1
|
Kumar A, Kumar V, Pramanik J, Rustagi S, Prajapati B, Jebreen A, Pande R. Lactiplantibacillus Plantarum as a Complementary Approach for Diabetes Treatment and Management. Curr Nutr Rep 2025; 14:72. [PMID: 40434575 DOI: 10.1007/s13668-025-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
PURPOSE OF REVIEW This review explores the impact of Lactiplantibacillus plantarum on diabetes management and discusses the potential mechanism. RECENT FINDINGS Recent studies have highlighted that gut dysbiosis has emerged as a key factor in the development of diabetes. In this context, probiotics, specifically Lactiplantibacillus plantarum, offer potential benefits in modulating gut microbiota and improving metabolic health. Several studies have demonstrated the positive impact of L. plantarum on glycemic control, insulin sensitivity, and inflammatory markers in diabetic animal models. The potential mechanisms of action of L. plantarum in diabetes management include inhibiting enzymes involved in glucose metabolism, modulating inflammatory responses, improving insulin sensitivity, restoring gut microbiota, and producing short-chain fatty acids. SUMMARY The article concludes that L. plantarum is a promising candidate for managing glucose hemostasis, thus offering a potential alternative or adjunct to conventional approaches. However, further clinical studies are necessary to understand the exact mechanism and long-term effects of L. plantarum in humans.
Collapse
Affiliation(s)
- Akash Kumar
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India.
| | - Vikram Kumar
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, India
| | - Jhilam Pramanik
- Department of Food Technology, William Carey University, Shillong, 793019, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
- Department of Food Technology, School of Agriculture, Maya Devi University, Dehradun, Uttrakhand, India
| | - Bhupendra Prajapati
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Ali Jebreen
- Department of Therapeutic Medical Nutrition, Faculty of Applied Medical Sciences, Palestine Ahliya University, Bethlehem, Palestine
| | - Ranjana Pande
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India.
| |
Collapse
|
2
|
Sakabe R, Onishi K, Mochizuki J, Toshimitsu T, Shimazu T, Kishino S, Ogawa J, Yamasaki S, Sashihara T. Regulation of IL-10 production in dendritic cells is controlled by the co-activation of TLR2 and Mincle by Lactiplantibacillus plantarum OLL2712. Microbiol Spectr 2025; 13:e0119624. [PMID: 39902909 PMCID: PMC11878067 DOI: 10.1128/spectrum.01196-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/29/2024] [Indexed: 02/06/2025] Open
Abstract
We showed that Lactiplantibacillus plantarum OLL2712 (OLL2712) strongly induces interleukin (IL)-10 production in immune cells. Although beneficial effects of this strain have been observed in both mice and humans, the mechanisms underlying IL-10 induction remain unclear. In this study, we found that OLL2712 co-activates two pattern recognition receptors, leading to IL-10 production in the mouse-derived thermosensitive dendritic cell line, tsDC. We first revealed the involvement of the Toll-like receptor (TLR)2-Myeloid differentiation primary response gene (MYD) 88 pathway in OLL2712-induced IL-10 production in tsDCs. However, stimulation with the TLR2 agonist alone was insufficient to induce IL-10 production. Consequently, we explored additional signaling pathways and found that the phosphorylation of spleen tyrosine kinase (Syk) was important in response to OLL2712, which was not triggered by a TLR2 agonist alone. Notably, the activation of Syk was found to depend on macrophage-inducible C-type lectin receptor (Mincle), one of the C-type lectin receptors. However, the surface-expressed Mincle is not responsible for the IL-10 production by OLL2712. Instead, it depends on the incorporation of OLL2712 into tsDCs, suggesting that Mincle recognizes incorporated OLL2712 intracellularly. In summary, OLL2712 is initially recognized by TLR2, which subsequently induces the expression of Mincle to recognize incorporated OLL2712, ultimately inducing IL-10 production.IMPORTANCEThe objective of this study is to elucidate the mechanism by which Lactiplantibacillus plantarum OLL2712 (OLL2712), previously identified by our research group as a potent stimulator of interleukin-10 production in immune cells, exerts its immunomodulatory effects. Our findings indicate that OLL2712 acts in synergy with two pattern-recognition receptors: Toll-like receptor 2 and Macrophage inducible C-type lectin receptor (Mincle). Additionally, we observed that OLL2712 needs to be internalized intracellularly to be recognized by Mincle. These findings represent the first insights into the detailed mechanism underlying the anti-inflammatory effects of OLL2712.
