC3A in MCF-7 cells. Our results show that the combination of ibuprofen and anti-ZNF703 siRNA is more effective in promoting apoptosis than each treatment alone. We report that the combination of anti-ZNF703 RNAi with ibuprofen as the inhibitor of COX-2 is highly effective in inhibiting MCF-7 as a breast cancer cell line and shows therapeutic potential for breast cancer.
Collapse
Affiliation(s)
- Marzieh Marzbany
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermansha, Iran
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermansha, Iran
| |
Collapse
|
37
|
Wang T, Jing B, Sun B, Liao Y, Song H, Xu D, Guo W, Li K, Hu M, Liu S, Ling J, Kuang Y, Feng Y, Zhou BP, Deng J. Stabilization of PTGES by deubiquitinase USP9X promotes metastatic features of lung cancer via PGE 2 signaling. Am J Cancer Res 2019; 9:1145-1160. [PMID: 31285948 PMCID: PMC6610053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023] Open
Abstract
Early metastasis and local recurrence are the major causes of mortality and poor prognosis of non-small cell lung cancer (NSCLC). However, the underlying mechanisms of these processes are poorly understood. In this study, we aimed to investigate the roles of the PTGES/PGE2 pathway in lung cancer progression. We found that prostaglandin E synthase (PTGES), a key enzyme for PGE2 synthesis in the arachidonic acid pathway, was highly dysregulated in NSCLC. Dysregulated PTGES was essential for the promotion of tumor migration and metastasis of NSCLC cells. Knockdown of PTGES in lung cancer cells resulted in suppressed cell migration, which was reversed by exogenous PGE2. Consistent with this, PTGES knockdown also reduced the expression of CSC markers, tumor sphere formation, colony forming activity, tumorigenicity, and lung metastasis in vivo. Dysregulated PTGES is mainly attributed to protein stabilization by USP9X, a deubiquitination enzyme. USP9X physically interacted with PTGES and prevented it from proteasome-directed degradation via deubiquitination. Consistent with this, USP9X expression was highly correlated with PTGES expression in NSCLC tumor tissues. Taken together, our results show that the upregulated USP9X-PTGES-PGE2 axis contributes significantly to the metastatic features of NSCLC.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, The Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Yao Feng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of MedicineLexington, KY, USA
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of MedicineShanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of MedicineShanghai, China
- Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
38
|
Khoo BL, Grenci G, Lim JSY, Lim YP, Fong J, Yeap WH, Bin Lim S, Chua SL, Wong SC, Yap YS, Lee SC, Lim CT, Han J. Low-dose anti-inflammatory combinatorial therapy reduced cancer stem cell formation in patient-derived preclinical models for tumour relapse prevention. Br J Cancer 2019; 120:407-423. [PMID: 30713340 PMCID: PMC6461953 DOI: 10.1038/s41416-018-0301-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Emergence of drug-resistant cancer phenotypes is a challenge for anti-cancer therapy. Cancer stem cells are identified as one of the ways by which chemoresistance develops. Method We investigated the anti-inflammatory combinatorial treatment (DA) of doxorubicin and aspirin using a preclinical microfluidic model on cancer cell lines and patient-derived circulating tumour cell clusters. The model had been previously demonstrated to predict patient overall prognosis. Results We demonstrated that low-dose aspirin with a sub-optimal dose of doxorubicin for 72 h could generate higher killing efficacy and enhanced apoptosis. Seven days of DA treatment significantly reduced the proportion of cancer stem cells and colony-forming ability. DA treatment delayed the inhibition of interleukin-6 secretion, which is mediated by both COX-dependent and independent pathways. The response of patients varied due to clinical heterogeneity, with 62.5% and 64.7% of samples demonstrating higher killing efficacy or reduction in cancer stem cell (CSC) proportions after DA treatment, respectively. These results highlight the importance of using patient-derived models for drug discovery. Conclusions This preclinical proof of concept seeks to reduce the onset of CSCs generated post treatment by stressful stimuli. Our study will promote a better understanding of anti-inflammatory treatments for cancer and reduce the risk of relapse in patients.
