1
|
Doghish AS, Elazazy O, Mohamed HH, Mansour RM, Ghanem A, Faraag AHI, Elballal MS, Elrebehy MA, Elesawy AE, Abdel Mageed SS, Saber S, Nassar YA, Abulsoud AI, Abdel-Reheim MA, Elawady AS, Ali MA, Basiouny MS, Hemdan M, Lutfy RH, Awad FA, El-Sayed SA, Ashour MM, El-Sayyad GS, Mohammed OA. A Review on miRNAs in Enteric Bacteria-mediated Host Pathophysiology: Mechanisms and Implications. J Biochem Mol Toxicol 2025; 39:e70160. [PMID: 39907181 DOI: 10.1002/jbt.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
Recently, many studies focused on the billions of native bacteria found inside and all over the human body, commonly known as the microbiota, and its interactions with the eukaryotic host. One of the niches for such microbiota is the gastrointestinal tract (GIT), which harbors hundreds to thousands of bacterial species commonly known as enteric bacteria. Changes in the enteric bacterial populations were linked to various pathologies such as irritable bowel syndrome and obesity. The gut microbiome could affect the health status of individuals. MicroRNAs (miRNAs) are one of the extensively studied small-sized noncoding RNAs (ncRNAs) over the past decade to explore their multiple roles in health and disease. It was proven that miRNAs circulate in almost all body fluids and tissues, showing signature patterns of dysregulation associated with pathologies. Both cellular and circulating miRNAs participate in the posttranscriptional regulation of genes and are considered the potential key regulators of genes and participate in cellular communication. This manuscript explores the unique interplay between miRNAs and enteric bacteria in the gastrointestinal tract, emphasizing their dual role in shaping host-microbiota dynamics. It delves into the molecular mechanisms by which miRNAs influence bacterial colonization and host immune responses, linking these findings to gut-related diseases. The review highlights innovative therapeutic and diagnostic opportunities, offering insights for targeted treatments of dysbiosis-associated pathologies.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
- Biochemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Medical Department, School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Yara A Nassar
- Department of Botany, Faculty of Science, Biotechnology and Its Application Program, Mansoura University, Mansoura, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | | | - Alaa S Elawady
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | | | - Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Salma A El-Sayed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Mohamed M Ashour
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala city, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
2
|
Munir J, Sadri M, Zempleni J. Tsg101 knockout in the mammary gland leads to a decrease in small extracellular vesicles in milk from C57BL/6J dams and contributes to leakiness of the gut mucosa and reduced postnatal weight gain in suckling pups. J Nutr Biochem 2025; 135:109782. [PMID: 39424203 DOI: 10.1016/j.jnutbio.2024.109782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/21/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Human milk contains 2.2 ± 1.5×1011 small extracellular vesicles (sEVs) per milliliter and human infants consume 1.7×1014 milk sEVs (sMEVs) daily in 800 mL milk. Infant formula contains trace amounts of sMEVs. To date, eight adverse effects of milk depletion and five beneficial effects of sMEV supplementation have been reported including studies in infants and neonate mice. Formula-fed infants do not realize the benefits of sMEVs. Most of the phenotyping studies reported to date have the limitation that sMEV depletion and supplementation were initiated after mice were weaned. Here, we used a genetics approach for assessing effects of sMEV depletion on the development of suckling mice. Newborn C57BL/6J pups were fostered to Tumor Susceptibility Gene 101 (Tsg101) mammary-specific knockout (KO) dams or C57BL/6J dams (controls) in synchronized pregnancies. Tsg101 KO was associated with an 80% decrease of sMEVs. Postnatal weight gain and gut health (histology, morphology, and barrier function) were assessed until weaning at age three weeks. We observed a significant decrease in weight gain, length of small intestine, villi height, crypt depth, and intestinal barrier function in male and female pups fostered to Tsg101 dams compared to pups fostered to control dams. The effect size varied between 11 and 32 percent. Maternal Tsg101 KO did not affect the dams' health, content of macronutrients and dry mass of milk and had no effect on the amount of milk consumed by pups. We conclude that sMEVs are important for growth and gut health in neonate mice.
Collapse
Affiliation(s)
- Javaria Munir
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Jabłońska M, Sawicki T, Żulewska J, Staniewska K, Łobacz A, Przybyłowicz KE. The Role of Bovine Milk-Derived Exosomes in Human Health and Disease. Molecules 2024; 29:5835. [PMID: 39769923 PMCID: PMC11728725 DOI: 10.3390/molecules29245835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Bovine milk is widely recognized as one of the most valuable sources of nutrients such as proteins, fats, vitamins, and minerals that support the development and health of the body. In recent years, there has been increasing scientific interest in exosomes, the small membrane-bound vesicles found in milk. Through their content (e.g., microRNA), exosomes can influence gene expression and modulate key signaling pathways within target cells. Results from in vitro and in vivo studies have shown that bovine milk-derived exosomes can alleviate intestinal inflammation by regulating signaling pathways and positively influencing the composition of the gut microbiota. They also improve cognitive function and support nervous system regeneration. In addition, exosomes promote bone health by stimulating osteoblast formation and inhibiting bone resorption, helping to prevent osteoporosis. Studies have shown that exosomes have beneficial effects on skin health by promoting collagen production, protecting cells from oxidative stress, and delaying the ageing process. Bovine milk-derived exosomes are a promising tool for the treatment and prevention of a variety of diseases, particularly those related to inflammation and tissue regeneration. Although these results are promising, further studies are needed to fully understand the mechanisms of action and the potential clinical application of milk exosomes in the prevention and treatment of different diseases.