Collapse
Affiliation(s)
- Ryuhei Sakabe
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Kazumasa Onishi
- Fermentation Development Research Department Food Development Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Takayuki Toshimitsu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Tomoyuki Shimazu
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| | - Shigenobu Kishino
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Hachioji, Tokyo, Japan
| |
Collapse
|
3
|
Wang X, Wang L, Wei X, Xu C, Cavender G, Lin W, Sun S. Invited review: Advances in yogurt development-Microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across different dairy and plant-based alternative sources. J Dairy Sci 2025; 108:33-58. [PMID: 39369892 DOI: 10.3168/jds.2024-25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Yogurt, as a globally prevalent fermented dairy product, is renowned for its substantial nutritional value and a myriad of health benefits, particularly pertaining to the digestive system. This narrative review elucidates the latest advancements in yogurt development from 2019 to 2024, addressing aspects of microbiological safety, quality, functionality, sensory evaluation, and consumer perceptions across diverse protein sources. The intrinsic quality of yogurt is notably influenced by its primary ingredient, milk, traditionally derived from animals such as cows, goats, and sheep. In recent years, plant-based yogurt (PBY) have emerged as a popular alternative to traditional dairy yogurts, that are made from plant sources and offer similar textures and flavors, catering to those seeking nondairy options. This discussion encompasses the advantages and limitations of various sources and explores methodologies to enhance yogurt quality using these diverse sources. Ensuring the microbiological safety of yogurt is thus paramount to its quality, as it involves both preventing the presence of harmful pathogens and managing spoilage to maintain freshness. This article encapsulates the potential hazards and corresponding antibacterial strategies that safeguard yogurt consumption. These strategies include the use of natural preservatives, advancements in packaging technologies, and the implementation of stringent hygiene practices throughout the production process. Moreover, the quality of yogurt is dependent not only on the source but also on the fermentation process and additional ingredients used. By addressing both the prevention of pathogen contamination and the control of spoilage organisms, this article explores comprehensive approaches but also examines the use of high-quality starter cultures, the role of prebiotics in enhancing probiotic efficacy, and genetic advancements, as well as improvements in the overall nutritional profile and shelf life of yogurt. Techniques to improve texture, flavor, and nutrient content are also discussed, providing a comprehensive overview of current quality enhancement methods. This analysis delves into the intricate mechanisms underpinning probiotic development, including the roles of prebiotics, supplementary starter cultures, and genetic factors that facilitate probiotic proliferation. These benefits include improved digestive health, enhanced immune function, and potential reductions in the risk of certain chronic diseases. Beyond quality and functionality, the sensory evaluation of yogurt remains crucial for consumer acceptance. In recent years, the incorporation of diverse additional ingredients into yogurt has been observed, aimed at augmenting its sensory attributes. This examination reveals these ingredients and their respective functions, such as natural flavorings, sweeteners, and texturizing agents, with the ultimate goal of enhancing overall consumer satisfaction. Consumer preferences exert a profound influence on yogurt production, rendering the understanding of customer opinions essential for devising competitive industry strategies. This article consolidates consumer feedback and preferences, striving to elevate yogurt quality and promote dietary diversity. The analysis includes trends such as the growing demand for organic and nondairy yogurts, the importance of sustainable practices, and the impact of marketing and packaging on consumer choices. This comprehensive overview serves as a valuable reference for the dairy industry and researchers dedicated to the advancement of yogurt development.
Collapse
Affiliation(s)
- Xiaojun Wang
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China
| | - Linlin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100085, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350014, China
| | - Changmou Xu
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - George Cavender
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634
| | - Walker Lin
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695
| | - Shengqian Sun
- Yantai Key Laboratory of Special Medical Food, School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong, 264003, China.
| |
Collapse
|
4
|
Olotu T, Ferrell JM. Lactobacillus sp. for the Attenuation of Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. Microorganisms 2024; 12:2488. [PMID: 39770690 PMCID: PMC11728176 DOI: 10.3390/microorganisms12122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/05/2025] Open
Abstract
Probiotics are studied for their therapeutic potential in the treatment of several diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Part of the significant progress made in understanding the pathogenesis of steatosis has come from identifying the complex interplay between the gut microbiome and liver function. Recently, probiotics have shown beneficial effects for the treatment and prevention of steatosis and MASLD in rodent models and in clinical trials. Numerous studies have demonstrated the promising potential of lactic acid bacteria, especially the genus Lactobacillus. Lactobacillus is a prominent bile acid hydrolase bacterium that is involved in the biotransformation of bile acids. This genus' modulation of the gut microbiota also contributes to overall gut health; it controls gut microbial overgrowth, shapes the intestinal bile acid pool, and alleviates inflammation. This narrative review offers a comprehensive summary of the potential of Lactobacillus in the gut-liver axis to attenuate steatosis and MASLD. It also highlights the roles of Lactobacillus in hepatic lipid metabolism, insulin resistance, inflammation and fibrosis, and bile acid synthesis in attenuating MASLD.
Collapse
Affiliation(s)
- Titilayo Olotu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
5
|
Li CP, Chen CC, Hsiao Y, Kao CH, Chen CC, Yang HJ, Tsai RY. The Role of Lactobacillus plantarum in Reducing Obesity and Inflammation: A Meta-Analysis. Int J Mol Sci 2024; 25:7608. [PMID: 39062848 PMCID: PMC11276845 DOI: 10.3390/ijms25147608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Recent research has underscored the efficacy of Lactobacillus plantarum (L. plantarum) in managing obesity among healthy adults. This meta-analysis reviewed randomized controlled trials (RCTs) from major databases up to May 2024, focusing on the effects of L. plantarum on body weight, body mass index (BMI), and metabolic parameters. This study has been registered in PROSPERO (number: CRD 42024531611). The analysis of nine studies revealed significant weight reduction and BMI decreases with L. plantarum supplementation compared to a placebo. Notably, using more than two strains together enhanced these effects. Improvements were also observed in abdominal fat and inflammatory markers such as interleukin-6 (IL-6) and high-sensitivity C-reactive protein (hs-CRP). This meta-analysis synthesizes evidence from nine RCTs to test the hypothesis that L. plantarum supplementation effectively reduces body weight and BMI in healthy adults compared to a placebo. However, variations in study designs, probiotic strains, and intervention durations call for more robust trials to confirm these benefits.
