1
|
Aoki K, Nitta A, Igarashi A. CDX1 and CDX2 suppress colon cancer stemness by inhibiting β-catenin-facilitated formation of Pol II-DSIF-PAF1C complex. Cell Death Dis 2025; 16:408. [PMID: 40399276 PMCID: PMC12095478 DOI: 10.1038/s41419-025-07737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Homeobox transcription factors CDX1 and CDX2 (hereafter, CDX1/2) play key roles in determining the identity of intestinal epithelial cells and regulating their stem cell functions. However, the role of CDX1/2 in regulating colon cancer stemness and the underlying mechanisms are unclear. Here, we show that complete loss of Cdx1 or concurrent loss of Cdx1/2 increased the stemness and malignancy of intestinal tumors. Consistently, CDX1/2 reduced the expression of cancer stemness-related genes, including LGR5. CDX1/2 bound to the downstream region of the LGR5 transcription start site (TSS), a region where β-catenin also binds. Despite increased H3 acetylation and an open chromatin structure, CDX1/2 reduced the occupancy of DRB sensitivity-inducing factor (DSIF), RNA polymerase II-associated factor 1 (PAF1), and RNA polymerase II (Pol II) complexes around the LGR5 TSS. Through their homeodomains, CDX1/2 inhibited the β-catenin-facilitated formation of active Pol II complexes containing DSIF and PAF1 complexes by preventing the interaction between β-catenin and these complexes, in an additive manner. Our findings suggest that CDX1/2 cooperatively suppressed colonic tumorigenesis and cancer stemness by antagonizing β-catenin via the DSIF and PAF1 complexes. Additionally, DSIF and PAF1 complexes acted as transcriptional platforms that integrated and funneled both tumor-suppressive and oncogenic signals into the expression of genes that control colon cancer stemness.
Collapse
Affiliation(s)
- Koji Aoki
- Department of Pharmacology, Faculty of Medicine, University of Fukui, Fukui, Japan.
- Life Science Support Center, University of Fukui, Fukui, Japan.
| | - Akari Nitta
- Department of Pharmacology, Faculty of Medicine, University of Fukui, Fukui, Japan
| | - Ayumi Igarashi
- Department of Pharmacology, Faculty of Medicine, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Ghobashi AH, Lanzloth R, Ladaika CA, Masood A, O’Hagan HM. Single-Cell Profiling Reveals the Impact of Genetic Alterations on the Differentiation of Inflammation-Induced Murine Colon Tumors. Cancers (Basel) 2024; 16:2040. [PMID: 38893159 PMCID: PMC11171101 DOI: 10.3390/cancers16112040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (MinApcΔ716/+) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAFV600E mutation (BRAFF-V600ELgr5tm1(Cre/ERT2)CleMinApcΔ716/+, BLM) or knocking out Msh2 (Msh2LoxP/LoxPVil1-creMinApcΔ716/+, MSH2KO) in the Min model altered colon tumor differentiation. Using single-cell RNA sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single-cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the tumor stem cell population. Interestingly, the tumor stem cell population of BLM tumors had revival colon stem cell characteristics with low WNT signaling and an increase in RevCSC marker gene expression. In contrast, MSH2KO tumors were characterized by an increased tumor stem cell population that had higher WNT signaling activity compared to Min tumors. Furthermore, overall BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we identified additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
Affiliation(s)
- Ahmed H. Ghobashi
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Rosie Lanzloth
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Christopher A. Ladaika
- Genome, Cell, and Developmental Biology Graduate Program, Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Ashiq Masood
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Ghobashi AH, Lanzloth R, Ladaika CA, O'Hagan HM. Single-cell profiling reveals the impact of genetic alterations on the differentiation of inflammation-induced colon tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569463. [PMID: 38077052 PMCID: PMC10705473 DOI: 10.1101/2023.11.30.569463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Genetic mutations and chronic inflammation of the colon contribute to the development of colorectal cancer (CRC). Using a murine model of inflammation-induced colon tumorigenesis, we determined how genetic mutations alter colon tumor cell differentiation. Inflammation induced by enterotoxigenic Bacteroides fragilis (ETBF) colonization of multiple intestinal neoplasia (Min ApcΔ716/+ ) mice triggers loss of heterozygosity of Apc causing colon tumor formation. Here, we report that the addition of BRAF V600E mutation ( BRAF FV600E Lgr5 tm1(Cre/ERT2)Cle Min ApcΔ716/+ , BLM) or knocking out Msh2 ( Msh2 LoxP/LoxP Vil1-cre Min ApcΔ716/+ , MSH2KO) in the Min model altered colon tumor differentiation. Using single cell RNA-sequencing, we uncovered the differences between BLM, Min, and MSH2KO tumors at a single cell resolution. BLM tumors showed an increase in differentiated tumor epithelial cell lineages and a reduction in the stem cell population. In contrast, MSH2KO tumors were characterized by an increased stem cell population that had higher WNT signaling activity compared to Min tumors. Additionally, comparative analysis of single-cell transcriptomics revealed that BLM tumors had higher expression of transcription factors that drive differentiation, such as Cdx2, than Min tumors. Using RNA velocity, we were able to identify additional potential regulators of BLM tumor differentiation such as NDRG1. The role of CDX2 and NDRG1 as putative regulators for BLM tumor cell differentiation was verified using organoids derived from BLM tumors. Our results demonstrate the critical connections between genetic mutations and cell differentiation in inflammation-induced colon tumorigenesis. Understanding such roles will deepen our understanding of inflammation-associated colon cancer.
Collapse
|
4
|
Badia-Ramentol J, Gimeno-Valiente F, Duréndez E, Martínez-Ciarpaglini C, Linares J, Iglesias M, Cervantes A, Calon A, Tarazona N. The prognostic potential of CDX2 in colorectal cancer: Harmonizing biology and clinical practice. Cancer Treat Rev 2023; 121:102643. [PMID: 37871463 DOI: 10.1016/j.ctrv.2023.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Adjuvant chemotherapy following surgical intervention remains the primary treatment option for patients with localized colorectal cancer (CRC). However, a significant proportion of patients will have an unfavorable outcome after current forms of chemotherapy. While reflecting the increasing complexity of CRC, the clinical application of molecular biomarkers provides information that can be utilized to guide therapeutic strategies. Among these, caudal-related homeobox transcription factor 2 (CDX2) emerges as a biomarker of both prognosis and relapse after therapy. CDX2 is a key transcription factor that controls intestinal fate. Although rarely mutated in CRC, loss of CDX2 expression has been reported mostly in right-sided, microsatellite-unstable tumors and is associated with aggressive carcinomas. The pathological assessment of CDX2 by immunohistochemistry can thus identify patients with high-risk CRC, but the evaluation of CDX2 expression remains challenging in a substantial proportion of patients. In this review, we discuss the roles of CDX2 in homeostasis and CRC and the alterations that lead to protein expression loss. Furthermore, we review the clinical significance of CDX2 assessment, with a particular focus on its current use as a biomarker for pathological evaluation and clinical decision-making. Finally, we attempt to clarify the molecular implications of CDX2 deficiency, ultimately providing insights for a more precise evaluation of CDX2 protein expression.
Collapse
Affiliation(s)
- Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - Elena Duréndez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | | | - Jenniffer Linares
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, CIBERONC, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain.
| |
Collapse
|
5
|
Song H, Sontz RA, Vance MJ, Morris JM, Sheriff S, Zhu S, Duan S, Zeng J, Koeppe E, Pandey R, Thorne CA, Stoffel EM, Merchant JL. High-fat diet plus HNF1A variant promotes polyps by activating β-catenin in early-onset colorectal cancer. JCI Insight 2023; 8:e167163. [PMID: 37219942 PMCID: PMC10371337 DOI: 10.1172/jci.insight.167163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 05/24/2023] Open
Abstract
The incidence of early-onset colorectal cancer (EO-CRC) is rising and is poorly understood. Lifestyle factors and altered genetic background possibly contribute. Here, we performed targeted exon sequencing of archived leukocyte DNA from 158 EO-CRC participants, which identified a missense mutation at p.A98V within the proximal DNA binding domain of Hepatic Nuclear Factor 1 α (HNF1AA98V, rs1800574). The HNF1AA98V exhibited reduced DNA binding. To test function, the HNF1A variant was introduced into the mouse genome by CRISPR/Cas9, and the mice were placed on either a high-fat diet (HFD) or high-sugar diet (HSD). Only 1% of the HNF1A mutant mice developed polyps on normal chow; however, 19% and 3% developed polyps on the HFD and HSD, respectively. RNA-Seq revealed an increase in metabolic, immune, lipid biogenesis genes, and Wnt/β-catenin signaling components in the HNF1A mutant relative to the WT mice. Mouse polyps and colon cancers from participants carrying the HNF1AA98V variant exhibited reduced CDX2 and elevated β-catenin proteins. We further demonstrated decreased occupancy of HNF1AA98V at the Cdx2 locus and reduced Cdx2 promoter activity compared with WT HNF1A. Collectively, our study shows that the HNF1AA98V variant plus a HFD promotes the formation of colonic polyps by activating β-catenin via decreasing Cdx2 expression.
Collapse
Affiliation(s)
- Heyu Song
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Ricky A. Sontz
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Matthew J. Vance
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Julia M. Morris
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sulaiman Sheriff
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Songli Zhu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Suzann Duan
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| | - Jiping Zeng
- Department of Urology, University of Arizona College of Medicine, Tucson, Arizona, USA
| | | | - Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Curtis A. Thorne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Elena M. Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Juanita L. Merchant
- Department of Medicine, Division of Gastroenterology and Hepatology, Arizona Comprehensive Cancer Center, and
| |
Collapse
|
6
|
Liu H, Zhang X, Fang C, Li S. Resveratrol induces the growth inhibition of CDX-deficient gastric cancer cells using CDX2 and RUNX3 via the β-catenin/TCF4 signaling pathway. Transl Oncol 2023; 35:101727. [PMID: 37354639 DOI: 10.1016/j.tranon.2023.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/04/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023] Open
Abstract
This study aimed to determine the expression levels of runt-related transcription factor 3 (RUNX3) and caudal-related homeobox 2 (CDX2) in patients with chronic gastritis, intestinal metaplasia, atypical hyperplasia, and gastric cancer (GC). To analyze the overexpression of CDX2 and the effects of resveratrol (Res) on MKN7 and TMK1 cells, immunohistochemical staining was performed to determine the protein expression levels in tissue samples. The biological activity of MKN7 and TMK1 cells was determined. Relative mRNA and protein expression levels were also determined. RUNX3 expression was positively correlated with CDX2 expression and negatively correlated with β-catenin and transcription factor 4 (TCF-4) levels in GC tissues. Interestingly, RUNX3 expression was negatively correlated with CDX2 expression in other tissues. CDX2 overexpression or Res treatment inhibited cell proliferation, migration, and invasion, while inducing cell apoptosis. Furthermore, RUNX3 and B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax) expression levels were increased, while those of of β-catenin, TCF-4, and Bcl-2 were decreased in the CDX2 group. Upon treatment with lithium chloride (LiCl), the proliferation, migration, and invasion of CDX2-overexpressing MKN7 and TMK1 cells were enhanced. Our results indicate that Res inhibits the growth of MKN7 and TMK1 cells by increasing RUNX3 and CDX2 expression levels, with the potential involvement of the β-catenin/TCF-4 signaling pathway.
