1
|
You Q, Li L, Liu L. An integrated approach of transcriptomics, network pharmacology and molecular docking uncovers the mechanisms of 5,6,7,4'-tetramethoxyflavone in treating cervical cancer. Biochem Biophys Res Commun 2025; 760:151611. [PMID: 40157293 DOI: 10.1016/j.bbrc.2025.151611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/19/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025]
Abstract
5,6,7,4'-tetramethoxyflavone (TMF), a dietary polymethoxyflavone (PMF) with multifaceted health-promoting benefits, has recently been identified as a potential chemotherapeutic agent for cervical cancer (CCA) in our previous study. Nevertheless, its mechanisms of action involved remain unclear. To address this knowledge gap, we employed an integrative strategy combining transcriptomic profiling, network pharmacology, and molecular docking to systematically investigate TMF's inhibitory effects on HeLa cells. Transcriptomic analysis revealed 1,127 differentially expressed genes (DEGs) in TMF-treated HeLa cells, comprising 765 down-regulated and 362 up-regulated genes. Protein-protein interaction (PPI) network analysis identified 12 hub targets ranked by connectivity: JUN, FN1, VEGFA, FOS, ITGB3, NOTCH1, ESR1, EGF, APP, DLG4, EGR1 and ITGB2. Gene Ontology (GO) enrichment analysis demonstrated significant associations with biological processes including signal transduction, cytoplasm, protein binding, positive regulation of apoptotic cell clearance, t-tubules and extracellular matrix structural constituent conferring tensile strength. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed enrichment in 38 signaling pathways. Molecular docking simulations comfirmed good affinities between TMF and all 12 targets, exhibiting binding energies below -5.0 kcal/mol. Our findings suggest that TMF exerts antitumor activity against HeLa cells through multi-target modulation of critical pathways including Pathway in cancer, FoxO, PI3K-Akt, mTOR, AMPK and apoptosis signaling pathway. While these bioinformatics predictions provide mechanistic insights, experimental validation through q-PCR, western blotting, and surface plasmon resonance remains essential to confirm these findings. This study establishes a foundation for further exploration of TMF's therapeutic potential in CCA management.
Collapse
Affiliation(s)
- Qiang You
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lan Li
- School of Nursing, Peking University, Beijing, 100091, China; School of Nursing, Southwest Medical University, Luzhou, 646000, China
| | - Li Liu
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Moreno-Vargas LM, Prada-Gracia D. Cancer-Targeting Applications of Cell-Penetrating Peptides. Int J Mol Sci 2024; 26:2. [PMID: 39795861 PMCID: PMC11720565 DOI: 10.3390/ijms26010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 01/13/2025] Open
Abstract
Cell-penetrating peptides (CPPs) offer a unique and efficient mechanism for delivering therapeutic agents directly into cancer cells. These peptides can traverse cellular membranes, overcoming one of the critical barriers in drug delivery systems. In this review, we explore recent advancements in the application of CPPs for cancer treatment, focusing on mechanisms, delivery strategies, and clinical potential. The review highlights the use of CPP-drug conjugates, CPP-based vaccines, and their role in targeting and inhibiting tumor growth.
Collapse
Affiliation(s)
- Liliana Marisol Moreno-Vargas
- Research Unit on Computational Biology and Drug Design, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Zheng L, Wei N, Farooqi AA, Zhang Y, Blundell R, Liu X, Xu Y, Lin X. Recent progress of protein kinase inhibitors derived from marine peptides for developing anticancer agents. Cell Signal 2024; 124:111411. [PMID: 39277091 DOI: 10.1016/j.cellsig.2024.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Protein kinases, mediating their biological function via their catalytic activity, play important role in cell development, including cell proliferation, migration, angiogenesis and survival. Over the years, protein kinase inhibitors have been developed as an important class of anticancer agents clinically. However, the off-targeting and drug resistance of protein kinase inhibitors limit their efficiency. Anticancer peptides derived from marine organisms represent a novel class of bioactive substances, and some of the peptides exhibit anticancer effect via inhibiting protein kinases. In this mini review, the recent progress of anticancer peptides targeting protein kinases from marine sources are presented. Marine peptides inhibiting resistant cancer cells by targeting novel domains of protein kinases are highlighted. The challenges and prospects of developing marine peptides as anticancer agents are also discussed.
Collapse
Affiliation(s)
- Lanhong Zheng
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China.
| | - Ning Wei
- Department of Oncology and Cancer Therapeutics Program, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan.
| | - Yan Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China.
| | - Renald Blundell
- Center for Molecular Medicine and Biobanking, University of Malta, Imsida MSD2080, Malta.
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College, Beijing 100050, China.
