1
|
Lv Y, Chen C, Han M, Tian C, Song F, Feng S, Xu M, Zhao Z, Zhou H, Su W, Zhong J. CXCL2: a key player in the tumor microenvironment and inflammatory diseases. Cancer Cell Int 2025; 25:133. [PMID: 40197328 PMCID: PMC11978139 DOI: 10.1186/s12935-025-03765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
CXCL2 (C-X-C Motif Chemokine Ligand 2), a constituent of the C-X-C chemokine subfamily, serves as a powerful chemotactic factor for neutrophils, facilitating leukocyte recruitment and movement while initiating an inflammatory response. Recent investigations have demonstrated the pivotal involvement of CXCL2 in carcinogenesis. Within the tumor microenvironment, CXCL2 modulates cellular activity primarily via its interaction with the CXCR2 receptor. The activation of signaling pathways, including ERK/MAPK, NF-κB/MAPK, PI3K/AKT, and JAK/STAT3, highlights CXCL2's inclination to promote tumorigenesis. Furthermore, the role of CXCL2 encompasses inflammatory conditions like lung inflammation, atherosclerosis, and obesity. This article examines the structural characteristics, biological roles, and molecular foundation of CXCL2 in carcinogenesis and inflammatory disorders.
Collapse
Affiliation(s)
- Yuanhao Lv
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Caizheng Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Han
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Chenfei Tian
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Fuyang Song
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Sijia Feng
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Miaoming Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Ziyin Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Zhou
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, China.
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People's Hospital, Xinxiang, China.
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, Xinxiang Medical University, Xinxiang, China.
- Henan Province Engineering Technology Research Center of Tumor diagnostic biomarkers and RNA interference drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
2
|
Kaltsas A, Giannakas T, Stavropoulos M, Kratiras Z, Chrisofos M. Oxidative Stress in Benign Prostatic Hyperplasia: Mechanisms, Clinical Relevance and Therapeutic Perspectives. Diseases 2025; 13:53. [PMID: 39997060 PMCID: PMC11854834 DOI: 10.3390/diseases13020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Benign prostatic hyperplasia (BPH) is among the most common conditions affecting men as they age, resulting in lower urinary tract symptoms (LUTS) that can profoundly impact quality of life. While historically attributed primarily to androgenic imbalances, current evidence implicates additional factors-particularly oxidative stress (OS) and chronic inflammation-in BPH pathogenesis. This review aims to synthesize research on the interplay between OS, inflammation, and hormonal regulation in BPH, emphasizing their clinical relevance and potential therapeutic implications. METHODS A comprehensive review of peer-reviewed literature was conducted focusing on mechanistic studies, clinical trials, and observational reports. Searches included data on ROS generation, antioxidant capacity, inflammatory mediators, and their contribution to pathological prostatic overgrowth. Potential interventions targeting OS-such as antioxidant supplementation, anti-inflammatory drugs, vitamin D receptor agonists, and phytotherapeutics-were also evaluated for their efficacy and safety profiles. RESULTS Chronic inflammation and OS were consistently identified within hyperplastic prostate tissue. Excessive ROS production, diminished antioxidant defense, and sustained cytokine release create a proproliferative and antiapoptotic environment, accelerating disease progression. Metabolic comorbidities (e.g., obesity, insulin resistance) further exacerbate these imbalances. Standard therapies (α-blockers and 5-ARIs) effectively relieve symptoms but do not directly address the oxidative-inflammatory axis. Emerging evidence suggests that pharmacological and dietary approaches targeting OS and inflammation may reduce prostate volume expansion and alleviate LUTS. CONCLUSIONS Findings indicate that OS and inflammation are key contributors to BPH progression. Incorporating antioxidant and anti-inflammatory strategies alongside conventional treatments holds promise for improving clinical outcomes and patient quality of life. Future research should focus on validating OS-specific biomarkers and optimizing personalized therapy regimens.
Collapse
Affiliation(s)
| | | | | | | | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (T.G.); (M.S.); (Z.K.)
| |
Collapse
|
3
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2025; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Wang N, Fang Y, Hou Y, Cheng D, Dressler EV, Wang H, Wang J, Wang G, Li Y, Liu H, Xiang R, Yang S, Sun P. Senescent cells promote breast cancer cells motility by secreting GM-CSF and bFGF that activate the JNK signaling pathway. Cell Commun Signal 2024; 22:478. [PMID: 39375718 PMCID: PMC11457416 DOI: 10.1186/s12964-024-01861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Cellular senescence can be induced in mammalian tissues by multiple stimuli, including aging, oncogene activation and loss of tumor suppressor genes, and various types of stresses. While senescence is a tumor suppressing mechanism when induced within premalignant or malignant tumor cells, senescent cells can promote cancer development through increased secretion of growth factors, cytokines, chemokines, extracellular matrix, and degradative enzymes, collectively known as senescence-associated secretory phenotype (SASP). Previous studies indicated that senescent cells, through SASP factors, stimulate tumor cell invasion that is a critical step in cancer cell metastasis. METHODS In the current study, we investigated the effect of senescent cells on the motility of breast cancer cells, which is another key step in cancer cell metastasis. We analyzed the motility of breast cancer cells co-cultured with senescent cells in vitro and metastasis of the breast cancer cells co-injected with senescent cells in orthotopic xenograft models. We also delineated the signaling pathway mediating the effect of senescent cells on cancer cell motility. RESULTS Our results indicate that senescent cells stimulated the migration of breast cancer cells through secretion of GM-CSF and bFGF, which in turn induced activation of the JNK pathway in cancer cells. More importantly, senescent cells promoted breast cancer metastasis, with a minimum effect on the primary tumor growth, in orthotopic xenograft mouse models. CONCLUSIONS These results have revealed an additional mechanism by which senescent cells promote tumor cell metastasis and tumor progression, and will potentially lead to identification of novel targets for cancer therapies that suppress metastasis, the major cause of cancer mortality.
Collapse
Affiliation(s)
- Nan Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Yan Fang
- School of Medicine, Nankai University, Tianjin, China
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yigong Hou
- School of Medicine, Nankai University, Tianjin, China
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Dongmei Cheng
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Emily V Dressler
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hao Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Juan Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Guanwen Wang
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China.
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Rossi R, Medici F, Habberstad R, Klepstad P, Cilla S, Dall'Agata M, Kaasa S, Caraceni AT, Morganti AG, Maltoni M. Development of a predictive model for patients with bone metastases referred to palliative radiotherapy: Secondary analysis of a multicenter study (the PRAIS trial). Cancer Med 2024; 13:e70050. [PMID: 39390750 PMCID: PMC11467037 DOI: 10.1002/cam4.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND The decision to administer palliative radiotherapy (RT) to patients with bone metastases (BMs), as well as the selection of treatment protocols (dose, fractionation), requires an accurate assessment of survival expectancy. In this study, we aimed to develop three predictive models (PMs) to estimate short-, intermediate-, and long-term overall survival (OS) for patients in this clinical setting. MATERIALS AND METHODS This study constitutes a sub-analysis of the PRAIS trial, a longitudinal observational study collecting data from patients referred to participating centers to receive palliative RT for cancer-induced bone pain. Our analysis encompassed 567 patients from the PRAIS trial database. The primary objectives were to ascertain the correlation between clinical and laboratory parameters with the OS rates at three distinct time points (short: 3 weeks; intermediate: 24 weeks; prolonged: 52 weeks) and to construct PMs for prognosis. We employed machine learning techniques, comprising the following steps: (i) identification of reliable prognostic variables and training; (ii) validation and testing of the model using the selected variables. The selection of variables was accomplished using the LASSO method (Least Absolute Shrinkage and Selection Operator). The model performance was assessed using receiver operator characteristic curves (ROC) and the area under the curve (AUC). RESULTS Our analysis demonstrated a significant impact of clinical parameters (primary tumor site, presence of non-bone metastases, steroids and opioid intake, food intake, and body mass index) and laboratory parameters (interleukin 8 [IL-8], chloride levels, C-reactive protein, white blood cell count, and lymphocyte count) on OS. Notably, different factors were associated with the different times for OS with only IL-8 included both in the PMs for short- and long-term OS. The AUC values for ROC curves for 3-week, 24-week, and 52-week OS were 0.901, 0.767, and 0.806, respectively. CONCLUSIONS We successfully developed three PMs for OS based on easily accessible clinical and laboratory parameters for patients referred to palliative RT for painful BMs. While our findings are promising, it is important to recognize that this was an exploratory trial. The implementation of these tools into clinical practice warrants further investigation and confirmation through subsequent studies with separate databases.
Collapse
Affiliation(s)
- Romina Rossi
- Palliative Care UnitIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum University of BolognaBolognaItaly
| | - Federica Medici
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum University of BolognaBolognaItaly
- Radiation OncologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Ragnhild Habberstad
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of OncologySt. Olavs University HospitalTrondheimNorway
| | - Pal Klepstad
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
- Department of Anesthesiology and Intensive Care MedicineSt Olavs University HospitalTrondheimNorway
| | - Savino Cilla
- Medical Physics UnitResponsible Research HospitalCampobassoItaly
| | - Monia Dall'Agata
- Unit of Biostatistics and Clinical TrialsIRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”MeldolaItaly
| | - Stein Kaasa
- Department of OncologyOslo University HospitalOsloNorway
| | - Augusto Tommaso Caraceni
- Palliative Care, Pain Therapy and Rehabilitation UnitFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alessio Giuseppe Morganti
- Radiation Oncology, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum University of BolognaBolognaItaly
- Radiation OncologyIRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Marco Maltoni
- Medical Oncology Unit, Department of Medical and Surgical Sciences (DIMEC)Alma Mater Studiorum‐University of BolognaBolognaItaly
| |
Collapse
|
6
|
Thomas R, Jerome JM, Krieger KL, Ashraf N, Rowley DR. The reactive stroma response regulates the immune landscape in prostate cancer. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:249-77. [DOI: 10.20517/jtgg.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Prostate cancer remains the most commonly diagnosed and the second leading cause of cancer-related deaths in men in the United States. The neoplastic transformation of prostate epithelia, concomitant with modulations in the stromal compartment, known as reactive stromal response, is critical for the growth, development, and progression of prostate cancer. Reactive stroma typifies an emergent response to disrupted tissue homeostasis commonly observed in wound repair and pathological conditions such as cancer. Despite the significance of reactive stroma in prostate cancer pathobiology, our understanding of the ontogeny, phenotypic and functional heterogeneity, and reactive stromal regulation of the immune microenvironment in prostate cancer remains limited. Traditionally characterized to have an immunologically "cold" tumor microenvironment, prostate cancer presents significant challenges for advancing immunotherapy compared to other solid tumors. This review explores the detrimental role of reactive stroma in prostate cancer, particularly its immunomodulatory function. Understanding the molecular characteristics and dynamic transcriptional program of the reactive stromal populations in tandem with tumor progression could offer insights into enhancing immunotherapy efficacy against prostate cancer.