Collapse
Affiliation(s)
- Chen-Pi Li
- Department of Nursing, Tung’s Taichung MetroHarbor Hospital, Taichung 43503, Taiwan;
- Department of Public Healthy, College of Health Care and Management, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Chin-Chang Chen
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Yao Hsiao
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.H.); (C.-H.K.)
| | - Chieh-Hsin Kao
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.H.); (C.-H.K.)
| | | | - Hao-Jan Yang
- Department of Public Healthy, College of Health Care and Management, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ru-Yin Tsai
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
6
|
Toshimitsu T, Gotou A, Sashihara T, Hojo K, Hachimura S, Shioya N, Iwama Y, Irie J, Ichihara Y. Ingesting probiotic yogurt containing Lactiplantibacillus plantarum OLL2712 improves glycaemic control in adults with prediabetes in a randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 2024; 26:2239-2247. [PMID: 38454743 DOI: 10.1111/dom.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
AIM The ingestion of Lactiplantibacillus plantarum OLL2712 (OLL2712) cells has been shown to improve glucose metabolism by suppressing chronic inflammation in murine models and clinical studies. This study aimed to clarify the effect of OLL2712 on glycaemic control in healthy adults with prediabetes. MATERIALS AND METHODS The study was a randomized, double-blind, placebo-controlled, parallel-group design. Adult participants with prediabetes [n = 148, glycated haemoglobin (HbA1c) range: 5.6%-6.4%, age range: 20-64 years] were assigned randomly to placebo or OLL2712 groups (n = 74/group) and administered daily for 12 weeks either conventional yogurt or yogurt containing >5 × 109 heat-treated OLL2712 cells, respectively. In addition, the participants were followed for 8 weeks after the discontinuation of either yogurt. The primary outcome was the changes in HbA1c levels at weeks 12 and 16 by analysis of covariance. RESULTS The levels of HbA1c and glycoalbumin decreased significantly in both groups at week 12 in comparison with those at week 0, but only in the OLL2712 group at week 16. HbA1c levels decreased significantly at weeks 12 and 16 in the OLL2712 group in comparison with the placebo group (p = .014 and p = .006, respectively). No significant inter- and intragroup differences in HbA1c levels were observed at week 20. CONCLUSIONS The ingestion of OLL2712 prevents the deterioration of glycaemic control and maintains the HbA1c levels within the normal range in adults with prediabetes; yogurt probably exhibits similar effects, which may contribute to reducing the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Takayuki Toshimitsu
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Ayako Gotou
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Kenichi Hojo
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhiko Shioya
- Statistical Analysis Department, KSO Corporation, Tokyo, Japan
| | | | - Junichiro Irie
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshitatsu Ichihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
7
|
Aljohani A, Rashwan N, Vasani S, Alkhawashki A, Wu TT, Lu X, Castillo DA, Xiao J. The Health Benefits of Probiotic Lactiplantibacillus plantarum: A Systematic Review and Meta-Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10287-3. [PMID: 38816672 DOI: 10.1007/s12602-024-10287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
To ensure effective administration of probiotics in clinical practice, it is crucial to comprehend the specific strains and their association with human health. Therefore, we conducted a systematic review and meta-analysis to evaluate the scientific evidence on the impact of Lactiplantibacillus plantarum probiotic consumption on human health. Out of 11,831 records, 135 studies were assessed qualitatively, and 18 studies were included in the meta-analysis. This systematic review demonstrated that probiotic supplementation with L. plantarum, either alone or in combination, can significantly improve outcomes for patients with specific medical conditions. Meta-analysis revealed notable benefits in periodontal health, evidenced by reduced pocket depth and bleeding on probing (p < 0.001); in gastroenterological health, marked by significant reductions in abdominal pain (p < 0.001); and in infectious disease, through a reduction in C-reactive protein levels (p < 0.001). Cardiovascular benefits included lowered total cholesterol and low-density lipoprotein cholesterol in the L. plantarum intervention group (p < 0.05). Our study's clinical significance highlights the importance of considering probiotic strain and their application to specific diseases when planning future studies and clinical interventions, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Amal Aljohani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Noha Rashwan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Shruti Vasani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Ahmed Alkhawashki
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
- Pediatrics, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Comerford K, Lawson Y, Young M, Knight M, McKinney K, Mpasi P, Mitchell E. Executive summary: The role of dairy food intake for improving health among Black Americans across the life continuum. J Natl Med Assoc 2024; 116:211-218. [PMID: 38368232 DOI: 10.1016/j.jnma.2024.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Given the complex relationships that many Black individuals have with dairy foods, due to issues with lactose intolerance or other cultural factors, the National Medical Association has made considerable efforts to examine the role that dairy foods play in the health and well-being of Black Americans. Over the last two decades, the National Medical Association and its partners have produced multiple reports on the value of including adequate milk and dairy foods in the diets of Black Americans. These publications have highlighted the impact that inadequate consumption of dairy foods and nutrients have on chronic disease risks. Past publications have also provided evidence-based recommendations for the proper diagnosis and management of lactose intolerance. This new series of evidence reviews focuses on dairy's role in improving nutrition and health among Black Americans across the life course and covers an extensive amount of new research that highlights additional health disparities and provides further evidence-based strategies for the management of lactose intolerance. Much like the 2020-2025 Dietary Guidelines for Americans, this work utilizes a life course approach to better address dairy intake on health outcomes for different ages and life stages: 1) pregnancy, fetal development, and lactation, 2) infants, toddlers, and young children, 3) older children and adolescents, 4) adults, and 5) geriatric populations. Overall, the findings and conclusions from this series of evidence reviews continue to indicate that higher dairy intake is associated with reduced risk for many of the most commonly occurring deficiencies and diseases impacting each life stage, and that Black Americans would receive significantly greater health benefits by increasing their daily dairy intake levels to meet the national dietary recommendations than they would from continuing to fall short of these recommendations. However, these recommendations must be considered with appropriate context and nuance as the intake of different dairy products can have different impacts on health outcomes. For instance, vitamin D fortified dairy products and fermented dairy products like yogurt - which are low in lactose and rich in live and active cultures - tend to show the greatest impacts for reducing disease risk across the life continuum, while whole-fat dairy foods may be most beneficial in early life for optimal brain development, and more protein-rich options may be most beneficial in later life to help maintain muscle mass and function.
