1
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
2
|
Min WK, Lee KH, Song JT, Seo HS. Rice small protein OsS1Fa1 participates in stress responses as an inner nuclear membrane protein. PLANT SIGNALING & BEHAVIOR 2024; 19:2439252. [PMID: 39652403 PMCID: PMC11633190 DOI: 10.1080/15592324.2024.2439252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
The rice small protein OsS1Fa1, a homolog of spinach S1Fa, plays a significant role in drought tolerance, attributed to its transmembrane domain. In this study, we aim to further elucidate the potential roles of OsS1Fa1 in cold and biotic stresses as an inner nuclear membrane protein. Fluorescence analysis confirmed the localization of OsS1Fa1 to the inner nuclear membrane. Utilizing the bimolecular fluorescence complementation (BiFC) and bacterial infiltration assays with OsS1Fa1 and the inner nuclear membrane protein OsSUN1 (Rice Sad1 and UNC84 (SUN) domain containing 1 (SUN1)), we observed fluorescence detection within the inner nuclear membrane, indicating a direct interaction and colocalization between OsS1Fa1 and OsSUN1. Expression analysis revealed that overexpression of OsS1Fa1 induced the expression of various genes associated with cold and defense responses, including COLD-REGULATED 15A (COR15A), PATHOGENESIS-RELATED PROTEIN 1 (PR1), and PLANT DEFENSIN 1.2 (PDF1.2). Our findings collectively indicate that OsS1Fa1 plays crucial roles in both abiotic and biotic stress tolerance as an inner nuclear membrane protein.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Kyu Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
- Bio-MAX Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Tecalco-Cruz AC, Macías-Silva M, Sosa-Garrocho M, Poot-Hernández AC, Peralta-Alvarez CA, Ramírez-Jarquín JO, Cortes-González CC, Figueroa-Rivera L, López-Camarillo C. Molecular interplay between the upregulated levels of Sad1 and UNC84 Domain Containing 2 (SUN2) and gene expression in medulloblastoma cells. Mol Biol Rep 2024; 51:1164. [PMID: 39560853 DOI: 10.1007/s11033-024-10078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND SUN2 is a nuclear envelope protein associated with the nuclear lamina and with proteins linked to nuclear export, splicing, and nucleo-cytoskeleton communication. Studies of SUN2 in cancer have been limited but have suggested that it has tumor-suppressive activity in some carcinomas. Medulloblastoma is a pediatric tumor that develops in the cerebellum and is currently classified into four molecular groups: WNT (Wingless), SHH (Sonic Hedgehog), 3, and 4. SUN2 expression profiles appear to be altered in brain cancer but have not been previously evaluated in medulloblastoma. METHODS AND RESULTS The University of Alabama at Birmingham Cancer (UALCAN) data analysis portal, Gene Expression Profiling Interactive Analysis (GEPIA), the Oncopression gene expression compendium, and the R2 genomics analysis and visualization platform were used to analyze SUN2 expression in cancer, which was found to vary by cancer type; in particular, SUN2 expression was found to be upregulated in medulloblastoma. We also explored the effects of reduced SUN2 protein levels (by RNA interference) on gene expression profiles using a cDNA microarray in DAOY medulloblastoma-derived cells. We found that SUN2 protein is upregulated in medulloblastoma, mainly in the SHH group, which correlates with poor survival. Furthermore, the reduced SUN2 expression in medulloblastoma cells is associated with the downregulation of the expression of other genes, including members of the bitter taste-sensing type 2 receptor (TAS2R) family. CONCLUSIONS This study shows that SUN2 is upregulated in medulloblastoma-with molecular interplay in gene expression-which has group-dependent implications for medulloblastoma development. In particular, the upregulation of SUN2 is associated with a progression of the SHH group of medulloblastoma.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México (UACM), 03100, Mexico City, CDMX, Mexico.
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, CDMX, Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, CDMX, Mexico
| | - Augusto César Poot-Hernández
- Instituto de Fisiología Celular. Universidad Nacional Autónoma de México, Unidad de Bioinformática y Manejo de la Información, CDMX, Mexico
| | - Carlos Alberto Peralta-Alvarez
- Instituto de Fisiología Celular. Universidad Nacional Autónoma de México, Unidad de Bioinformática y Manejo de la Información, CDMX, Mexico
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, CDMX, Mexico
| | | | - Leslie Figueroa-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México (UACM), 03100, Mexico City, CDMX, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de La Ciudad de México (UACM), 03100, Mexico City, CDMX, Mexico
| |
Collapse
|
4
|
Dong QQ, Yang Y, Tao H, Lu C, Yang JJ. m6A epitranscriptomic and epigenetic crosstalk in liver fibrosis: Special emphasis on DNA methylation and non-coding RNAs. Cell Signal 2024; 122:111302. [PMID: 39025344 DOI: 10.1016/j.cellsig.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Liver fibrosis is a pathological process caused by a variety of chronic liver diseases. Currently, therapeutic options for liver fibrosis are very limited, highlighting the urgent need to explore new treatment approaches. Epigenetic modifications and epitranscriptomic modifications, as reversible regulatory mechanisms, are involved in the development of liver fibrosis. In recent years, researches in epitranscriptomics and epigenetics have opened new perspectives for understanding the pathogenesis of liver fibrosis. Exploring the epigenetic mechanisms of liver fibrosis may provide valuable insights into the development of new therapies for chronic liver diseases. This review primarily focus on the regulatory mechanisms of N6-methyladenosine (m6A) modification, non-coding RNA, and DNA methylation in organ fibrosis. It discusses the interactions between m6A modification and DNA methylation, as well as between m6A modification and non-coding RNA, providing a reference for understanding the interplay between epitranscriptomics and epigenetics.