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China.
| | - Xiukun Lin
- College of Marine Sci, Beibu Gulf University, 12 Binhai Rd., Qinzhou 535001, PR China.
| |
Collapse
|
4
|
Qu B, Yuan J, Liu X, Zhang S, Ma X, Lu L. Anticancer activities of natural antimicrobial peptides from animals. Front Microbiol 2024; 14:1321386. [PMID: 38298540 PMCID: PMC10827920 DOI: 10.3389/fmicb.2023.1321386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Cancer is the most common cause of human death worldwide, posing a serious threat to human health and having a negative impact on the economy. In the past few decades, significant progress has been made in anticancer therapies, but traditional anticancer therapies, including radiation therapy, surgery, chemotherapy, molecular targeted therapy, immunotherapy and antibody-drug conjugates (ADCs), have serious side effects, low specificity, and the emergence of drug resistance. Therefore, there is an urgent need to develop new treatment methods to improve efficacy and reduce side effects. Antimicrobial peptides (AMPs) exist in the innate immune system of various organisms. As the most promising alternatives to traditional drugs for treating cancers, some AMPs also have been proven to possess anticancer activities, which are defined as anticancer peptides (ACPs). These peptides have the advantages of being able to specifically target cancer cells and have less toxicity to normal tissues. More and more studies have found that marine and terrestrial animals contain a large amount of ACPs. In this article, we introduced the animal derived AMPs with anti-cancer activity, and summarized the types of tumor cells inhibited by ACPs, the mechanisms by which they exert anti-tumor effects and clinical applications of ACPs.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Jiangshui Yuan
- Department of Clinical Laboratory, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xueli Liu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
- Medical Ethics Committee Office, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Shicui Zhang
- College of Life and Geographic Sciences, Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi University, Kashi, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| |
Collapse
|
5
|
Librizzi M, Martino C, Mauro M, Abruscato G, Arizza V, Vazzana M, Luparello C. Natural Anticancer Peptides from Marine Animal Species: Evidence from In Vitro Cell Model Systems. Cancers (Basel) 2023; 16:36. [PMID: 38201464 PMCID: PMC10777987 DOI: 10.3390/cancers16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Anticancer peptides are short and structurally heterogeneous aminoacidic chains, which display selective cytotoxicity mostly against tumor cells, but not healthy cells, based on their different cell surface properties. Their anti-tumoral activity is carried out through interference with intracellular homeostasis, such as plasmalemma integrity, cell cycle control, enzymatic activities and mitochondrial functions, ultimately acting as angiogenesis-, drug resistance- and metastasis-inhibiting agents, immune stimulators, differentiation inducers and necrosis or extrinsic/intrinsic apoptosis promoters. The marine environment features an ever-growing level of biodiversity, and seas and oceans are poorly exploited mines in terms of natural products of biomedical interest. Adaptation processes to extreme and competitive environmental conditions led marine species to produce unique metabolites as a chemical strategy to allow inter-individual signalization and ensure survival against predators, infectious agents or UV radiation. These natural metabolites have found broad use in various applications in healthcare management, due to their anticancer, anti-angiogenic, anti-inflammatory and regeneration abilities. The aim of this review is to pick selected studies that report on the isolation of marine animal-derived peptides and the identification of their anticancer activity in in vitro cultures of cancer cells, and list them with respect to the taxonomical hierarchy of the source organism.
Collapse
Affiliation(s)
- Mariangela Librizzi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Chiara Martino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Giulia Abruscato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, 90128 Palermo, Italy; (M.L.); (C.M.); (M.M.); (V.A.); (M.V.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
6
|
A preliminary analysis of prognostic genes in advanced laryngeal squamous cell carcinoma patients with postoperative radiotherapy. Pathol Res Pract 2023; 241:154229. [PMID: 36509010 DOI: 10.1016/j.prp.2022.154229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
Advanced laryngeal squamous cell carcinoma (LSCC) has a high mortality rate, and the prognosis is poor. However, the underlying molecular biological mechanisms bringing about the development and progression of advanced LSCC are not entirely clarified. This study aimed to find out the potential biomarkers to predict the prognosis in advanced LSCC patients who had undergone postoperative radiotherapy alone. The next-generation sequencing of RNA was performed to detect the mRNAs expression profiling in 10 advanced LSCC samples, comprised of 5 samples from LSCC patients with favorable outcome and 5 samples from paired patients with poor outcome. Then bioinformatics analysis including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to find out functional core genes that were significantly different between the two groups. 1630 differentially expressed genes (DEGs) were confirmed to have significant differences between the two groups. 53 GO terms and 19 pathways which were closely related to the DEGs were identified. Finally, 52 intersection DEGs which were both related to the top three GO terms and pathways were identified. The expression of several core genes was confirmed with RT-qPCR in tissues from another 75 patients. RT-qPCR confirmed that the genes of c-JUN, LYN, PIK3R2, and TNFAIP3 were significantly differentially expressed between the two groups, which was in accordance with the RNA sequencing data. The DEGs identified above may be potential prognostic markers for advanced LSCC patients with postoperative radiotherapy, and may provide essential guidance for following-up.