Collapse
|
7
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Kulebyakina M, Basalova N, Butuzova D, Arbatsky M, Chechekhin V, Kalinina N, Tyurin-Kuzmin P, Kulebyakin K, Klychnikov O, Efimenko A. Balance between Pro- and Antifibrotic Proteins in Mesenchymal Stromal Cell Secretome Fractions Revealed by Proteome and Cell Subpopulation Analysis. Int J Mol Sci 2023; 25:290. [PMID: 38203461 PMCID: PMC10779358 DOI: 10.3390/ijms25010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) regulate tissue repair through paracrine activity, with secreted proteins being significant contributors. Human tissue repair commonly results in fibrosis, where fibroblast differentiation into myofibroblasts is a major cellular mechanism. MSCs' paracrine activity can inhibit fibrosis development. We previously demonstrated that the separation of MSC secretome, represented by conditioned medium (CM), into subfractions enriched with extracellular vesicles (EV) or soluble factors (SF) boosts EV and SF antifibrotic effect. This effect is realized through the inhibition of fibroblast-to-myofibroblast differentiation in vitro. To unravel the mechanisms of MSC paracrine effects on fibroblast differentiation, we performed a comparative proteomic analysis of MSC secretome fractions. We found that CM was enriched in NF-κB activators and confirmed via qPCR that CM, but not EV or SF, upregulated NF-κB target genes (COX2, IL6, etc.) in human dermal fibroblasts. Furthermore, we revealed that EV and SF were enriched in TGF-β, Notch, IGF, and Wnt pathway regulators. According to scRNAseq, 11 out of 13 corresponding genes were upregulated in a minor MSC subpopulation disappearing in profibrotic conditions. Thus, protein enrichment of MSC secretome fractions and cellular subpopulation patterns shift the balance in fibroblast-to-myofibroblast differentiation, which should be considered in studies of MSC paracrine effects and the therapeutic use of MSC secretome.
Collapse
Affiliation(s)
- Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Nataliya Basalova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Daria Butuzova
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Mikhail Arbatsky
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Vadim Chechekhin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| | - Oleg Klychnikov
- Faculty of Biology, Lomonosov Moscow State University, 1-12, Leninskie Gory, Lomonosovskiy Av., 119991 Moscow, Russia;
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovskiy Av., 119192 Moscow, Russia; (M.K.); (N.B.); (D.B.); (M.A.); (V.C.); (N.K.); (P.T.-K.); (K.K.)
- Institute for Regenerative Medicine, Medical Research and Educational Center, Lomonosov Moscow State University, 27/10, Lomonosovskiy Av., 119192 Moscow, Russia
| |
Collapse
|
9
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24087262. [PMID: 37108425 PMCID: PMC10139049 DOI: 10.3390/ijms24087262] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
C-X-C motif chemokine ligand 1 (CXCL1) is a member of the CXC chemokine subfamily and a ligand for CXCR2. Its main function in the immune system is the chemoattraction of neutrophils. However, there is a lack of comprehensive reviews summarizing the significance of CXCL1 in cancer processes. To fill this gap, this work describes the clinical significance and participation of CXCL1 in cancer processes in the most important reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer, and prostate cancer. The focus is on both clinical aspects and the significance of CXCL1 in molecular cancer processes. We describe the association of CXCL1 with clinical features of tumors, including prognosis, ER, PR and HER2 status, and TNM stage. We present the molecular contribution of CXCL1 to chemoresistance and radioresistance in selected tumors and its influence on the proliferation, migration, and invasion of tumor cells. Additionally, we present the impact of CXCL1 on the microenvironment of reproductive cancers, including its effect on angiogenesis, recruitment, and function of cancer-associated cells (macrophages, neutrophils, MDSC, and Treg). The article concludes by summarizing the significance of introducing drugs targeting CXCL1. This paper also discusses the significance of ACKR1/DARC in reproductive cancers.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Zhang L, Wang L, Xiang S, Hu Y, Zhao S, Liao Y, Zhu Z, Wu X. CRISPR/Cas9-mediated gene knockout of Sj16 in Schistosoma japonicum eggs upregulates the host-to-egg immune response. FASEB J 2022; 36:e22615. [PMID: 36273308 DOI: 10.1096/fj.202200600rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/15/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Schistosomiasis is an important, neglected tropical disease. Schistosoma japonicum can evade host attacks by regulating the host's immunity, causing continuous infection. However, interactions between the host's immune system and S. japonicum are unclear. Our previous research found that the Sj16 protein isolated from S. japonicum has an anti-inflammatory effect in the host. However, the role of Sj16 in the regulation of host immunity in S. japonicum infection is not clear. Here, we applied the CRISPR/Cas9 technique to knockout Sj16 in S. japonicum eggs and investigated the effect of Sj16 in regulating host immunity. We found egg viability decreased after Sj16 knockout. In addition, we found granulomatous inflammation increased, the T-cell immune response enhanced and the immune microenvironment changed in mice model injected with Sj16-knockout eggs by tail vein. These findings suggested that S. japonicum could regulate host immunity through Sj16 to evade the host immune attack and cause continuous infection. In addition, we confirmed the application of CRISPR/Cas9-mediated gene reprogramming for functional genomics in S. japonicum.
Collapse
Affiliation(s)
- Lichao Zhang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Suoyu Xiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Yao Liao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zifeng Zhu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiaoying Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Park YL, Kim HP, Ock CY, Min DW, Kang JK, Lim YJ, Song SH, Han SW, Kim TY. EMT-mediated regulation of CXCL1/5 for resistance to anti-EGFR therapy in colorectal cancer. Oncogene 2022; 41:2026-2038. [PMID: 35173310 DOI: 10.1038/s41388-021-01920-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 05/08/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The emergence of RAS/RAF mutant clone is the main feature of EGFR inhibitor resistance in KRAS wild-type colon cancer. However, its molecular mechanism is thought to be multifactorial, mainly due to cellular heterogeneity. In order to better understand the resistance mechanism in a single clone level, we successfully isolated nine cells with cetuximab-resistant (CR) clonality from in vitro system. All CR cells harbored either KRAS or BRAF mutations. Characteristically, these cells showed a higher EMT (Epithelial to mesenchymal transition) signature, showing increased EMT markers such as SNAI2. Moreover, the expression level of CXCL1/5, a secreted protein, was significantly higher in CR cells compared to the parental cells. In these CR cells, CXCL1/5 expression was coordinately regulated by SNAI2/NFKB and transactivated EGFR through CXCR/MMPI/EGF axis via autocrine singling. We also observed that combined cetuximab/MEK inhibitor not only showed growth inhibition but also reduced the secreted amounts of CXCL1/5. We further found that serum CXCL1/5 level was positively correlated with the presence of RAS/RAF mutation in colon cancer patients during cetuximab therapy, suggesting its role as a biomarker. These data indicated that the application of serum CXCL1/5 could be a potential serologic biomarker for predicting resistance to EGFR therapy in colorectal cancer.
Collapse
Affiliation(s)
- Ye-Lim Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea.
| | - Hwang-Phill Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea.,IMBDx Inc, Seoul, Korea
| | - Chan-Young Ock
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Wook Min
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jun Kyu Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yoo Joo Lim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sae-Won Han
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae-You Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea. .,Cancer Research Institute, Seoul National University, Seoul, Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.