Collapse
Affiliation(s)
- Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
5
|
Belaadi N, Guilluy C. Life outside the LINC complex - Do SUN proteins have LINC-independent functions? Bioessays 2024; 46:e2400034. [PMID: 38798157 PMCID: PMC11262984 DOI: 10.1002/bies.202400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
Sad1 and UNC84 (SUN) and Klarsicht, ANC-1, and Syne homology (KASH) proteins interact at the nuclear periphery to form the linker of nucleoskeleton and cytoskeleton (LINC) complex, spanning the nuclear envelope (NE) and connecting the cytoskeleton with the nuclear interior. It is now well-documented that several cellular functions depend on LINC complex formation, including cell differentiation and migration. Intriguingly, recent studies suggest that SUN proteins participate in cellular processes where their association with KASH proteins may not be required. Building on this recent research, we elaborate on the hypothesis that SUN proteins may perform LINC-independent functions and discuss the modalities that may allow SUN proteins to function at the INM when they are not forming LINC complex.
Collapse
Affiliation(s)
- Nejma Belaadi
- Altos Labs, Cambridge Institute of Science, Cambridge, CB21 6GP, UK
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, North Carolina State University, USA
| |
Collapse
|
6
|
Lyu SY, Xiao W, Cui GZ, Yu C, Liu H, Lyu M, Kuang QY, Xiao EH, Luo YH. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet 2023; 14:1124330. [PMID: 37056286 PMCID: PMC10086238 DOI: 10.3389/fgene.2023.1124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shi-Yi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Wang Xiao
- Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Guang-Zu Cui
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Min Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Qian-Ya Kuang
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Song X, Li R, Liu G, Huang L, Li P, Feng W, Gao Q, Xing X. Nuclear Membrane Protein SUN5 Is Highly Expressed and Promotes Proliferation and Migration in Colorectal Cancer by Regulating the ERK Pathway. Cancers (Basel) 2022; 14:5368. [PMID: 36358787 PMCID: PMC9654567 DOI: 10.3390/cancers14215368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/26/2023] Open
Abstract
SUN5 was first identified as a nuclear envelope protein involved in spermatocyte division. We found that SUN5 was highly expressed in some cancers, but its function and mechanism in cancer development remain unclear. In the present study, we demonstrated that SUN5 was highly expressed in colorectal cancer (CRC) tissues and cells, as indicated by bioinformatics analysis, and SUN5 promoted cell proliferation and migration in vitro. Moreover, the overexpression of SUN5 upregulated phosphorylated ERK1/2 (pERK1/2), whereas the knockdown of SUN5 yielded the opposite results. PD0325901 decreased the level of pERK1/2 to inhibit cell proliferation and migration, which was partially reversed by SUN5 overexpression, indicating that drug resistance existed in patients with high SUN5 expression. The xenograft transplantation experiment showed that SUN5 accelerated tumor formation in vivo. Furthermore, we found that SUN5 regulated the ERK pathway via Nesprin2 mediation and promoted the nuclear translocation of pERK1/2 by interacting with Nup93. Thus, these findings indicated that highly expressed SUN5 promoted CRC proliferation and migration by regulating the ERK pathway, which may contribute to the clinical diagnosis and new treatment strategies for CRC.