Collapse
|
7
|
Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:12. [PMID: 36352310 DOI: 10.1007/s12032-022-01871-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Cellular ROS production participates in various cellular functions but its accumulation decides the cell fate. Malignant cells have higher levels of ROS and active antioxidant machinery, a characteristic hallmark of cancer with an outcome of activation of stress-induced pathways like autophagy. Autophagy is an intracellular catabolic process that produces alternative raw materials to meet the energy demand of cells and is influenced by the cellular redox state thus playing a definite role in cancer cell fate. Since damaged mitochondria are the main source of ROS in the cell, however, cancer cells remove them by upregulating the process of mitophagy which is known to play a decisive role in tumorigenesis and tumor progression. Chemotherapy exploits cell machinery which results in the accumulation of toxic levels of ROS in cells resulting in cell death by activating either of the pathways like apoptosis, necrosis, ferroptosis or autophagy in them. So understanding these redox and autophagy regulations offers a promising method to design and develop new cancer therapies that can be very effective and durable for years. This review will give a summary of the current therapeutic molecules targeting redox regulation and autophagy for the treatment of cancer. Further, it will highlight various challenges in developing anticancer agents due to autophagy and ROS regulation in the cell and insights into the development of future therapies.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Baseerat Hamza
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, 190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Sanat Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Shi Y, Luo Z, You J. Subcellular delivery of lipid nanoparticles to endoplasmic reticulum and mitochondria. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1803. [PMID: 35441489 DOI: 10.1002/wnan.1803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Primarily responsible for the biogenesis and metabolism of biomolecules, endoplasmic reticulum (ER) and mitochondria are gradually becoming the targets of therapeutic modulation, whose physiological activities and pathological manifestations determine the functional capacity and even the survival of cells. Drug delivery systems with specific physicochemical properties (passive targeting), or modified by small molecular compounds, polypeptides, and biomembranes demonstrating tropism for ER and mitochondria (active targeting) are able to reduce the nonselective accumulation of drugs, enhancing efficacy while reducing side effects. Lipid nanoparticles feature high biocompatibility, diverse cargo loading, and flexible structure modification, which are frequently used for subcellular organelle-targeted delivery of therapeutics. However, there is still a lack of systematic understanding of lipid nanoparticle-based ER and mitochondria targeting. Herein, we review the pathological significance of drug selectively delivered to the ER and mitochondria. We also summarize the molecular basis and application prospects of lipid nanoparticle-based ER and mitochondria targeting strategies, which may provide guidance for the prevention and treatment of associated diseases and disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Pardaxin Activates Excessive Mitophagy and Mitochondria-Mediated Apoptosis in Human Ovarian Cancer by Inducing Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10121883. [PMID: 34942985 PMCID: PMC8698909 DOI: 10.3390/antiox10121883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Most ovarian cancer (OC) patients are diagnosed with stage III or higher disease, resulting in a poor prognosis. Currently, paclitaxel combined with carboplatin shows the best treatment outcome for OC. However, no effective drug is available for patients that do not respond to treatment; thus, new drugs for OC are needed. We evaluated the antimicrobial peptide, pardaxin, in PA-1 and SKOV3 cells. Pardaxin induced apoptosis as determined by MTT and TUNEL assays, as well as activation of caspases-9/3, Bid, t-Bid, and Bax, whereas Bcl-2 was downregulated. The IC50 values for pardaxin were 4.6-3.0 μM at 24 and 48 h. Mitochondrial and intracellular reactive oxygen species (ROS) were overproduced and associated with disrupted mitochondrial membrane potential and respiratory capacity. Additionally, the mitochondrial network was fragmented with downregulated fusogenic proteins, MFN1/2 and L-/S-OPA1, and upregulated fission-related proteins, DRP1 and FIS1. Autophagy was also activated as evidenced by increased expression of autophagosome formation-related proteins, Beclin, p62, and LC3. Enhanced mitochondrial fragmentation and autophagy indicate that mitophagy was activated. ROS-induced cytotoxicity was reversed by the addition of N-acetylcysteine, confirming ROS overproduction as a contributor. Taken together, pardaxin demonstrated promising anticancer activity in OC cells, which warrants further preclinical development of this compound.
Collapse
|
10
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Hu Q, He C, Lu Z, Xu L, Fu Z. Mitochondria and Endoplastic Reticulum Targeting Strategy for Enhanced Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:3015-3026. [PMID: 35014389 DOI: 10.1021/acsabm.1c00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To ensure improved efficacy and minimized toxicity of therapeutic molecules, it is generally accepted that specifically delivering them to the subcellular site of their action will be attractive. Phototherapy has received considerable attention because of its noninvasiveness, high temporal-spatial resolution, and minimal drug resistance. As important functional organelles in cells, mitochondria and endoplasmic reticulum (ER) participate in fundamental cellular processes, which make them much more sensitive to reactive oxygen species (ROS) and hyperthermia. Thus, mitochondria- or ER-targeted phototherapy will be rational strategies for synergetic cancer therapy. In this review, we focus on the latest advances in molecules and nanomaterials currently used for mitochondria- and ER-targeted phototherapy.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chao He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuoting Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
12
|
Colella F, Scillitani G, Pierri CL. Sweet as honey, bitter as bile: Mitochondriotoxic peptides and other therapeutic proteins isolated from animal tissues, for dealing with mitochondrial apoptosis. Toxicology 2020; 447:152612. [PMID: 33171268 DOI: 10.1016/j.tox.2020.152612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.