| |
Collapse
|
12
|
Bellinger DL, Dulcich MS, Molinaro C, Gifford P, Lorton D, Gridley DS, Hartman RE. Psychosocial Stress and Age Influence Depression and Anxiety-Related Behavior, Drive Tumor Inflammatory Cytokines and Accelerate Prostate Cancer Growth in Mice. Front Oncol 2021; 11:703848. [PMID: 34604038 PMCID: PMC8481826 DOI: 10.3389/fonc.2021.703848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) prevalence is higher in older men and poorer coping with psychosocial stressors effect prognosis. Yet, interactions between age, stress and PCa progression are underexplored. Therefore, we characterized the effects of age and isolation combined with restraint (2 h/day) for 14 days post-tumor inoculation on behavior, tumor growth and host defense in the immunocompetent, orthotopic RM-9 murine PCa model. All mice were tumor inoculated. Isolation/restraint increased sympathetic and hypothalamic-pituitary-adrenal cortical activation, based on elevated serum 3-methoxy-4-hydroxyphenylglycol/norepinephrine ratios and corticosterone levels, respectively. Elevated zero maze testing revealed age-related differences in naïve C57Bl/6 mice, and increased anxiety-like behavior in tumor-bearing mice. In open field testing, old stressed mice were less active throughout the 30-min test than young non-stressed and stressed, and old non-stressed mice, suggesting greater anxiety in old stressed mice. Old (18 month) mice demonstrated more depression-like behavior than young mice with tail suspension testing, without effects of isolation/restraint stress. Old mice developed larger tumors, despite similar tumor expression of tumor vascular endothelial growth factor or transforming growth factor-beta1 across age. Tumor chemokine/cytokine expression, commonly prognostic for poorer outcomes, were uniquely age- and stress-dependent, underscoring the need for PCa research in old animals. Macrophages predominated in RM-9 tumors. Macrophages, and CD4+ and CD4+FoxP3+ T-cell tumor infiltration were greater in young mice than in old mice. Stress increased macrophage infiltration in old mice. Conversely, stress reduced intratumoral CD4+ and CD4+FoxP3+ T-cell numbers in young mice. CD8+ T-cell infiltration was similar across treatment groups. Our findings support that age- and psychological stress interacts to affect PCa outcomes by interfering with neural-immune mechanisms and affecting behavioral responses.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Melissa S Dulcich
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| | - Christine Molinaro
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Peter Gifford
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Dianne Lorton
- Department of Psychology, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH, United States
| | - Daila S Gridley
- Departments of Radiation Medicine and Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Richard E Hartman
- Department of Psychology, School of Behavioral Health, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
13
|
The Blockade of Tumoral IL1β-Mediated Signaling in Normal Colonic Fibroblasts Sensitizes Tumor Cells to Chemotherapy and Prevents Inflammatory CAF Activation. Int J Mol Sci 2021; 22:ijms22094960. [PMID: 34066976 PMCID: PMC8125420 DOI: 10.3390/ijms22094960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Heterotypic interactions between newly transformed cells and normal surrounding cells define tumor’s fate in incipient carcinomas. Once homeostasis has been lost, normal resident fibroblasts become carcinoma-associated fibroblasts, conferring protumorogenic properties on these normal cells. Here we describe the IL1β-mediated interplay between cancer cells and normal colonic myofibroblasts (NCFs), which bestows differential sensitivity to cytotoxic drugs on tumor cells. We used NCFs, their conditioned media (CM), and cocultures with tumor cells to characterize the IL1β-mediated crosstalk between both cell types. We silenced IL1β in tumor cells to demonstrate that such cells do not exert an influence on NCFs inflammatory phenotype. Our results shows that IL1β is overexpressed in cocultured tumor cells. IL1β enables paracrine signaling in myofibroblasts, converting them into inflammatory-CAFs (iCAF). IL1β-stimulated-NCF-CM induces migration and differential sensitivity to oxaliplatin in colorectal tumor cells. Such chemoprotective effect has not been evidenced for TGFβ1-driven NCFs. IL1β induces the loss of a myofibroblastic phenotype in NCFs and acquisition of iCAF traits. In conclusion, IL1β-secreted by cancer cells modify surrounding normal fibroblasts to confer protumorogenic features on them, particularly tolerance to cytotoxic drugs. The use of IL1β-blocking agents might help to avoid the iCAF traits acquisition and consequently to counteract the protumorogenic actions these cells.
Collapse
|
14
|
Huang M, Narita S, Koizumi A, Nara T, Numakura K, Satoh S, Nanjo H, Habuchi T. Macrophage inhibitory cytokine-1 induced by a high-fat diet promotes prostate cancer progression by stimulating tumor-promoting cytokine production from tumor stromal cells. Cancer Commun (Lond) 2021; 41:389-403. [PMID: 33773090 PMCID: PMC8118591 DOI: 10.1002/cac2.12137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/29/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Recent studies have indicated that a high‐fat diet (HFD) and/or HFD‐induced obesity may influence prostate cancer (PCa) progression, but the role of HFD in PCa microenvironment is unclear. This study aimed to delineate the molecular mechanisms of PCa progression under HFD milieus and define the stromal microenvironment focusing on macrophage inhibitory cytokine‐1 (MIC‐1) activation. Methods We investigated the effects of HFD on PCa stromal microenvironment and MIC‐1 signaling activation using PC‐3M‐luc‐C6 PCa model mice fed with HFD or control diet. Further, we explored the effect of periprostatic adipocytes derived from primary PCa patients on activation and cytokine secretion of prostate stromal fibroblasts. Expression patterns and roles of MIC‐1 signaling on human PCa stroma activation and progression were also investigated. Results HFD stimulated PCa cell growth and invasion as a result of upregulated MIC‐1 signaling and subsequently increased the secretion of interleukin (IL)‐8 and IL‐6 from prostate stromal fibroblasts in PC‐3M‐luc‐C6 PCa mouse model. In addition, periprostatic adipocytes directly stimulated MIC‐1 production from PC‐3 cells and IL‐8 secretion in prostate stromal fibroblasts through the upregulation of adipose lipolysis and free fatty acid release. The increased serum MIC‐1 was significantly correlated with human PCa stroma activation, high serum IL‐8, IL‐6, and lipase activity, advanced PCa progression, and high body mass index of the patients. Glial‐derived neurotrophic factor receptor α‐like (GFRAL), a specific receptor of MIC‐1, was highly expressed in both cytoplasm and membrane of PCa cells and surrounding stromal fibroblasts, and the expression level was decreased by androgen deprivation therapy and chemotherapy. Conclusion HFD‐mediated activation of the PCa stromal microenvironment through metabolically upregulated MIC‐1 signaling by increased available free fatty acids may be a critical mechanism of HFD and/or obesity‐induced PCa progression.
Collapse
Affiliation(s)
- Mingguo Huang
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Atsushi Koizumi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Taketoshi Nara
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shigeru Satoh
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
15
|
Reyes N, Figueroa S, Tiwari R, Geliebter J. CXCL3 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:15-24. [PMID: 34286438 DOI: 10.1007/978-3-030-62658-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer progression is driven, to a large extent, by the action of immune cells that have been recruited to tumor sites through interactions between chemokines and their receptors. Chemokines of the CXC subfamily are secreted by both tumor and non-tumor cells within the microenvironment of the tumor, where they induce either antitumor or protumor activity that fosters either clearance or progression of the tumor, respectively. Understanding the nature of these interactions is important to envisage novel approaches targeting the essential components of the tumor microenvironment, increasing the odds for favorable patient outcomes. In this chapter we describe the involvement of the chemokine (C-X-C motif) ligand 3 (CXCL3) in the human tumor microenvironment and its effects on immune and non-immune cells. Because of the limited data on the CXCL3 signaling in the tumor microenvironment, we extend the review to other members of the CXC subfamily of chemokines. This review also addresses the future trends or directions for therapeutic interventions that target signaling pathways used by these molecules in the tumor microenvironment.
Collapse
Affiliation(s)
- Niradiz Reyes
- School of Medicine, University of Cartagena, Cartagena, Colombia.
| | - Stephanie Figueroa
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Jan Geliebter
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
16
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Analysis of the Gene Expression Profile of Stromal Pro-Tumor Factors in Cancer-Associated Fibroblasts from Luminal Breast Carcinomas. Diagnostics (Basel) 2020; 10:diagnostics10110865. [PMID: 33114046 PMCID: PMC7690699 DOI: 10.3390/diagnostics10110865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Luminal tumors are the most frequent type of breast carcinomas showing less tumor aggressiveness, although heterogeneity exists in their clinical outcomes. Cancer-associated fibroblasts (CAFs) are a key component of the tumor stroma which contribute to tumor progression. We investigated by real-time PCR the gene expression of 19 factors implicated in tumor progression. Those factors included the calcium-binding protein S100A4, several growth factors (FGF2, FGF7, HGF, PDGFA, PDGFB, TGFβ, VEGFA, and IGF2), and we also studied inflammatory cytokines (IL6 and IL8), chemokines (CCL2, CXCL12), important proteases (uPA, MMP2, MMP9 and MMP11), the nuclear factor NFκB, and the metalloprotease inhibitor TIMP1, from luminal A and luminal B breast carcinoma CAFs. We performed a similar analysis after co-culturing CAFs with MCF-7 and MDA-MB-231 breast cancer cell lines. MMP-9 and CCL2 gene expressions were higher in CAFs from luminal B tumors. We also found different patterns in the induction of pro-tumoral factors from different CAFs populations co-cultured with different cancer cell lines. Globally, CAFs from luminal B tumors showed a higher expression of pro-tumor factors compared to CAFs from luminal A tumors when co-cultured with breast cancer cell lines. Moreover, we found that CAFs from metastatic tumors had higher IGF-2 gene expression, and we detected the same after co-culture with cell lines. Our results show the variability in the capacities of CAFs from luminal breast carcinomas, which may contribute to a better biological and clinical characterization of these cancer subtypes.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Chemokines are a large group of low molecular weight cytokines that attract and activate leukocytes throughout the body and therefore have a key role in the framework of late-phase allergic responses. The purpose of this article is to provide an overview of the main chemokines involved in allergic conjunctivitis, their primary functions and their physiological roles, and therapies targeted at chemokines and their receptors for ocular allergic diseases. RECENT FINDINGS In recent years, there have been considerable advances in the understanding of ocular pathophysiology of ocular surface inflammatory diseases including both allergic eye diseases and dry eye syndrome. Several therapies being developed for dry eye inflammation are recognized as possible therapies for ocular allergic diseases as there are often common chemokines involved in both disease spectra. SUMMARY Chemokines represent an integral part of the late-phase cascade of ocular allergic inflammation. A deep understanding of specific chemokines and their interactions will help in targeting therapies to effectively manage ocular clinical findings and symptoms of allergic eye disease.