Collapse
Affiliation(s)
- Monika Jabłońska
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 45f Sloneczna, 10-718 Olsztyn, Poland; (T.S.); (K.E.P.)
| | - Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 45f Sloneczna, 10-718 Olsztyn, Poland; (T.S.); (K.E.P.)
| | - Justyna Żulewska
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland; (J.Ż.); (A.Ł.)
| | - Katarzyna Staniewska
- Department of Commodity Science and Food Analysis, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Pl. Cieszynski 1, 10-726 Olsztyn, Poland;
| | - Adriana Łobacz
- Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 7, 10-719 Olsztyn, Poland; (J.Ż.); (A.Ł.)
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 45f Sloneczna, 10-718 Olsztyn, Poland; (T.S.); (K.E.P.)
| |
Collapse
|
4
|
Deng C, Yuan X, Lin X, Liu S. MiR-200a-3p Attenuates Neuropathic Pain by Suppressing the Bromodomain-Containing Protein 3-Nuclear Factor-κB Pathway. J Biochem Mol Toxicol 2024; 38:e70041. [PMID: 39651616 DOI: 10.1002/jbt.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/14/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024]
Abstract
MicroRNAs (miRNAs) have key roles in the pathological processes of neuropathic pain. Here, our aim was to elucidate the function of miR-200a-3p as well as its related regulatory mechanism in neuropathic pain. An animal model of neuropathic pain was established by chronic constriction injury (CCI) induction. The knockdown experiments are performed by injecting a lentiviral construct intrathecally. MiR-200a-3p and bromodomain-containing protein 3 (BRD3) expression in rat spinal cord was determined using RT-qPCR. The mechanical, thermal, and cold responses in animals were assessed at the indicated time after surgery. The levels of inflammatory cytokines in rat spinal cord were measured by ELISA. The changes in NF-κB signaling-related molecules in rat spinal cord were determined using western blot and immunofluorescence. MiR-200a-3p was underexpressed in CCI rats in a time-dependent manner. Overexpression of miR-200a-3p decreased mechanical hyperalgesia and thermal sensitivity to attenuate neuropathic pain in rats. BRD3 was targeted by miR-200a-3p. Additionally, downregulation of BRD3 inhibited neuropathic pain progression. Moreover, overexpression of BRD3 rescued the effect of miR-200a-3p on NF-κB signaling and neuropathic pain in CCI rats. MiR-200a-3p attenuates neuropathic pain via downregulating BRD3 to block NF-κB signaling.
Collapse
Affiliation(s)
- Chao Deng
- Department of Pain Treatment, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuequan Yuan
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuezheng Lin
- Department of Anesthesia and Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Sitong Liu
- Department of Anesthesia, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Lu X, Ren K, Pan L, Liu X. Sheep ( Ovis aries) Milk Exosomal miRNAs Attenuate Dextran Sulfate Sodium-Induced Colitis in Mice via TLR4 and TRAF-1 Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21030-21040. [PMID: 39283309 DOI: 10.1021/acs.jafc.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Mammalian milk exosomal miRNAs play an important role in maintaining intestinal immune homeostasis and protecting epithelial barrier function, but the specific miRNAs and whether miRNA-mediated mechanisms are responsible for these benefits remain a matter of investigation. This study isolated sheep milk-derived exosomes (sheep MDEs), identifying the enriched miRNAs in sheep MDEs, oar-miR-148a, and oar-let-7b as key components targeting TLR4 and TRAF1, which was validated by a dual-luciferase reporter assay. In dextran sulfate sodium-induced colitis mice, administration of sheep MDEs alleviated colitis symptoms, reduced colonic inflammation, and systemic oxidative stress, as well as significantly increased colonic oar-miR-148a and oar-let-7b while reducing toll-like receptor 4 (TLR4) and TNF-receptor-associated factor 1 (TRAF1) level. Further characterization in TNF-α-challenged Caco-2 cells showed that overexpression of these miRNAs suppressed the TLR4/TRAF1-IκBα-p65 pathway and reduced IL-6 and IL-12 production. These findings indicate that sheep MDEs exert gastrointestinal anti-inflammatory effects through the miRNA-mediated modulation of TLR4 and TRAF1, highlighting their potential in managing colitis.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Ke Ren
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710000, China
| | - Lei Pan
- Tangdu Hospital, Air Force Military Medical University, Xi'an 710000, China
| | - Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Cendron F, Rosani U, Franzoi M, Boselli C, Maggi F, De Marchi M, Penasa M. Analysis of miRNAs in milk of four livestock species. BMC Genomics 2024; 25:859. [PMID: 39277740 PMCID: PMC11401297 DOI: 10.1186/s12864-024-10783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Milk is essential for mammalian nutrition because it provides vital nutrients for growth and development. Milk composition, which is influenced by genetic and environmental factors, supports lactation, a complex process crucial for milk production and quality. Recent research has focused on noncoding RNAs, particularly microRNAs (miRNAs), which are present in body fluids and regulate gene expression post-transcriptionally. This study comprehensively characterizes miRNAs in milk of four livestock species, namely Bubalus bubalis, Capra hircus, Equus asinus, and Ovis aries and identifies potential target genes. RESULTS High-throughput sequencing of milk RNA resulted in distinct read counts across species: B. bubalis (8,790,441 reads), C. hircus (12,976,275 reads), E. asinus (9,385,067 reads), and O. aries (7,295,297 reads). E. asinus had the highest RNA mapping rate (94.6%) and O. aries the lowest (84.8%). A substantially greater proportion of miRNAs over other small RNAs was observed for the donkey milk sample (7.74%) compared to buffalo (0.87%), goat (1.57%), and sheep (1.12%). Shared miRNAs, which included miR-200a, miR-200b, miR-200c, and miR-23a among others, showed varying expression levels across species, confirmed by qPCR analysis. Functional annotation of predicted miRNA target genes highlighted diverse roles, with an enrichment in functions linked to metabolism and immunity. Pathway analysis identified immune response pathways as significant, with several miRNAs targeting specific genes across species, suggesting their regulatory function in milk. CONCLUSIONS Both conserved and species-specific miRNAs were detected in milk of the investigated species. The identified target genes of these miRNAs have important roles in neonatal development, adaptation, growth, and immune response. Furthermore, they influence milk and meat production traits in livestock.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy.