Collapse
Affiliation(s)
- Francesco Colella
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
13
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
14
|
Yuan X, Qin B, Yin H, Shi Y, Jiang M, Luo L, Luo Z, Zhang J, Li X, Zhu C, Du Y, You J. Virus-like Nonvirus Cationic Liposome for Efficient Gene Delivery via Endoplasmic Reticulum Pathway. ACS CENTRAL SCIENCE 2020; 6:174-188. [PMID: 32123735 PMCID: PMC7047280 DOI: 10.1021/acscentsci.9b01052] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 05/11/2023]
Abstract
Gene vectors play a critical role in gene therapy. To achieve efficient transfection, we developed a novel nonvirus cationic liposome (Lipo-Par), which was bound covalently with the cationic polypeptide pardaxin (Par). Interestingly, the Lipo-Pars exhibited highly enhanced gene transfection efficiency in various cell lines compared to that of the non-Par-bonded liposomes (Lipo-Nons). As a result, the internalization and intracellular transport mechanisms of the Lipo-Pars were investigated, and the findings indicated their ability to actively target the endoplasmic reticulum (ER) by moving along the cell cytoskeleton after undergoing caveolin-mediated endocytosis. This intracellular transport process is similar to that of some viruses. It was also found that ER stress and calcium level disturbances can affect the Lipo-Par-mediated expression of certain exogenous genes. A possible, yet non-negligible explanation for the high transfection efficiency of the Lipo-Par is its virus-like intracellular behavior and the intimate relationship between the ER membrane and the nuclear envelope.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jian You
- . Phone: 086-571-88208443. Fax: 086-571-88208439
| |
Collapse
|
15
|
Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed Pharmacother 2019; 118:109249. [PMID: 31351428 DOI: 10.1016/j.biopha.2019.109249] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) acts as a moving organelle with many important cellular functions. As the ER lacks sufficient nutrients under pathological conditions leading to uncontrolled protein synthesis, aggregation of unfolded/misfolded proteins in the ER lumen causes the unfolded protein response (UPR) to be activated. Chronic ER stress produces endogenous or exogenous damage to cells and activates UPR, which leads to impaired intracellular calcium and redox homeostasis. The UPR is capable of recognizing the accumulation of unfolded proteins in the ER. The protein response enhances the ability of the ER to fold proteins and causes apoptosis when the function of the ER fails to return to normal. In different malignancies, ER stress can effectively induce the occurrence of autophagy in cells because malignant tumor cells need to re-use their organelles to maintain growth. Autophagy simultaneously counteracts ER stress-induced ER expansion and has the effect of enhancing cell viability and non-apoptotic death. Oxidative stress also affects mitochondrial function of important proteins through protein overload. Mitochondrial reactive oxygen species (ROS) are produced by calcium-enhanced ER release. The accumulation of toxic substances in ER and mitochondria in mitochondria destroys basic organelle function. It is known that sustained ER stress can also trigger an inflammatory response through the UPR pathway. Inflammatory response is thought to be associated with tumor development. This review discusses the emerging links between UPR responses and autophagy, oxidative stress, and inflammatory response signals in ER stress, as well as the potential development of targeting this multifaceted signaling pathway in various cancers.
Collapse
|
16
|
The Role of the ER-Induced UPR Pathway and the Efficacy of Its Inhibitors and Inducers in the Inhibition of Tumor Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5729710. [PMID: 30863482 PMCID: PMC6378054 DOI: 10.1155/2019/5729710] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Cancer is the second most frequent cause of death worldwide. It is considered to be one of the most dangerous diseases, and there is still no effective treatment for many types of cancer. Since cancerous cells have a high proliferation rate, it is pivotal for their proper functioning to have the well-functioning protein machinery. Correct protein processing and folding are crucial to maintain tumor homeostasis. Endoplasmic reticulum (ER) stress is one of the leading factors that cause disturbances in these processes. It is induced by impaired function of the ER and accumulation of unfolded proteins. Induction of ER stress affects many molecular pathways that cause the unfolded protein response (UPR). This is the way in which cells can adapt to the new conditions, but when ER stress cannot be resolved, the UPR induces cell death. The molecular mechanisms of this double-edged sword process are involved in the transition of the UPR either in a cell protection mechanism or in apoptosis. However, this process remains poorly understood but seems to be crucial in the treatment of many diseases that are related to ER stress. Hence, understanding the ER stress response, especially in the aspect of pathological consequences of UPR, has the potential to allow us to develop novel therapies and new diagnostic and prognostic markers for cancer.