Collapse
|
19
|
Xu Z, Sun Y, Wei Z, Jiang J, Xu J, Liu P. Suppression of CXCL-1 Could Restore Necroptotic Pathway in Chronic Lymphocytic Leukemia. Onco Targets Ther 2020; 13:6917-6925. [PMID: 32764983 PMCID: PMC7371606 DOI: 10.2147/ott.s256993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/17/2020] [Indexed: 01/18/2023] Open
Abstract
Purpose To clarify the role of different cytokines and selenite in the defective necroptotic pathway of chronic lymphocytic leukemia (CLL). Patients and Methods We randomly collected the peripheral blood samples of 11 untreated CLL patients and 10 healthy volunteers, and then separated B lymphocytes from peripheral blood. Then, real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA) and Western Blot were performed to detect the expression of different cytokines, including CXC-motif chemokine ligand 1 (CXCL-1). Finally, we used flow cytometry to analyze the percentage of surviving cells to figure out whether CLL cells or normal B lymphocytes underwent necroptosis. Results 1) The high expression of CXCL-1 was seen in CLL cells compared with normal B lymphocytes (p = 0.0001, adjusted p =0.0012); 2) The downregulation of CXCL-1 was shown in normal B lymphocytes after induction by TNF-α and z-VAD; 3) CLL cells could restore necroptosis induced by TNF-α and z-VAD after knockdown of CXCL-1; 4) The transcriptional and translational expression of LEF-1 were downregulated after the knockdown of CXCL-1 in CLL cells; 5. 3.2μM selenite could help CLL cells restore necroptosis (p = 0.0102) and inhibit the transcriptional and translational expression of CXCL-1. Conclusion CXCL-1 played an important role in the defective necroptosis of CLL cells and regulated the expression of LEF-1. Selenite could inhibit the expression of CXCL-1 and help CLL cells restore necroptosis together with TNF-α and z-VAD. Selenite might be the potential medication of CLL in the future.
Collapse
Affiliation(s)
- Zhao Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yifeng Sun
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jifeng Jiang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Tiwari R, Manzar N, Ateeq B. Dynamics of Cellular Plasticity in Prostate Cancer Progression. Front Mol Biosci 2020; 7:130. [PMID: 32754615 PMCID: PMC7365877 DOI: 10.3389/fmolb.2020.00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the current advances in the treatment for prostate cancer, the patients often develop resistance to the conventional therapeutic interventions. Therapy-induced drug resistance and tumor progression have been associated with cellular plasticity acquired due to reprogramming at the molecular and phenotypic levels. The plasticity of the tumor cells is mainly governed by two factors: cell-intrinsic and cell-extrinsic. The cell-intrinsic factors involve alteration in the genetic or epigenetic regulators, while cell-extrinsic factors include microenvironmental cues and drug-induced selective pressure. Epithelial-mesenchymal transition (EMT) and stemness are two important hallmarks that dictate cellular plasticity in multiple cancer types including prostate. Emerging evidence has also pinpointed the role of tumor cell plasticity in driving anti-androgen induced neuroendocrine prostate cancer (NEPC), a lethal and therapy-resistant subtype. In this review, we discuss the role of cellular plasticity manifested due to genetic, epigenetic alterations and cues from the tumor microenvironment, and their role in driving therapy resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
21
|
Popovics P, Awadallah WN, Kohrt SE, Case TC, Miller NL, Ricke EA, Huang W, Ramirez-Solano M, Liu Q, Vezina CM, Matusik RJ, Ricke WA, Grabowska MM. Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate 2020; 80:731-741. [PMID: 32356572 PMCID: PMC7485377 DOI: 10.1002/pros.23986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1β and TGF-β1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-β1 stimulated OPN secretion by NHPrE-1 cells and both IL-1β and TGF-β1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Address correspondence and reprint requests to: Petra Popovics, University of Wisconsin, Department of Urology, WIMR 7128, 1111 Highland Avenue, Madison, WI 53705, Tel: +1 786 474 1086,
| | - Wisam N. Awadallah
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Sarah E. Kohrt
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Thomas C. Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Emily A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Chad M. Vezina
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Comparative Biosciences, University of Wisconsin–Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin–Madison, WI
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
22
|
Yuan YF, Zhu WX, Liu T, He JQ, Zhou Q, Zhou X, Zhang X, Yang J. Cyclopamine functions as a suppressor of benign prostatic hyperplasia by inhibiting epithelial and stromal cell proliferation via suppression of the Hedgehog signaling pathway. Int J Mol Med 2020; 46:311-319. [PMID: 32319534 PMCID: PMC7255449 DOI: 10.3892/ijmm.2020.4569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Stromal-epithelial interaction serves a pivotal role in normal prostate growth, as well as the onset of benign prostatic hyperplasia (BPH). The present study aimed to explore the role of cyclopamine in the proliferation and apoptosis of epithelial and stromal cells in rats with BPH by blocking the Hedgehog signaling pathway. Cyclopamine (an inhibitor of the Hedgehog signaling pathway) was administered in a rat model of BPH, and the expression of Ki67 (proliferation factor) was determined by immunohistochemistry. In addition, epithelial and stromal cells were separated and cultured in order to investigate the role of cyclopamine in the progression of BPH. The expression of Hedgehog signaling pathway- and apoptosis-related genes, including basic fibroblastic growth factor (b-FGF) and transforming growth factor β (TGF-β), was evaluated using reverse transcription-quantitative polymerase chain reaction and western blot analysis. Cell proliferation, cell cycle and apoptosis were analyzed using an MTT assay and flow cytometry. We identified upregulated Ki67 expression and activated Hedgehog signaling pathway in rats with BPH. Cyclopamine inhibited the activation of the Hedgehog signaling pathway. In response to cyclopamine treatment, epithelial and stromal cell proliferation was inhibited; this was concomitant with decreased Ki67, TGF-β, and b-FGF expression. On the other hand, epithelial cell apoptosis was enhanced, which was associated with increased Bax and reduced Bcl-2 expression. Based on these findings, we proposed that cyclopamine may serve as a potential therapeutic agent in the treatment of BPH. Cyclopamine could inhibit epithelial and stromal cell proliferation, and induce epithelial cell apoptosis by suppressing the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Yi-Feng Yuan
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Wen-Xiong Zhu
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Tao Liu
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Ju-Qiao He
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Qing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Xi Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Jing Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
23
|
Ren J, Zhang Y, Jia J, Dai L, Wang Y, Zhou B, Zhou R. Relationship between polymorphisms of CXCL3 gene and preeclampsia. J Matern Fetal Neonatal Med 2020; 35:258-262. [PMID: 31931644 DOI: 10.1080/14767058.2020.1716332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Preeclampsia (PE), a pregnancy-specific disease, is a main cause of maternal and perinatal mortality in the world, the exact pathogenesis of which is still unknown. Recent studies have found it is a disorder caused by multiple factors and genes. Previously, we found a significantly abnormal expression of CXCL3 in plasma and placenta of severe preeclampsia. Here, we intend to explore the association of polymorphisms in CXCL3 gene with preeclampsia susceptibility in women from western China.Methods: Four hundred eighty-one pregnant women were involved in this case-control study, including 83 early-onset severe preeclampsia cases, 114 late-onset severe preeclampsia cases, 41 mild preeclampsia cases and 243 normal pregnancies. The rs370655 variant in CXCL3 was detected by the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP).Results: No significantly reduced risk of preeclampsia is observed in the rs370655 AA genotype compared with other genotypes (AG versus AA: OR = .82, 95%CI = .54-1.26; GG versus AA: OR = .95, 95%CI = .56-1.61). After subgroup analysis, there are still no significant differences among various genotypes in the mild preeclampsia, early-onset severe preeclampsia and late-onset sever preeclampsia.Conclusion: Our study suggests that rs370655 polymorphism in CXCL3 gene may be not the risk factor of preeclampsia, exploring other consequential SNPs in CXCL3 gene may help to predict the preeclampsia.
Collapse
Affiliation(s)
- Jie Ren
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Yanping Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Jin Jia
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Li Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Yanyun Wang
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Bin Zhou
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| |
Collapse
|
24
|
Qi YL, Li Y, Man XX, Sui HY, Zhao XL, Zhang PX, Qu XS, Zhang H, Wang BX, Li J, Qi SF, Jia LL, Luan HY, Zhang CB, Wang WQ. CXCL3 overexpression promotes the tumorigenic potential of uterine cervical cancer cells via the MAPK/ERK pathway. J Cell Physiol 2019; 235:4756-4765. [PMID: 31667838 DOI: 10.1002/jcp.29353] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
CXCL3 belongs to the CXC-type chemokine family and is known to play a multifaceted role in various human malignancies. While its clinical significance and mechanisms of action in uterine cervical cancer (UCC) remain unclear. This investigation demonstrated that the UCC cell line HeLa expressed CXCL3, and strong expression of CXCL3 was detected in UCC tissues relative to nontumor tissues. In addition, CXCL3 expression was strongly correlated with CXCL5 expression in UCC tissues. In vitro, HeLa cells overexpressing CXCL3, HeLa cells treated with exogenous CXCL3 or treated with conditioned medium from WPMY cells overexpressing CXCL3, exhibited enhanced proliferation and migration activities. In agreement with these findings, CXCL3 overexpression was also associated with the generation of HeLa cell tumor xenografts in athymic nude mice. Subsequent mechanistic studies demonstrated that CXCL3 overexpressing influenced the expression of extracellular signal-regulated kinase (ERK) signaling pathway associated genes, including ERK1/2, Bcl-2, and Bax, whereas the CXCL3-induced proliferation and migration effects were attenuated by exogenous administration of the ERK1/2 blocker PD98059. The data of the current investigation support that CXCL3 appears to hold promise as a potential tumor marker and interference target for UCC.