Collapse
Affiliation(s)
- Xiaoyue Song
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ruhong Li
- Department of General Surgery, Yanan Hospital Affiliated to Kunming Medical University, Kunming 650051, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Lihua Huang
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Peng Li
- Department of General Surgery, Yanan Hospital Affiliated to Kunming Medical University, Kunming 650051, China
| | - Wanjiang Feng
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiujie Gao
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaowei Xing
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
8
|
Xu X, Yuan H, Pan J, Chen W, Chen C, Li Y, Li F. The identification of miRNA and mRNA expression profiles associated with pediatric atypical teratoid/rhabdoid tumor. BMC Cancer 2022; 22:499. [PMID: 35524230 PMCID: PMC9074338 DOI: 10.1186/s12885-022-09549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumor (AT/RT) is a malignant pediatric tumor of the central nervous system (CNS) with high recurrence and low survival rates that is often misdiagnosed. MicroRNAs (miRNAs) are involved in the tumorigenesis of numerous pediatric cancers, but their roles in AT/RT remain unclear. METHODS In this study, we used miRNA sequencing and gene expression microarrays from patient tissue to study both the miRNAome and transcriptome traits of AT/RT. RESULTS Our findings demonstrate that 5 miRNAs were up-regulated, 16 miRNAs were down-regulated, 179 mRNAs were up-regulated and 402 mRNAs were down-regulated in AT/RT. qPCR revealed that hsa-miR-17-5p and MAP7 mRNA were the most significantly differentially expressed miRNA and mRNA in AT/RT tissues. Furthermore, the results from analyses using the miRTarBase database identified MAP7 mRNA as a target gene of hsa-miR-17-5p. CONCLUSIONS Our findings suggest that the dysregulation of hsa-miR-17-5p may be a pivotal event in AT/RT and miRNAs that may represent potential therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xinke Xu
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hongyao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Junping Pan
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wei Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Cheng Chen
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yang Li
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fangcheng Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China. .,Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
| |
Collapse
|
9
|
Prostate Cancer Susceptibility Loci Identified in GATA2 and ZMIZ1 in Chinese Population. Int J Genomics 2022; 2022:8553530. [PMID: 35372566 PMCID: PMC8970932 DOI: 10.1155/2022/8553530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Common genetic risk variants for prostate cancer (PCa) have been identified at approximately 170 loci using genome-wide association studies (GWAS), most of which were identified in European populations. Recently, GWAS were applied to a large Japanese cohort and identified 12 novel susceptibility loci associated with PCa risk. In this study, we aim to investigate PCa susceptibility loci in the Chinese population. The study data will be used to promote PCa risk control in China. Methods A total of 235 PCa patients and 252 control subjects (all unrelated) were enrolled in this case-control PCa study. Nine single nucleotide polymorphisms (SNPs) were genotyped in GATA2 (rs73862213, rs2335052, and rs10934857), ZMIZ1 (rs704017, rs77911174, and rs3740259), and SUN2 (rs78397383, rs5750680, and rs138705) genes. The associations between the candidate SNPs and PCa were analyzed using multiple-factor logistic regression and haplotype analysis. Results The allele frequency distributions of rs73862213 and rs2335052 in the GATA2 gene and rs704017 and rs77911174 in the ZMIZ1 gene were found to be significantly different between PCa cases and controls. Haplotype analysis revealed that the G-C-A haplotype of the GATA2 gene (order of SNPs: rs73862213-rs2335052-rs10934857) and the G-G-G haplotype of the ZMIZ1 gene (order of SNPs: rs704017-rs77911174-rs3740259) were associated with increased PCa risk. None of the SUN2 haplotypes were associated with PCa. Conclusions Our study data indicates that the minor alleles of rs73862213 and rs2335052 in the GATA2 gene and rs704017 and rs77911174 in the ZMIZ1 gene were associated with increased PCa risk. These findings greatly extended our knowledge of the etiology of PCa.
Collapse
|
10
|
New advances of DNA/RNA methylation modification in liver fibrosis. Cell Signal 2021; 92:110224. [PMID: 34954394 DOI: 10.1016/j.cellsig.2021.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
Liver fibrosis is a complex pathological process caused by multiple pathogenic factors,such as ethanol, viruses, toxins, drugs or cholestasis, and it can eventually develop into liver cirrhosis without effective treatment. Activation of hepatic stellate cells (HSCs) is a pivotal cellular event in the pathogenesis of liver fibrosis. However, the pathogenesis of liver fibrosis has not been fully elucidated. DNA/RNA methylation can regulate gene expression without alteration in its sequence, and numerous studies have shown the involvement of DNA methylation in the activation of HSCs and then promote the progression of liver fibrosis. In addition, RNA methylation has recently been reported to play a regulatory role in this process. In this review, we focus on the aberrant DNA/RNA methylation of selected genes and explore their functional mechanism in regulating HSCs activation and liver fibrogenesis. All of these findings will enhance our understanding of DNA/RNA methylation and their roles in liver fibrosis and provide the basis to identify effective therapeutic targets.