Collapse
Affiliation(s)
- Kevin Comerford
- California Dairy Research Foundation, Davis, CA, United States.
| | - Yolanda Lawson
- Baylor University Medical Center, Dallas, TX, United States
| | - Michal Young
- Emeritus, Howard University College of Medicine, Department of Pediatrics and Child Health, Washington D.C., United States
| | - Michael Knight
- The George Washington University School of Medicine and Health Sciences, Washington D.C., United States
| | - Kevin McKinney
- University of Texas Medical Branch, Department of Internal Medicine, Division of Endocrinology, Galveston, TX, United States
| | - Priscilla Mpasi
- ChristianaCare Health System, Assistant Clinical Director Complex Care and Community Medicine, Wilmington, DE, United States
| | - Edith Mitchell
- Sidney Kimmel Cancer at Jefferson, Philadelphia, PA, United States
| |
Collapse
|
9
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
10
|
Ichimura T. Yogurt Production. Methods Mol Biol 2024; 2851:63-74. [PMID: 39210171 DOI: 10.1007/978-1-0716-4096-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Yogurt is a widely consumed dairy product that is obtained through the fermentation of lactic acid bacteria. During fermentation, these bacteria produce lactic acid, which lowers the pH and causes the coagulation of milk proteins. Metabolites of lactic acid bacteria, such as carbonyl compounds, nonvolatile or volatile acids, and exopolysaccharides, significantly affect the quality of yogurt. The production method also greatly influences yogurt characteristics. Yogurt can be produced in various forms, including solid, fluid, and soft-drinking types, depending on the manufacturing method employed. In addition, the raw materials, sterilization, homogenization, fermentation, and other conditions in each manufacturing method greatly affect yogurt's physical properties and flavor. This chapter summarizes common and modern methods of yogurt production.
Collapse
Affiliation(s)
- Takefumi Ichimura
- Food Science & Technology Research Laboratories R&D Division, Meiji Co., Ltd., Tokyo, Japan.
| |
Collapse
|
11
|
Barouei J, Martinic A, Bendiks Z, Mishchuk D, Heeney D, Slupsky CM, Marco ML. Type 2-resistant starch and Lactiplantibacillus plantarum NCIMB 8826 result in additive and interactive effects in diet-induced obese mice. Nutr Res 2023; 118:12-28. [PMID: 37536013 DOI: 10.1016/j.nutres.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.
Collapse
Affiliation(s)
- Javad Barouei
- Integrated Food Security Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX; Department of Food Science & Technology, University of California, Davis, CA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, CA; Department of Nutrition, University of California, Davis, CA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA.
| |
Collapse
|
12
|
Li A, Han X, Liu L, Zhang G, Du P, Zhang C, Li C, Chen B. Dairy products and constituents: a review of their effects on obesity and related metabolic diseases. Crit Rev Food Sci Nutr 2023; 64:12820-12840. [PMID: 37724572 DOI: 10.1080/10408398.2023.2257782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Obesity has become a global public health problem that seriously affects the quality of life. As an important part of human diet, dairy products contain a large number of nutrients that are essential for maintaining human health, such as proteins, peptides, lipids, vitamins, and minerals. A growing number of epidemiological investigations provide strong evidence on dairy interventions for weight loss in overweight/obese populations. Therefore, this paper outlines the relationship between the consumption of different dairy products and obesity and related metabolic diseases. In addition, we dive into the mechanisms related to the regulation of glucose and lipid metabolism by functional components in dairy products and the interaction with gut microbes. Lastly, the role of dairy products on obesity of children and adolescents is revisited. We conclude that whole dairy products exert more beneficial effect than single milk constituent on alleviating obesity and that dairy matrix has important implications for metabolic health.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Guofang Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Du
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chun Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Heilongjiang Green Food Research Institute, Harbin, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
13
|
Li S, Wang Q, Tan X, Wang L, Gong J, Zhang J, Wang W, Liu J. Effect of neonatal and adult sepsis on inflammation-related diseases in multiple physiological systems: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1215751. [PMID: 37547313 PMCID: PMC10400313 DOI: 10.3389/fendo.2023.1215751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Background Long-term impact of sepsis on whole body systems is not well investigated. The aim of the study was to explore the potential association of neonatal/adult sepsis with several inflammation-related diseases in multiple physiological systems. Methods Instrumental variables for neonatal and adult sepsis were collected from the public genome-wide association studies, which must satisfy the correlation, exclusivity and independence assumptions. Mendelian randomization methods (including random-effect inverse-variance weighted, MR-PRESSO, weighted median and MR-Egger) were used to determine the genetic association of neonatal/adult sepsis with asthma, allergy, rheumatoid arthritis, body mass index/obesity, type 1/type 2 diabetes and intelligence/dementia. Sensitivity analyses were conducted to assess heterogeneity and horizontal pleiotropy. The study was performed by TwoSampleMR in R software. Results The inverse-variance weighted method reported that neonatal sepsis was related to the decreased level of body mass index (OR = 0.988, 95%CI = 0.980 ~ 0.997, P = 0.007), and adult sepsis was related to the decreased risk of obesity (OR = 0.785, 95%CI = 0.655 ~ 0.940, P = 0.009). These results were supported by the other Mendelian randomization methods. In addition, the study did not find any association of neonatal/adult sepsis with the other inflammation-related diseases. No heterogeneity and horizontal pleiotropy were found using sensitivity analyses. Conclusion Sepsis had the potential to reduce the risk of obesity or body mass index level at a genetic level, both in neonates and in adults.