Collapse
Affiliation(s)
- Ya-Ling Qi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.,Department of Histology and Embryology, Hainan Medical College, Haikou, Hainan, China
| | - Yue Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xia-Xia Man
- Department of Oncologic Gynecology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Hong-Yu Sui
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiao-Lian Zhao
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Peng-Xia Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiu-Sheng Qu
- First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Bai-Xin Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jing Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shu-Fang Qi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lin-Lin Jia
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hai-Yan Luan
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chun-Bin Zhang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei-Qun Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
25
|
Urinary Biomarkers and Benign Prostatic Hyperplasia. CURRENT BLADDER DYSFUNCTION REPORTS 2019. [DOI: 10.1007/s11884-019-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11050664. [PMID: 31086100 PMCID: PMC6562436 DOI: 10.3390/cancers11050664] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Although the mechanisms underlying the genesis and progression of breast cancer are better understood than ever, it is still the most frequent malignant tumor in women and one of the leading causes of cancer death. Therefore, we need to establish new approaches that lead us to better understand the prognosis of this heterogeneous systemic disease and to propose new therapeutic strategies. Cancer is not only a malignant transformation of the epithelial cells merely based on their autonomous or acquired proliferative capacity. Today, data support the concept of cancer as an ecosystem based on a cellular sociology, with diverse components and complex interactions between them. Among the different cell types that make up the stroma, which have a relevant role in the dynamics of tumor/stromal cell interactions, the main ones are cancer associated fibroblasts, endothelial cells, immune cells and mesenchymal stromal cells. Several factors expressed by the stroma of breast carcinomas are associated with the development of metastasis, such as matrix metalloproteases, their tissular inhibitors or some of their regulators like integrins, cytokines or toll-like receptors. Based on the expression of these factors, two types of breast cancer stroma can be proposed with significantly different influence on the prognosis of patients. In addition, there is evidence about the existence of bi-directional signals between cancer cells and tumor stroma cells with prognostic implications, suggesting new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Luis O Gonzalez
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Jose Schneider
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| |
Collapse
|
27
|
Wei LY, Lee JJ, Yeh CY, Yang CJ, Kok SH, Ko JY, Tsai FC, Chia JS. Reciprocal activation of cancer-associated fibroblasts and oral squamous carcinoma cells through CXCL1. Oral Oncol 2019; 88:115-123. [DOI: 10.1016/j.oraloncology.2018.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/30/2018] [Accepted: 11/03/2018] [Indexed: 01/29/2023]
|
28
|
Kim JH, Han IH, Kim YS, Noh CS, Ryu JS. Proliferation of prostate epithelia induced by IL-6 from stroma reacted with Trichomonas vaginalis. Parasite Immunol 2018; 40:e12531. [PMID: 29633291 DOI: 10.1111/pim.12531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/27/2018] [Indexed: 01/01/2023]
Abstract
Benign prostatic hyperplasia (BPH) is characterized by the proliferation of stromal and epithelial cell types in the prostate, and interactions between the two types of cells. We demonstrated previously that proliferation of prostate stromal cells was induced by BPH epithelial cells in response to Trichomonas vaginalis (Tv) infection via crosstalk with mast cells. In this study, we investigated whether IL-6 released by the proliferating stromal cells in turn induce the BPH epithelial cells to multiply. When culture supernatants of the proliferating prostate stromal cells were added to BPH epithelial cells, the latter multiplied, and expression of cyclin D1, FGF2 and Bcl-2 increased. Blocking the IL-6 signalling pathway with anti-IL-6R antibody or JAK1/2 inhibitor inhibited the proliferation of the BPH epithelial cells and reduced the expression of IL-6, IL-6R and STAT3. Also, epithelial-mesenchymal transition was detected in the proliferating BPH epithelial cells. In conclusion, IL-6 released from proliferating prostate stromal cells induced by BPH epithelial cells infected with Tv in turn induces multiplication of the BPH epithelial cells. This result provides first evidence that the inflammatory microenvironment of prostate stromal cells resulting from Tv infection induces the proliferation of prostate epithelial cells by stromal-epithelial interaction.
Collapse
Affiliation(s)
- J-H Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - I-H Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Y-S Kim
- Department of Biochemistry and Molecular Biology, Hanyang University College of Medicine, Seoul, Korea
| | - C-S Noh
- Department of Internal Medicine, Hallym University Han River Seongshim Hospital, Seoul, Korea
| | - J-S Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol (Dordr) 2018; 41:369-378. [PMID: 29497991 DOI: 10.1007/s13402-018-0371-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE It has been reported that stromal cell features may affect the clinical outcome of breast cancer patients. Cancer associated fibroblasts (CAFs) represent one of the most abundant cell types within the breast cancer stroma. Here, we aimed to explore the influence of CAFs on breast cancer gene expression, as well as on invasion and angiogenesis. METHODS qRT-PCR was used to evaluate the expression of several cancer progression related genes (S100A4, TGFβ, FGF2, FGF7, PDGFA, PDGFB, VEGFA, IL-6, IL-8, uPA, MMP2, MMP9, MMP11 and TIMP1) in the human breast cancer-derived cell lines MCF-7 and MDA-MB-231, before and after co-culture with CAFs. Stromal mononuclear inflammatory cell (MIC) MMP11 expression was used to stratify primary tumors. In addition, we assessed the in vitro effects of CAFs on both MDA-MB-231 breast cancer cell invasion and endothelial cell (HUVEC) tube formation. RESULTS We found that the expression levels of most of the genes tested were significantly increased in both breast cancer-derived cell lines after co-culture with CAFs from either MMP11+ or MMP11- MIC tumors. IL-6 and IL-8 showed an increased expression in both cancer-derived cell lines after co-culture with CAFs from MMP11+ MIC tumors. We also found that the invasive and angiogenic capacities of, respectively, MDA-MB-231 and HUVEC cells were increased after co-culture with CAFs, especially those from MMP11+ MIC tumors. CONCLUSIONS Our data indicate that tumor-derived CAFs can induce up-regulation of genes involved in breast cancer progression. Our data additionally indicate that CAFs, especially those derived from MMP11+ MIC tumors, can promote breast cancer cell invasion and angiogenesis.
Collapse
|
30
|
Huang M, Narita S, Inoue T, Koizumi A, Saito M, Tsuruta H, Numakura K, Satoh S, Nanjo H, Sasaki T, Habuchi T. Fatty acid binding protein 4 enhances prostate cancer progression by upregulating matrix metalloproteinases and stromal cell cytokine production. Oncotarget 2017; 8:111780-111794. [PMID: 29340091 PMCID: PMC5762359 DOI: 10.18632/oncotarget.22908] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022] Open
Abstract
Fatty acid binding protein 4 (FABP4) is an abundant protein in adipocytes, and its production is influenced by high-fat diet (HFD) or obesity. The prostate stromal microenvironment induces proinflammatory cytokine production, which is key for the development and progression of prostate cancer (PCa). Here, we show that high FABP4 expression and its secretion by PCa cells directly stimulated PCa cell invasiveness by upregulating matrix metalloproteinases through phosphatidylinositol 3-kinase and mitogen-activated protein kinase signaling pathways. In addition, prostate stromal cells augmented PCa cell invasiveness by secreting interleukin-8 and -6 in response to FABP4. This was abrogated by the FABP4 specific inhibitor, BMS309403. Furthermore, a mouse xenograft experiment showed HFD enhanced PCa metastasis and invasiveness by the upregulation of FABP4 and interleukin-8. Clinically, the serum level of FABP4 was significantly associated with an aggressive type of PCa rather than obesity. Taken together, FABP4 may enhance PCa progression and invasiveness by upregulating matrix metalloproteinases and cytokine production in the PCa stromal microenvironment, especially under HFD or obesity.
Collapse
Affiliation(s)
- Mingguo Huang
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 102-0004, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 102-0004, Japan
| | - Takamitsu Inoue
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 102-0004, Japan
| | - Atsushi Koizumi
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 102-0004, Japan
| | - Mitsuru Saito
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hiroshi Tsuruta
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shigeru Satoh
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takehiko Sasaki
- Research Center for Biosignal, Akita University Graduate School of Medicine, Akita 010-8543, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 102-0004, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo 102-0004, Japan
| |
Collapse
|
31
|
Zhou X, An D, Liu X, Jiang M, Yuan C, Hu J. TNFα induces tolerant production of CXC chemokines in colorectal cancer HCT116 cells via A20 inhibition of ERK signaling. Int Immunopharmacol 2017; 54:296-302. [PMID: 29175508 DOI: 10.1016/j.intimp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
Abstract
Ubiquitin editing enzyme A20 functions as a tumor suppressor in various cancer. However, the mechanism for A20 regulation of cancer progress is not fully understood. In this study, we found that in human colorectal cancer HCT116 cells, TNFα induced a tolerant production of CXC chemokines, including CXCL1, 2, and 8 in a dose and time dependent manner. TNFα pre-treatment of HCT116 cells down-regulated the chemokine production induced by TNFα re-treatment. TNFα induced the phosphorylation of MAPKs ERK, JNK, P38 and NF-κB P65, but only ERK inhibition decreased TNFα-induced chemokine production. Both RT-PCR and FACS results showed that TNFα treatment did not regulate the expression of TNF receptors. However, TNFα up-regulated the expression of A20 at both mRNA and protein levels significantly. TNFα pre-treatment inhibited the signal transduction of MAPKs induced by TNFα re-stimulation, and A20 over-expression decreased the signal transduction of ERK and P38. Meanwhile, A20 inhibition by RNA interference reversed chemokine down-regulation induced by TNFα re-stimulation after TNFα pre-treatment. Taken together, these results suggested that in human colorectal cancer cells, A20 may function to inhibit cancer progression via down-regulation of TNFα-induced chemokine production by suppression of ERK signaling.
Collapse
Affiliation(s)
- Xin Zhou
- Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China; Graduate School, University of South China, Hengyang, Hunan 421001, China
| | - Dongjian An
- Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China.
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China.
| |
Collapse
|
32
|
Spurgeon ME, den Boon JA, Horswill M, Barthakur S, Forouzan O, Rader JS, Beebe DJ, Roopra A, Ahlquist P, Lambert PF. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proc Natl Acad Sci U S A 2017; 114:E9076-E9085. [PMID: 29073104 PMCID: PMC5664542 DOI: 10.1073/pnas.1712018114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-risk human papillomaviruses (HPVs) infect epithelial cells and are causally associated with cervical cancer, but HPV infection is not sufficient for carcinogenesis. Previously, we reported that estrogen signaling in the stromal tumor microenvironment is associated with cervical cancer maintenance and progression. We have now determined how HPV oncogenes and estrogen treatment affect genome-wide host gene expression in laser-captured regions of the cervical epithelium and stroma of untreated or estrogen-treated nontransgenic and HPV-transgenic mice. HPV oncogene expression in the cervical epithelium elicited significant gene-expression changes in the proximal stromal compartment, and estrogen treatment uniquely affected gene expression in the cervical microenvironment of HPV-transgenic mice compared with nontransgenic mice. Several potential estrogen-induced paracrine-acting factors were identified in the expression profile of the cervical tumor microenvironment. The microenvironment of estrogen-treated HPV-transgenic mice was significantly enriched for chemokine/cytokine activity and inflammatory and immune functions associated with carcinogenesis. This inflammatory signature included several proangiogenic CXCR2 receptor ligands. A subset of the same CXCR2 ligands was likewise increased in cocultures of early-passage cells from human cervical samples, with levels highest in cocultures of cervical fibroblasts and cancer-derived epithelial cells. Our studies demonstrate that high-risk HPV oncogenes profoundly reprogram the tumor microenvironment independently of and synergistically with estrogen. These observations illuminate important means by which HPVs can cause cancer through alterations in the tumor microenvironment.