Collapse
|
11
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Liu L, Li SW, Yuan W, Tang J, Sang Y. Downregulation of SUN2 promotes metastasis of colon cancer by activating BDNF/TrkB signalling by interacting with SIRT1. J Pathol 2021; 254:531-542. [PMID: 33931868 DOI: 10.1002/path.5697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
Distant metastasis is the major cause of colon cancer (CC) treatment failure. SAD1/UNC84 domain protein-2 (SUN2) is a key component of linker of the nucleoskeleton and cytoskeleton (LINC) complexes that may be relevant for metastasis in several cancers. Here, we first confirmed that SUN2 levels were significantly lower in primary CC tissues and distant metastasis than in normal colon tissues, and high SUN2 expression predicted good overall survival. Overexpression of SUN2 or knockdown of SUN2 inhibited or promoted cell migration and invasion in vitro, respectively. Moreover, silencing of SUN2 promoted metastasis in vivo. Mechanistically, we showed that SUN2 exerts its tumour suppressor functions by decreasing the expression of brain derived neurotrophic factor (BDNF) to inhibit BDNF/tropomyosin-related kinase B (TrkB) signalling. Additionally, SUN2 associated with SIRT1 and increased the acetylation of methyl-CpG binding protein 2 (MeCP2) to increase its occupancy at the BDNF promoter. Taken together, our findings indicate that SUN2 is a key component in CC progression that acts by inhibiting metastasis and that novel SUN2-SIRT1-MeCP2-BDNF signalling may prove to be useful for the development of new strategies for treating patients with CC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, PR China
| | - Si-Wei Li
- Department of Oncology, Tongji Huangzhou Hospital of Huazhong University of Science and Technology, Hubei, PR China
| | - Wenxin Yuan
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Jianjun Tang
- Department of Ultrasonography, The First Affiliated Hospital, Nanchang University, Nanchang, PR China
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| |
Collapse
|
13
|
Abemaciclib, A Selective CDK4/6 Inhibitor, Restricts the Growth of Pediatric Ependymomas. Cancers (Basel) 2020; 12:cancers12123597. [PMID: 33271970 PMCID: PMC7760843 DOI: 10.3390/cancers12123597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Pediatric ependymomas are malignant pediatric brain tumors, and one-third of patients exhibit recurrence within two years of initial treatment. Therefore, this study aimed to find new agents to overcome these chemoresistant tumors and defer radiotherapy treatment. By using integrated bioinformatics and experimental validation, we demonstrated that abemaciclib, a CDK4/6 inhibitor, effectively inhibited cell proliferation and induced cell death. Therefore, treatment with abemaciclib showed encouraging results in preclinical pediatric ependymoma models and provide a new therapeutic strategy in the future. Abstract Pediatric ependymomas are a type of malignant brain tumor that occurs in children. The overall 10-year survival rate has been reported as being 45–75%. Maximal safe surgical resection combined with adjuvant chemoradiation therapy is associated with the highest overall and progression-free survival rates. Despite aggressive treatment, one-third of ependymomas exhibit recurrence within 2 years of initial treatment. Therefore, this study aimed to find new agents to overcome chemoresistance and defer radiotherapy treatment since, in addition, radiation exposure may cause long-term side effects in the developing brains of young children. By using integrated bioinformatics and through experimental validation, we found that at least one of the genes CCND1 and CDK4 is overexpressed in ependymomas. The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell-cycle-related and DNA-repair-related gene expression via the suppression of RB phosphorylation, which was determined through RNA-seq and Western blot analyses. Furthermore, abemaciclib effectively induced cell death in vitro. The efficiency of abemaciclib was validated in vivo using subcutaneously implanted ependymoma tissues from patient-derived xenografts (PDXs) in mouse models. Treatment with abemaciclib showed encouraging results in preclinical pediatric ependymoma models and represents a potential therapeutic strategy for treating challenging tumors in children.
Collapse
|
14
|
Elevated Sad1 and UNC84 Domain Containing 2 (SUN2) level inhibits cell growth and aerobic glycolysis in oral cancer through reducing the expressions of glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). J Dent Sci 2020; 16:460-466. [PMID: 33384835 PMCID: PMC7770359 DOI: 10.1016/j.jds.2020.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/12/2020] [Indexed: 12/03/2022] Open
Abstract
Background/purpose Oral cancer is a malignant tumor accompanied by high morbidity, mortality, and poor prognosis. Therefore, it is urgent to explore the percise regulation mechanisms underlying oral cancer. Sad1 and UNC84 Domain Containing 2 (SUN2) was considered as a tumor suppressor in some cancers. The purpose of the study was to define the role of SUN2 in oral cancer progression. Materials and methods Tumor tissues and paired paracancerous healthy tissues from 56 oral cancer patients were collected. Cell viability was measured using MTT assay. The colony formation assay was applied to determine cell proliferation ability. The mRNA and protein levels were assessed by qRT-PCR and Western blot, respectively. Results SUN2 expression was decreased in oral cancer tissues and cell models. SUN2 overexpression suppressed the growth of oral cancer cells, while the down-regulation of SUN2 promoted cell growth. SUN2 overexpression restrained the glucose uptake, lactate production, and ATP level of oral cancer cells, whereas down-regulation of SUN2 promoted glycolysis. Besides, elevated SUN2 inhibited the glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA) levels. However, SUN2 knockdown increased the levels of GLUT1 and LDHA. Conclusion SUN2 was decreased in oral cancer in vivo and in vitro. SUN2 overexpression suppressed cell growth and glycolysis via reducing the levels of GLUT1 and LDHA in oral cancer.