Collapse
Affiliation(s)
- Hui Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, China
| | - Xinxin Zhang
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, China
| | - Can Fang
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, China
| | - Shuguang Li
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, China.
| |
Collapse
|
7
|
Singh J, Rajesh NG, Dubashi B, Maroju NK, Ganesan P, Matta KK, Charles I, Kayal S. Pattern of Expression of CDX2 in Colorectal Cancer and its Role in Prognosis: An Ambispective Observational Study. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1750207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
Introduction Caudal-type homeobox 2 (CDX2), a nuclear protein, is essential for the proliferation and development of intestinal epithelial cells and is frequently downregulated during tumorigenesis. CDX2 inhibits cell growth as well as stimulates differentiation by activating intestinal specific genes, thus lack of CDX2 favors tumor growth and aggressiveness.
Objectives We aimed to evaluate the pattern of CDX2 expression in all stages of colorectal cancer (CRC) and study its association with baseline characteristics and prognosis.
Materials and Methods Study was conducted as an ambispective observational study, enrolling cases of CRC retrospectively from January 2014 to July 2016 (30 months), and prospectively during next 18-month period till January 2018. We performed CDX2 staining by immunohistochemistry on the available biopsy blocks of CRC patients during the study period. Total 286 patients were registered during the study period, of which only 110 biopsy blocks were available for staining. CDX2 scoring was done by a semiquantitative method on whole tissue section for the intensity and percentage of the cells showing positivity. Correlation of CDX2 expression was done with baseline clinical and histopathologic characteristics, and survival.
Results Of 110 patients, 77 (70%) constituted colon cancer and 33 (30%) were rectal cancer. The median age was 54.2 years, 62 (56.4%) being male and 48 (43.6%) female with male-to-female ratio 1.3:1. In the study cohort, 33 (30%) patients had stage II disease, 30 (27.3%) stage III, and 47 (42.7%) were stage IV. Seventy-three (66.4%) were positive for CDX2 and 37 (33.4%) were negative. Loss of CDX2 expression was significantly associated with advanced stage, rectal site, poor grade of differentiation, and presence of lymphovascular invasion (LVSI). With median follow-up of 16 months, progression-free survival (PFS) at 2 years was 30% for CDX2 negative patients compared with 67% for CDX2 positive (p = 0.009), while overall survival (OS) at 2 years was 46% for CDX2 negative versus 77% for positive patients (p = 0.01).
Conclusion Loss of CDX2 expression is associated with advanced stage, higher tumor grade, presence of LVSI, and worse PFS and OS and thereby functions as a poor prognostic factor in CRC.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| | - N G. Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Nanda K. Maroju
- Department of General Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Prasanth Ganesan
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Kiran K. Matta
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - I Charles
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Smita Kayal
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
8
|
Jimenez IA, Stilin AP, Morohaku K, Hussein MH, Koganti PP, Selvaraj V. Mitochondrial translocator protein deficiency exacerbates pathology in acute experimental ulcerative colitis. Front Physiol 2022; 13:896951. [PMID: 36060674 PMCID: PMC9437295 DOI: 10.3389/fphys.2022.896951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In human patients and animal models of ulcerative colitis (UC), upregulation of the mitochondrial translocator protein (TSPO) in the colon is consistent with inflammation. Although the molecular function for TSPO remains unclear, it has been investigated as a therapeutic target for ameliorating UC pathology. In this study, we examined the susceptibility of Tspo gene-deleted (Tspo -/- ) mice to insults as provided by the dextran sodium sulfate (DSS)-induced acute UC model. Our results show that UC clinical signs and pathology were severely exacerbated in Tspo -/- mice compared to control Tspo fl/fl cohorts. Histopathology showed extensive inflammation and epithelial loss in Tspo -/- mice that caused an aggravated disease. Colonic gene expression in UC uncovered an etiology linked to precipitous loss of epithelial integrity and disproportionate mast cell activation assessed by tryptase levels in Tspo -/- colons. Evaluation of baseline homeostatic shifts in Tspo -/- colons revealed gene expression changes noted in elevated epithelial Cdx2, mast cell Cd36 and Mcp6, with general indicators of lower proliferation capacity and elevated mitochondrial fatty acid oxidation. These findings demonstrate that intact physiological TSPO function serves to limit inflammation in acute UC, and provide a systemic basis for investigating TSPO-targeting mechanistic therapeutics.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison P. Stilin
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Kanako Morohaku
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,School of Science and Technology, Institute of Agriculture, Shinshu University, Nagano, Japan
| | - Mahmoud H. Hussein
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,*Correspondence: Vimal Selvaraj,
| |
Collapse
|
9
|
Bersuder E, Terciolo C, Lechevrel M, Martin E, Quesnelle C, Freund JN, Reimund JM, Gross I. Mesalazine initiates an anti-oncogenic β-catenin / MUCDHL negative feed-back loop in colon cancer cells by cell-specific mechanisms. Biomed Pharmacother 2021; 146:112543. [PMID: 34929577 DOI: 10.1016/j.biopha.2021.112543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Chronic inflammation associated with intestinal architecture and barrier disruption puts patients with inflammatory bowel disease (IBD) at increased risk of developing colorectal cancer (CRC). Widely used to reduce flares of intestinal inflammation, 5-aminosalicylic acid derivatives (5-ASAs) such as mesalazine appear to also exert more direct mucosal healing and chemopreventive activities against CRC. The mechanisms underlying these activities are poorly understood and may involve the up-regulation of the cadherin-related gene MUCDHL (CDHR5). This atypical cadherin is emerging as a new actor of intestinal homeostasis and opposes colon tumorigenesis. Here, we showed that mesalazine increase mRNA levels of MUCDHL and of other genes involved in the intestinal barrier function in most intestinal cell lines. In addition, using gain / loss of function experiments (agonists, plasmid or siRNAs transfections), luciferase reporter genes and chromatin immunoprecipitation, we thoroughly investigated the molecular mechanisms triggered by mesalazine that lead to the up-regulation of MUCDHL expression. We found that basal transcription of MUCDHL in different CRC cell lines is regulated positively by CDX2 and negatively by β-catenin through a negative feed-back loop. However, mesalazine-stimulation of MUCDHL transcription is controlled by cell-specific mechanisms, involving either enhanced activation of CDX2 and PPAR-γ or repression of the β-catenin inhibitory effect. This work highlights the importance of the cellular and molecular context in the activity of mesalazine and suggests that its efficacy against CRC depends on the genetic alterations of transformed cells.
Collapse
Affiliation(s)
- Emilie Bersuder
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Chloe Terciolo
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Mathilde Lechevrel
- Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Celine Quesnelle
- Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France
| | - Jean-Noel Freund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France
| | - Jean-Marie Reimund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France; Université de Caen / Basse-Normandie, UFR de Médecine, EA 4652, F-14032 Caen, France; Service Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire de Strasbourg, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France.
| | - Isabelle Gross
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, FMTS, Strasbourg, France.
| |
Collapse
|
10
|
Hou Y, Chen K, Liao R, Li Y, Yang H, Gong J. LINC01419-mediated epigenetic silencing of ZIC1 promotes metastasis in hepatocellular carcinoma through the PI3K/Akt signaling pathway. J Transl Med 2021; 101:570-587. [PMID: 33772101 DOI: 10.1038/s41374-021-00539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a rapidly growing tumor characterized by a high potential for vascular invasion and metastasis. The purpose of our study is to explore the regulation mechanism of long noncoding RNA (lncRNA) LINC01419 on cell-cycle distribution and metastasis in hepatocellular carcinoma (HCC) by regulating zinc finger of the cerebellum (ZIC1) through PI3K/Akt signaling pathway. Bioinformatics analysis and dual-luciferase reporter assay were used to analyze LINC01419 and related genes in HCC, and their expression in HCC tissues and adjacent normal tissues were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. Then, HCC cell lines were subjected to the construction of LINC01419/ZIC1 overexpression/knockdown cells utilizing lentiviral vectors. RIP and ChIP assays were applied to identify the LINC01419-binding protein. BSP and MSP assays were used to determine gene methylation. According to the results, LINC01419 was highly expressed in HCC tissues and cells, while ZIC1 was poorly expressed. LINC01419 targeted and downregulated ZIC1 expression. Furthermore, LINC01419 increased the methylation of ZIC1 promoter and repressed ZIC1 expression. PI3K/Akt signaling pathway was activated by LINC01419 overexpression and ZIC1 knockdown, under which conditions, the HCC cell self-renewal and proliferation were promoted while cell apoptosis was attenuated, accompanied by accelerated formation and metastasis of xenografted tumors in mice. In conclusion, LINC01419 enhances the methylation of ZIC1 promoter, inhibits ZIC1 expression, and activates the PI3K/Akt signaling pathway, thereby enhancing the malignant phenotypes of HCC cells in vitro as well as tumor formation and metastasis in vivo.
Collapse
Affiliation(s)
- Yifu Hou
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Kai Chen
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rui Liao
- Department of Hepatobiliary, Southwest Medical University, Luzhou, PR China
| | - Youzan Li
- Department of Hepatobiliary, Southwest Medical University, Luzhou, PR China
| | - Hongji Yang
- Organ Transplant Center and Third Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
| | - Jun Gong
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, PR China.
- Second Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
11
|
Zhu Y, Hryniuk A, Foley T, Hess B, Lohnes D. Cdx2 Regulates Intestinal EphrinB1 through the Notch Pathway. Genes (Basel) 2021; 12:genes12020188. [PMID: 33525395 PMCID: PMC7911442 DOI: 10.3390/genes12020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023] Open
Abstract
The majority of colorectal cancers harbor loss-of-function mutations in APC, a negative regulator of canonical Wnt signaling, leading to intestinal polyps that are predisposed to malignant progression. Comparable murine APC alleles also evoke intestinal polyps, which are typically confined to the small intestine and proximal colon, but do not progress to carcinoma in the absence of additional mutations. The Cdx transcription factors Cdx1 and Cdx2 are essential for homeostasis of the intestinal epithelium, and loss of Cdx2 has been associated with more aggressive subtypes of colorectal cancer in the human population. Consistent with this, concomitant loss of Cdx1 and Cdx2 in a murine APC mutant background leads to an increase in polyps throughout the intestinal tract. These polyps also exhibit a villous phenotype associated with the loss of EphrinB1. However, the basis for these outcomes is poorly understood. To further explore this, we modeled Cdx2 loss in SW480 colorectal cancer cells. We found that Cdx2 impacted Notch signaling in SW480 cells, and that EphrinB1 is a Notch target gene. As EphrinB1 loss also leads to a villus tumor phenotype, these findings evoke a mechanism by which Cdx2 impacts colorectal cancer via Notch-dependent EphrinB1 signaling.