Collapse
Affiliation(s)
- Megan E Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706
| | - Johan A den Boon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, Madison, WI 53715
| | - Mark Horswill
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, Madison, WI 53715
| | - Sonalee Barthakur
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Avtar Roopra
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706;
- Morgridge Institute for Research, Madison, WI 53715
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706;
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
33
|
Leimgruber C, Quintar AA, Peinetti N, Scalerandi MV, Nicola JP, Miano JM, Maldonado CA. Testosterone Rescues the De-Differentiation of Smooth Muscle Cells Through Serum Response Factor/Myocardin. J Cell Physiol 2017; 232:2806-2817. [PMID: 27861881 DOI: 10.1002/jcp.25679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
Prostatic smooth muscle cells (pSMCs) differentiation is a key factor for prostatic homeostasis, with androgens exerting multiple effects on these cells. Here, we demonstrated that the myodifferentiator complex Srf/Myocd is up-regulated by testosterone in a dose-dependent manner in primary cultures of rat pSMCs, which was associated to the increase in Acta2, Cnn1, and Lmod1 expressions. Blocking Srf or Myocd by siRNAs inhibited the myodifferentiator effect of testosterone. While LPS led to a dedifferentiated phenotype in pSMCs, characterized by down-regulation of Srf/Myocd and smooth muscle cell (SMC)-restricted genes, endotoxin treatment on Myocd-overexpressing cells did not result in phenotypic alterations. Testosterone at a physiological dose was able to restore the muscular phenotype by normalizing Srf/Myocd expression in inflammation-induced dedifferentiated pSMCs. Moreover, the androgen reestablished the proliferation rate and IL-6 secretion increased by LPS. These results provide novel evidence regarding the myodifferentiating role of testosterone on SMCs by modulating Srf/Myocd. Thus, androgens preserve prostatic SMC phenotype, which is essential to maintain the normal structure and function of the prostate. J. Cell. Physiol. 232: 2806-2817, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carolina Leimgruber
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Amado A Quintar
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nahuel Peinetti
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María V Scalerandi
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan P Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Cristina A Maldonado
- Centro de Microscopía Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
34
|
Kryza T, Silva LM, Bock N, Fuhrman-Luck RA, Stephens CR, Gao J, Samaratunga H, Lawrence MG, Hooper JD, Dong Y, Risbridger GP, Clements JA. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells. Mol Oncol 2017; 11:1307-1329. [PMID: 28510269 PMCID: PMC5623815 DOI: 10.1002/1878-0261.12075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/11/2017] [Accepted: 04/27/2017] [Indexed: 01/09/2023] Open
Abstract
The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer‐associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein‐related peptidase‐4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF‐like features in the prostate‐derived WPMY1 normal stromal cell line, including increased expression of alpha‐smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease‐activated receptor‐1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient‐derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial‐derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment.
Collapse
Affiliation(s)
- Thomas Kryza
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Lakmali M Silva
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Nathalie Bock
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Ruth A Fuhrman-Luck
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Carson R Stephens
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Jin Gao
- Regenerative Dentistry and Oral Biology, Oral Health Centre, University of Queensland, Herston, Australia
| | - Hema Samaratunga
- Aquesta Pathology, Toowong, Australia.,School of Medicine, University of Queensland, Herston, Australia
| | -
- Australian Prostate Cancer BioResource, The Prostate Cancer Research Program, Monash University, Clayton, Australia
| | - Mitchell G Lawrence
- Prostate Research Group, Cancer Program - Biomedicine Discovery Institute Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Australia
| | - John D Hooper
- Cancer Biology and Care Program, Translational Research Institute, Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Ying Dong
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Gail P Risbridger
- Prostate Research Group, Cancer Program - Biomedicine Discovery Institute Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash University, Clayton, Australia.,Prostate Cancer Translational Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Parkville, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Judith A Clements
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| |
Collapse
|
35
|
Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5724046. [PMID: 28408970 PMCID: PMC5376943 DOI: 10.1155/2017/5724046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/17/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022]
Abstract
Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.
Collapse
|
36
|
Eiro N, Fernandez-Gomez J, Sacristán R, Fernandez-Garcia B, Lobo B, Gonzalez-Suarez J, Quintas A, Escaf S, Vizoso FJ. Stromal factors involved in human prostate cancer development, progression and castration resistance. J Cancer Res Clin Oncol 2017; 143:351-359. [PMID: 27787597 DOI: 10.1007/s00432-016-2284-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE To detect new predictive markers from the prostate cancer tissue, to study the expression by cultured cancer-associated fibroblasts (CAFs) of stromal factors implicated in prostate carcinogenesis, and to compare their expressions in localized, metastatic, castration-sensitive (CSCP), castration-resistant prostate tumors (CRCP) as well as in fibroblasts from benign prostatic hyperplasia (BPH). MATERIALS AND METHODS The genomic expression of 20 stroma-derived factors, including the androgen receptor (AR), growth factors (FGF2, FGF7, FGF10, HGF, TGFβ, PDGFB), protein implicated in invasion (MMP-2, MMP-9 and MMP-11), inflammation (IL-6, IL-17, STAT-3 and NFκB), stroma/epithelium interaction (CDH11, FAP, CXCL12 and CXCL14) and chaperones (HPA1A and HSF1), was evaluated in cultured fibroblasts both from BHP and prostate carcinomas (PCa). After isolation and culture of fibroblasts by biopsy specimens, RNA was isolated and genomic studies performed. RESULTS Finally, 5 BPH and 37 PCa specimens were selected: clinically localized (19), metastatic (5), CSCP (7) and CRPC (6). Interleukin-17 receptor (IL-17RB) was highly expressed in CAFs compared with fibroblasts from BPH. However, metalloproteinase-2 and chemokine ligand 14 (CXCL14) were expressed at higher levels by fibroblasts from BPH. The fibroblastic growth factor-7 was highly expressed by CAFs from localized tumors, but metalloproteinase-11 in metastatic tumors. MMP-11, androgen receptor (AR) and heat-shock-70kda-protein-1A (HSPA1A) expressions were significantly higher in CAFs from CRPC. CONCLUSIONS These results demonstrate a CAFs heterogeneity among prostate carcinomas with regard to some molecular profile expressions that may be relevant in tumor development (IL-17RB), progression (MMP-11) and castration resistance (AR, MMP-11 and HSPA1A).
Collapse
Affiliation(s)
- Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920, Gijón, Asturias, Spain
| | - Jesus Fernandez-Gomez
- Unidad de Urología, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Raquel Sacristán
- Servicio de Urología, Fundación Hospital de Jove, Avda. Eduardo de Castro, 161, 33920, Gijón, Asturias, Spain
| | - Belen Fernandez-Garcia
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920, Gijón, Asturias, Spain
| | - Beatriz Lobo
- Unidad de Urología, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Jorge Gonzalez-Suarez
- Unidad de Urología, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Alejandro Quintas
- Unidad de Urología, Hospital Central de Asturias, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Safwan Escaf
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
37
|
CXCL3 contributes to CD133(+) CSCs maintenance and forms a positive feedback regulation loop with CD133 in HCC via Erk1/2 phosphorylation. Sci Rep 2016; 6:27426. [PMID: 27255419 PMCID: PMC4891684 DOI: 10.1038/srep27426] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
Although the chemotactic cytokine CXCL3 is thought to play an important role in tumor initiation and invasion, little is known about its function in hepatocellular carcinoma (HCC). In our previous study, we found that Ikaros inhibited CD133 expression via the MAPK pathway in HCC. Here, we showed that Ikaros may indirectly down-regulate CXCL3 expression in HCC cells, which leads to better outcomes in patients with CD133+ cancer stem cell (CSC) populations. CD133 overexpression induced CXCL3 expression, and silencing of CD133 down-regulated CXCL3 in HCC cells. Knockdown of CXCL3 inhibited CD133+ HCC CSCs’ self-renewal and tumorigenesis. The serum CXCL3 level was higher in HCC patients’ samples than that in healthy individual. HCC patients with higher CXCL3 expression displayed a poor prognosis, and a high level of CXCL3 was significantly associated with vascular invasion and tumor capsule formation. Exogenous CXCL3 induced Erk1/2 and ETS1 phosphorylation and promoted CD133 expression, indicating a positive feedback loop between CXCL3 and CD133 gene expression in HCC cells via Erk1/2 activation. Together, our findings indicated that CXCL3 might be a potent therapeutic target for HCC.