| | - Umberto Rosani
- Department of Biology (DiBio), University of Padova, Viale Giuseppe Colombo 3, Padua, 35131, Italy
| | - Marco Franzoi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Carlo Boselli
- Istituto Zooprofilattico Sperimentale del Lazio E Della Toscana "M. Aleandri" - National Reference Centre for Ovine and Caprine Milk and Dairy Products Quality (C.Re.L.D.O.C.), Rome, 00178, Italy
| | - Flavio Maggi
- Azienda Sanitaria Locale, Roma 4, Distretto 4, Via G. Verdi 1, Rignano Flaminio, Rome, 00068, Italy
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| |
Collapse
|
7
|
Zeng M, Liu M, Tao X, Yin X, Shen C, Wang X. Emerging Trends in the Application of Extracellular Vesicles as Novel Oral Delivery Vehicles for Therapeutics in Inflammatory Diseases. Int J Nanomedicine 2024; 19:8573-8601. [PMID: 39185348 PMCID: PMC11345024 DOI: 10.2147/ijn.s475532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation involves complex immune responses where cytokines such as TNF-α, IL-1, and IL-6 promote vasodilation and increased vascular permeability to facilitate immune cell migration to inflammation sites. Persistent inflammation is linked to diseases like cancer, arthritis, and neurodegenerative disorders. Although oral anti-inflammatory drugs are favored for their non-invasiveness and cost-effectiveness, their efficacy is often compromised due to gastrointestinal degradation and limited bioavailability. Recent advancements highlight the potential of extracellular vesicles (EVs) as nanocarriers that enhance drug delivery by encapsulating therapeutic agents, ensuring targeted release and reduced toxicity. These EVs, derived from dietary sources and cell cultures, exhibit excellent biocompatibility and stability, presenting a novel approach in anti-inflammatory therapies. This review discusses the classification and advantages of orally administered EVs (O-EVs), their mechanism of action, and their emerging role in treating inflammatory conditions, positioning them as promising vectors in the development of innovative anti-inflammatory drug delivery systems.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
8
|
Mun D, Kang M, Shin M, Choi HJ, Kang AN, Ryu S, Unno T, Maburutse BE, Oh S, Kim Y. Alleviation of DSS-induced colitis via bovine colostrum-derived extracellular vesicles with microRNA let-7a-5p is mediated by regulating Akkermansia and β-hydroxybutyrate in gut environments. Microbiol Spectr 2023; 11:e0012123. [PMID: 37966243 PMCID: PMC10714758 DOI: 10.1128/spectrum.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Even though studying on the possible involvement of extracellular vesicles (EVs) in host-microbe interactions, how these relationships mediate host physiology has not clarified yet. Our current findings provide insights into the encouraging benefits of dietary source-derived EVs and microRNAs (miRNAs) on organic acid production and ultimately stimulating gut microbiome for human health, suggesting that supplementation of dietary colostrum EVs and miRNAs is a novel preventive strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, South Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - An Na Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Sangdon Ryu
- Division of Evironmental Meterials, Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Tatsuya Unno
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Brighton E. Maburutse
- Department of Animal Production Sciences, Marondera University of Agricultural Sciences & Technology, Marondera, Zimbabwe
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju, South Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Howe CG, Armstrong DA, Muse ME, Gilbert-Diamond D, Gui J, Hoen AG, Palys TJ, Barnaby RL, Stanton BA, Jackson BP, Christensen BC, Karagas MR. Periconceptional and Prenatal Exposure to Metals and Extracellular Vesicle and Particle miRNAs in Human Milk: A Pilot Study. EXPOSURE AND HEALTH 2023; 15:731-743. [PMID: 38074282 PMCID: PMC10707483 DOI: 10.1007/s12403-022-00520-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/30/2024]
Abstract
Human milk is a rich source of microRNAs (miRNAs), which can be transported by extracellular vesicles and particles (EVPs) and are hypothesized to contribute to maternal-offspring communication and child development. Environmental contaminant impacts on EVP miRNAs in human milk are largely unknown. In a pilot study of 54 mother-child pairs from the New Hampshire Birth Cohort Study, we examined relationships between five metals (arsenic, lead, manganese, mercury, and selenium) measured in maternal toenail clippings, reflecting exposures during the periconceptional and prenatal periods, and EVP miRNA levels in human milk. 798 miRNAs were profiled using the NanoString nCounter platform; 200 miRNAs were widely detectable and retained for downstream analyses. Metal-miRNA associations were evaluated using covariate-adjusted robust linear regression models. Arsenic exposure during the periconceptional and prenatal periods was associated with lower total miRNA content in human milk EVPs (PBonferroni < 0.05). When evaluating miRNAs individually, 13 miRNAs were inversely associated with arsenic exposure, two in the periconceptional period and 11 in the prenatal period (PBonferroni < 0.05). Other metal-miRNA associations were not statistically significant after multiple testing correction (PBonferroni ≥ 0.05). Many of the arsenic-associated miRNAs are involved in lactation and have anti-inflammatory properties in the intestine and tumor suppressive functions in breast cells. Our findings raise the possibility that periconceptional and prenatal arsenic exposure may reduce levels of multiple miRNAs in human milk EVPs. However, larger confirmatory studies, which can apply environmental mixture approaches, evaluate potential effect modifiers of these relationships, and examine possible downstream consequences for maternal and child health and breastfeeding outcomes, are needed.