Collapse
Affiliation(s)
- Yalun Zhu
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tanya Foley
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - Bradley Hess
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (Y.Z.); (A.H.); (T.F.); (B.H.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8684)
| |
Collapse
|
12
|
Bremer FP, Czeczko NG, CollaÇo LM, Rutz LEAC, Gionedis G, Yamakawa CK. ARE CDX2, BETA-CATENIN AND WNT IMMUNOMARCHERS USEFUL FOR EVALUATING THE CHANCE OF DISEASE PROGRESSION OR EVOLUTION TO DEATH IN PATIENTS WITH COLORECTAL CANCER? ACTA ACUST UNITED AC 2020; 33:e1534. [PMID: 33331430 PMCID: PMC7747481 DOI: 10.1590/0102-672020200003e1534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/03/2020] [Indexed: 01/05/2023]
Abstract
Background:
Colorectal cancer (CRC) is one of the most common types of cancer in the
world. Over time, intestinal epithelial cells undergo mutations that may
lead to proliferative advantage and the emergence of cancer. Mutations in
the beta-catenin pathway are amongst those described in the development of
CRC.
Aim:
To verify the existence of a relation between the presence of Wnt3,
beta-catenin and CDX2 in colorectal cancer samples and clinical outcomes
such as disease progression or death.
Method:
Wnt3a, beta-catenin and CDX2 immunohistochemistry was performed on CRC tissue
microarray samples (n=122), and analysis regarding the relation between
biomarker expression and disease progression or death was performed.
Results:
No significant difference was found between the presence or absence of CDX2,
beta-catenin or Wnt3a expression and clinical stage, tumor grade, disease
progression or death.
Conclusion:
CDX2, beta-catenin and Wnt3a are not useful to predict prognosis in patients
with CRC.
Collapse
Affiliation(s)
- Fabiola Pabst Bremer
- Mackenzie Evangelical Faculty of Paraná, Curitiba, PR, Brazil.,University Evangelical Mackenzie Hospital, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Davidsen J, Jessen SB, Watt SK, Larsen S, Dahlgaard K, Kirkegaard T, Gögenur I, Troelsen JT. CDX2 expression and perioperative patient serum affects the adhesion properties of cultured colon cancer cells. BMC Cancer 2020; 20:426. [PMID: 32408894 PMCID: PMC7227097 DOI: 10.1186/s12885-020-06941-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/10/2020] [Indexed: 02/28/2023] Open
Abstract
Background Colon cancer is one of the most commonly diagnosed types of cancer with surgical resection of the tumor being the primary choice of treatment. However, the surgical stress response induced during treatment may be related to a higher risk of recurrence. The aim of this study was to examine the effect of surgery on adhesion of cultured colon cancer cells with or without expression of the tumour suppressor CDX2. Method We enrolled 30 patients undergoing elective, curatively intended laparoscopic surgery for colon cancer in this study. Blood samples were drawn 1 day prior to surgery and 24 h after surgery. The samples of pre- and postoperative serum was applied to wild type colon cancer LS174T cells and CDX2 inducible LS174T cells and adhesion was measured with Real-Time Cell-Analysis iCELLigence using electrical impedance as a readout to monitor changes in the cellular adhesion. Results Adhesion abilities of wild type LS174T cells seeded in postoperative serum was significantly increased compared to cells seeded in preoperative serum. When seeding the CDX2 inducible LS174T cells without CDX2 expression in pre- and postoperative serum, no significant difference in adhesion was found. However, when inducing CDX2 expression in these cells, the adhesion abilities in pre- and postoperative serum resembled those of the LS174T wild type cell line. Conclusions We found that the adhesion of colon cancer cells was significantly increased in postoperative versus preoperative serum, and that CDX2 expression affected the adhesive ability of cancer cells. The results of this study may help to elucidate the pro-metastatic mechanisms in the perioperative phase and the role of CDX2 in colon cancer metastasis.
Collapse
Affiliation(s)
- Johanne Davidsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Stine Bull Jessen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sara Kehlet Watt
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, 4700, Naestved, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Tove Kirkegaard
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.
| |
Collapse
|
14
|
Li HJ, Ray SK, Pan N, Haigh J, Fritzsch B, Leiter AB. Intestinal Neurod1 expression impairs paneth cell differentiation and promotes enteroendocrine lineage specification. Sci Rep 2019; 9:19489. [PMID: 31862906 PMCID: PMC6925293 DOI: 10.1038/s41598-019-55292-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Transcription factor Neurod1 is required for enteroendocrine progenitor differentiation and maturation. Several earlier studies indicated that ectopic expression of Neurod1 converted non- neuronal cells into neurons. However, the functional consequence of ectopic Neurod1 expression has not been examined in the GI tract, and it is not known whether Neurod1 can similarly switch cell fates in the intestine. We generated a mouse line that would enable us to conditionally express Neurod1 in intestinal epithelial cells at different stages of differentiation. Forced expression of Neurod1 throughout intestinal epithelium increased the number of EECs as well as the expression of EE specific transcription factors and hormones. Furthermore, we observed a substantial reduction of Paneth cell marker expression, although the expressions of enterocyte-, tuft- and goblet-cell specific markers are largely not affected. Our earlier study indicated that Neurog3+ progenitor cells give rise to not only EECs but also Goblet and Paneth cells. Here we show that the conditional expression of Neurod1 restricts Neurog3+ progenitors to adopt Paneth cell fate, and promotes more pronounced EE cell differentiation, while such effects are not seen in more differentiated Neurod1+ cells. Together, our data suggest that forced expression of Neurod1 programs intestinal epithelial cells more towards an EE cell fate at the expense of the Paneth cell lineage and the effect ceases as cells mature to EE cells.
Collapse
Affiliation(s)
- Hui Joyce Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Subir K Ray
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Ning Pan
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Decibel Pharmaceutical, Boston, MA, USA
| | - Jody Haigh
- Department of Biomedical, Molecular Biology, Ghent University, Ghent, Belgium
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
15
|
The Tumor Microenvironment in Colorectal Cancer Therapy. Cancers (Basel) 2019; 11:cancers11081172. [PMID: 31416205 PMCID: PMC6721633 DOI: 10.3390/cancers11081172] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
The current standard-of-care for metastatic colorectal cancer (mCRC) includes chemotherapy and anti-angiogenic or anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, even though the addition of anti-angiogenic agents to backbone chemotherapy provides little benefit for overall survival. Since the approval of anti-angiogenic monoclonal antibodies bevacizumab and aflibercept, for the management of mCRC over a decade ago, extensive efforts have been devoted to discovering predictive factors of the anti-angiogenic response, unsuccessfully. Recent evidence has suggested a potential correlation between angiogenesis and immune phenotypes associated with colorectal cancer. Here, we review evidence of interactions between tumor angiogenesis, the immune microenvironment, and metabolic reprogramming. More specifically, we will highlight such interactions as inferred from our novel immune-metabolic (IM) signature, which groups mCRC into three distinct clusters, namely inflamed-stromal-dependent (IM Cluster 1), inflamed-non stromal-dependent (IM Cluster 2), and non-inflamed or cold (IM Cluster 3), and discuss the merits of the IM classification as a guide to new immune-metabolic combinatorial therapeutic strategies in mCRC.
Collapse
|
16
|
Larsen S, Davidsen J, Dahlgaard K, Pedersen OB, Troelsen JT. HNF4α and CDX2 Regulate Intestinal YAP1 Promoter Activity. Int J Mol Sci 2019; 20:ijms20122981. [PMID: 31216773 PMCID: PMC6627140 DOI: 10.3390/ijms20122981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway is important for tissue homeostasis, regulation of organ size and growth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a main downstream effector of the Hippo pathway and its dysregulation increases cancer development and blocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation of YAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene and transcription factors important for intestinal expression. Bioinformatic analysis of caudal type homeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitated DNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene. Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potential enhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84 cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silico transcription factor binding site analysis and protein-DNA binding was confirmed in vitro using electrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experiments that CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previously unknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for high expression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding are important for the YAP1 enhancer activity in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sylvester Larsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Johanne Davidsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
- Department of Surgery, Center for Surgical Science, Enhanced Perioperative Oncology (EPEONC) Consortium, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark.
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Ole B Pedersen
- Department of Clinical Immunology, Næstved Hospital, Ringstedgade 77B, 4700 Næstved, Denmark.
| | - Jesper T Troelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| |
Collapse
|
17
|
Tong K, Pellón-Cárdenas O, Sirihorachai VR, Warder BN, Kothari OA, Perekatt AO, Fokas EE, Fullem RL, Zhou A, Thackray JK, Tran H, Zhang L, Xing J, Verzi MP. Degree of Tissue Differentiation Dictates Susceptibility to BRAF-Driven Colorectal Cancer. Cell Rep 2019; 21:3833-3845. [PMID: 29281831 DOI: 10.1016/j.celrep.2017.11.104] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/09/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
Oncogenic mutations in BRAF are believed to initiate serrated colorectal cancers; however, the mechanisms of BRAF-driven colon cancer are unclear. We find that oncogenic BRAF paradoxically suppresses stem cell renewal and instead promotes differentiation. Correspondingly, tumor formation is inefficient in BRAF-driven mouse models of colon cancer. By reducing levels of differentiation via genetic manipulation of either of two distinct differentiation-promoting factors (Smad4 or Cdx2), stem cell activity is restored in BRAFV600E intestines, and the oncogenic capacity of BRAFV600E is amplified. In human patients, we observe that reduced levels of differentiation in normal tissue is associated with increased susceptibility to serrated colon tumors. Together, these findings help resolve the conditions necessary for BRAF-driven colon cancer initiation. Additionally, our results predict that genetic and/or environmental factors that reduce tissue differentiation will increase susceptibility to serrated colon cancer. These findings offer an opportunity to identify susceptible individuals by assessing their tissue-differentiation status.
Collapse
Affiliation(s)
- Kevin Tong
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Oscar Pellón-Cárdenas
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Veerin R Sirihorachai
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Bailey N Warder
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Om A Kothari
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Ansu O Perekatt
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Emily E Fokas
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Robert L Fullem
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Anbo Zhou
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Joshua K Thackray
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Lanjing Zhang
- Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ 08536, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Human Genetics Institute of New Jersey (HGINJ), 145 Bevier Road, Piscataway Township, NJ 08854, USA; Rutgers Cancer Institute of New Jersey (CINJ), 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
18
|
CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression. Cell Death Dis 2019; 10:26. [PMID: 30631044 PMCID: PMC6328578 DOI: 10.1038/s41419-018-1263-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
Caudal-related homeobox transcription factor 2 (CDX2), an intestine-specific nuclear transcription factor, has been strongly implicated in the tumourigenesis of various human cancers. However, the functional role of CDX2 in the development and progression of colorectal cancer (CRC) is not well known. In this study, CDX2 knockdown in colon cancer cells promoted cell proliferation in vitro, accelerated tumor formation in vivo, and induced a cell cycle transition from G0/G1 to S phase, whereas CDX2 overexpression inhibited cell proliferation. TOP/FOP-Flash reporter assay showed that CDX2 knockdown or CDX2 overexpression significantly increased or decreased Wnt signaling activity. Western blot assay showed that downstream targets of Wnt signaling, including β-catenin, cyclin D1 and c-myc, were up-regulated or down-regulated in CDX2-knockdown or CDX2-overexpressing colon cancer cells. In addition, suppression of Wnt signaling by XAV-939 led to a marked suppression of the cell proliferation enhanced by CDX2 knockdown, whereas activation of this signaling by CHIR-99021 significantly enhanced the cell proliferation inhibited by CDX2 overexpression. Dual-luciferase reporter and quantitative chromatin immunoprecipitation (qChIP) assays further confirmed that CDX2 transcriptionally activates glycogen synthase kinase-3β (GSK-3β) and axis inhibition protein 2 (Axin2) expression by directly binding to the promoter of GSK-3β and the upstream enhancer of Axin2. In conclusion, these results indicated that CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling.