Collapse
Affiliation(s)
- Suping Li
- Department of Neonatal Intensive Care Unit, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Qian Wang
- Department of Neonatal Intensive Care Unit, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Xin Tan
- Department of Pediatrics, The First Hospital of Changsha, Changsha, Hunan, China
| | - Linghua Wang
- Department of Neonatal Intensive Care Unit, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Jin Gong
- Department of Neonatal Intensive Care Unit, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Juan Zhang
- Department of Neonatal Intensive Care Unit, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Weilin Wang
- Department of Neonatal Intensive Care Unit, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Jiangling Liu
- Department of Neonatal Intensive Care Unit, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| |
Collapse
|
14
|
Watanabe-Yasuoka Y, Gotou A, Shimizu S, Sashihara T. Lactiplantibacillus plantarum OLL2712 Induces Autophagy via MYD88 and Strengthens Tight Junction Integrity to Promote the Barrier Function in Intestinal Epithelial Cells. Nutrients 2023; 15:2655. [PMID: 37375559 DOI: 10.3390/nu15122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy is an important system conserved in eukaryotes that maintains homeostasis by degrading abnormal proteins. Autophagy incompetence in intestinal epithelial cells causes the abnormal function of intestinal stem cells and other cells and damages intestinal barrier function. The disruption of the intestinal barrier causes chronic inflammation throughout the body, followed by impaired glucose and lipid metabolism. Lactiplantibacillus plantarum OLL2712 (OLL2712) is a lactic acid bacterium that induces interleukin-10 production from immune cells, alleviates chronic inflammation, and improves glucose and lipid metabolism. In this study, we hypothesized that OLL2712 exerts anti-inflammatory effects by inducing autophagy and ameliorating intestinal barrier dysfunction, and we investigated its autophagy-inducing activities and functions. Caco-2 cells stimulated with OLL2712 for 24 h showed an increased number of autolysosomes per cell, compared with unstimulated cells. Therefore, the permeability of fluorescein isothiocyanate dextran 4000 (FD-4) was suppressed by inducing autophagy. In contrast, mucin secretion in HT-29-MTX-E12 cells was also increased by OLL2712 but not via autophagy induction. Finally, the signaling pathway involved in autophagy induction by OLL2712 was found to be mediated by myeloid differentiation factor 88 (MYD88). In conclusion, our findings suggest that OLL2712 induces autophagy in intestinal epithelial cells via MYD88, and that mucosal barrier function is strengthened by inducing autophagy.
Collapse
Affiliation(s)
- Yumiko Watanabe-Yasuoka
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| | - Ayako Gotou
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, Division of Research and Development, Meiji Co., Ltd., Hachiouji, Tokyo 192-0919, Japan
| |
Collapse
|
15
|
TOSHIMITSU T. Development of a lactic acid bacteria strain that suppresses chronic inflammation and improves glucose and lipid metabolism. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:3-7. [PMID: 36660597 PMCID: PMC9816046 DOI: 10.12938/bmfh.2022-054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/14/2022] [Indexed: 01/01/2023]
Abstract
Chronic inflammation caused by aging, obesity, and lifestyle disturbances can lead to the production of inflammatory cytokines and insulin resistance, reducing glucose and lipid metabolism. Lactic acid bacteria (LAB) have various bioactivities, and certain types of LAB have been reported to exhibit anti-inflammatory effects. We hypothesized that LAB strains, which can strongly induce the production of anti-inflammatory cytokines by immune cells in the intestinal tract, may improve glucose and lipid metabolism by suppressing chronic inflammation. We selected Lactiplantibacillus plantarum OLL2712 (OLL2712) from the LAB library owned by Meiji Co., Ltd. based on its ability to induce the production of interleukin-10 (IL-10), optimized the culture conditions of OLL2712 for industrial applications, and verified the efficacy of the strain in animal and clinical studies. The results showed that OLL2712 bacterial cells in the exponential phase had notably higher anti-inflammatory properties than the cells in the stationary phase and led to the inhibition of chronic inflammation and improvement of glucose and lipid metabolism in animal studies. Two randomized controlled trials consisting of healthy adults with elevated blood glucose levels or body mass indices (BMIs) also showed that the intake of OLL2712 suppressed the aggravation of chronic inflammation and improved glucose and lipid metabolism. This review identified a novel LAB strain that may contribute to diabetes and obesity prevention and demonstrated its clinical efficacy. In addition, the mechanism of action of this LAB strain through the intestinal immune system was partially elucidated, and the importance of optimizing the culture conditions of LAB was clarified.