Collapse
|
17
|
Nile Tilapia Derived Antimicrobial Peptide TP4 Exerts Antineoplastic Activity Through Microtubule Disruption. Mar Drugs 2018; 16:md16120462. [PMID: 30469546 PMCID: PMC6315541 DOI: 10.3390/md16120462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
Some antimicrobial peptides (AMPs) exhibit anti-cancer activity, acting on cancer cells either by causing membrane lysis or via intracellular effects. While intracellular penetration of AMPs has been shown to cause cancer cell death, the mechanisms of toxicity remain largely unknown. Here we show that a tilapia-derived AMP, Tilapia piscidin (TP) 4, penetrates intracellularly and targets the microtubule network. A pull-down assay identified α-Tubulin as a major interaction partner for TP4, and molecular docking analysis suggested that Phe1, Ile16, and Arg23 on TP4 are required for the interaction. TP4 treatment in A549 cells was found to disrupt the microtubule network in cells, and mutation of the essential TP4 residues prevented microtubule depolymerization in vitro. Importantly, the TP4 mutants also showed decreased cytotoxicity in A549 cells, suggesting that microtubule disruption is a major mechanistic component of TP4-mediated death in lung carcinoma cells.
Collapse
|
18
|
Kim C, Kim B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018; 10:nu10081021. [PMID: 30081573 PMCID: PMC6115829 DOI: 10.3390/nu10081021] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress.
Collapse
Affiliation(s)
- Changmin Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
19
|
Huang HN, Pan CY, Chen JY. Grouper (Epinephelus coioides) antimicrobial peptide epinecidin-1 exhibits antiviral activity against foot-and-mouth disease virus in vitro. Peptides 2018; 106:91-95. [PMID: 30012343 DOI: 10.1016/j.peptides.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/25/2023]
Abstract
Picornavirus is a highly contagious virus that usually infects cloven hoofed animals and causes foot-and-mouth disease. This disease is a major threat to livestock breeding worldwide and may lead to huge economic losses. Because effective vaccines or antiviral drugs remain unavailable, the search for new agents to combat FMDV infections is ongoing. Antimicrobial peptides are known to possess a broad range of biological activities, including antibacterial, antiviral, antitumor and immunomodulatory effects. In this work, we used a cell culture FMDV replication assay to evaluate several antimicrobial peptides for their ability to act as antiviral agents. We found that a synthesized form of the Epinephelus coioides antimicrobial peptide, epinecidin-1 (Epi-1), was effective at combatting FMDV. Epi-1 is known to have broad spectrum antimicrobial activity and low toxicity to normal eukaryotic cells, making it a good candidate for use as a therapeutic agent.The 50% cytotoxic concentration (CC50) for BHK-21 cells was 19.5 μg/ml for synthesized Epi-1, and the 50% effective concentration (EC50) for viral inhibition was 0.6 μg/ml. The selectivity index was 31.4, as calculated by the CC50/EC50 ratio. Furthermore, Epi-1 showed virucidal activity against FMDV at high concentrations. Interestingly, our data also showed that FMDV infection was most impaired when Epi-1 was treated at the time of viral adsorption. Taken together, our data show that Epi-1 may be a promising candidate for development as an anti-FMDV agent.