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - David A. Armstrong
- Department of Dermatology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
- Research Service, VA Medical Center, 215 N Main St, White River Junction, VT, USA
| | - Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, 6105 Sherman Fairchild Hall, Hanover, NH, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| |
Collapse
|
10
|
Zhang Y, Lin Y, He J, Song S, Luo Y, Lu Y, Chen S, Wang Q, Li Y, Ren F, Guo H. Milk-derived small extracellular vesicles: a new perspective on dairy nutrition. Crit Rev Food Sci Nutr 2023; 64:13225-13246. [PMID: 37819268 DOI: 10.1080/10408398.2023.2263573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Milk contains bioactive compounds that have multiple essential benefits. Milk-derived small extracellular vesicles (M-sEVs) have emerged as novel bioactive milk components with various beneficial biological functions and broad applications. The M-sEVs from different mammalian sources have similar composition and bioactive functions. The digestive stability and biocompatibility of the M-sEVs provide a good foundation for their physiological functions. Evidence suggests that M-sEVs promote intestinal, immune, bone, neural, liver, and heart health and show therapeutic effects against cancer, indicating their potential for use in functional foods. In addition, M-sEVs can be developed as natural delivery carriers owing to their superior structural characteristics. Further studies are needed to elucidate the relationship between the specific components and functions of M-sEVs, standardize their extraction processes, and refine relevant clinical trials to advance the future applications of M-sEVs. This review summarizes the structure and composition of M-sEVs isolated from different milk sources and discusses several common extraction methods. Since the introduction of M-sEVs for digestion and absorption, studies have been conducted on their biological functions. Furthermore, we outline the theoretical industrial production route, potential application scenarios of M-sEVs, and the future perspectives of M-sEV research.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Sijia Song
- Food Laboratory of Zhongyuan, Luohe, PR China
| | - Yujia Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | | | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
11
|
Yu W, Nan X, Schroyen M, Wang Y, Xiong B. Inulin-induced differences on serum extracellular vesicles derived miRNAs in dairy cows suffering from subclinical mastitis. Animal 2023; 17:100954. [PMID: 37690274 DOI: 10.1016/j.animal.2023.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
MicroRNA (miRNA) profiles vary with the nutritional and pathological conditions of cattle. In this study, we aimed to investigate the effects of inulin supplement on miRNA profiles derived from serum extracellular vesicles (EVs). Our goal was to determine the differences in miRNA expressions and analyse the pathways in which they are involved. Based on the results of California mastitis test and milk somatic cell counts, ten lactating cows with subclinical mastitis were randomly divided into two groups: an inulin group and a control group (n = 5 in each group). The inulin group received a daily supplement of 300 g of inulin while the control group did not receive any supplementation. After a 5-week treatment period, serum-derived EV-miRNAs from each cow were isolated. High-throughput sequencing was conducted to identify differentially expressed miRNAs. GO and KEGG bioinformatics analysis was performed to examine the target genes of these differentially expressed miRNAs. The EV-RNA concentration and small RNA content were not affected by the inulin treatment. A total of 162 known miRNAs and 180 novel miRNAs were identified from 10 samples in the two groups. Among the known miRNAs, 23 miRNAs were found to be differentially expressed between the two groups, with 18 upregulated and five downregulated in the inulin group compared to the control group. Pathway analysis revealed the involvement of these differentially expressed miRNAs in the regulation of cell structure and function, lipid oxidation and metabolism, immunity and inflammation, as well as digestion and absorption of nutrients. Overall, our study provides a molecular-level explanation for the reported beneficial health effects of inulin supplementation in cows with subclinical mastitis.