Collapse
Affiliation(s)
- Takayuki TOSHIMITSU
- Applied Microbiology Research Department, Food Microbiology
Research Laboratories, Division of Research and Development, Meiji Co., Ltd., 1-29-1
Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
16
|
Porchia LM, Vazquez-Marroquin G, Ochoa-Précoma R, Pérez-Fuentes R, Gonzalez-Mejia ME. Probiotics' effect on visceral and subcutaneous adipose tissue: a systematic review of randomized controlled trials. Eur J Clin Nutr 2022; 76:1646-1656. [PMID: 35418606 DOI: 10.1038/s41430-022-01135-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Probiotics are shown to alter the microbiota, leading to a favorable environment, in which weight loss and metabolic parameters are improve. However, the results on probiotics' effect on specific types of central adipose tissues, mainly visceral (VAT) and subcutaneous adipose tissue (SAT), are conflicting. Therefore, we conducted a systematic review, aimed to evaluate the effects of probiotics on VAT and SAT. PubMed, SCOPUS, EBSCO, and LILACS databases were searched for studies that investigated the effect of probiotics on VAT and SAT. Fixed effects were used to calculate the pooled difference in means (DM) and 95% confidence intervals (95%CI). Fourteen publications met the inclusion criteria, which consisted of 1523 participants. For VAT, overall, there was a significant decrease (DM = -3.63 cm2, 95% CI: -5.08 to -2.17, p < 0.001). When stratified by type of probiotic, single Bifidobacterium (DM = -4.49 cm2, 95% CI:-7.37 to -1.61, p = 0.002) and single Lactobacillus probiotics (DM = -3.84 cm2, 95% CI:-5.74 to -1.93, p < 0.001) resulted in significant reductions. Mixed probiotics had no effect. For SAT, overall, there was a significant decrease (DM = -2.91 cm2, 95% CI:-4.82 to -1.01, p = 0.003), and when stratified by type of probiotic, single Lactobacillus (DM = -3.39 cm2, 95% CI:-5.90 to -0.88, p = 0.008) and mixed probiotics (DM = -5.97 cm2, 95% CI:-10.32 to -1.62, p = 0.007) resulted in a significant decrease. Single Bifidobacterium probiotics had no effect. Using meta-regression, no association was observed between the total daily probiotic dose and VAT or SAT reduction. This study shows that probiotics have a beneficial effect on central adiposity. Single Lactobacillus-based probiotics reduced VAT and SAT, whereas Bifidobacterium-based probiotics reduce VAT.
Collapse
Affiliation(s)
- Leonardo M Porchia
- Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de investigación Biomédica de Oriente, IMSS. Delegación Puebla, Carretera Federal Atlixco Metepec Km. 4.5, Colonia Centro, C.P, 74360, Atlixco, Puebla, México
| | - Gabriela Vazquez-Marroquin
- Posgrado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Carretera Federal Tlaxcala, Puebla. S/N; Km. 1.5, Tlaxcala, Tlaxcala, 90062, Mexico
| | - Renata Ochoa-Précoma
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Calle 13 Sur 2901, Colonia Volcanes, C.P. 72420, Puebla, Puebla, México
| | - Ricardo Pérez-Fuentes
- Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de investigación Biomédica de Oriente, IMSS. Delegación Puebla, Carretera Federal Atlixco Metepec Km. 4.5, Colonia Centro, C.P, 74360, Atlixco, Puebla, México
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Calle 13 Sur 2901, Colonia Volcanes, C.P. 72420, Puebla, Puebla, México
| | - M Elba Gonzalez-Mejia
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Calle 13 Sur 2901, Colonia Volcanes, C.P. 72420, Puebla, Puebla, México.