Collapse
|
38
|
Fernandez-Garcia B, Eiro N, Miranda MA, Cid S, González LO, Domínguez F, Vizoso FJ. Prognostic significance of inflammatory factors expression by stroma from breast carcinomas. Carcinogenesis 2016; 37:768-776. [PMID: 27207649 DOI: 10.1093/carcin/bgw062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
The aim of this work was to evaluate the expression and clinical relevance of some cytokines in breast carcinomas. An immunohistochemical study using tissue arrays and specific antibodies against interleukin 1β (IL-1β), IL-6, IL-10, IL-17, interferon β (IFNβ) and nuclear factor kappa B (NFκB) was performed in 108 breast carcinomas. Most studied cytokines were mainly expressed by cancer cells but also by stromal cells as cancer-associated fibroblasts (CAFs) or mononuclear inflammatory cells (MICs). Global expression (score) of IL-1β and IL-17 was positively associated with histological grade; human epidermal growth factor receptor 2-positive tumors showed a higher global expression of IFNβ but a lower global expression of NFκB; and node-negative tumors showed a higher global expression of IL-6. High score of IL-6 was significantly associated with both longer relapse free-survival (RFS) and overall survival (OS). Moreover, the expression of IL-1β by each stromal cells (CAFs and MICs) was significantly associated with both longer RFS and OS, whereas the expression of IL-10 by these cells was significantly associated with both shorter RFS and OS. However, the combination of IL-1β, IL-6 and IL-10 expression by MICs reached an important association with prognosis and improved our previously reported prognostic signification based on the matrix metalloprotease 11 status by MICs. The combination of IL-1β, IL-6 and IL-10 expression by MICs was significant and independently associated with distant RFS in a multivariate analysis. Therefore, the combination of the expression of IL-1β, IL-6 and IL-10 may serve as promising biomarkers of MICs with prognostic significance, contributing to a better characterization of breast carcinomas microenvironment.
Collapse
Affiliation(s)
- Belen Fernandez-Garcia
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, 33920 Gijón, Asturias, Spain and
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, 33920 Gijón, Asturias, Spain and
| | - Maria-Angeles Miranda
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, 33920 Gijón, Asturias, Spain and
| | - Sandra Cid
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, 33920 Gijón, Asturias, Spain and
| | - Luis O González
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, 33920 Gijón, Asturias, Spain and
| | | | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, 33920 Gijón, Asturias, Spain and
| |
Collapse
|
39
|
Gui SL, Teng LC, Wang SQ, Liu S, Lin YL, Zhao XL, Liu L, Sui HY, Yang Y, Liang LC, Wang ML, Li XY, Cao Y, Li FY, Wang WQ. Overexpression of CXCL3 can enhance the oncogenic potential of prostate cancer. Int Urol Nephrol 2016; 48:701-9. [PMID: 26837773 DOI: 10.1007/s11255-016-1222-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE CXCL3 and its receptor CXCR2 were considered to play particularly important roles in the progression of malignancies. However, the investigations about CXCL3/CXCR2 axis in prostate cancer have been poorly involved. Herein we firstly reported our studies on the expression and biological roles of CXCL3 and CXCR2 in prostate cancer. METHODS Expression levels of CXCL3 and CXCR2 in prostate cancer cell lines (PC-3, DU145 and LNCaP), immortalized prostate stromal cell line (WPMY-1) and immortalized prostate epithelial cell line (RWPE-1) were investigated by RT-PCR, ELISA and western blot, whereas expression levels of CXCL3 in a prostate tissue microarray were detected by immunohistochemistry. Cell counting kit-8 and transwell assays were, respectively, utilized to determine the effects of exogenous CXCL3 on the cell proliferation and migration. We further examined whether CXCL3 could regulate the expression of genes correlated with prostate tumorigenesis by RT- PCR. RESULTS Elevated expression of CXCR2 was detected in DU145, LNCaP and RWPE-1. Moreover, high-level CXCL3 can be secreted by PC-3 and RWPE-1, and CXCL3 protein expression level in tissue microarray is concordant with prostate cancer metastasis. Exogenous CXCL3 does not contribute to proliferation, but has a significant effect on migration of prostate cancer cells and RWPE-1. Finally, our data showed that exogenous CXCL3 can regulate the expression of genes including ERK, TP73, NUMB, BAX and NDRG3. CONCLUSION Our findings suggest that CXCL3 and its receptor CXCR2 are overexpressed in prostate cancer cells, prostate epithelial cells and prostate cancer tissues, which may play multiple roles in prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Shi-Liang Gui
- Department of Urology, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Li-Chen Teng
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shu-Qiu Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shuang Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Ying-Li Lin
- Department of Urology, Affiliated Xuzhou Hospital of Jiangsu University (Xuzhou Cancer Hospital), Xuzhou, Jiangsu, China
| | - Xiao-Lian Zhao
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lei Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hong-Yu Sui
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yang Yang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Li-Chun Liang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Mo-Lin Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xin-Yi Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yu Cao
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Feng-Ying Li
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei-Qun Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
40
|
Fang Y, Saiyin H, Zhao X, Wu Y, Han X, Lou W. IL-8-Positive Tumor-Infiltrating Inflammatory Cells Are a Novel Prognostic Marker in Pancreatic Ductal Adenocarcinoma Patients. Pancreas 2016; 45:671-8. [PMID: 26495785 DOI: 10.1097/mpa.0000000000000520] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Tumor-infiltrating inflammatory cells (TIICs) in pancreatic ductal adenocarcinoma (PDAC) are reported to initiate and exacerbate invasion and metastasis. Interleukin-8 (IL-8), a proinflammatory cytokine, is expressed in both neoplastic cells and TIICs in PDAC tissues and increased in patient serum. The aim of this study is to evaluate the values of IL-8 expression profiles in tumor tissues and predict the source of serum IL-8 in PDAC patients. METHODS We used 2 independent groups of PDAC patient samples that included 240 cases. Tissue expression profiles of cytokines were evaluated with immunohistochemistry and serum levels with human IL-8 assay. The prognostic values of the variables were assessed by Kaplan-Meier or Cox regression analysis. RESULTS Higher levels of IL-8-positive TIICs but not tumor cells in PDAC patients correlated with worse prognosis (P = 0.009) and higher blood serum IL-8 levels (P = 0.002). Controlling other independent factors, the relative hazard ratio for PDAC with higher IL-8-positive TIIC levels compared with those with lower TIIC levels was 1.588 (95% confidence interval, 1.04-2.42). CONCLUSIONS Higher IL-8-positive TIIC levels in PDAC tumors indicate poorer prognosis and positively correlate with serum IL-8 concentrations and vice versa. These data suggested that IL-8 might have a potential target for PDAC therapies.
Collapse
Affiliation(s)
- Yuan Fang
- From the *Department of General Surgery, Zhongshan Hospital; †The State Key Laboratory of Genetic Engineering, School of Life Sciences; and ‡School of Public Health, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
41
|
Lu Y, Li S, Ma L, Li Y, Zhang X, Peng Q, Mo C, Huang L, Qin X, Liu Y. Type conversion of secretomes in a 3D TAM2 and HCC cell co-culture system and functional importance of CXCL2 in HCC. Sci Rep 2016; 6:24558. [PMID: 27117207 PMCID: PMC4846822 DOI: 10.1038/srep24558] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis.
Collapse
Affiliation(s)
- Yu Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Liping Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yan Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaolian Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Qiliu Peng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Cuiju Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Li Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
42
|
Giai C, Gonzalez CD, Sabbione F, Garofalo A, Ojeda D, Sordelli DO, Trevani AS, Gómez MI. Staphylococcus aureus Induces Shedding of IL-1RII in Monocytes and Neutrophils. J Innate Immun 2016; 8:284-98. [PMID: 26967533 DOI: 10.1159/000443663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
Abstract
Interleukin 1 (IL-1) β is a critical cytokine that orchestrates host defenses against Staphylococcus aureus and is crucial for the eradication of bacteria. The production and action of IL-1β are regulated by multiple control pathways. Among them, IL-1RII (the type II IL-1 receptor) acts as a decoy receptor and has been shown to regulate the biological effects of IL-1β. High levels of soluble IL-1RII are present in septic patients; however, the stimuli that regulate the expression and release of IL-1RII in pathological conditions are incompletely elucidated. In the present study, we demonstrated the ability of S. aureus and protein A to induce IL-1RII shedding in myeloid cells. The positive modulation of IL-1RII expression and cleavage was associated with the failure to detect IL-1β in response to S. aureus both in vitro and in vivo, suggesting that the soluble form of the receptor could be masking the availability of IL-1β. The absence of detectable IL-1β was associated with low levels of inflammatory cytokines and chemokines known to be regulated by IL-1β and with increased bacterial persistence. Modulation of decoy receptors during systemic S. aureus infection is proposed as a new strategy used by this bacterium to evade the immune response.
Collapse
Affiliation(s)
- Constanza Giai
- Instituto de Investigaciones en Microbiologia y Parasitologia Medica (IMPaM), Consejo Nacional de Investigaciones Cientx00ED;ficas y Tx00E9;cnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
43
|
R.S. R, K.H. S, Somasundaram V, S. SK, Nadhan R, Nair RS, Srinivas P. Plumbagin, a naphthaquinone derivative induces apoptosis in BRCA 1/2 defective castrate resistant prostate cancer cells as well as prostate cancer stem-like cells. Pharmacol Res 2016; 105:134-45. [DOI: 10.1016/j.phrs.2016.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/30/2022]
|
44
|
The role of interleukin-8 (CXCL8) and CXCR2 in acquired chemoresistance of human colorectal carcinoma cells HCT116. Med Oncol 2015; 32:258. [PMID: 26519257 DOI: 10.1007/s12032-015-0703-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/31/2022]
Abstract
Colorectal cancer is one of the most common malignant diseases and is a leading cause of cancer mortality in the Western world. Primary or acquired resistance to chemotherapeutic drugs is a common phenomenon which causes a failure in cancer treatment. A diverse range of molecular mechanisms has been implicated in drug resistance: DNA damage repair, alterations in drug metabolism, mutation of drug targets, increased rates of drug efflux, and activation of survival signaling pathways. The aim of this study was to investigate the expression of CXCL8-CXCR1/2 pathway, its impact on cell proliferation and cytokine expression in human colorectal carcinoma HCT116 cells, and their chemotherapy-resistant subline. We found that IL-1 alpha stimulates the production of CXCL8 through IL-1 receptor signaling. Our data indicate that CXCL8 is upregulated in chemoresistant subline of colorectal cancer cells HCT116, and modulation of CXCR2 pathway can be a target for proliferation inhibition of chemoresistant colorectal cancer cells.