Collapse
|
15
|
Upregulation of Protein Synthesis and Proteasome Degradation Confers Sensitivity to Proteasome Inhibitor Bortezomib in Myc-Atypical Teratoid/Rhabdoid Tumors. Cancers (Basel) 2020; 12:cancers12030752. [PMID: 32235770 PMCID: PMC7140067 DOI: 10.3390/cancers12030752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRTs) are among the most malignant brain tumors in early childhood and remain incurable. Myc-ATRT is driven by the Myc oncogene, which directly controls the intracellular protein synthesis rate. Proteasome inhibitor bortezomib (BTZ) was approved by the Food and Drug Administration as a primary treatment for multiple myeloma. This study aimed to determine whether the upregulation of protein synthesis and proteasome degradation in Myc-ATRTs increases tumor cell sensitivity to BTZ. We performed differential gene expression and gene set enrichment analysis on matched primary and recurrent patient-derived xenograft (PDX) samples from an infant with ATRT. Concomitant upregulation of the Myc pathway, protein synthesis and proteasome degradation were identified in recurrent ATRTs. Additionally, we found the proteasome-encoding genes were highly expressed in ATRTs compared with in normal brain tissues, correlated with the malignancy of tumor cells and were essential for tumor cell survival. BTZ inhibited proliferation and induced apoptosis through the accumulation of p53 in three human Myc-ATRT cell lines (PDX-derived tumor cell line Re1-P6, BT-12 and CHLA-266). Furthermore, BTZ inhibited tumor growth and prolonged survival in Myc-ATRT orthotopic xenograft mice. Our findings suggest that BTZ may be a promising targeted therapy for Myc-ATRTs.
Collapse
|
16
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
17
|
Amini S, Abak A, Sakhinia E, Abhari A. MicroRNA-221 and MicroRNA-222 in Common Human Cancers: Expression, Function, and Triggering of Tumor Progression as a Key Modulator. Lab Med 2020; 50:333-347. [PMID: 31049571 DOI: 10.1093/labmed/lmz002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 01/19/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short (~22 nucleotides [nt]), single-stranded RNA oligonucleotides that are regulatory in nature and are often dysregulated in various diseases, including cancer. miRNAs can act as oncomiRs (miRNAs associated with cancer) or tumor suppressor miRNAs and have the potential to be a diagnostic, prognostic, noninvasive biomarker for these diseases. MicroRNA-221 (miR-221) and microRNA-222 (miR-222) are homologous miRNAs, located on the human chromosome Xp11.3, which factored significantly in impairment in the regulation of a wide range of cancers. In this review, we have highlighted the most consistently reported dysregulated miRNAs that trigger human tissues to express cancerous features and surveyed the role of those miRNAs in metastasis, apoptosis, angiogenesis, and tumor prognosis. Also, we applied the causes of drug resistance and the role of coordinated actions of these miRNAs to epigenetic changes and selected miRNAs as a potential type of cancer treatment.
Collapse
Affiliation(s)
- Sima Amini
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefe Abak
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Tabriz Genetic Analysis Center (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Department of Biochemistry and Clinical Laboratory, Division of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Kaid C, Assoni A, Marçola M, Semedo-Kuriki P, Bortolin RH, Carvalho VM, Okamoto OK. Proteome and miRNome profiling of microvesicles derived from medulloblastoma cell lines with stem-like properties reveals biomarkers of poor prognosis. Brain Res 2020; 1730:146646. [PMID: 31917138 DOI: 10.1016/j.brainres.2020.146646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023]
Abstract
Primary central nervous system (CNS) tumors are the most common deadly childhood cancer. Several patients with medulloblastoma experience local or metastatic recurrences after standard treatment, a condition associated with very poor prognosis. Current neuroimaging techniques do not accurately detect residual stem-like medulloblastoma cells promoting tumor relapses. In attempt to identify candidate tumor markers that could be circulating in blood or cerebrospinal (CSF) fluid of patients, we evaluated the proteome and miRNome content of extracellular microvesicles (MVs) released by highly-aggressive stem-like medulloblastoma cells overexpressing the pluripotent factor OCT4A. These cells display enhanced tumor initiating capability and resistance to chemotherapeutic agents. A common set of 464 proteins and 10 microRNAs were exclusively detected in MVs of OCT4A-overexpressing cells from four distinct medulloblastoma cell lines, DAOY, CHLA-01-MED, D283-MED, and USP13-MED. The interactome mapping of these exclusive proteins and miRNAs revealed ERK, PI3K/AKT/mTOR, EGF/EGFR, and stem cell self-renewal as the main oncogenic signaling pathways altered in these aggressive medulloblastoma cells. Of these MV cargos, four proteins (UBE2M, HNRNPCL2, HNRNPCL3, HNRNPCL4) and five miRNAs (miR-4449, miR-500b, miR-3648, miR-1291, miR-3607) have not been previously reported in MVs from normal tissues and in CSF. These proteins and miRNAs carried within MVs might serve as biomarkers of aggressive stem-like medulloblastoma cells to improve clinical benefit by helping refining diagnosis, patient stratification, and early detection of relapsed disease.