Collapse
Affiliation(s)
- W Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - X Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - M Schroyen
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Y Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - B Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
12
|
Zhong Y, Wang X, Zhao X, Shen J, Wu X, Gao P, Yang P, Chen J, An W. Multifunctional Milk-Derived Small Extracellular Vesicles and Their Biomedical Applications. Pharmaceutics 2023; 15:1418. [PMID: 37242660 PMCID: PMC10223436 DOI: 10.3390/pharmaceutics15051418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, small extracellular vesicles (sEVs) have been regarded as the next generation of novel delivery systems after lipid nanoparticles because of their advantages and huge prospects in drug delivery. Studies have shown that sEVs are abundant in milk and therefore can be a large and economical source of sEVs. Natural milk-derived small extracellular vesicles (msEVs) have important functions such as immune regulation, anti-bacterial infection, anti-oxidative, etc., and play a beneficial role in human health at multiple levels, including intestinal health, bone/muscle metabolism, and microbiota regulation. In addition, because they can pass the gastrointestinal barrier and have low immunogenicity, good biocompatibility, and stability, msEVs are considered a crucial oral drug delivery vehicle. Moreover, msEVs can be further engineered for targeted delivery to prolong the circulation time or enhance local drug concentrations. However, msEVs separation and purification, complex contents, and quality control hinder their application in drug delivery. This paper provides a comprehensive review of the biogenesis and characteristics, isolation and purification, composition, loading methods, and function of msEVs, based on which their applications in biomedical fields are further explored.
Collapse
Affiliation(s)
- Youxiu Zhong
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peifen Gao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peng Yang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 100083, China
| | - Wenlin An
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
13
|
Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M, He Q. The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 2023; 42:493-504. [PMID: 36857958 DOI: 10.1016/j.clnu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
During pregnancy and lactation, mothers provide not only nutrients, but also many bioactive components for their offspring through placenta and breast milk, which are essential for offspring development. Extracellular vesicles (EVs) are nanovesicles containing a variety of biologically active molecules and participate in the intercellular communication. In the past decade, an increasing number of studies have reported that maternal-derived EVs play a crucial role in offspring growth, development, and immune system establishment. Hereby, we summarized the characteristics of EVs; biological functions of maternal-derived EVs during pregnancy, including implantation, decidualization, placentation, embryo development and birth of offspring; biological function of breast milk-derived EVs (BMEs) on infant oral and intestinal diseases, immune system, neurodevelopment, and metabolism. In summary, emerging studies have revealed that maternal-derived EVs play a pivotal role in offspring health. As such, maternal-derived EVs may be used as promising biomarkers in offspring disease diagnosis and treatment. However, existing research on maternal-derived EVs and offspring health is largely limited to animal and cellular studies. Evidence from human studies is needed.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Gaolei Lu
- School of Public Health, Wuhan University, Wuhan, China
| | - Minjie Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongjie Yu
- School of Public Health, Wuhan University, Wuhan, China
| | - Miaobing Zheng
- School of Nutrition and Exercise, Deakin University, Melbourne, Australia
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Mecocci S, Trabalza-Marinucci M, Cappelli K. Extracellular Vesicles from Animal Milk: Great Potentialities and Critical Issues. Animals (Basel) 2022; 12:ani12233231. [PMID: 36496752 PMCID: PMC9740508 DOI: 10.3390/ani12233231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Other than representing the main source of nutrition for newborn mammals, milk delivers a sophisticated signaling system from mother to child that promotes postnatal health. The bioactive components transferred through the milk intake are important for the development of the newborn immune system and include oligosaccharides, lactoferrin, lysozyme, α-La, and immunoglobulins. In the last 15 years, a pivotal role in this mother-to-child exchange has been attributed to extracellular vesicles (EVs). EVs are micro- and nanosized structures enclosed in a phospholipidic double-layer membrane that are produced by all cell types and released in the extracellular environment, reaching both close and distant cells. EVs mediate the intercellular cross-talk from the producing to the receiving cell through the transfer of molecules contained within them such as proteins, antigens, lipids, metabolites, RNAs, and DNA fragments. The complex cargo can induce a wide range of functional modulations in the recipient cell (i.e., anti-inflammatory, immunomodulating, angiogenetic, and pro-regenerative modulations) depending on the type of producing cells and the stimuli that these cells receive. EVs can be recovered from every biological fluid, including blood, urine, bronchoalveolar lavage fluid, saliva, bile, and milk, which is one of the most promising scalable vesicle sources. This review aimed to present the state-of-the-art of animal-milk-derived EV (mEV) studies due to the exponential growth of this field. A focus on the beneficial potentialities for human health and the issues of studying vesicles from milk, particularly for the analytical methodologies applied, is reported.
Collapse
|
15
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
16
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
17
|
Schlemmer T, Lischka R, Wegner L, Ehlers K, Biedenkopf D, Koch A. Extracellular vesicles isolated from dsRNA-sprayed barley plants exhibit no growth inhibition or gene silencing in Fusarium graminearum. Fungal Biol Biotechnol 2022; 9:14. [PMID: 35836276 PMCID: PMC9284790 DOI: 10.1186/s40694-022-00143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/14/2022] [Indexed: 11/11/2022] Open
Abstract
Numerous reports have shown that incorporating a double-stranded RNA (dsRNA)-expressing transgene into plants or applying dsRNA by spraying it onto their leaves successfully protects them against invading pathogens exploiting the mechanism of RNA interference (RNAi). How dsRNAs or siRNAs are transferred between donor host cells and recipient fungal cells is largely unknown. It is speculated that plant extracellular vesicles (EVs) function as RNA shuttles between plants and their pathogens. Recently, we found that EVs isolated from host-induced gene silencing (HIGS) or spray-induced gene silencing (SIGS) plants contained dsRNA-derived siRNAs. In this study, we evaluated whether isolated EVs from dsRNA-sprayed barley (Hordeum vulgare) plants affected the growth of the phytopathogenic ascomycete Fusarium graminearum. Encouraged by our previous finding that dropping barley-derived EVs on F. graminearum cultures caused fungal stress phenotypes, we conducted an in vitro growth experiment in microtiter plates where we co-cultivated F. graminearum with plant EVs isolated from dsRNA-sprayed barley leaves. We observed that co-cultivation of F. graminearum macroconidia with barley EVs did not affect fungal growth. Furthermore, plant EVs containing SIGS-derived siRNA appeared not to affect F. graminearum growth and showed no gene silencing activity on F. graminearum CYP51 genes. Based on our findings, we concluded that either the amount of SIGS-derived siRNA was insufficient to induce target gene silencing in F. graminearum, indicating that the role of EVs in SIGS is minor, or that F. graminearum uptake of plant EVs from liquid cultures was inefficient or impossible.