Collapse
Affiliation(s)
- Han-Ning Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
20
|
Ting CH, Chen YC, Wu CJ, Chen JY. Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 2018; 7:40329-40347. [PMID: 27248170 PMCID: PMC5130011 DOI: 10.18632/oncotarget.9612] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) currently lacks a suitable therapeutic candidate and is thus difficult to treat. Here, we report that a cationic antimicrobial peptide (CAP), tilapia piscidin 4 (TP4), which was derived from Nile tilapia (Oreochromis niloticus), is selectively toxic to TNBC. TP4 acts by inducing an AP-1 protein called FOSB, the expression of which is negatively associated with the pathological grade of TNBC. We show that TP4 is bound to the mitochondria where it disrupts calcium homeostasis and activates FOSB. FOSB overexpression results in TNBC cell death, whereas inhibition of calcium signaling eliminates FOSB induction and blocks TP4-induced TNBC cell death. Both TP4 and anthracyclines strongly induced FOSB, particularly in TNBC, indicating that FOSB may be suitable as a biomarker of drug responses. This study thus provides a novel therapeutic approach toward TNBC through FOSB induction.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| | - Yi-Chun Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan 262, Taiwan
| |
Collapse
|
21
|
Kuo HM, Tseng CC, Chen NF, Tai MH, Hung HC, Feng CW, Cheng SY, Huang SY, Jean YH, Wen ZH. MSP-4, an Antimicrobial Peptide, Induces Apoptosis via Activation of Extrinsic Fas/FasL- and Intrinsic Mitochondria-Mediated Pathways in One Osteosarcoma Cell Line. Mar Drugs 2018; 16:E8. [PMID: 29301308 PMCID: PMC5793056 DOI: 10.3390/md16010008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is a common malignant bone cancer. The relatively high density of a person's bone structure means low permeability for drugs, and so finding drugs that can be more effective is important and should not be delayed. MSPs are marine antimicrobial peptides (AMP) and natural compounds extracted from Nile tilapia (Oreochromis niloticus). MSP-4 is a part of the AMPs series, with the advantage of having a molecular weight of about 2.7-kDa and anticancer effects, although the responsible anticancer mechanism is not very clear. The goal of this study is to determine the workings of the mechanism associated with apoptosis resulting from MSP-4 in osteosarcoma MG63 cells. The study showed that MSP-4 significantly induced apoptosis in MG63 cells, with Western blot indicating that MSP-4 induced this apoptosis through an intrinsic pathway and an extrinsic pathway. Thus, a pretreatment system with a particular inhibitor of Z-IETD-FMK (caspase-8 inhibitor) and Z-LEHD-FMK (caspase-9 inhibitor) significantly attenuated the cleavage of caspase-3 and prevented apoptosis. These observations indicate that low concentrations of MSP-4 can help induce the apoptosis of MG63 through a Fas/FasL- and mitochondria-mediated pathway and suggest a potentially innovative alternative to the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Hsiao-Mei Kuo
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Chung-Chih Tseng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Dentisry, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81357, Taiwan.
| | - Nan-Fu Chen
- Department of Neurosurgery and Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan.
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Han-Chun Hung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Chien-Wei Feng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shu-Yu Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Shi-Ying Huang
- College of Oceanology and Food Scienece, Quanzhou Normal University, Quanzhou 362000, China.
| | - Yen-Hsuan Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung 90059, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
22
|
Kontostathi G, Zoidakis J, Anagnou NP, Pappa KI, Vlahou A, Makridakis M. Proteomics approaches in cervical cancer: focus on the discovery of biomarkers for diagnosis and drug treatment monitoring. Expert Rev Proteomics 2017; 13:731-45. [PMID: 27398979 DOI: 10.1080/14789450.2016.1210514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The HPV virus accounts for the majority of cervical cancer cases. Although a diagnostic tool (Pap Test) is widely available, cervical cancer incidence still remains high worldwide, and especially in developing countries, attributed to a large extent to suboptimal sensitivities of the Pap test and unavailability of the test in developing countries. AREAS COVERED Proteomics approaches have been used in order to understand the HPV virus correlation to cervical cancer pathology, as well as to discover putative biomarkers for early cervical cancer diagnosis and drug mode of action. Expert commentary: The present review summarizes the latest in vitro and in vivo proteomic studies for the discovery of putative cervical cancer biomarkers and the evaluation of available drugs and treatments.
Collapse
Affiliation(s)
- Georgia Kontostathi
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece
| | - Jerome Zoidakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Nicholas P Anagnou
- b Laboratory of Biology , University of Athens School of Medicine , Athens , Greece.,c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Kalliopi I Pappa
- c Cell and Gene Therapy Laboratory , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece.,d First Department of Obstetrics and Gynecology , University of Athens School of Medicine , Athens , Greece
| | - Antonia Vlahou
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| | - Manousos Makridakis
- a Biotechnology Division , Biomedical Research Foundation, Academy of Athens (BRFAA) , Athens , Greece
| |
Collapse
|
23
|
Telford W, Tamul K, Bradford J. Measurement and Characterization of Apoptosis by Flow Cytometry. ACTA ACUST UNITED AC 2016; 77:9.49.1-9.49.28. [PMID: 27367289 DOI: 10.1002/cpcy.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Apoptosis is an important mechanism in cell biology, playing a critical regulatory role in virtually every organ system. It has been particularly well characterized in the immune system, with roles ranging from immature immune cell development and selection to down-regulation of the mature immune response. Apoptosis is also the primary mechanism of action of anti-cancer drugs. Flow cytometry has been the method of choice for analyzing apoptosis in suspension cells for more than 25 years. Numerous assays have been devised to measure both the earliest and latest steps in the apoptotic process, from the earliest signal-transduction events to the late morphological changes in cell shape and granularity, proteolysis, and chromatin condensation. These assays are particularly powerful when combined into multicolor assays determining several apoptotic characteristics simultaneously. The multiparametric nature of flow cytometry makes this technology particularly suited to measuring apoptosis. In this unit, we will describe the four main techniques for analyzing caspase activity in apoptotic cells, combined with annexin V and cell permeability analysis. These relatively simple multiparametric assays are powerful techniques for assessing cell death. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- William Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Karen Tamul