Collapse
Affiliation(s)
- Bee Luan Khoo
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Joey Sze Yun Lim
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Yan Ping Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - July Fong
- Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Wei Hseun Yeap
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Su Bin Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Song Lin Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Siew Cheng Wong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yoon-Sim Yap
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Department of Hematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chwee Teck Lim
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, Singapore, Singapore
| | - Jongyoon Han
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore. .,Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
39
|
Luo AJ, Tan J, He LY, Jiang XZ, Jiang ZQ, Zeng Q, Yao K, Xue J. Suppression of Tescalcin inhibits growth and metastasis in renal cell carcinoma via downregulating NHE1 and NF-kB signaling. Exp Mol Pathol 2018; 107:110-117. [PMID: 30594602 DOI: 10.1016/j.yexmp.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Renal cell carcinoma (RCC) is the most common form of kidney cancer. Recent studies reported that Tescalcin was overexpressed in various tumor types. However, the status of Tescalcin protein expression in RCC and its biological function is uncertain. This study was designed to investigate the expression of Tescalcin in human RCC and its biological function. METHODS shRNA transfection was performed to abrogates the expression of Tescalcin. Quantitative real time PCR and western blotting assays were used to determine mRNA and protein expression levels, respectively. The cell viability was analyzed by MTT and colony formation. Cell flow cytometry was used to assess pHi value and cell apoptosis. Cell invasive and migratory ability was measured with modified Boyden chamber assay. Xenograft model was setup to evaluate tumor growth. RESULTS Tescalcin was overexpressed in RCC tissues compared with matched normal tissues. It was also overexpressed in RCC cell lines relative that of normal cells. Suppression Tescalcin with specific shRNA resulted in the inhibition of cell proliferation, migration, invasion and apoptosis of RCC cells. Additionally, silencing of Tescalcin also caused the inhibition of the tumor growth in nude mice. Mechanistic study showed that Tescalcin regulated cell proliferation, migration and invasion via NHE1/pHi axis as well as AKT/NF-κB signaling pathway. CONCLUSIONS These findings demonstrate that atopic expression of Tescalcin facilitates the survival, migration and invasion of RCC cells via NHE1/pHi axis as well as AKT/ NF-κB signaling pathway, providing new perspectives for the future study of Tescalcin as a therapeutic target for RCC.
Collapse
Affiliation(s)
- Ai-Jing Luo
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Jing Tan
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Le-Ye He
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Xian-Zhen Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Zhi-Qiang Jiang
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Qing Zeng
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Kun Yao
- Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China
| | - Juan Xue
- The Third Xiangya Hospital of Central South University, Key Laboratory of Medical Information Research (Central South University), College of Hunan Province, Changsha 410013, PR China; Department of Urology, the Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
40
|
Cai J, Huang L, Huang J, Kang L, Lin H, Huang P, Zhu P, Wang J, Dong J, Wang L, Xian CJ. Associations between the cyclooxygenase-2 expression in circulating tumor cells and the clinicopathological features of patients with colorectal cancer. J Cell Biochem 2018; 120:4935-4941. [PMID: 30260024 DOI: 10.1002/jcb.27768] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 12/26/2022]
Abstract
While previous studies have shown that the number of circulating tumor cells (CTCs) alone is not sufficient to reflect tumor progression and that cyclooxygenase-2 (COX-2) expression is correlated with colorectal cancer (CRC) metastasis, COX-2 expression status and its potential functions in CTCs of CRC patients are unknown. Here, epithelial-mesenchymal transition (EMT) phenotype-based subsets of CTCs and the COX-2 expression status in CTCs were identified and their potential clinical values were assessed in 91 CRC patients. CTCs were enumerated in peripheral blood and subsets of CTCs (epithelial [eCTCs], mesenchymal [mCTCs], and biophenotypic [bCTCs]) and the COX-2 expression status were determined using the RNA in situ hybridization method. CTCs were detected in 80.2% (73 of 91) patients. Neither the total CTC nor eCTC numbers were found to significantly associate with any of the clinicopathological features. However, the number of mCTCs was significantly associated with distance metastasis (P = 0.035) and had a trend of being associated with lymph node metastasis ( P = 0.055). Among the 73 patients enrolled for evaluating COX-2 expression, 52.5% (38 of 73) were found to express COX-2 in CTCs, and COX-2 expression in CTCs was not found to associate with the clinicopathological factors. However, COX-2 expression in mCTCs tended to have a higher rate in patients with metastasis compared with those without metastasis (72.0% vs 42.8%; P = 0.072). Furthermore, COX-2 expression and mCTC marker expression correlated positively ( R = 0.287; P = 0.017). Further studies are required to investigate the clinical value of the expression of COX-2 in mCTCs, especially in CRC patients with the advanced tumor stage and distant metastasis.