Collapse
Affiliation(s)
- Timo Schlemmer
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.,Institute of Phytomedicine, University of Hohenheim, Otto-Sander-Strasse 5, 70599, Stuttgart, Germany
| | - Richard Lischka
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Linus Wegner
- Intitute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292, Giessen, Germany
| | - Katrin Ehlers
- Intitute of Botany, Justus Liebig University, Heinrich-Buff-Ring 38, 35292, Giessen, Germany
| | - Dagmar Biedenkopf
- Centre for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Aline Koch
- Institute of Phytomedicine, University of Hohenheim, Otto-Sander-Strasse 5, 70599, Stuttgart, Germany.
| |
Collapse
|
18
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
19
|
Extracellular Vesicles—Oral Therapeutics of the Future. Int J Mol Sci 2022; 23:ijms23147554. [PMID: 35886902 PMCID: PMC9315796 DOI: 10.3390/ijms23147554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Considered an artifact just after discovery, the possibility of oral delivery of extracellular vesicles (EVs) and their functional cargos has recently gained much research attention. EVs from various sources, including edible plants, milk, bacteria and mammalian cells, have emerged as a platform for miRNA and drug delivery that seem to induce the expected immune effects locally and in distant tissues after oral administration. Such a possibility greatly expands the clinical applicability of EVs. The present review summarizes research findings that either support or deny the biological/therapeutical activity of orally administered EVs and their role in cross-species and cross-kingdom signaling.
Collapse
|
20
|
Yan Q, Tian L, Chen W, Kang J, Tang S, Tan Z. Developmental Alterations of Colonic microRNA Profiles Imply Potential Biological Functions in Kid Goats. Animals (Basel) 2022; 12:ani12121533. [PMID: 35739870 PMCID: PMC9219484 DOI: 10.3390/ani12121533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
The colon is a crucial digestive organ of the hind gut in ruminants. The bacterial diversity and mucosal immune maturation in this region are related to age. However, whether the microRNA expression in the colon of goats is affected by age is still unclear. In the current study, we analyzed the transcriptomes of colon microRNAs during preweaning (Day 10 and Day 25) and postweaning (Day 31). A total of 1572 microRNAs were identified in the colon tissues. Of these, 39 differentially expressed microRNAs (DEmiRNAs) and 88 highly expressed microRNAs (HEmiRNAs) were screened. The target genes regulated by the DEmiRNAs and HEmiRNAs were commonly enriched in the MAPK signaling pathway, Wnt signaling pathway, Hippo signaling pathway, cell adhesion molecules, focal adhesion, and adherens junction. Remarkably, the targeted genes of the DEmiRNAs were highly enriched for the prevention of microbial invasion via the Erbb−MAPK network while the targeted genes of HEmiRNAs contributed to the permeable barrier maintenance and cell damage surveillance. Additionally, there were eight different expression profiles of 87 dynamic miRNAs, in which approximately half of them were affected by age. Taken together, our study reveals the different roles of DEmiRNAs, HEmiRNAs, and dynamic microRNAs in the development of the colon and gives new insights into the regulatory mechanism of colon development in goats.
Collapse
Affiliation(s)
- Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (L.T.); (W.C.); (J.K.); (Z.T.)
| | - Lina Tian
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (L.T.); (W.C.); (J.K.); (Z.T.)
| | - Wenxun Chen
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (L.T.); (W.C.); (J.K.); (Z.T.)
| | - Jinhe Kang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (L.T.); (W.C.); (J.K.); (Z.T.)
| | - Shaoxun Tang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (L.T.); (W.C.); (J.K.); (Z.T.)