Collapse
Affiliation(s)
- Carolini Kaid
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Amanda Assoni
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Marina Marçola
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Patricia Semedo-Kuriki
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | - Oswaldo Keith Okamoto
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil; Hemotherapy and Cellular Therapy Department, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| |
Collapse
|
19
|
Ma J, Zhang L, Bian HR, Lu ZG, Zhu L, Yang P, Zeng ZC, Xiang ZL. A Noninvasive Prediction Nomogram for Lymph Node Metastasis of Hepatocellular Carcinoma Based on Serum Long Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1710670. [PMID: 31355249 PMCID: PMC6634290 DOI: 10.1155/2019/1710670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Lymph node metastasis (LNM) is common in hepatocellular carcinoma (HCC). In order to intervene HCC LNM in advance, we developed a prediction nomogram based on serum long noncoding RNA (lncRNA). METHODS Serum samples from 242 HCC patients were gathered and randomly enrolled into the training and validation cohorts. LncRNAs screened out from microarray were quantified with qRT-PCR. Univariate and multivariate analyses were applied for screening independent risk factors. A prediction nomogram was ultimately developed for HCC LNM. The nomogram was estimated by discrimination and calibration tests in the validation cohort. The effects of the candidate lncRNA on the malignant phenotypes of HCC cells were further explored by wound healing assay and colony formation assay. RESULTS ENST00000418803, lnc-ZNF35-4:1, lnc-EPS15L1-2:1, BCLC stage, and vascular invasion were selected as components of the nomogram according to the adjusted multivariate analysis. The nomogram effectively predicted the HCC LNM risk among the cohorts with suitable calibration fittings and displayed high discrimination with C-index of 0.89 and 0.85. Moreover, the abnormally high expression of lnc-EPS15L1-2:1 in HCC cell lines showed significant carcinogenic effects. CONCLUSIONS The noninvasive nomogram may provide more diagnostic basis for treatments of HCC. The biomarkers identified can bring new clues to basic researches.
Collapse
Affiliation(s)
- Jie Ma
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hai-Rong Bian
- Department of Radiation Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zheng-Guo Lu
- Department of Radiation Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lian Zhu
- Department of Radiation Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Chen X, Chen Y, Huang HM, Li HD, Bu FT, Pan XY, Yang Y, Li WX, Li XF, Huang C, Meng XM, Li J. SUN2: A potential therapeutic target in cancer. Oncol Lett 2018; 17:1401-1408. [PMID: 30675193 PMCID: PMC6341589 DOI: 10.3892/ol.2018.9764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
The incidence of cancer is increasing at an alarming rate despite recent advances in prevention strategies, diagnostics and therapeutics for various types of cancer. The identification of novel biomarkers to aid in prognosis and treatment for cancer is urgently required. Uncontrolled proliferation and dysregulated apoptosis are characteristics exhibited by cancer cells in the initiation of various types of cancer. Notably, aberrant expression of crucial oncogenes or cancer suppressors is a defining event in cancer occurrence. Research has demonstrated that SAD1/UNC84 domain protein-2 (SUN2) serves a suppressive role in breast cancer, atypical teratoid/rhabdoid tumors and lung cancer progression. Furthermore, SUN2 inhibits cancer cell proliferation, migration and promotes apoptosis. Recent reports have also shown that SUN2 serves prominent roles in resistance to the excessive DNA damage that destabilizes the genome and promotes cancer development, and these functions of SUN2 are critical for evading initiation of cancer. Additionally, increasing evidence has demonstrated that SUN2 is involved in maintaining cell nuclear structure and appears to be a central component for organizing the natural nuclear architecture in cancer cells. The focus of the present review is to provide an overview on the pharmacological functions of SUN2 in cancers. These findings suggest that SUN2 may serve as a promising therapeutic target and novel predictive marker in various types of cancer.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yu Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hui-Min Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hai-Di Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yang Yang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wan-Xia Li
- Department of Pharmacy, Anqing Municipal Hospital, Anqing, Anhui 246003, P.R. China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, Anhui 230032, P.R. China.,Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
21
|
Chen X, Li WX, Chen Y, Li XF, Li HD, Huang HM, Bu FT, Pan XY, Yang Y, Huang C, Meng XM, Li J. Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death Dis 2018; 9:1021. [PMID: 30282980 PMCID: PMC6170444 DOI: 10.1038/s41419-018-1032-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/18/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Hepatic myofibroblasts, activated hepatic stellate cells (HSCs), are the main cell type of extracellular matrix (ECM) deposition during hepatic fibrosis. Aberrant DNA methylation-regulated HSCs activation in liver fibrogenesis has been reported, but the functional roles and mechanisms of DNA methylation in hepatic fibrosis remain to be elucidated. In the present study, reduced representation bisulfite sequencing (RRBS) analysis of primary HSCs revealed hypermethylation patterns in hepatic fibrosis. Interestingly, we found SAD1/UNC84 domain protein-2 (SUN2) gene hypermethylation at CpG sites during liver fibrogenesis in mice with CCl4-induced hepatic fibrosis, which was accompanied by low expression of SUN2. In vivo overexpression of SUN2 following adeno-associated virus-9 (AAV9) administration inhibited CCl4-induced liver injury and reduced fibrogenesis marker expression. Consistently, in vitro experiments showed that enforced expression of SUN2 suppressed HSCs activation and exerted anti-fibrogenesis effects in TGF-β1-activated HSC-T6 cells. In addition, the signaling mechanisms related to SUN2 expression were investigated in vivo and in vitro. Methyltransferase-3b (DNMT3b) is the principal regulator of SUN2 expression. Mechanistically, inhibition of protein kinase B (AKT) phosphorylation may be a crucial pathway for SUN2-mediated HSCs activation. In conclusion, these findings provide substantial new insights into SUN2 in hepatic fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Wan-Xia Li