Collapse
Affiliation(s)
- Jinlin Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Kang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongcheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pinzhu Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peixuan Zhu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianghui Dong
- UniSA Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Liping Wang
- UniSA Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Cory J Xian
- UniSA Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
41
|
Hua K, Li Y, Zhou H, Hu X, Chen Y, He R, Luo R, Zhou R, Bi D, Jin H. Haemophilus parasuis Infection Disrupts Adherens Junctions and Initializes EMT Dependent on Canonical Wnt/β-Catenin Signaling Pathway. Front Cell Infect Microbiol 2018; 8:324. [PMID: 30258822 PMCID: PMC6143654 DOI: 10.3389/fcimb.2018.00324] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, animal experimentation verified that the canonical Wnt/β-catenin signaling pathway was activated under a reduced activity of p-β-catenin (Ser33/37/Thr41) and an increased accumulation of β-catenin in the lungs and kidneys of pigs infected with a highly virulent strain of H. parasuis. In PK-15 and NPTr cells, it was also confirmed that infection with a high-virulence strain of H. parasuis induced cytoplasmic accumulation and nuclear translocation of β-catenin. H. parasuis infection caused a sharp degradation of E-cadherin and an increase of the epithelial cell monolayer permeability, as well as a broken interaction between β-catenin and E-cadherin dependent on Wnt/β-catenin signaling pathway. Moreover, Wnt/β-catenin signaling pathway also contributed to the initiation of epithelial-mesenchymal transition (EMT) during high-virulence strain of H. parasuis infection with expression changes of epithelial/mesenchymal markers, increased migratory capabilities as well as the morphologically spindle-like switch in PK-15 and NPTr cells. Therefore, we originally speculated that H. parasuis infection activates the canonical Wnt/β-catenin signaling pathway leading to a disruption of the epithelial barrier, altering cell structure and increasing cell migration, which results in severe acute systemic infection characterized by fibrinous polyserositis during H. parasuis infection.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangjie Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hufeng Zhou
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Immunology and Microbiology, Harvard Medical School, Boston, MA, United States
| | - Xueying Hu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yushan Chen
- Brain and Cognition Research Institute, Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazard Identification and Control in Hubei Province, Wuhan University of Science and Technology, Wuhan, China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Wang YP, Wang QY, Li CH, Li XW. COX-2 inhibition by celecoxib in epithelial ovarian cancer attenuates E-cadherin suppression through reduced Snail nuclear translocation. Chem Biol Interact 2018; 292:24-29. [DOI: 10.1016/j.cbi.2018.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
|
43
|
The Novel Nutraceutical KJS018A Prevents Hepatocarcinogenesis Promoted by Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3909434. [PMID: 30154906 PMCID: PMC6093067 DOI: 10.1155/2018/3909434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023]
Abstract
Inflammation is tightly associated with carcinogenesis at both the initiation and development of tumor. Many reports indicated that Cox-2 substantially contributes to inflammation and tumorigenesis. The novel nutraceutical KJS018A (BRM270 Function Enhanced Products) is the extract mixture from 8 herbal plants, which have been used to inhibit cancers and inflammation. The aim of the present study is to examine the inhibitory effects of KJS018A mixture to hepatocarcinogenesis and inflammation. The results showed that KJS018A significantly inhibited the proliferation of hepatic malignant cells and downregulated levels of IL-6 and Cox-2. Furthermore, KJS018A diminished the effect of PMA, an inflammatory inducer via IL-6/STAT3/Cox-2 pathway. Furthermore, KJS018A suppressed metastatic traits of hepatic malignant cells via downregulating Twist, N-cadherin, and MMP-9 while restoring E-cadherin expression. KJS018A also restrained tumor growth and levels of IL-6 and Cox-2 in immunohistochemistry staining. Taken together, these data suggest potential application of KJS018A in prevention of hepatocarcinogenesis promoted by inflammation.