Collapse
|
45
|
The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation. Biomolecules 2015; 5:2723-57. [PMID: 26501341 PMCID: PMC4693255 DOI: 10.3390/biom5042723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.
Collapse
|
46
|
González L, Eiro N, Fernandez-Garcia B, González LO, Dominguez F, Vizoso FJ. Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Mol Carcinog 2015; 55:1489-1502. [PMID: 26349857 DOI: 10.1002/mc.22403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022]
Abstract
The biological heterogeneity of breast cancer leads to the need for finding new approaches to understand the mechanisms implicated in breast cancer progression. The tumor stroma appears as a key in the progression of solid tumors towards a malignant phenotype. Cancer associated fibroblasts (CAFs) may orchestrate a functional "corrupted" stroma which in turn helps metastatic spread. In this study, we investigated by real-time PCR, the expression of 19 factors by normal breast-associated fibroblasts (NAFs) and CAFs, which were implicated in several actions promoting tumor growth, such as extracellular matrix remodeling, inflammation and invasion. Also, we explored the influence of inflammatory cells phenotypes (MMP11 status) and breast cancer cell lines (MCF-7 and MDA-MB-231) on the molecular profile of CAFs. If we consider that one of the major sources of CAFs are resident NAFs, the transition of NAFs into CAFs is associated with molecular changes involving the overexpression of some molecular factors of biological importance in tumor progression. In addition, the characterization of the tumor stroma regarding to the MMP11 status by MICs reflects a type of fibroblasts which contribute even more to tumor progression. Moreover, different patterns in the induction of the expression of factors by CAFs were observed, depending on the tumor cell line which they were co-cultured with. Furthermore, CAFs influence TGFβ expression in both cancer cell lines. Therefore, this study can help to a better characterization of tumor stroma in order to improve the prognostic evaluation, as well as to define the different populations of CAFs as potential therapeutic targets in breast cancer. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucía González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | | | - Luis O González
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain.,Servicio de Anatomía Patológica, Fundación Hospital de Jove, Gijón, Asturias, Spain
| | - Francisco Dominguez
- Servicio de Anatomía Patológica, Hospital de Cabueñes, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Gijón, Asturias, Spain. .,Servicio de Cirugía General, Fundación Hospital de Jove, Gijón, Spain.
| |
Collapse
|
47
|
Chang MA, Patel V, Gwede M, Morgado M, Tomasevich K, Fong EL, Farach-Carson MC, Delk NA. IL-1β induces p62/SQSTM1 and represses androgen receptor expression in prostate cancer cells. J Cell Biochem 2015; 115:2188-97. [PMID: 25103771 DOI: 10.1002/jcb.24897] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/01/2014] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with advanced prostate cancer (PCa), although the mechanisms governing inflammation-mediated PCa progression are not fully understood. PCa progresses to an androgen independent phenotype that is incurable. We previously showed that androgen independent, androgen receptor negative (AR(-) ) PCa cell lines have high p62/SQSTM1 levels required for cell survival. We also showed that factors in the HS-5 bone marrow stromal cell (BMSC) conditioned medium can upregulate p62 in AR(+) PCa cell lines, leading us to investigate AR expression under those growth conditions. In this paper, mRNA, protein, and subcellular analyses reveal that HS-5 BMSC conditioned medium represses AR mRNA, protein, and nuclear accumulation in the C4-2 PCa cell line. Using published gene expression data, we identify the inflammatory cytokine, IL-1β, as a candidate BMSC paracrine factor to regulate AR expression and find that IL-1β is sufficient to both repress AR and upregulate p62 in multiple PCa cell lines. Immunostaining demonstrates that, while the C4-2 population shows a primarily homogeneous response to factors in HS-5 BMSC conditioned medium, IL-1β elicits a strikingly heterogeneous response; suggesting that there are other regulatory factors in the conditioned medium. Finally, while we observe concomitant AR loss and p62 upregulation in IL-1β-treated C4-2 cells, silencing of AR or p62 suggests that IL-1β regulates their protein accumulation through independent pathways. Taken together, these in vitro results suggest that IL-1β can drive PCa progression in an inflammatory microenvironment through AR repression and p62 induction to promote the development and survival of androgen independent PCa.
Collapse
Affiliation(s)
- M A Chang
- Department of BioSciences, Rice University, BioScience Research Collaborative, 6500 Main, MS 601, Houston, TX, 77030
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kashyap M, Pore S, Wang Z, Gingrich J, Yoshimura N, Tyagi P. Inflammasomes are important mediators of prostatic inflammation associated with BPH. JOURNAL OF INFLAMMATION-LONDON 2015; 12:37. [PMID: 25991911 PMCID: PMC4436794 DOI: 10.1186/s12950-015-0082-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/08/2015] [Indexed: 11/10/2022]
Abstract
Background There is mounting evidence to support the role of inflammation in benign prostate hyperplasia (BPH), and a recent study reported expression of inflammasome derived cytokine IL-18 in prostate biopsy of BPH patients. Here we examined the expression of inflammasome-derived cytokines and activation of nucleotide-binding oligomerization domain-like receptor with pyrin domain protein 1 (NLRP) 1 inflammasome in a rat model of prostatic inflammation relevant to BPH. Methods Prostatic inflammation was experimentally induced in three-month-old male Sprague–Dawley rats by intraprostatic injection (50 μL) of either 5 % formalin or saline (sham) into the ventral lobes of prostate. 7 days later, prostate and bladder tissue was harvested for analysis of inflammasome by Western blot, immunohistochemistry and downstream cytokine production by Milliplex. Results Expression of interleukins, CXC and CC chemokines were elevated 2-15 fold in formalin injected prostate relative to sham. Significant expression of NLRP1 inflammasome components and caspase-1 in prostate were associated with significant elevation of pro and cleaved forms of IL-1β (25.50 ± 1.16 vs 3.05 ± 0.65 pg/mg of protein) and IL-18 (1646.15 ± 182.61 vs 304.67 ± 103.95 pg/mg of protein). Relative to prostate tissue, the cytokine expression in bladder tissue was much lower and did not involve inflammasome activation. Conclusions Significant upregulation of NLRP1, caspase-1 and downstream cytokines (IL-18 and IL-1β) suggests that a NLRP1 inflammasome is assembled and activated in prostate tissue of this rat model. Recapitulation of findings from human BPH specimens suggests that the inflammasome may perpetuate the inflammatory state associated with BPH. Further clarification of these pathways may offer innovative therapeutic targets for BPH-related inflammation.
Collapse
Affiliation(s)
- Mahendra Kashyap
- Department of Urology, University of Pittsburgh, Pittsburgh, USA
| | - Subrata Pore
- Department of Urology, University of Pittsburgh, Pittsburgh, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, USA
| | - Jeffrey Gingrich
- Department of Urology, University of Pittsburgh, Pittsburgh, USA
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, USA
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
49
|
Han Y, Zhang Y, Jia T, Sun Y. Molecular mechanism underlying the tumor-promoting functions of carcinoma-associated fibroblasts. Tumour Biol 2015; 36:1385-94. [PMID: 25680413 DOI: 10.1007/s13277-015-3230-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/05/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor microenvironment is composed of all the untransformed elements in the vicinity of tumor, mainly including a large number of stromal cells and extracellular matrix proteins, which play an active role in most solid tumor initiation and progression. Carcinoma-associated fibroblasts (CAFs), one of the most common stromal cell types in the tumor microenvironment, have been demonstrated to be involved in tumor growth, invasion, and metastasis. Therefore, they are becoming a promising target for anti-cancer therapies. In this review, we firstly summarize the current understandings of CAFs' molecular biology, including the heterogeneous cellular origins and molecular markers, and then, we focus on reviewing their various tumor-promoting phenotypes involved in complex mechanisms, which can be summarized to the CAF-conveyed paracrine signals in tumor cells, cancer stem cells, and metastasis-initiating cancer cells, as well as the CAF-enhanced extrinsic tumor-promoting processes including angiogenesis, extracellular matrix remodeling, and tumor-related inflammation; finally, we describe the available directions of CAF-based target therapy and suggest research areas which need to be further explored so as to deepen the understanding of tumor evolution and provide new therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Yali Han
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, China,
| | | | | | | |
Collapse
|
50
|
Meseure D, Drak Alsibai K, Nicolas A. Pivotal role of pervasive neoplastic and stromal cells reprogramming in circulating tumor cells dissemination and metastatic colonization. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2014; 7:95-115. [PMID: 25523234 PMCID: PMC4275542 DOI: 10.1007/s12307-014-0158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023]
Abstract
Reciprocal interactions between neoplastic cells and their microenvironment are crucial events in carcinogenesis and tumor progression. Pervasive stromal reprogramming and remodeling that transform a normal to a tumorigenic microenvironment modify numerous stromal cells functions, status redox, oxidative stress, pH, ECM stiffness and energy metabolism. These environmental factors allow selection of more aggressive cancer cells that develop important adaptive strategies. Subpopulations of cancer cells acquire new properties associating plasticity, stem-like phenotype, unfolded protein response, metabolic reprogramming and autophagy, production of exosomes, survival to anoikis, invasion, immunosuppression and therapeutic resistance. Moreover, by inducing vascular transdifferentiation of cancer cells and recruiting endothelial cells and pericytes, the tumorigenic microenvironment induces development of tumor-associated vessels that allow invasive cells to gain access to the tumor vessels and to intravasate. Circulating cancer cells can survive in the blood stream by interacting with the intravascular microenvironment, extravasate through the microvasculature and interact with the metastatic microenvironment of target organs. In this review, we will focus on many recent paradigms involved in the field of tumor progression.
Collapse
Affiliation(s)
- Didier Meseure
- Platform of Investigative Pathology and Department of Biopathology, Curie Institute, 26 rue d'Ulm, 75248, Paris, Cedex 05, France,
| | | | | |
Collapse
|