| |
Collapse
|
17
|
Sakurai K, Toshimitsu T, Okada E, Anzai S, Shiraishi I, Inamura N, Kobayashi S, Sashihara T, Hisatsune T. Effects of Lactiplantibacillus plantarum OLL2712 on Memory Function in Older Adults with Declining Memory: A Randomized Placebo-Controlled Trial. Nutrients 2022; 14:nu14204300. [PMID: 36296983 PMCID: PMC9610166 DOI: 10.3390/nu14204300] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The use of probiotics is expected to be an intervention in neurodegenerative conditions that cause dementia owing to their ability to modulate neuroinflammatory responses via the microbiome-gut–brain axis. Therefore, we selected Lactiplantibacillus plantarum OLL2712 (OLL2712), the optimal anti-inflammatory lactic acid bacteria strain with high IL-10-inducing activity in immune cells, and aimed to verify its protective effects on memory function in older adults. A 12-week, randomized, double-blind, placebo-controlled trial was performed with older adults over the age of 65 years with declining memory. The participants consumed either powder containing heat-treated OLL2712 cells or placebo. Memory function was assessed using a computer-assisted cognitive test, Cognitrax. Daily dietary nutrient intake was assessed using the Brief-type Self-administered Diet History Questionnaire (BDHQ). The composition of the gut microbiota was analyzed by fecal DNA extraction and 16S rDNA sequencing. Data from 78 participants who completed the entire procedure were analyzed, and significant improvements in composite memory and visual memory scores were observed in the active group, after accounting for the effect of daily nutritional intake (p = 0.044 and p = 0.021, respectively). In addition, the active group had a lower abundance ratio of Lachnoclostridium, Monoglobus, and Oscillibacter genera, which have been reported to be involved in inflammation. The present study suggests that OLL2712 ingestion has protective effects against memory function decline in older adults.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Takayuki Toshimitsu
- Food Microbiology Research Laboratories, Applied Microbiology Research Department, Division of Research and Development, Meiji Co., Ltd., Hachiouji 192-0919, Japan
| | - Erika Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Saya Anzai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Izumi Shiraishi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Noriko Inamura
- Urban Design Center Kashiwanoha (UDCK), Kashiwa 277-0871, Japan
- Community Health Promotion Laboratory, Mitsui Fudosan, Co., Ltd., Kashiwa 277-8519, Japan
| | - Satoru Kobayashi
- Community Health Promotion Laboratory, Mitsui Fudosan, Co., Ltd., Kashiwa 277-8519, Japan
| | - Toshihiro Sashihara
- Food Microbiology Research Laboratories, Applied Microbiology Research Department, Division of Research and Development, Meiji Co., Ltd., Hachiouji 192-0919, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
- Correspondence: ; Tel.: +81-04-7136-3632
| |
Collapse
|
18
|
Qiu X, Wu Q, Li W, Tang K, Zhang J. Effects of Lactobacillus supplementation on glycemic and lipid indices in overweight or obese adults: A systematic review and meta-analysis. Clin Nutr 2022; 41:1787-1797. [PMID: 35820261 DOI: 10.1016/j.clnu.2022.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Recent evidence suggests that gut microbiota may represent an important factor to affect the development of obesity and obesity-related diseases. Although several randomized controlled trials (RCTs) have explored the ability of Lactobacillus to improve metabolic parameters in adults who are overweight or obese, their findings have been inconsistent and require further analysis. Therefore, this systematic review and meta-analysis aimed to determine the ability of Lactobacillus supplementation to improve glycemic control, the lipid profile, and blood pressure in adults who are overweight or obese. METHODS Seven electronic databases and two trial registers were searched up to April 2022 to identify eligible RCTs evaluating the effects of Lactobacillus supplementation in overweight or obese adults. Mean differences (MDs) or standardized mean differences were pooled using a random-effects model. RESULTS Nine eligible RCTs with 598 participants were included. We found that Lactobacillus supplementation significantly reduced low-density lipoprotein cholesterol (MD -5.27 mg/dL; 95% confidence interval [CI] -8.28, -2.25; P = 0.0006) and total cholesterol (MD -4.84 mg/dL; 95% CI -8.29, -1.39; P = 0.006), particularly when taken in capsule, powder, or tablet form, for 12 weeks, as ≥1 × 1010 colony forming units/day, or as part of a normal diet. Benefits of Lactobacillus on fasting plasma glucose were seen after 12 weeks of supplementation (MD -1.81 mg/dL; 95% CI -3.08, -0.54; P = 0.005) and on triglycerides when taking a normal diet (MD -14.14 mg/dL; 95% CI -24.38, -3.91; P = 0.007). Lactobacillus had only a short-term beneficial effect on fasting plasma insulin and blood pressure and no significant beneficial effect on high-density lipoprotein cholesterol. CONCLUSIONS Lactobacillus supplementation has a beneficial effect on low-density lipoprotein cholesterol and total cholesterol in adults who are overweight or obese, and also on fasting plasma glucose and triglycerides under certain conditions. Therefore, Lactobacillus supplementation represents a promising approach in the management of obesity-related diseases.
Collapse
Affiliation(s)
- Xudong Qiu
- Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Li
- Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kairan Tang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Shi Z, Guan N, Sun W, Sun T, Niu L, Li J, Ge J. Protective Effect of Levilactobacillus brevis Against Yersinia enterocolitica Infection in Mouse Model via Regulating MAPK and NF-κB Pathway. Probiotics Antimicrob Proteins 2022; 14:830-844. [PMID: 35665480 DOI: 10.1007/s12602-022-09957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Although the use of the probiotic bacterium Lactobacillus for the treatment and prevention of diseases caused by various pathogenic bacteria has received increasing attention in recent years, its mechanism remains incompletely understood. Levilactobacillus brevis 23017 is a select probiotic strain that can regulate the immunity of host animals and resist pathogen infections. In this study, we analyzed the effect of L. brevis 23017 on Yersinia enterocolitica intestinal infection in a BALB/c mouse model and discussed its underlying mechanism. We found that in the mouse model, L. brevis 23017 prevented the damage of villi in the small intestine and decelerated weight loss after Y. enterocolitica infection. Moreover, we focused on the mechanism of the protective effect of L. brevis 23017 from the perspective of the damage and repair of the intestinal mucosal barrier. We observed that L. brevis 23017 maintained a normal mucosal barrier by altering the expression of tight junction proteins. Notably, our results indicated that L. brevis 23017 effectively promoted the secretion of the intestine-specific secretory immunoglobulin A (SIgA) by B cells via regulating cytokines and oxidative damage levels. This mechanism may be the reason for its protective role in Y. enterocolitica infection. In addition, our results demonstrated that the mechanism of L. brevis 23017 was related to antibacterial colonization and inflammation regulation and closely related to antioxidative stress and SIgA promotion. The protective effect of L. brevis 23017 on mice was related to the signaling pathway protein p38 MAPK and the phosphorylation levels of NF-κB. Our study provided novel insight into the mechanism of Lactobacillus against pathogenic bacterial infections. Such insight is of great importance for the prevention, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Ziqi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Naiyu Guan
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tianzhi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jinyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, China.