- Dept of Pharmacy, Anqing Municipal Hospital, Anqing, 246000, China
| | - Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Hui-Min Huang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Yang Yang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
- The key laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
22
|
Detection of SUN1 Splicing Variants at the mRNA and Protein Levels in Cancer. Methods Mol Biol 2018. [PMID: 30141053 DOI: 10.1007/978-1-4939-8691-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, containing the proteins SUN and nesprin, is the fundamental structural unit of the nuclear envelope. The neoplastic-based regulation of the LINC complex in cancer tissues has become increasingly recognized in recent years, including the altered expression, somatic mutation, and methylation of genes. However, precisely how mutations and deregulated expression of the LINC complex contribute to the pathogenic mechanisms of tumorigenesis remain to be elucidated, mainly because of several technical difficulties. First, both the SUN and SYNE (encoding nesprin) genes give rise to a vast number of splicing variants. Second, immunoprecipitation experiments of endogenous SUN and nesprin proteins are difficult owing to the lack of suitable reagents as well as the limited solubility of these proteins in mild extraction conditions. Here, we describe three protocols to investigate these aspects: (1) immunohistochemistry to determine the expression levels and localization of the LINC complex in cancer tissue, (2) detection of SUN1 splicing variants at the mRNA level, and (3) detection of SUN1 splicing variants and binding partners at the protein level.
Collapse
|
23
|
Liang ML, Hsieh TH, Ng KH, Tsai YN, Tsai CF, Chao ME, Liu DJ, Chu SS, Chen W, Liu YR, Liu RS, Lin SC, Ho DMT, Wong TT, Yang MH, Wang HW. Downregulation of miR-137 and miR-6500-3p promotes cell proliferation in pediatric high-grade gliomas. Oncotarget 2017; 7:19723-37. [PMID: 26933822 PMCID: PMC4991414 DOI: 10.18632/oncotarget.7736] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/18/2016] [Indexed: 01/22/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are aggressive brain tumors affecting children, and outcomes have remained dismal, even with access to new multimodal therapies. In this study, we compared the miRNomes and transcriptomes of pediatric low- (pLGGs) and high-grade gliomas (pHGGs) using small RNA sequencing (smRNA-Seq) and gene expression microarray, respectively. Through integrated bioinformatics analyses and experimental validation, we identified miR-137 and miR-6500-3p as significantly downregulated in pHGGs. miR-137 or miR-6500-3p overexpression reduced cell proliferation in two pHGG cell lines, SF188 and UW479. CENPE, KIF14 and NCAPG levels were significantly higher in pHGGs than pLGGs, and were direct targets of miR-137 or miR-6500-3p. Furthermore, knockdown of CENPE, KIF14 or NCAPG combined with temozolomide treatment resulted in a combined suppressive effect on pHGG cell proliferation. In summary, our results identify novel mRNA/miRNA interactions that contribute to pediatric glioma malignancy and represent potential targets for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Muh-Lii Liang
- Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Han Hsieh
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan
| | - Kim-Hai Ng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Ni Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Fong Tsai
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Meng-En Chao
- Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Da-Jung Liu
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Shiung Chu
- Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan Chen
- Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Comprehensive Cancer Center of Taipei Medical University, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Ren-Shyan Liu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,National PET/Cyclotron Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Molecular and Genetic Imaging Core/Taiwan Mouse Clinic National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Donald Ming-Tak Ho
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Tong Wong
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Institutes of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Research Center & Genome Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology-Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Immunity and Inflammation Research Center, National Yang-Ming University, Taipei, Taiwan.,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsei-Wei Wang
- Institutes of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan.,Cancer Research Center & Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Yajun C, Chen Y, Xiaosa L, Xiao W, Jia C, Zhong W, Bin X. Loss of Sun2 promotes the progression of prostate cancer by regulating fatty acid oxidation. Oncotarget 2017; 8:89620-89630. [PMID: 29163775 PMCID: PMC5685696 DOI: 10.18632/oncotarget.19210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
The role of Sun2 has been described by previous studies in various types of cancers, including breast cancer and lung cancer. However, its role and potential molecular mechanism in the progression of prostate cancer have not been fully elucidated. In the present study, we found that Sun2 expression was reduced in prostate cancer tissues compared with paired normal tissues, and that low expression of Sun2 was significantly correlated with Higher Gleason scores, postoperative T stage (pT), Lymph nodal invasion and Clinical pathological stages. In addition, reduced Sun2 Expression predicts poor survival of prostate cancer patients and could serve as an independent predictor of prostate cancer patients overall survival (OS).Furthermore, Sun2 overexpression inhibits the prostate cancer cells growth, and Sun2 knockdown promotes the prostate cancer cells growth both in vitro and vivo. Mechanical silencing of , Sun2 promoted fatty acid oxidation (FAO) in prostate cancer, prostate cancer cells growth promoted by Sun2 silencing could be reversed by the FAO inhibitor Etomoxir. Additionally, we also showed that serum amyloid A1 (SAA1) play a vital role in FAO, ATP and cell growth promoted by Sun2 loss in prostate cancer. These results suggest that Loss of Sun2 promoted the prostate cancer progression by regulating FAO.