- Correspondence:
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China; (Q.Y.); (L.T.); (W.C.); (J.K.); (Z.T.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| |
Collapse
|
21
|
Zhou F, Ebea P, Mutai E, Wang H, Sukreet S, Navazesh S, Dogan H, Li W, Cui J, Ji P, Ramirez DMO, Zempleni J. Small Extracellular Vesicles in Milk Cross the Blood-Brain Barrier in Murine Cerebral Cortex Endothelial Cells and Promote Dendritic Complexity in the Hippocampus and Brain Function in C57BL/6J Mice. Front Nutr 2022; 9:838543. [PMID: 35600828 PMCID: PMC9121399 DOI: 10.3389/fnut.2022.838543] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Human milk contains large amounts of small extracellular vesicles (sEVs) and their microRNA cargos, whereas infant formulas contain only trace amounts of sEVs and microRNAs. We assessed the transport of sEVs across the blood-brain barrier (BBB) and sEV accumulation in distinct regions of the brain in brain endothelial cells and suckling mice. We further assessed sEV-dependent gene expression profiles and effects on the dendritic complexity of hippocampal granule cells and phenotypes of EV depletion in neonate, juvenile and adult mice. The transfer of sEVs across the BBB was assessed by using fluorophore-labeled bovine sEVs in brain endothelial bEnd.3 monolayers and dual chamber systems, and in wild-type newborn pups fostered to sEV and cargo tracking (ECT) dams that express sEVs labeled with a CD63-eGFP fusion protein for subsequent analysis by serial two-photon tomography and staining with anti-eGFP antibodies. Effects of EVs on gene expression and dendritic architecture of granule cells was analyzed in hippocampi from juvenile mice fed sEV and RNA-depleted (ERD) and sEV and RNA-sufficient (ERS) diets by using RNA-sequencing analysis and Golgi-Cox staining followed by integrated neuronal tracing and morphological analysis of neuronal dendrites, respectively. Spatial learning and severity of kainic acid-induced seizures were assessed in mice fed ERD and ERS diets. bEnd.3 cells internalized sEVs by using a saturable transport mechanism and secreted miR-34a across the basal membrane. sEVs penetrated the entire brain in fostering experiments; major regions of accumulation included the hippocampus, cortex and cerebellum. Two hundred ninety-five genes were differentially expressed in hippocampi from mice fed ERD and ERS diets; high-confidence gene networks included pathways implicated in axon guidance and calcium signaling. Juvenile pups fed the ERD diet had reduced dendritic complexity of dentate granule cells in the hippocampus, scored nine-fold lower in the Barnes maze test of spatial learning and memory, and the severity of seizures was 5-fold higher following kainic acid administration in adult mice fed the ERD diet compared to mice fed the ERS diet. We conclude that sEVs cross the BBB and contribute toward optimal neuronal development, spatial learning and memory, and resistance to kainic acid-induced seizures in mice.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Pearl Ebea
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Shya Navazesh
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Haluk Dogan
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wenhao Li
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Denise M. O. Ramirez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
22
|
Abstract
Exosomes are natural nanoparticles that originate in the endocytic system. Exosomes play an important role in cell-to-cell communication by transferring RNAs, lipids, and proteins from donor cells to recipient cells or by binding to receptors on the recipient cell surface. The concentration of exosomes and the diversity of cargos are high in milk. Exosomes and their cargos resist degradation in the gastrointestinal tract and during processing of milk in dairy plants. They are absorbed and accumulate in tissues following oral administrations, cross the blood-brain barrier, and dietary depletion and supplementation elicit phenotypes. These features have sparked the interest of the nutrition and pharmacology communities for exploring milk exosomes as novel bioactive food compounds and for delivering drugs to diseased tissues. This review discusses the current knowledgebase, uncertainties, and controversies in these lines of scholarly endeavor and health research.
Collapse
Affiliation(s)
- Alice Ngu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Afsana Khanam
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
23
|
Sukreet S, Pereira Braga C, An TT, Adamec J, Cui J, Zempleni J. Ultrasonication of Milk Decreases the Content of Exosomes and MicroRNAs in an Exosome-Defined Rodent Diet. J Nutr 2022; 152:961-970. [PMID: 34982830 PMCID: PMC8970979 DOI: 10.1093/jn/nxab452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bovine milk exosomes (BMEs) harbor regulatory proteins, lipids, and microRNAs. Consumption of an exosome- and RNA-depleted (ERD) diet elicited phenotypes compared with controls fed an exosome- and RNA-sufficient (ERS) diet in mice. All other ingredients were identical in the diets. ERD and ERS diets were prepared by substituting ultrasonicated and nonultrasonicated milk, respectively, for casein in the AIN-93G formulation. OBJECTIVES The objective of this study was to assess the effect of ultrasonication of milk on exosome content and bioavailability, and cargo content. METHODS Bovine milk was ultrasonicated and exosomes were isolated by ultracentrifugation [ultrasonicated exosomes (USEs)]; controls were not ultrasonicated [nonultrasonicated exosomes (NSEs)]. Exosome count, size, and morphology were assessed using a nanoparticle tracker and electron microscopy. RNAs, lipids, and proteins were analyzed by RNA sequencing and MS. Intestinal transport, bioavailability, and distribution were measured by using fluorophore-labeled USEs and NSEs in Caco-2 cells, FHs 74 Int cells, and C57BL/6J mice (n = 3; age: 6-8 wk). RESULTS The exosome count was 76% ± 22% lower in USEs than in NSEs (P < 0.05). Ultrasonication caused a degradation of ≤100% of microRNAs. USEs and NSEs contained 145 and 332 unique lipid signatures, respectively (P < 0.05). We detected a total of 525 and 484 proteins in USEs and NSEs, respectively. The uptake of USEs decreased by 46% ± 30% and 40% ± 27% compared with NSEs in Caco-2 and FHs 74 Int cells, respectively (P < 0.05). The hepatic accumulation of USEs was 48% ± 28% lower than the accumulation of NSEs in mice (P < 0.05). CONCLUSIONS Ultrasonication of milk depletes bioavailable BMEs in studies of Caco-2 cells, FHs 74 Int cells, and C57BL/6J mice and causes a near-complete degradation of microRNA cargos.