- EMD Millipore, Inc, Billerica, Massachusetts
| | | |
Collapse
|
24
|
Singer BD, Mock JR, D'Alessio FR, Aggarwal NR, Mandke P, Johnston L, Damarla M. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L796-801. [PMID: 26944088 PMCID: PMC4867353 DOI: 10.1152/ajplung.00334.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/27/2016] [Indexed: 01/03/2023] Open
Abstract
Flow cytometry is a powerful tool capable of simultaneously analyzing multiple parameters on a cell-by-cell basis. Lung tissue preparation for flow cytometry requires creation of a single-cell suspension, which often employs enzymatic and mechanical dissociation techniques. These practices may damage cells and cause cell death that is unrelated to the experimental conditions under study. We tested methods of lung tissue dissociation and sought to minimize cell death in the epithelial, endothelial, and hematopoietic lineage cellular compartments. A protocol that involved flushing the pulmonary circulation and inflating the lung with Dispase, a bacillus-derived neutral metalloprotease, at the time of tissue harvest followed by mincing, digestion in a DNase and collagenase solution, and filtration before staining with fluorescent reagents concurrently maximized viable yields of epithelial, endothelial, and hematopoietic lineage cells compared with a standard method that did not use enzymes at the time of tissue harvest. Flow cytometry identified each population-epithelial (CD326(+)CD31(-)CD45(-)), endothelial (CD326(-)CD31(+)CD45(-)), and hematopoietic lineage (CD326(-)CD31(-)CD45(+))-and measured cellular viability by 7-aminoactinomycin D (7-AAD) staining. The Dispase method permitted discrimination of epithelial vs. endothelial cell death in a systemic lipopolysaccharide model of increased pulmonary vascular permeability. We conclude that application of a dissociative enzyme solution directly to the cellular compartments of interest at the time of tissue harvest maximized viable cellular yields of those compartments. Investigators could employ this dissociation method to simultaneously harvest epithelial, endothelial, and hematopoietic lineage and other lineage-negative cells for flow-cytometric analysis.
Collapse
Affiliation(s)
- Benjamin D Singer
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Jason R Mock
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Franco R D'Alessio
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Neil R Aggarwal
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Pooja Mandke
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Laura Johnston
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| | - Mahendra Damarla
- Johns Hopkins University Division of Pulmonary and Critical Care Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
The antimicrobial peptide pardaxin exerts potent anti-tumor activity against canine perianal gland adenoma. Oncotarget 2016; 6:2290-301. [PMID: 25544775 PMCID: PMC4385852 DOI: 10.18632/oncotarget.2959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/09/2014] [Indexed: 12/26/2022] Open
Abstract
Pardaxin is an antimicrobial peptide of 33 amino acids, originally isolated from marine fish. We previously demonstrated that pardaxin has anti-tumor activity against murine fibrosarcoma, both in vitro and in vivo. In this study, we examined the anti-tumor activity, toxicity profile, and maximally-tolerated dose of pardaxin treatment in dogs with different types of refractory tumor. Local injection of pardaxin resulted in a significant reduction of perianal gland adenoma growth between 28 and 38 days post-treatment. Surgical resection of canine histiocytomas revealed large areas of ulceration, suggesting that pardaxin acts like a lytic peptide. Pardaxin treatment was not associated with significant variations in blood biochemical parameters or secretion of immune-related proteins. Our findings indicate that pardaxin has strong therapeutic potential for treating perianal gland adenomas in dogs. These data justify the veterinary application of pardaxin, and also provide invaluable information for veterinary medicine and future human clinical trials.
Collapse
|
26
|
Han Y, Cui Z, Li YH, Hsu WH, Lee BH. In Vitro and in Vivo Anticancer Activity of Pardaxin against Proliferation and Growth of Oral Squamous Cell Carcinoma. Mar Drugs 2015; 14:2. [PMID: 26703631 PMCID: PMC4728499 DOI: 10.3390/md14010002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/05/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Pardaxin (H-GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE-OH), a 33-amino-acid polypeptide, is an antimicrobial peptide (AMP) isolated from the marine fish species Pardachirus marmoratus. Pardaxin shows antibacterial and antitumor activities. However, pardaxin-induced inhibition of oral cancer and the mechanism of tumor reduction in buccal pouch carcinogenesis after pardaxin painting remain undetermined. Additionally, the toxic effects of pardaxin on normal tissue remain unclear. The present study investigated the anticancer activity of pardaxin in oral squamous cell carcinoma (OSCC) cells in the hamster buccal pouch model with or without 7,12-dimethylbenz[a]anthracene (DMBA) pretreatment. This is the first study to confirm the effects of pardaxin on normal tissue and its nontoxic effects in vivo. Cell viability assays and colony formation tests in OSCC cell lines (SCC-4) demonstrated that pardaxin reduced cell viability in a dose-dependent manner. Immunofluorescence staining of cleaved caspase-3 in SCC-4 cells revealed that expression of activated caspase-3 in SCC-4 cells significantly increased after 24-h treatment with pardaxin. Additionally, a cell cycle analysis indicated that pardaxin treatment resulted in the cell cycle arrest of SCC-4 cells in the G2/M phase, thereby limiting cell proliferation. Furthermore, pardaxin treatment substantially alleviated carcinogenesis in the DMBA-induced hamster buccal pouch model by lowering prostaglandin E2 levels. These results suggest that pardaxin is a potential marine drug for adjuvant chemotherapy for human OSCC and oral cancer.