Collapse
|
19
|
Niiro E, Morioka S, Iwai K, Yamada Y, Ogawa K, Kawahara N, Kobayashi H. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer. Biomed Rep 2018; 8:215-223. [PMID: 29564122 DOI: 10.3892/br.2018.1045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cases of mucinous ovarian cancer are predominantly resistant to chemotherapies. The present review summarizes current knowledge of the therapeutic potential of targeting the Wingless (WNT) pathway, with particular emphasis on preclinical and clinical studies, for improving the chemoresistance and treatment of mucinous ovarian cancer. A review was conducted of English language literature published between January 2000 and October 2017 that concerned potential signaling pathways associated with the chemoresistance of mucinous ovarian cancer. The literature indicated that aberrant activation of growth factor and WNT signaling pathways is specifically observed in mucinous ovarian cancer. An evolutionarily conserved signaling cascade system including epidermal growth factor/RAS/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase, phosphoinositide 3-kinase/Akt and WNT signaling regulates a variety of cellular functions; their crosstalk mutually enhances signaling activity and induces chemoresistance. Novel antagonists, modulators and inhibitors have been developed for targeting the components of the WNT signaling pathway, namely Frizzled, low-density lipoprotein receptor-related protein 5/6, Dishevelled, casein kinase 1, AXIN, glycogen synthase kinase 3β and β-catenin. Targeted inhibition of WNT signaling represents a rational and promising novel approach to overcome chemoresistance, and several WNT inhibitors are being evaluated in preclinical studies. In conclusion, the WNT receptors and their downstream components may serve as novel therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer.
Collapse
Affiliation(s)
- Emiko Niiro
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Sachiko Morioka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kenji Ogawa
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
20
|
Li XG, Xu GF, Zhai ZY, Gao CQ, Yan HC, Xi QY, Guan WT, Wang SB, Wang XQ. CDX2 increases SLC7A7 expression and proliferation of pig intestinal epithelial cells. Oncotarget 2017; 7:30597-609. [PMID: 27121315 PMCID: PMC5058704 DOI: 10.18632/oncotarget.8894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
Nutrient absorption mediated by nutrient transporters expressed in the intestinal epithelium supplies substrates to support intestinal processes, including epithelial cell proliferation. We evaluated the role of Caudal type homeobox 2 (CDX2), an intestine-specific transcription factor, in the proliferation of pig intestinal epithelial cells (IPEC-1) and searched for novel intestinal nutrient transporter genes activated by CDX2. Our cloned pig CDX2 cDNA contains a “homeobox” DNA binding motif, suggesting it is a transcriptional activator. CDX2 overexpression in IPEC-1 cells increased cell proliferation, the percentage of cells in S/G2 phase, and the abundance of transcripts of the cell cycle-related genes Cyclin A2; Cyclin B; Cyclin D2; proliferating cell nuclear antigen; and cell cycle cyclin-dependent kinases 1, 2 and 4, as well as the predicted CDX2 target genes SLC1A1, SLC5A1 and SLC7A7. In addition, luciferase reporter and chromatin immunoprecipitation assays revealed that CDX2 binds directly to the SLC7A7 promoter. This is the first report of CDX2 function in pig intestinal epithelial cells and identifies SLC7A7 as a novel CDX2 target gene. Our findings show that nutrient transporters are activated during CDX2-induced proliferation of normal intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiang-Guang Li
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Gao-Feng Xu
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Zhen-Ya Zhai
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Qian-Yun Xi
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Wu-Tai Guan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Song-Bo Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| |
Collapse
|
21
|
Fan HB, Zhai ZY, Li XG, Gao CQ, Yan HC, Chen ZS, Wang XQ. CDX2 Stimulates the Proliferation of Porcine Intestinal Epithelial Cells by Activating the mTORC1 and Wnt/β-Catenin Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112447. [PMID: 29156556 PMCID: PMC5713414 DOI: 10.3390/ijms18112447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role in gut development and homeostasis by regulating cell proliferation. However, whether CDX2 cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/β-catenin signaling pathways to stimulate cell proliferation remains unknown. The objective of this study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/β-catenin signaling pathways. CDX2 overexpression and knockdown cell culture models were established to explore the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and activated both the mTORC1 and Wnt/β-catenin pathways, and that CDX2 knockdown decreased cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/β-catenin pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H -thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1 and Wnt/β-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression. Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation by activating the mTORC1 and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Hong-Bo Fan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen-Ya Zhai
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Chun-Qi Gao
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Hui-Chao Yan
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Science, St. John's University, Queens, NY 11439, USA.
| | - Xiu-Qi Wang
- College of Animal Science/Guangdong Provincial Key Laboratory of Animal Nutrition Regulation/National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Balbinot C, Vanier M, Armant O, Nair A, Penichon J, Soret C, Martin E, Saandi T, Reimund JM, Deschamps J, Beck F, Domon-Dell C, Gross I, Duluc I, Freund JN. Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing. Cell Death Differ 2017; 24:2173-2186. [PMID: 28862703 DOI: 10.1038/cdd.2017.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
On the basis of phylogenetic analyses, we uncovered a variant of the CDX2 homeobox gene, a major regulator of the development and homeostasis of the gut epithelium, also involved in cancer. This variant, miniCDX2, is generated by alternative splicing coupled to alternative translation initiation, and contains the DNA-binding homeodomain but is devoid of transactivation domain. It is predominantly expressed in crypt cells, whereas the CDX2 protein is present in crypt cells but also in differentiated villous cells. Functional studies revealed a dominant-negative effect exerted by miniCDX2 on the transcriptional activity of CDX2, and conversely similar effects regarding several transcription-independent functions of CDX2. In addition, a regulatory role played by the CDX2 and miniCDX2 homeoproteins on their pre-mRNA splicing is displayed, through interactions with splicing factors. Overexpression of miniCDX2 in the duodenal Brunner glands leads to the expansion of the territory of these glands and ultimately to brunneroma. As a whole, this study characterized a new and original variant of the CDX2 homeobox gene. The production of this variant represents not only a novel level of regulation of this gene, but also a novel way to fine-tune its biological activity through the versatile functions exerted by the truncated variant compared to the full-length homeoprotein. This study highlights the relevance of generating protein diversity through alternative splicing in the gut and its diseases.
Collapse
Affiliation(s)
- Camille Balbinot
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Marie Vanier
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Olivier Armant
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Postfach 3640, Karlsruhe 76021, Germany
| | - Asmaa Nair
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Julien Penichon
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Christine Soret
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Elisabeth Martin
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Thoueiba Saandi
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jean-Marie Reimund
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jacqueline Deschamps
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Uppsalalaan 8, Utrecht 3584 CT, The Netherlands
| | - Felix Beck
- Barts and The London School of Medicine and Dentistry, London E1 2ES, UK
| | - Claire Domon-Dell
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Isabelle Gross
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Isabelle Duluc
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, UMR_S1113, FMTS, Strasbourg 67000, France
| |
Collapse
|
23
|
Du Q, Wang Y, Liu C, Wang H, Fan H, Li Y, Wang J, Zhang X, Lu J, Ji H, Hu R. Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis. Oncotarget 2017; 7:17870-84. [PMID: 26910375 PMCID: PMC4951256 DOI: 10.18632/oncotarget.7554] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/11/2016] [Indexed: 02/06/2023] Open
Abstract
Nonresolving inflammation in the intestine predisposes individuals to colitis-associated colorectal cancer (CAC), which leads to high morbidity and mortality. Here we show that genistein-27 (GEN-27), a derivative of genistein, inhibited proliferation of human colorectal cancer cells through inhibiting β-catenin activity. Our results showed that GEN-27 increased expressions of adenomatous polyposis coli (APC) and axis inhibition protein 2 (AXIN2), and reduced β-catenin nuclear localization, which resulted from the inhibition of NF-κB/p65 nuclear localization and up-regulation of caudal-related homeobox transcription factor 2 (CDX2). Furthermore, GEN-27 decreased binding of p65 to the silencer region of CDX2 and increased binding of CDX2 to the promoter regions of APC and AXIN2, thus inhibiting the activation of β-catenin induced by TNF-α. Importantly, GEN-27 protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and tumor volume. Histopathology, immunohistochemistry and flow cytometry revealed that dietary GEN-27 significantly decreased secretion of proinflammatory cytokines and macrophage infiltration. Moreover, GEN-27 inhibited AOM/DSS-induced p65 and β-catenin nuclear translocation, while promoted the expression of CDX2, APC, and AXIN2. Taken together, our findings demonstrate that the anti-proliferation effect of GEN-27 in vitro and the prevention of CAC in vivo is mediated by p65-CDX2-β-catenin axis via inhibiting β-catenin target genes. Our results imply that GEN-27 could be a promising candidate for the chemoprevention of CAC.
Collapse
Affiliation(s)
- Qianming Du
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Yajing Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Chao Liu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Huimin Fan
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Yan Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Jiangsu, Nanjing, P.R.China
| | - Jianing Wang
- Neurobiology Laboratory, Jiangsu Center for Drug Screening, China Pharmaceutical University, Jiangsu, Nanjing, P.R.China
| | - Xu Zhang
- College of Clinical Medicine, Chengdu University of TCM, Chengdu, P.R. China
| | - Jinrong Lu
- Department of Organic Chemistry, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Hui Ji
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Jiangsu, Nanjing, P.R. China
| |
Collapse
|
24
|
Kumar Y, Shukla N, Thacker G, Kapoor I, Lochab S, Bhatt MLB, Chattopadhyay N, Sanyal S, Trivedi AK. Ubiquitin Ligase, Fbw7, Targets CDX2 for Degradation via Two Phosphodegron Motifs in a GSK3β-Dependent Manner. Mol Cancer Res 2016; 14:1097-1109. [PMID: 27470268 DOI: 10.1158/1541-7786.mcr-16-0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Drosophila caudal-related homeobox transcription factor 2 (CDX2) drives differentiation of the intestinal epithelium. Loss of CDX2 expression has been reported in several colorectal cancers and cancer cell lines with a potential inverse correlation between CDX2 levels and tumor stage. Ubiquitination of CDX2 leading to its downregulation has been implicated in several studies; however, the E3 ubiquitin ligases involved in CDX2 ubiquitination have largely remained unknown. Here, it is mechanistically determined that the E3 ubiquitin ligase Fbw7 promotes CDX2 ubiquitination and degradation through two phosphodegron motifs present within CDX2 in a GSK3β-dependent manner leading to its reduced expression and function in colon cancer cells. Fbw7, through its WD domain, interacted with CDX2 both in a heterologous HEK293T cell system and in colon cancer cells. GSK3β was also present in the same complex as determined by coimmunoprecipitation. Furthermore, overexpression of both Fbw7 or GSK3β down regulated endogenous CDX2 expression and function; however, both failed to inhibit endogenous CDX2 when either of them were depleted in colon cancer cells. Fbw7-mediated inhibition of CDX2 expression also led to reduced CDX2 transactivation and growth arrest of colon cancer cells. Both GSK3β and Fbw7 degraded mutant-CDX2 having either of the Cdc4-phosphodegron (CPD) motifs disrupted (CDX2-S60A or CDX-S281A), but were unable to degrade mutant-CDX2 having both CPDs disrupted (CDX2-S60,64,281A). IMPLICATIONS Taken together, these findings demonstrate that Fbw7 negatively regulates CDX2 expression in a GSK3β-dependent manner through two CPDs present in CDX2. Mol Cancer Res; 14(11); 1097-109. ©2016 AACR.