| |
Collapse
|
20
|
Tu J, Wang Y, Jin L, Huang W. Bile acids, gut microbiota and metabolic surgery. Front Endocrinol (Lausanne) 2022; 13:929530. [PMID: 36072923 PMCID: PMC9441571 DOI: 10.3389/fendo.2022.929530] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic surgery, or bariatric surgery, is currently the most effective approach for treating obesity and its complications. Vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) are the top two types of commonly performed metabolic surgery now. The precise mechanisms of how the surgeries work are still unclear, therefore much research has been conducted in this area. Gut hormones such as GLP-1 and PYY have been studied extensively in the context of metabolic surgery because they both participate in satiety and glucose homeostasis. Bile acids, whose functions cover intestinal lipid absorption and various aspects of metabolic regulation via the action of FXR, TGR5, and other bile acid receptors, have also been actively investigated as potential mediators of metabolic surgery. Additionally, gut microbiota and their metabolites have also been studied because they can affect metabolic health. The current review summarizes and compares the recent scientific progress made on identifying the mechanisms of RYGB and VSG. One of the long-term goals of metabolic/bariatric surgery research is to develop new pharmacotherapeutic options for the treatment of obesity and diabetes. Because obesity is a growing health concern worldwide, there is a dire need in developing novel non-invasive treatment options.
Collapse
Affiliation(s)
- Jui Tu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Yangmeng Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, Duarte, CA, United States
- *Correspondence: Wendong Huang,
| |
Collapse
|
21
|
Dairy Lactic Acid Bacteria and Their Potential Function in Dietetics: The Food-Gut-Health Axis. Foods 2021; 10:foods10123099. [PMID: 34945650 PMCID: PMC8701325 DOI: 10.3390/foods10123099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022] Open
Abstract
Fermented dairy products are the good source of different species of live lactic acid bacteria (LAB), which are beneficial microbes well characterized for their health-promoting potential. Traditionally, dietary intake of fermented dairy foods has been related to different health-promoting benefits including antimicrobial activity and modulation of the immune system, among others. In recent years, emerging evidence suggests a contribution of dairy LAB in the prophylaxis and therapy of non-communicable diseases. Live bacterial cells or their metabolites can directly impact physiological responses and/or act as signalling molecules mediating more complex communications. This review provides up-to-date knowledge on the interactions between LAB isolated from dairy products (dairy LAB) and human health by discussing the concept of the food–gut-health axis. In particular, some bioactivities and probiotic potentials of dairy LAB have been provided on their involvement in the gut–brain axis and non-communicable diseases mainly focusing on their potential in the treatment of obesity, cardiovascular diseases, diabetes mellitus, inflammatory bowel diseases, and cancer.
Collapse
|
22
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Sohn M, Na GY, Chu J, Joung H, Kim BK, Lim S. Efficacy and Safety of Lactobacillus plantarum K50 on Lipids in Koreans With Obesity: A Randomized, Double-Blind Controlled Clinical Trial. Front Endocrinol (Lausanne) 2021; 12:790046. [PMID: 35126309 PMCID: PMC8807682 DOI: 10.3389/fendo.2021.790046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Only few studies have investigated the role of probiotics in the development of obesity. We aimed to determine the efficacy and safety of an intake of Lactobacillus plantarum K50 (LPK) on body fat and lipid profiles in people with obesity. METHODS This randomized, double-blind, placebo-controlled, clinical trial involved 81 adults with a body mass index of 25-30 kg/m2 who were assigned randomly to a diet including 4 × 109 colony-forming unit of LPK or a placebo. Changes in body fat, anthropometric parameters, and biomarkers of obesity were compared using a linear mixed-effect model. RESULTS After 12 weeks of treatment, body weight, fat mass, and abdominal fat area did not change significantly in the two groups. However, total cholesterol levels decreased from 209.4 ± 34.4 mg/dL to 203.5 ± 30.9 mg/dL in the LPK group, but increased from 194.7 ± 37.5 mg/dL to 199.9 ± 30.7 mg/dL in the placebo group (P = 0.037). Similarly, triglyceride levels decreased from 135.4 ± 115.8 mg/dL to 114.5 ± 65.9 mg/dL in the LPK group, with a significant difference between groups. LPK supplementation also tended to decrease leptin levels compared with placebo. It also changed the distribution of gut microbiota significantly, with an increase in L. plantarum and a decrease in Actinobacteria, both of whose changes in abundance were correlated with changes in visceral adiposity, with borderline significance. CONCLUSION A 12-week consumption of LPK reduced the total cholesterol and triglyceride levels significantly with favorable alterations in microbiota, suggesting potential benefits for controlling blood lipid profiles.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Ga Yoon Na
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jaeryang Chu
- Microbiome Research Laboratory, Chong Kun Dang BiO Corporation (CKD BiO Corp.) Research Institute, Ansan, South Korea
| | - Hyunchae Joung
- Microbiome Research Laboratory, Chong Kun Dang BiO Corporation (CKD BiO Corp.) Research Institute, Ansan, South Korea
| | - Byung-Kook Kim
- Head of Probiotics & Microbiome Part, Chong Kun Dang Bio Corporation (CKD BiO Corp.) Research Institute, Ansan, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
- *Correspondence: Soo Lim,
| |
Collapse
|