Collapse
Affiliation(s)
- Yifan Han
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China.
| | - Zhibin Cui
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA.
| | - Yen-Hsing Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Wei-Hsuan Hsu
- Biochemical Process Technology Department, Center of Excellence for Drug Development, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Rm. 103, Bldg. 27, 321, Sec. 2, Kuang Fu Rd., Hsinchu 100401, Taiwan.
| | - Bao-Hong Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Department of Traditional Chinese Medicine, Taipei Medical University Hospital, No.252, Wu Hsing Street, Taipei 110, Taiwan.
| |
Collapse
|
27
|
Farooqi AA, Li KT, Fayyaz S, Chang YT, Ismail M, Liaw CC, Yuan SSF, Tang JY, Chang HW. Anticancer drugs for the modulation of endoplasmic reticulum stress and oxidative stress. Tumour Biol 2015; 36:5743-52. [PMID: 26188905 PMCID: PMC4546701 DOI: 10.1007/s13277-015-3797-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Prior research has demonstrated how the endoplasmic reticulum (ER) functions as a multifunctional organelle and as a well-orchestrated protein-folding unit. It consists of sensors which detect stress-induced unfolded/misfolded proteins and it is the place where protein folding is catalyzed with chaperones. During this folding process, an immaculate disulfide bond formation requires an oxidized environment provided by the ER. Protein folding and the generation of reactive oxygen species (ROS) as a protein oxidative byproduct in ER are crosslinked. An ER stress-induced response also mediates the expression of the apoptosis-associated gene C/EBP-homologous protein (CHOP) and death receptor 5 (DR5). ER stress induces the upregulation of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptor and opening new horizons for therapeutic research. These findings can be used to maximize TRAIL-induced apoptosis in xenografted mice. This review summarizes the current understanding of the interplay between ER stress and ROS. We also discuss how damage-associated molecular patterns (DAMPs) function as modulators of immunogenic cell death and how natural products and drugs have shown potential in regulating ER stress and ROS in different cancer cell lines. Drugs as inducers and inhibitors of ROS modulation may respectively exert inducible and inhibitory effects on ER stress and unfolded protein response (UPR). Reconceptualization of the molecular crosstalk among ROS modulating effectors, ER stress, and DAMPs will lead to advances in anticancer therapy.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), KRL Hospital, Islamabad, Pakistan,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ting CH, Huang HN, Huang TC, Wu CJ, Chen JY. The mechanisms by which pardaxin, a natural cationic antimicrobial peptide, targets the endoplasmic reticulum and induces c-FOS. Biomaterials 2014; 35:3627-40. [DOI: 10.1016/j.biomaterials.2014.01.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
|
29
|
Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY. A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials 2013; 34:10151-9. [PMID: 24075482 DOI: 10.1016/j.biomaterials.2013.09.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/11/2013] [Indexed: 12/22/2022]
Abstract
The marine antimicrobial peptide (AMP) GE33, also known as pardaxin, possesses antimicrobial and anticancer properties, and modulates host signaling. GE33 has cytotoxic effects on murine bladder carcinoma (MBT-2) cells. Here, we investigated the potential of GE33 combined with inactivated MBT-2 as a cancer vaccine. The presence of up to 12.5 μg of GE33 did not inhibit the proliferation or endogenous nitrous oxide (NO) levels of RAW264.7 cells. However, the secretion of MCP-1, IL-6, and IL-12 by RAW264.7 cells was affected by GE33. We proceeded to test the effectiveness of the vaccine by immunizing mice at 7, 14, and 21 days of age, and injecting live MBT-2 cells on the 28th day. Tumor growth by the 58th day was attenuated in mice treated with the vaccine, as compared to the control group. Induction of MBT-2 specific-tumor antigens was increased in mice immunized with our vaccine. Furthermore, activation of T-cell receptors, cytotoxic T-cells, and NK cells was enhanced, and these showed high specificity for targeting tumor cells. Finally, immunization controlled excess recruitment of monocytes, lymphocytes, T-helper cells, and NK cells, and decreased the expression of VEGF. This report provides empirical evidence that our GE33-based vaccine enhances antitumor immunity in mice.
Collapse
Affiliation(s)
- Han-Ning Huang
- Department of Food Science, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, Taiwan
| | | | | | | | | | | |
Collapse
|