Collapse
Affiliation(s)
- Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Nidhi Shukla
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Gatha Thacker
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Savita Lochab
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India.
| |
Collapse
|
25
|
Kong J, Sai H, Crissey MAS, Jhala N, Falk GW, Ginsberg GG, Abrams JA, Nakagawa H, Wang K, Rustgi AK, Wang TC, Lynch JP. Immature myeloid progenitors promote disease progression in a mouse model of Barrett's-like metaplasia. Oncotarget 2015; 6:32980-3005. [PMID: 26460825 PMCID: PMC4741744 DOI: 10.18632/oncotarget.5431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023] Open
Abstract
Cdx2, an intestine specific transcription factor, is expressed in Barrett's esophagus (BE). We sought to determine if esophageal Cdx2 expression would accelerate the onset of metaplasia in the L2-IL-1β transgenic mouse model for Barrett's-like metaplasia. The K14-Cdx2::L2-IL-1β double transgenic mice had half as many metaplastic nodules as control L2-IL-1β mice. This effect was not due to a reduction in esophageal IL-1β mRNA levels nor diminished systemic inflammation. The diminished metaplasia was due to an increase in apoptosis in the K14-Cdx2::L2-IL-1β mice. Fluorescence activated cell sorting of immune cells infiltrating the metaplasia identified a population of CD11b+Gr-1+ cells that are significantly reduced in K14-Cdx2::L2-IL-1β mice. These cells have features of immature granulocytes and have immune-suppressing capacity. We demonstrate that the apoptosis in K14-Cdx2::L2-IL-1β mice is CD8+ T cell dependent, which CD11b+Gr-1+ cells are known to inhibit. Lastly, we show that key regulators of CD11b+Gr-1+ cell development, IL-17 and S100A9, are significantly diminished in the esophagus of K14-Cdx2::L2-IL-1β double transgenic mice. We conclude that metaplasia development in this mouse model for Barrett's-like metaplasia requires suppression of CD8+ cell dependent apoptosis, likely mediated by immune-suppressing CD11b+Gr-1+ immature myeloid cells.
Collapse
Affiliation(s)
- Jianping Kong
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hong Sai
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary Ann S. Crissey
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nirag Jhala
- Department of Pathology, Temple University, Philadelphia, PA, USA
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory G. Ginsberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julian A. Abrams
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth Wang
- Division of Gastroenterology, Mayo Clinic, Rochester, MN, USA
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy C. Wang
- Division of Gastroenterology, Columbia University, New York, NY, USA
| | - John P. Lynch
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Okugawa Y, Grady WM, Goel A. Epigenetic Alterations in Colorectal Cancer: Emerging Biomarkers. Gastroenterology 2015; 149:1204-1225.e12. [PMID: 26216839 PMCID: PMC4589488 DOI: 10.1053/j.gastro.2015.07.011] [Citation(s) in RCA: 556] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. One of the fundamental processes driving the initiation and progression of CRC is the accumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Over the past decade, major advances have been made in our understanding of cancer epigenetics, particularly regarding aberrant DNA methylation, microRNA (miRNA) and noncoding RNA deregulation, and alterations in histone modification states. Assessment of the colon cancer "epigenome" has revealed that virtually all CRCs have aberrantly methylated genes and altered miRNA expression. The average CRC methylome has hundreds to thousands of abnormally methylated genes and dozens of altered miRNAs. As with gene mutations in the cancer genome, a subset of these epigenetic alterations, called driver events, are presumed to have a functional role in CRC. In addition, the advances in our understanding of epigenetic alterations in CRC have led to these alterations being developed as clinical biomarkers for diagnostic, prognostic, and therapeutic applications. Progress in this field suggests that these epigenetic alterations will be commonly used in the near future to direct the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Gastroenterology, University of Washington School of Medicine, Seattle, Washington.
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
27
|
He S, Sun XJ, Zheng JB, Qi J, Chen NZ, Wang W, Wei GB, Liu D, Yu JH, Lu SY, Wang H. Recombinant lentivirus with enhanced expression of caudal-related homeobox protein 2 inhibits human colorectal cancer cell proliferation in vitro. Mol Med Rep 2015; 12:1838-44. [PMID: 25847407 PMCID: PMC4464164 DOI: 10.3892/mmr.2015.3594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
Caudal-related homeobox protein 2 (CDX2), a tumor suppressor in the adult colon, is overexpressed under a non-cancer specific cytomegalovirus promoter in certain tumor cells; furthermore, non-specific expression of CDX2 may result in aberrant side effects in normal cells. The human telomerase reverse transcriptase (hTERT) promoter is active in the majority of cancer cells but not in normal cells. Hypoxia is a key feature of solid tumors, and targeted genes may be significantly upregulated by five copies of hypoxia-response elements (HREs) under hypoxic conditions. However, the effect of CDX2 overexpression, as controlled by five copies of HREs and the hTERT promoter, on human colorectal cancer (CRC) cell proliferation in vitro remains to be fully elucidated. In the current study, a recombinant lentivirus containing the CDX2 gene under the control of five HREs and the hTERT promoter was generated. An immunofluorescence assay was used to detect CDX2 expression by the 5HhC lentivirus, whereas an MTT assay was used to detect the effects of CoCl2 on the viability of LoVo cells. Western blot analysis was conducted in order to determine the relative ratios of recombinant CDX2 protein to the internal control β-actin, following 5HhC/LoVo cell culture under normoxic and hypoxic conditions (100, 200, 300, 400 or 500 µmol/l CoCl2) for 24 h, then for 12, 24 or 36 h with the optimal concentration (300 µmol/l) of CoCl2. Reverse transcription polymerase chain reaction analysis was used to determine the transcription of recombinant CDX2 mRNA following culture of 5HhC/LoVo cells under normoxic or hypoxic conditions. Finally, a cloning assay was used to detect the proliferative ability of 5HhC/LoVo and 5Hh cells. High CDX2 expression was observed in hTERT-positive LoVo cells under hypoxic conditions, an effect which was mimicked by treatment with CoCl2 to inhibit LoVo cell proliferation in vitro. High expression of CDX2 therefore provides a promising strategy for the development of novel targeted treatments and gene therapy for CRC.
Collapse
Affiliation(s)
- Sai He
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xue-Jun Sun
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian-Bao Zheng
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jie Qi
- Second Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Nan-Zheng Chen
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guang-Bing Wei
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dong Liu
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jun-Hui Yu
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shao-Ying Lu
- Department of General Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
28
|
Dawson H, Lugli A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med (Lausanne) 2015; 2:11. [PMID: 25806371 PMCID: PMC4354406 DOI: 10.3389/fmed.2015.00011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 12/20/2022] Open
Abstract
In recent years, tumor budding in colorectal cancer has gained much attention as an indicator of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival, and as an independent prognostic factor. Tumor buds, defined as the presence of single tumor cells or small clusters of up to five tumor cells at the peritumoral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds), are thought to represent the morphological correlate of cancer cells having undergone epithelial–mesenchymal transition (EMT), an important mechanism for the progression of epithelial cancers. In contrast to their undisputed prognostic power and potential to influence clinical management, our current understanding of the biological background of tumor buds is less established. Most studies examining tumor buds have attempted to recapitulate findings of mechanistic EMT studies using immunohistochemical markers. The aim of this review is to provide a comprehensive summary of studies examining protein expression profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved in their formation and maintenance.
Collapse
Affiliation(s)
- Heather Dawson
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| | - Alessandro Lugli
- Clinical Pathology Division, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| |
Collapse
|
29
|
Bae JM, Lee TH, Cho NY, Kim TY, Kang GH. Loss of CDX2 expression is associated with poor prognosis in colorectal cancer patients. World J Gastroenterol 2015; 21:1457-1467. [PMID: 25663765 PMCID: PMC4316088 DOI: 10.3748/wjg.v21.i5.1457] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/04/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the clinicopathologic characteristics and prognostic implications associated with loss of CDX2 expression in colorectal cancers (CRCs).
METHODS: We immunohistochemically evaluated CDX2 expression in 713 CRCs and paired our findings to clinicopathologic and molecular characteristics of each individual. Endpoints included cytokeratin 7 and CK20 expression, microsatellite instability, CpG island methylator phenotype, and KRAS and BRAF mutation statuses. Univariate and multivariate survival analysis was performed to reveal the prognostic value of CDX2 downregulation.
RESULTS: CDX2 expression was lost in 42 (5.9%) patients. Moreover, loss of CDX2 expression was associated with proximal location, infiltrative growth, advanced T, N, M and overall stage. On microscopic examination, loss of CDX2 expression was associated with poor differentiation, increased number of tumor-infiltrating lymphocytes, luminal serration and mucin production. Loss of CDX2 expression was also associated with increased CK7 expression, decreased CK20 expression, CpG island methylator phenotype, microsatellite instability and BRAF mutation. In a univariate survival analysis, patients with loss of CDX2 expression showed worse overall survival (P < 0.001) and progression-free survival (P < 0.001). In a multivariate survival analysis, loss of CDX2 expression was an independent poor prognostic factor of overall survival [hazard ratio (HR) = 1.72, 95%CI: 1.04-2.85, P = 0.034] and progression-free survival (HR = 1.94, 95%CI: 1.22-3.07, P = 0.005).
CONCLUSION: Loss of CDX2 expression is associated with aggressive clinical behavior and can be used as a prognostic marker in CRCs.