Collapse
|
44
|
Remes Lenicov F, Paletta AL, Gonzalez Prinz M, Varese A, Pavillet CE, Lopez Malizia Á, Sabatté J, Geffner JR, Ceballos A. Prostaglandin E2 Antagonizes TGF-β Actions During the Differentiation of Monocytes Into Dendritic Cells. Front Immunol 2018; 9:1441. [PMID: 29988364 PMCID: PMC6023975 DOI: 10.3389/fimmu.2018.01441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammatory dendritic cells (DCs) are a distinct subset of DCs that derive from circulating monocytes infiltrating injured tissues. Monocytes can differentiate into DCs with different functional signatures, depending on the presence of environment stimuli. Among these stimuli, transforming growth factor-beta (TGF-β) and prostaglandin E2 (PGE2) have been shown to modulate the differentiation of monocytes into DCs with different phenotypes and functional profiles. In fact, both mediators lead to contrasting outcomes regarding the production of inflammatory and anti-inflammatory cytokines. Previously, we have shown that human semen, which contains high concentrations of PGE2, promoted the differentiation of DCs into a tolerogenic profile through a mechanism dependent on signaling by E-prostanoid receptors 2 and 4. Notably, this effect was induced despite the huge concentration of TGF-β present in semen, suggesting that PGE2 overrides the influence exerted by TGF-β. No previous studies have analyzed the joint actions induced by PGE2 and TGF-β on the function of monocytes or DCs. Here, we analyzed the phenotype and functional profile of monocyte-derived DCs differentiated in the presence of TGF-β and PGE2. DC differentiation guided by TGF-β alone enhanced the expression of CD1a and abrogated LPS-induced expression of IL-10, while differentiation in the presence of PGE2 impaired CD1a expression, preserved CD14 expression, abrogated IL-12 and IL-23 production, stimulated IL-10 production, and promoted the expansion of FoxP3+ regulatory T cells in a mixed lymphocyte reaction. Interestingly, DCs differentiated in the presence of TGF-β and PGE2 showed a phenotype and functional profile closely resembling those induced by PGE2 alone. Finally, we found that PGE2 inhibited TGF-β signaling through an action exerted by EP2 and EP4 receptors coupled to cyclic AMP increase and protein kinase A activity. These results indicate that PGE2 suppresses the influence exerted by TGF-β during DC differentiation, imprinting a tolerogenic signature. High concentrations of TGF-β and PGE2 are usually found in infectious, autoimmune, and neoplastic diseases. Our observations suggest that in these scenarios PGE2 might play a mandatory role in the acquisition of a regulatory profile by DCs.
Collapse
Affiliation(s)
- Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Luz Paletta
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melina Gonzalez Prinz
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Augusto Varese
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clara E Pavillet
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Álvaro Lopez Malizia
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Sabatté
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Raul Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Ceballos
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
45
|
Haldar R, Ben-Eliyahu S. Reducing the risk of post-surgical cancer recurrence: a perioperative anti-inflammatory anti-stress approach. Future Oncol 2018; 14:1017-1021. [PMID: 29623735 DOI: 10.2217/fon-2017-0635] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Rita Haldar
- Sagol School of Neuroscience & School of Psychological Science, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience & School of Psychological Science, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
46
|
Jalota A, Kumar M, Das BC, Yadav AK, Chosdol K, Sinha S. A drug combination targeting hypoxia induced chemoresistance and stemness in glioma cells. Oncotarget 2018; 9:18351-18366. [PMID: 29719610 PMCID: PMC5915077 DOI: 10.18632/oncotarget.24839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is a characteristic of solid tumors especially Glioblastoma and is critical to chemoresistance. Cancer stem cells present in hypoxic niches are known to be a major cause of the progression, metastasis and relapse. We tried to identify synergistic combinations of drugs effective in both hypoxia and normoxia in tumor cells as well as in cancer stem cells. Since COX-2 is over-expressed in subset of glioblastoma and is also induced in hypoxia, we studied combinations of a prototype Cyclooxygenase (COX-2) inhibitor, NS-398 with various drugs (BCNU, Temozolomide, 2-Deoxy-D-glucose and Cisplatin) for their ability to abrogate chemoresistance under both severe hypoxia (0.2% O2) and normoxia (20% O2) in glioma cells. The only effective combination was of NS-398 and BCNU which showed a synergistic effect in both hypoxia and normoxia. This synergism was evident at sub-lethal doses for either of the single agent. The effectiveness of the combination resulted from increased pro- apoptotic and decreased anti-apoptotic molecules and increased caspase activity. PGE2 levels, a manifestation of COX-2 activity were increased during hypoxia, but were reduced by the combination during both hypoxia and normoxia. The combination reduced the levels of epithelial-mesenchymal transition (EMT) markers. It also resulted in a greater reduction of cell migration. While single drugs could reduce the number of gliomaspheres, the combination successfully abrogated their formation. The combination also resulted in a greater reduction of the cancer stem cell marker CD133. This combination could be a prototype of possible therapy in a tumor with a high degree of hypoxia like glioma.