Collapse
Affiliation(s)
- Cheng Yajun
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Chen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Xiaosa
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wang Xiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Jia
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wang Zhong
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xu Bin
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 2015; 5:17940. [PMID: 26658802 PMCID: PMC4674702 DOI: 10.1038/srep17940] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023] Open
Abstract
SUN2, a key component of LINC (linker of nucleoskeleton and cytoskeleton) complex located at the inner nuclear membrane, plays unknown role in lung cancer. We found that SUN2 expression was decreased in lung cancer tissue compared with paired normal tissues and that higher SUN2 levels predicted better overall survival and first progression survival. Overexpression of SUN2 inhibits cell proliferation, colony formation and migration in lung cancer, whereas knockdown of SUN2 promotes cell proliferation and migration. Additionally, SUN2 increases the sensitivity of lung cancer to cisplatin by inducing cell apoptosis. Mechanistically, we showed that SUN2 exerts its tumor suppressor functions by decreasing the expression of GLUT1 and LDHA to inhibit the Warburg effect. Finally, our results provided evidence that SIRT5 acts, at least partly, as a negative regulator of SUN2.Taken together, our findings indicate that SUN2 is a key component in lung cancer progression by inhibiting the Warburg effect and that the novel SIRT5/SUN2 axis may prove to be useful for the development of new strategies for treating the patients with lung cancer.
Collapse
|
26
|
Zhu J, Liu F, Wu Q, Liu X. MiR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN. Int J Mol Med 2015; 36:1377-83. [PMID: 26397386 DOI: 10.3892/ijmm.2015.2352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence has demonstrated that microRNAs (miRNAs or miRs) are involved in cancer initiation and progression. Previous studies have indicated that miR-221 is one of the most consistently overexpressed miRNAs in multiple types of cancer. However, the role of miR-221 in osteosarcoma carcinogenesis and progression is not yet fully understood. Thus, the aim of the present study was to examine the expression of miR-221 in osteosarcoma and to determine the effects of miR-221 on the biological behavior of osteosarcoma cells. RT-qPCR revealed that the expression of miR-221 was significantly upregulated in the osteosarcoma tissues and osteosarcoma cell lines (p<0.05). In order to explore the role of miR-221 in osteosarcoma, the expression of miR-221 in the human osteosarcoma cell line MG‑63 was upregulated or downregulated by transfection with miR-221 mimic or miR-221 inhibitor, respectively. The results from RT-qPCR revealed that we had successfully generated MG‑63 cells in which miR-221 was either overexpressed or depleted. To investigate the effects of miR-221 on osteosarcoma cell proliferation, invasion and migration, a tetrazolium-based colorimetric assay, propidium iodide (PI) staining, a transwell migration assay and a wound healing assay were used in the present study. The results revealed that the proliferation, invasion and migration ability of the MG‑63 cells in which miR-221 was overexpressed was enhanced, and the proliferation, invasion and migration ability of the MG‑63 cells in which miR-221 was depleted was suppressed. The correlation between miR-221 and phosphatase and tensin homolog (PTEN) expression was investigated by RT-qPCR and western blot analysis. The results revealed that the downregulation of miR-221 significantly increased the expression of PTEN, whereas the upregulation of miR-221 significantly reduced the expression of PTEN. Taken together, our results suggest that miR-221 enhances the proliferation, invasion and migration ability of osteosarcoma cells partly by suppressing PTEN.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fan Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Quanming Wu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiancheng Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|