Collapse
|
30
|
Freund JN, Duluc I, Reimund JM, Gross I, Domon-Dell C. Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities. World J Gastroenterol 2015; 21:1436-1443. [PMID: 25663763 PMCID: PMC4316086 DOI: 10.3748/wjg.v21.i5.1436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/25/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
The homeoprotein encoded by the intestinal-specific Cdx2 gene is a major regulator of gut development and homeostasis, also involved in colon cancer as well as in intestinal-type metaplasias when it is abnormally expressed outside the gut. At the molecular level, structure/function studies have demonstrated that the Cdx2 protein is a transcription factor containing a conserved homeotic DNA-binding domain made of three alpha helixes arranged in a helix-turn-helix motif, preceded by a transcriptional domain and followed by a regulatory domain. The protein interacts with several thousand sites on the chromatin and widely regulates intestinal functions in stem/progenitor cells as well as in mature differentiated cells. Yet, this transcription factor also acts trough original nontranscriptional mechanisms. Indeed, the identification of novel protein partners of Cdx2 and also of a splicing variant revealed unexpected functions in the control of signaling pathways like the Wnt and NF-κB pathways, in double-strand break DNA repair and in premessenger RNA splicing. These novel functions of Cdx2 must be considered to fully understand the complexity of the role of Cdx2 in the healthy intestine and in diseases.
Collapse
|
31
|
Kosaka T, Fukui R, Matsui M, Kurosaka Y, Nishimura H, Tanabe M, Takakura Y, Iwai K, Waki T, Fujita T. RAGE, receptor of advanced glycation endoproducts, negatively regulates chondrocytes differentiation. PLoS One 2014; 9:e108819. [PMID: 25275461 PMCID: PMC4183532 DOI: 10.1371/journal.pone.0108819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
RAGE, receptor for advanced glycation endoproducts (AGE), has been characterized as an activator of osteoclastgenesis. However, whether RAGE directly regulates chondrocyte proliferation and differentiation is unclear. Here, we show that RAGE has an inhibitory role in chondrocyte differentiation. RAGE expression was observed in chondrocytes from the prehypertrophic to hypertrophic regions. In cultured cells, overexpression of RAGE or dominant-negative-RAGE (DN-RAGE) demonstrated that RAGE inhibited cartilaginous matrix production, while DN-RAGE promoted production. Additionally, RAGE regulated Ihh and Col10a1 negatively but upregulated PTHrP receptor. Ihh promoter analysis and real-time PCR analysis suggested that downregulation of Cdxs was the key for RAGE-induced inhibition of chondrocyte differentiation. Overexpression of the NF-κB inhibitor I-κB-SR inhibited RAGE-induced NF-κB activation, but did not influence inhibition of cartilaginous matrix production by RAGE. The inhibitory action of RAGE was restored by the Rho family GTPases inhibitor Toxin B. Furthermore, inhibitory action on Ihh, Col10a1 and Cdxs was reproduced by constitutively active forms, L63RhoA, L61Rac, and L61Cdc42, but not by I-κB-SR. Cdx1 induced Ihh and Col10a1 expressions and directly interacted with Ihh promoter. Retinoic acid (RA) partially rescued the inhibitory action of RAGE. These data combined suggests that RAGE negatively regulates chondrocyte differentiation at the prehypertrophic stage by modulating NF-κB-independent and Rho family GTPases-dependent mechanisms.
Collapse
Affiliation(s)
- Tatsuya Kosaka
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Rino Fukui
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Mio Matsui
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Yuko Kurosaka
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Haruka Nishimura
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Motoki Tanabe
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Yuuki Takakura
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Keisuke Iwai
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Takuya Waki
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Takashi Fujita
- Molecular Toxicology lab, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
- * E-mail:
| |
Collapse
|
32
|
Hartman KG, Bortner JD, Falk GW, Ginsberg GG, Jhala N, Yu J, Martín MG, Rustgi AK, Lynch JP. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems. Exp Biol Med (Maywood) 2014; 239:1108-23. [PMID: 24781339 PMCID: PMC4156523 DOI: 10.1177/1535370214529388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible.
Collapse
Affiliation(s)
- Kira G Hartman
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James D Bortner
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gary W Falk
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nirag Jhala
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jian Yu
- Departments of Pathology and Radiation Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Martín G Martín
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Mattel Children's Hospital and the David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John P Lynch
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
33
|
Olsen J, Espersen MLM, Jess P, Kirkeby LT, Troelsen JT. The clinical perspectives of CDX2 expression in colorectal cancer: a qualitative systematic review. Surg Oncol 2014; 23:167-76. [PMID: 25126956 DOI: 10.1016/j.suronc.2014.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/05/2014] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Homeobox genes are often deregulated in cancer. They can have both oncogenic and tumor-suppressing potential. The Caudal-related homeobox transcription factor 2 (CDX2) is an intestine-specific transcription factor. It is implicated in differentiation, proliferation, cell-adhesion, and migration. CDX2 has been proposed as a tumor suppressor in colorectal cancer but its role is still controversial. This systematic review were undertaken in order to clarify CDX2s role in colorectal cancer. METHODS A literature search was performed in the MEDLINE database from 1966 to February 2014. Only studies in which all or a part of the experimental design were performed on human colorectal cancer tissue were included. Thus, studies solely performed in cell-lines or animal models were excluded. RESULTS Fifty-two articles of relevance were identified. CDX2 expression was rarely lost in colorectal cancers, however the expression pattern may often be heterogeneous within the tumor and can be selectively down regulated at the invasive front and in tumor buddings. Loss of CDX2 expression is probably correlated to tumor grade, stage, right-sided tumor location, MMR-deficiency, CIMP, and BRAF mutations. The CDX2 gene is rarely mutated but the locus harboring the gene is often amplified and may suggest CDX2 as a linage-survival oncogene. CDX2 might be implicated in cell proliferation and migration through cross-talk with the Wnt-signaling pathway, tumor-stroma proteins, and inflammatory cytokines. CONCLUSION A clear role for CDX2 expression in colorectal cancer remains to be elucidated, and it might differ in relation to the underlying molecular pathways leading to the cancer formation.
Collapse
Affiliation(s)
- J Olsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - M L M Espersen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark; The Molecular Unit, Department of Pathology, Herlev University Hospital, DK-2730 Herlev, Denmark.
| | - P Jess
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - L T Kirkeby
- Department of Surgery, Roskilde University Hospital, Roskilde Sygehus, Køgevej 7-13, DK-4000 Roskilde, Denmark.
| | - J T Troelsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
34
|
HMGA1 Interacts with β-Catenin to Positively Regulate Wnt/β-Catenin Signaling in Colorectal Cancer Cells. Pathol Oncol Res 2014; 20:847-51. [DOI: 10.1007/s12253-014-9763-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
35
|
Natoli M, Christensen J, El-Gebali S, Felsani A, Anderle P. The role of CDX2 in Caco-2 cell differentiation. Eur J Pharm Biopharm 2014; 85:20-5. [PMID: 23958315 DOI: 10.1016/j.ejpb.2013.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND CDX2 plays a key part in the differentiation of Caco-2 cells, a colon carcinoma derived cell line that undergoes spontaneous differentiation. The effect of CDX2 expression in Caco-2 cells over time in culture has not been studied yet on a genome-wide level. METHODS The impact of CDX2 expression on the genomic profile of Caco-2 cells was studied by transducing cells with CDX2 targeting shRNAs. Knockdown efficiency was assessed on mRNA level and protein level by RTPCR, microarrays, and Western blots. Gene set enrichment analysis was performed to assess regulation of specific gene sets. RESULTS CDX2 expression had an inhibitory effect on the transcriptional activity of β-catenin/TCF at early stages of culturing, while at later stages, its role in the trans-activation of target genes specific for small intestinal enterocytes seemed more dominant. CONCLUSIONS The unique induction of a small intestinal signature upon differentiation in Caco-2 cells seems to be at least partially under the control of CDX2.
Collapse
Affiliation(s)
- Manuela Natoli
- Istituto di Biologia Cellulare e Neurobiologia, CNR, Rome, Italy
| | | | | | | | | |
Collapse
|
36
|
Coskun M, Olsen AK, Bzorek M, Holck S, Engel UH, Nielsen OH, Troelsen JT. Involvement of CDX2 in the cross talk between TNF-α and Wnt signaling pathway in the colon cancer cell line Caco-2. Carcinogenesis 2014; 35:1185-92. [PMID: 24501326 DOI: 10.1093/carcin/bgu037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is highly upregulated in inflammation and reduces the expression of the intestinal transcription factor, Caudal-related homeobox transcription factor 2 (CDX2). Wnt/β-catenin signaling is critical for intestinal cell proliferation, but a decreased CDX2 expression has influence on the Wnt signaling-related genes and progression of colorectal cancer. Although several inflammatory signaling pathways, including TNF-α, have been reported to promote Wnt/β-catenin activity and development of cancer, the underlying molecular mechanisms remain unclear. The aim was to investigate the signaling pathways involved in the TNF-α-mediated downregulation of CDX2, and its influence on Wnt/β-catenin signaling components in colon cancer cells. The expression of TNF-α and CDX2 at the invasive front were evaluated by immunohistochemical staining and showed reduced CDX2-positive cells in tumor buddings in areas with TNF-α expression in the surrounding inflammatory cells. In vitro studies revealed that TNF-α treatment showed a dose-dependent decrease of CDX2 messenger RNA (mRNA) and protein expression in Caco-2 cells. Inhibition of nuclear factor-kappaB or p38 pathways showed that these are involved in the TNF-α-dependent downregulation of CDX2. Furthermore, TNF-α-mediated downregulation of CDX2 was found to significantly decrease the mRNA levels of adenomatous polyposis coli (APC), axis inhibition protein 2 (AXIN2) and glycogen synthase kinase-3 beta (GSK3β), whereas the mRNA levels of Wnt targets were significantly elevated in TNF-α-treated Caco-2 cells. These findings were associated with reduced binding of CDX2 to promoter or enhancer regions of APC, AXIN2 and GSK3β. In conclusion, it was found that TNF-α induces the expression of Wnt signaling components through a downregulation of the CDX2 expression that might have a tumor-promoting effect on colon cancer cells.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, DK-2730 Herlev, Denmark
| | | | | | | | | | | | | |
Collapse
|
37
|
Dawson H, Koelzer VH, Lukesch AC, Mallaev M, Inderbitzin D, Lugli A, Zlobec I. Loss of Cdx2 Expression in Primary Tumors and Lymph Node Metastases is Specific for Mismatch Repair-Deficiency in Colorectal Cancer. Front Oncol 2013; 3:265. [PMID: 24130965 PMCID: PMC3795344 DOI: 10.3389/fonc.2013.00265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 09/26/2013] [Indexed: 12/19/2022] Open
Abstract
Background: Approximately 20% of all colorectal cancers are hypothesized to arise from the “serrated pathway” characterized by mutation in BRAF, high-level CpG Island Methylator Phenotype, and microsatellite instability/mismatch repair (MMR)-deficiency. MMR-deficient cancers show frequent losses of Cdx2, a homeodomain transcription factor. Here, we determine the predictive value of Cdx2 expression for MMR-deficiency and investigate changes in expression between primary cancers and matched lymph node metastases. Methods: Immunohistochemistry for Cdx2, Mlh1, Msh2, Msh6, and Pms2 was performed on whole tissue sections from 201 patients with primary colorectal cancer and 59 cases of matched lymph node metastases. Receiver operating characteristic curve analysis and Area under the Curve (AUC) were investigated; association of Cdx2 with clinicopathological features and patient survival was carried out. Results: Loss of Cdx2 expression was associated with higher tumor grade (p = 0.0002), advanced pT (p = 0.0166), and perineural invasion (p = 0.0228). Cdx2 loss was an unfavorable prognostic factor in univariate (p = 0.0145) and multivariate [p = 0.0427; HR (95% CI): 0.58 (0.34–0.98)] analysis. The accuracy (AUC) for discriminating MMR-proficient and – deficient cancers was 87% [OR (95% CI): 0.96 (0.95–0.98); p < 0.0001]. Specificity and negative predictive value for MMR-deficiency was 99.1 and 96.3%. One hundred and seventy-four patients had MMR-proficient cancers, of which 60 (34.5%) showed Cdx2 loss. Cdx2 loss in metastases was related to MMR-deficiency (p < 0.0001). There was no difference in expression between primary tumors and matched metastases. Conclusion: Loss of Cdx2 is a sensitive and specific predictor of MMR-deficiency, but is not limited to these tumors, suggesting that events “upstream” of the development of microsatellite instability may impact Cdx2 expression.