Collapse
Affiliation(s)
- Akansha Jalota
- National Brain Research Centre, Manesar, Gurgaon-122051, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mukesh Kumar
- National Brain Research Centre, Manesar, Gurgaon-122051, India
| | - Bhudev C Das
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida-201313, India
| | - Ajay K Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Gurgaon-122051, India.,Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
47
|
Majumder M, Dunn L, Liu L, Hasan A, Vincent K, Brackstone M, Hess D, Lala PK. COX-2 induces oncogenic micro RNA miR655 in human breast cancer. Sci Rep 2018; 8:327. [PMID: 29321644 PMCID: PMC5762661 DOI: 10.1038/s41598-017-18612-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/14/2017] [Indexed: 01/16/2023] Open
Abstract
We show that Cyclooxygenase-2 over-expression induces an oncogenic microRNA miR655 in human breast cancer cells by activation of EP4. MiR655 expression positively correlated with COX-2 in genetically disparate breast cancer cell lines and increased in all cell lines when grown as spheroids, implicating its link with stem-like cells (SLCs). Ectopic miR655 over-expression in MCF7 and SKBR3 cells resulted in increased proliferation, migration, invasion, spheroid formation and Epithelial to Masenchymal transition (EMT). Conversely, knocking down miR655 in aggressive MCF7-COX2 and SKBR3-COX2 cells reverted these phenotypes. MCF7-miR655 cells displayed upregulated NOTCH/WNT genes; both pathway inhibitors abrogated miR655-induced spheroid formation, linking miR655 with SLC-related pathways. MiR655 expression was dependent on EP4 activity and EP4 downstream signaling pathways PI3K/AKT, ERK and NF-kB and led to TGFβ resistance for Smad3 phosphorylation. Tail vein injection of MCF7-miR655 and SKBR3-miR655 cells in NOD/SCID/GUSB-null mice revealed increased lung colony growth and micrometastases to liver and spleen. MiR655 expression was significantly high in human breast tumors (n = 105) compared to non-tumor tissues (n = 20) and associated with reduced patient survival. Thus miR655 could serve as a prognostic breast cancer biomarker.
Collapse
Affiliation(s)
- Mousumi Majumder
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| | - Leanna Dunn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Ling Liu
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Asma Hasan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista Vincent
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Muriel Brackstone
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Research Institute, London, Ontario, Canada
| | - David Hess
- Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
| | - Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
48
|
Cheng HH, Chu LY, Chiang LY, Chen HL, Kuo CC, Wu KK. Inhibition of cancer cell epithelial mesenchymal transition by normal fibroblasts via production of 5-methoxytryptophan. Oncotarget 2017; 7:31243-56. [PMID: 27145282 PMCID: PMC5058753 DOI: 10.18632/oncotarget.9111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
We reported previously that human fibroblasts release 5-methoxytryptophan (5-MTP) which inhibits cancer cell COX-2 overexpression and suppresses cancer cell migration and metastasis. To determine whether fibroblasts block cancer cell epithelial mesenchymal transition (EMT) via 5-MTP, we evaluated the effect of Hs68 fibroblasts (HsFb) on A549 cancer cell EMT in a two-chamber system. Co-incubation of A549 with HsFb prevented TGF-β1-induced reduction of E-cadherin and increase in Snail and N-cadherin. Transfection of HsFb with tryptophan hydroxylase-1 siRNA, which inhibited tryptophan hydroxylase-1 protein expression and 5-MTP release in HsFb abrogated the effect of HsFb on A549 EMT. Direct addition of pure 5-MTP to cultured A549 cells followed by TGF-β1 prevented TGF-β1-induced reduction of E-cadherin, and elevation of Snail, vimentin and matrix metalloproteinase 9. Administration of 5-MTP to a murine xenograft tumor model reduced vimentin protein expression in the tumor tissues compared to vehicle control which was correlated with reduction of metastasis in the 5-MTP treated mice. Our experimental data suggest that 5-MTP exerted its anti-EMT actions through inhibition of p38 MAPK activation, p65/p50 NF-κB nuclear translocation and transactivation without the involvement of COX-2 or p300 histone acetyltransferase. Our findings indicate that fibroblasts release a tryptophan metabolite, 5-MTP, to reduce cancer cell EMT, migration, invasion and metastasis.
Collapse
Affiliation(s)
- Huei-Hsuan Cheng
- Metabolomic Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ling-Yun Chu
- Metabolomic Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Li-Yi Chiang
- Metabolomic Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hua-Ling Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Cheng-Chin Kuo
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Metabolomic Medicine Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.,Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
49
|
Lin PS, Cheng RH, Chang MC, Lee JJ, Chang HH, Huang WL, Yeung SY, Chang YC, Jeng JH. TGF-β1 stimulates cyclooxygenase-2 expression and PGE 2 production of human dental pulp cells: Role of ALK5/Smad2 and MEK/ERK signal transduction pathways. J Formos Med Assoc 2017; 116:748-754. [DOI: 10.1016/j.jfma.2017.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
|
50
|
Nordin A, Sainik NQAV, Zulfarina MS, Naina-Mohamed I, Saim A, Bt Hj Idrus R. Honey and epithelial to mesenchymal transition in wound healing: An evidence-based review. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2017.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|