Collapse
Affiliation(s)
- Heather Dawson
- Department of Clinical Pathology, Institute of Pathology, University of Bern , Bern , Switzerland ; Translational Research Unit, Institute of Pathology, University of Bern , Bern , Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
The contribution of cell phenotype to the behavior of gastric cancer. Gastric Cancer 2013; 16:462-71. [PMID: 23329390 DOI: 10.1007/s10120-012-0208-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/10/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several histochemical studies suggest a role of tumor cell phenotype and related differentiation markers in the prognostic assessment of gastric cancer. Unfortunately, most studies have dealt with single or a few markers and have paid limited attention to their interplay with tumor histological types, which are potentially informative of prognosis. METHODS In this study, 292 invasive (T1b to T4) gastric cancers with prolonged follow-up and carefully analyzed histotype, inclusive of histotype-based grade, were investigated histochemically with a panel of 14 phenotypic markers known to be expressed in normal gut tissues and gastric cancer. RESULTS Three of seven intestinal type markers investigated showed a trend for improved prognosis, one of which, CDX2, was stage independent. Three among gastric and pancreatobiliary duct markers (MUC1, MUC6, and pepsinogen II), predicted more severe prognosis stage independently, as did a combination of eight potentially informative (p < 0.1 at univariable Cox analysis) markers. Cancers with predominantly intestinal phenotype had significantly better prognosis than those with predominantly gastric, mixed, or poorly defined phenotypes; among the latter, those with high lymphocyte response, with favorable outcome, were separated from anaplastic cancers, with ominous prognosis. At multivariable analysis, CDX2 and the eight marker combination proved to be stage- and grade-independent predictors. CONCLUSIONS When individually considered, and with the exception of CDX2, the biomarkers investigated gave an appreciable, although moderate, contribution to the prognostic evaluation of gastric cancer. Combined analysis of all potentially informative markers gave more important information, highly additive to both stage and histotype-based grade.
Collapse
|
39
|
Christensen J, Bentz S, Sengstag T, Shastri VP, Anderle P. FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors. PLoS One 2013; 8:e60051. [PMID: 23555880 PMCID: PMC3608605 DOI: 10.1371/journal.pone.0060051] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/23/2013] [Indexed: 01/15/2023] Open
Abstract
Background The forkhead box transcription factor FOXQ1 has been shown to be upregulated in colorectal cancer (CRC) and metastatic breast cancer and involved in tumor development, epithelial-mesenchymal transition and chemoresistance. Yet, its transcriptional regulation is still unknown. Methods FOXQ1 mRNA and protein expression were analysed in a panel of CRC cell lines, and laser micro-dissected human biopsy samples by qRT-PCR, microarray GeneChip® U133 Plus 2.0 and western blots. FOXQ1 regulation was assayed by chromatin immunoprecipitation and luciferase reporter assays. Results FOXQ1 was robustly induced in CRC compared to other tumors, but had no predictive value with regards to grade, metastasis and survival in CRC. Prototype-based gene coexpression and gene set enrichment analysis showed a significant association between FOXQ1 and the Wnt pathway in tumors and cancer cell lines from different tissues. In vitro experiments confirmed, on a molecular level, FOXQ1 as a direct Wnt target. Analysis of known Wnt targets identified FOXQ1 as the most suitable marker for canonical Wnt activation across a wide panel of cell lines derived from different tissues. Conclusions Our data show that FOXQ1 is one of the most over-expressed genes in CRC and a direct target of the canonical Wnt pathway. It is a potential new marker for detection of early CRC and Wnt activation in tumors of different origins.
Collapse
Affiliation(s)
- Jon Christensen
- Institute of Macro Molecular Chemistry, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- * E-mail: (JC); (PA)
| | - Susanne Bentz
- Institute of Biochemistry and Molecular Medicine, University of Bern, Swiss National Centre of Competence in Research TransCure, University of Berne, Berne, Switzerland
| | - Thierry Sengstag
- OSC-Omics Science Center, RIKEN Yokohama Institute, Yokohama, Japan
| | - V. Prasad Shastri
- Institute of Macro Molecular Chemistry, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Pascale Anderle
- Institute of Biochemistry and Molecular Medicine, University of Bern, Swiss National Centre of Competence in Research TransCure, University of Berne, Berne, Switzerland
- OSC-Omics Science Center, RIKEN Yokohama Institute, Yokohama, Japan
- Swiss National Centre of Competence in Research Molecular Oncology, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (JC); (PA)
| |
Collapse
|
40
|
Rosty C, Hewett DG, Brown IS, Leggett BA, Whitehall VLJ. Serrated polyps of the large intestine: current understanding of diagnosis, pathogenesis, and clinical management. J Gastroenterol 2013; 48:287-302. [PMID: 23208018 PMCID: PMC3698429 DOI: 10.1007/s00535-012-0720-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 11/11/2012] [Indexed: 02/04/2023]
Abstract
Approximately 30% of colorectal carcinomas develop via the serrated neoplasia pathway characterized by widespread DNA methylation and frequent BRAF mutation. Serrated polyps represent a heterogeneous group of polyps which are the precursor lesions to serrated pathway colorectal carcinomas. The histological classification of serrated polyps has evolved over the last two decades to distinguish three separate entities: hyperplastic polyp, sessile serrated adenoma (SSA), and traditional serrated adenoma (TSA). The malignant potential of SSAs and TSAs has been clearly demonstrated. SSAs are more challenging to detect by colonoscopy and are likely to account for some interval carcinomas of the proximal colon. Serrated polyposis syndrome is now widely recognized as conferring a high risk of colorectal carcinoma although its cause remains elusive. The current understanding of the actual malignant potential of each serrated polyp subtype is still limited due to the lack of large-scale prospective studies. Patient management guidelines have been recently updated although high-level evidence to support them is still required.
Collapse
Affiliation(s)
- Christophe Rosty
- Envoi Pathology, 1/49 Butterfield Street, Herston, Brisbane, QLD, 4006, Australia.
| | | | | | | | | |
Collapse
|
41
|
Ectopic expression of Ptf1a induces spinal defects, urogenital defects, and anorectal malformations in Danforth's short tail mice. PLoS Genet 2013; 9:e1003204. [PMID: 23436999 PMCID: PMC3578775 DOI: 10.1371/journal.pgen.1003204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
Danforth's short tail (Sd) is a semidominant mutation on mouse chromosome 2, characterized by spinal defects, urogenital defects, and anorectal malformations. However, the gene responsible for the Sd phenotype was unknown. In this study, we identified the molecular basis of the Sd mutation. By positional cloning, we identified the insertion of an early transposon in the Sd candidate locus approximately 12-kb upstream of Ptf1a. We found that insertion of the transposon caused overexpression of three neighboring genes, Gm13344, Gm13336, and Ptf1a, in Sd mutant embryos and that the Sd phenotype was not caused by disruption of an as-yet-unknown gene in the candidate locus. Using multiple knockout and knock-in mouse models, we demonstrated that misexpression of Ptf1a, but not of Gm13344 or Gm13336, in the notochord, hindgut, cloaca, and mesonephros was sufficient to replicate the Sd phenotype. The ectopic expression of Ptf1a in the caudal embryo resulted in attenuated expression of Cdx2 and its downstream target genes T, Wnt3a, and Cyp26a1; we conclude that this is the molecular basis of the Sd phenotype. Analysis of Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney. Caudal regression syndrome (CRS) is a congenital heterogeneous constellation of caudal anomalies that includes varying degrees of agenesis of the spinal column, anorectal malformations, and genitourinary anomalies. Its pathogenesis is unclear. However, it could be the result of excessive physiologic regression of the embryonic caudal region based on analyses of the various mouse mutants carrying caudal agenesis. Among the mouse mutants, the Danforth's short tail (Sd) mouse is considered a best model for human CRS. Sd is a semidominant mutation, characterized by spinal defects, urogenital defects, and anorectal malformations, thus showing phenotypic similarity to human CRS. Although Sd is known to map to mouse chromosome 2, little is known about the molecular nature of the mutation. Here, we demonstrate an insertion of one type of retrotransposon near the Ptf1a gene. This resulted in ectopic expression of Ptf1a gene in the caudal region of the embryo and downregulation of Cdx2 and its downstream targets, leading to characteristic phenotypes in Sd mouse. Thus, Sd mutant mice will provide insight into the development of the spinal column, anus, and kidney.
Collapse
|
42
|
Olsen AK, Coskun M, Bzorek M, Kristensen MH, Danielsen ET, Jørgensen S, Olsen J, Engel U, Holck S, Troelsen JT. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells. Carcinogenesis 2013; 34:1361-9. [DOI: 10.1093/carcin/bgt037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
43
|
CDX2 is an amplified lineage-survival oncogene in colorectal cancer. Proc Natl Acad Sci U S A 2012; 109:E3196-205. [PMID: 23112155 DOI: 10.1073/pnas.1206004109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mutational activation of oncogenes drives cancer development and progression. Classic oncogenes, such as MYC and RAS, are active across many different cancer types. In contrast, "lineage-survival" oncogenes represent a distinct and emerging class typically comprising transcriptional regulators of a specific cell lineage that, when deregulated, support the proliferation and survival of cancers derived from that lineage. Here, in a large collection of colorectal cancer cell lines and tumors, we identify recurrent amplification of chromosome 13, an alteration highly restricted to colorectal-derived cancers. A minimal region of amplification on 13q12.2 pinpoints caudal type homeobox transcription factor 2 (CDX2), a regulator of normal intestinal lineage development and differentiation, as a target of the amplification. In contrast to its described role as a colorectal tumor suppressor, CDX2 when amplified is required for the proliferation and survival of colorectal cancer cells. Further, transcriptional profiling, binding-site analysis, and functional studies link CDX2 to Wnt/β-catenin signaling, itself a key oncogenic pathway in colorectal cancer. These data characterize CDX2 as a lineage-survival oncogene deregulated in colorectal cancer. Our findings challenge a prevailing view that CDX2 is a tumor suppressor in colorectal cancer and uncover an additional piece in the multistep model of colorectal tumorigenesis.
Collapse
|
44
|
Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S, Kadota S, Morone N, Barve M, Asai Y, Tenkova-Heuser T, Heuser JE, Uesugi M, Aiba K, Nakatsuji N. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2012; 2:1448-60. [PMID: 23103164 DOI: 10.1016/j.celrep.2012.09.015] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/18/2012] [Accepted: 09/12/2012] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.
Collapse
Affiliation(s)
- Itsunari Minami
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu X, Zhang X, Zhan Q, Brock MV, Herman JG, Guo M. CDX2 serves as a Wnt signaling inhibitor and is frequently methylated in lung cancer. Cancer Biol Ther 2012; 13:1152-7. [PMID: 22892849 PMCID: PMC3469472 DOI: 10.4161/cbt.21344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aberrant promoter region hypermethylation of upstream transcription factors may be responsible for silencing entire anti-neoplastic gene networks. In this study, we explored whether transcription factor coding gene, caudal-related homeobox 2 (CDX2), is silenced by promoter hypermethylation in lung cancer, and examined its potential tumor-suppressive functions. Semi-quantitative RT-PCR showed that four of six lung cancer cell lines exhibited no or weak CDX2 expression. Expression of CDX2 was correlated to CDX2 promoter region methylation status, as determined by methylation-specific PCR (MSP) and bisulfite sequencing. Restoration of CDX2 expression was induced by treatment with demethylating drug 5-aza-2'-deoxycytidine (5-AZA) in lung cancer cell lines. Methylation of CDX2 was common in human primary lung cancer (61 of 110 tumors, 55.45%), but no methylation was found in normal lung tissues. Re-expression of CDX2 suppressed lung cancer cell proliferation and blocked cells in G1 phase. β-catenin/TCF activity and downstream genes expression were inhibited by re-expression of CDX2, and increased by depletion of CDX2. In conclusion, CDX2 is frequently methylated in lung cancer, and expression of CDX2 is regulated by promoter region hypermethylation. CDX2 may serve as a tumor suppressor in lung cancer and inhibits lung cancer cell proliferation by suppressing Wnt signaling.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
46
|
Bhat AA, Sharma A, Pope J, Krishnan M, Washington MK, Singh AB, Dhawan P. Caudal homeobox protein Cdx-2 cooperates with Wnt pathway to regulate claudin-1 expression in colon cancer cells. PLoS One 2012; 7:e37174. [PMID: 22719836 PMCID: PMC3376107 DOI: 10.1371/journal.pone.0037174] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of tight junctions (TJs) is often associated with human diseases including carcinogenesis and recent studies support role of TJ integral proteins in the regulation of Epithelial-to-Mesenchymal Transition (EMT). In this regard, expression of claudin-1, a key constituent of TJs, is highly increased in colon cancer and is causally associated with the tumor growth and progression. However, mechanism/s underlying regulation of claudin-1 expression in intestinal epithelial cells remains poorly understood. In our studies, we have identified putative binding sites for intestinal transcription factors Cdx1, -2 and GATA4 in the 5'-flanking region of the claudin-1 gene. Our further studies using full length and/or deletion mutant constructs in two different human colon cancer cell lines, SW480 and HCT116, showed key role of Cdx1, Cdx2 and GATA4 in the regulation of claudin-1 mRNA expression. However, overexpression of Cdx2 had the most potent effect upon claudin-1 mRNA expression and promoter activity. Also, in colon cancer patient samples, we observed a significant and parallel correlation between claudin-1 and Cdx2 expressions. Chromatin immunoprecipitation (ChIP) assay confirmed the Cdx2 binding with claudin-1 promoter in vivo. Using Cdx2 deletion mutant constructs, we further mapped the Cdx2 C-terminus domain to be important in the regulation of claudin-1 promoter activity. Interestingly, co-expression of activated β-catenin further induced the Cdx2-dependent upregulation of claudin-1 promoter activity while expression of the dominant negative (dn)-TCF-4 abrogated this activation. Taken together, we conclude that homeodomain transcription factors Cdx1, Cdx2 and GATA4 regulate claudin-1 gene expression in human colon cancer cells. Moreover, a functional crosstalk between Wnt-signaling and transcriptional activation related to caudal-related homeobox (Cdx) proteins and GATA-proteins is demonstrated in the regulation of claudin-1 promoter-activation.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ashok Sharma
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jillian Pope
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Moorthy Krishnan
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mary K. Washington
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amar B. Singh
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Punita Dhawan
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
47
|
Coskun M, Olsen AK, Holm TL, Kvist PH, Nielsen OH, Riis LB, Olsen J, Troelsen JT. TNF-α-induced down-regulation of CDX2 suppresses MEP1A expression in colitis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:843-51. [PMID: 22326557 DOI: 10.1016/j.bbadis.2012.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS High levels of pro-inflammatory cytokines are linked to inflammatory bowel disease (IBD). The transcription factor Caudal-related homeobox transcription factor 2 (CDX2) plays a crucial role in differentiation of intestinal epithelium and regulates IBD-susceptibility genes, including meprin 1A (MEP1A). The aim was to investigate the expression of CDX2 and MEP1A in colitis; to assess if they are regulated by tumor necrosis factor-α (TNF-α), and finally to reveal if CDX2 is involved in a TNF-α-induced down-regulation of MEP1A. METHODS Expression of CDX2 and MEP1A was investigated in colonic biopsies of ulcerative colitis (UC) patients and in dextran sodium sulfate (DSS)-induced colitis. CDX2 protein expression was investigated by immunoblotting and immunohistochemical procedures. CDX2 and MEP1A regulation was examined in TNF-α-treated Caco-2 cells by reverse transcription-polymerase chain reaction and with reporter gene assays, and the effect of anti-TNF-α treatment was assessed using infliximab. Finally, in vivo CDX2-DNA interactions were investigated by chromatin immunoprecipitation. RESULTS The CDX2 and MEP1A mRNA expression was significantly decreased in active UC patients and in DSS-colitis. Colonic biopsy specimens from active UC showed markedly decreased CDX2 staining. TNF-α treatment diminished the CDX2 and MEP1A mRNA levels, a decrease which, was counteracted by infliximab treatment. Reporter gene assays showed significantly reduced CDX2 and MEP1A activity upon TNF-α stimulation. Finally, TNF-α impaired the ability of CDX2 to interact and activate its own, as well as the MEP1A expression. CONCLUSIONS The present results indicate that a TNF-α-mediated down-regulation of CDX2 can be related to suppressed expression of MEP1A during intestinal inflammation.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Olsen AK, Boyd M, Danielsen ET, Troelsen JT. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks. Am J Physiol Gastrointest Liver Physiol 2012; 302:G277-86. [PMID: 22094602 DOI: 10.1152/ajpgi.00362.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upon developmental or environmental cues, the composition of transcription factors in a transcriptional regulatory network is deeply implicated in controlling the signature of the gene expression and thereby specifies the cell or tissue type. Novel methods including ChIP-chip and ChIP-Seq have been applied to analyze known transcription factors and their interacting regulatory DNA elements in the intestine. The intestine is an example of a dynamic tissue where stem cells in the crypt proliferate and undergo a differentiation process toward the villus. During this differentiation process, specific regulatory networks of transcription factors are activated to target specific genes, which determine the intestinal cell fate. The expanding genomewide mapping of transcription factor binding sites and construction of transcriptional regulatory networks provide new insight into how intestinal differentiation occurs. This review summarizes the current overview of the transcriptional regulatory networks driving epithelial differentiation in adult intestine. The novel technologies that have been implied to study these networks are presented and their prospects for implications in future research are also addressed.
Collapse
Affiliation(s)
- Anders Krüger Olsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
49
|
Renouf B, Soret C, Saandi T, Delalande F, Martin E, Vanier M, Duluc I, Gross I, Freund JN, Domon-Dell C. Cdx2 homeoprotein inhibits non-homologous end joining in colon cancer but not in leukemia cells. Nucleic Acids Res 2011; 40:3456-69. [PMID: 22189105 PMCID: PMC3333856 DOI: 10.1093/nar/gkr1242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cdx2, a gene of the paraHox cluster, encodes a homeodomain transcription factor that plays numerous roles in embryonic development and in homeostasis of the adult intestine. Whereas Cdx2 exerts a tumor suppressor function in the gut, its abnormal ectopic expression in acute leukemia is associated to a pro-oncogenic function. To try to understand this duality, we have hypothesized that Cdx2 may interact with different protein partners in the two tissues and set up experiments to identify them by tandem affinity purification. We show here that Cdx2 interacts with the Ku heterodimer specifically in intestinal cells, but not in leukemia cells, via its homeodomain. Ku proteins do not affect Cdx2 transcriptional activity. However, Cdx2 inhibits in vivo and in vitro the DNA repair activity mediated by Ku proteins in intestinal cells. Whereas Cdx2 does not affect the recruitment of Ku proteins and DNA-PKcs into the DNA repair complex, it inhibits DNA-PKcs activity. Thus, we report here a new function of Cdx2, acting as an inhibitor of the DNA repair machinery, that may contribute to its tumor suppressor function specifically in the gut.
Collapse
|
50
|
García-Miranda P, Vázquez-Carretero MD, Gutiérrez G, Peral MJ, Ilundáin AA. Lack of reelin modifies the gene expression in the small intestine of mice. J Physiol Biochem 2011; 68:205-18. [PMID: 22161684 DOI: 10.1007/s13105-011-0132-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/22/2011] [Indexed: 12/25/2022]
Abstract
We recently demonstrated that the mucosa of the small intestine of the rat expresses reelin and some components of its signaling system. The current study evaluates whether reelin affects the intestinal gene expression profile using microarray analysis and reeler mice, a natural mutant in which reelin is not expressed. The effect of the mutation on body weight and intestinal morphology is also evaluated. The mutation reduces body and intestinal weight during the first 2 months of age and modifies the morphology of the crypts and villi. For the microarray assays, total RNA was obtained from either isolated epithelial cells or intact small intestine. Of the 45,101 genes present in the microarray the mutation significantly alters the expression of 62 genes in the isolated epithelial cell samples and of 84 in the intact small intestine. The expression of 83% of the genes tested for validation was substantiated by reverse transcriptase polymerase chain reaction. The mutation notably up-regulates genes involved in intestinal metabolism, while it down-regulates genes related with immune response, inflammation, and tumor development. Genes involved in cell proliferation, differentiation, apoptosis, membrane transport and cytoskeleton are also differently expressed in the reeler mice as compared with the control. This is the first report showing that the lack of reelin modifies intestinal morphology and gene expression profile and suggests a role for reelin in intestinal epithelium homeostasis.
Collapse
Affiliation(s)
- P García-Miranda
- Departamento de Fisiología y Zoología, Universidad de Sevilla, c/o Profesor García González, no. 2, 41012, Sevilla, Spain
| | | | | | | | | |
Collapse
|