Collapse
Affiliation(s)
- Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Thuy T An
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
24
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
25
|
Abstract
We assessed feasibility of analyzing exosomes and microRNA cargos in frozen human milk as a pre-requisite for epidemiological studies of milk exosomes. We collected milk from five mother-preterm infant dyads at 3 time points during postnatal hospital care for storage at -80°C. We purified exosomes by ultracentrifugation, probed marker proteins using immunoblots, assessed size and counts with a nanoparticle tracker, and quantified three microRNAs with quantitative PCR. Positive exosome marker proteins were detectable; β-casein was the only detectable contaminant. Exosome count and size trended to decrease from early to late samples (count: 2.3×109 ± 3.8×109 to 5.6×108 ± 9.7×108 exosomes/mL; size: 117 ± 25 to 92 ± 16 nm). Two microRNAs were detectable in early samples only; cycle threshold values equaled 28.7 ± 0.7 for miR-30d-5p and miR-125a-5p; miR-423-5p was not detectable. We conclude that the analysis of exosomes and quantification of microRNAs is feasible in human milk previously stored at -80°C.
Collapse
|
26
|
Mutai E, Ngu AKH, Zempleni J. Preliminary evidence that lectins in infant soy formula apparently bind bovine milk exosomes and prevent their absorption in healthy adults. BMC Nutr 2022; 8:7. [PMID: 35063038 PMCID: PMC8780320 DOI: 10.1186/s40795-022-00503-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Milk exosomes and their microRNA (miR) cargos are bioavailable. The content of exosomes and miRs is negligible in infant formulas compared to human milk, and dietary depletion of exosomes led to changes in bacterial communities and impaired gut health in juvenile mice. Adverse effects of formula feeding may be compounded by using soy formulas due to exosome binding by abundant lectins in that matrix. The purpose of this study was to assess the bioavailability of milk exosomes and their miR cargos added to soy formula in adults, as well as the potential role of soy lectins in exosome bioavailability.
Methods
Eleven healthy adults (6 men, 5 women) enrolled in this randomized crossover study. Participants consumed 1.0 l of soy formula without (SF) or with (SFE) bovine milk exosomes added. Concentration-time curves of six plasma miRs were analyzed using reverse transcription quantitative PCR. Lectin affinity chromatography was used to assess the binding of exosomes by soy lectins. Data were analyzed by using paired t test. P < 0.05 was considered statistically significant.
Results
Consumption of SF and SFE did not elicit postprandial increases in plasma miRs. Approximately 39% of bovine milk exosome particles were retained by lectin columns.
Conclusions
We conclude that fortification of soy formulas with milk exosomes, in the absence of removing lectins, is not a viable strategy for delivering bioavailable exosomes and their miR cargos. Lectins in soy formulas bind glycoprotein on the surfaces of milk exosomes, thereby preventing exosome absorption.
Trial registration
ISRCTN registry ID: 16329971. Retrospectively registered on February 7th, 2019.
Collapse
|
27
|
Ye T, Feng J, Cui M, Yang J, Wan X, Xie D, Liu J. LncRNA MIAT Services as a Noninvasive Biomarker for Diagnosis and Correlated with Immune Infiltrates in Breast Cancer. Int J Womens Health 2021; 13:991-1004. [PMID: 34712062 PMCID: PMC8548061 DOI: 10.2147/ijwh.s312714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Myocardial infarction associated transcript (MIAT) is identified as a long chain non-coding RNA (lncRNA), which was associated with myocardial infarction susceptibility. While intense efforts have been made to elucidate the relationship between MIAT and carcinogenesis, the tumor immunoreaction of MIAT remains elusive. Thus, this study aimed to investigate the role of MIAT in the immunoregulation of breast cancer (BC) and further explore the better clinical significance. Methods The differential expression of MIAT between BC and normal/adjacent tissues was compared using Wilcoxon rank sum test. The diagnostic and prognostic values of elevated MIAT expression in BC tissues were unveiled via receiver operating characteristic (ROC) analysis and KM-plotter analysis. Limma and edgeR package were used to identify differentially expressed genes (DEGs) and microRNAs (DEMs) from TCGA database respectively. A co-expression dataset was constructed to comprehensively understand the relationship between MIAT and DEGs based on the Pearson correlation coefficient. Furthermore, GO and KEGG analyses were conducted to predict the potential functions of MIAT. We next intersected immune-related genes (IRGs) from ImmPort database with MIAT-co-expressed genes to obtain MIAT-co-expressed IRGs, in order to construct MIAT-microRNA (miRNA)-mRNA network. And the correlation between MIAT and tumor-infiltrating immune cells (TICs) and immunophenoscore (IPS) analysis was analyzed by TIMER and CIBERSORT. Finally, the reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression profiles of MIAT in serum samples. Results The expression levels of MIAT were notably higher in BC than in normal or adjacent tissues. And MIAT expression could be used as a prognostic indicator of mortality risk in patients with BC in different aspects. Moreover, the enrichment analyses suggested that MIAT was strongly involved in BC immune response. In addition, TIMER database and CIBERSORT analyses indicated that MIAT was significantly correlated with 13 types of TICs (B cells, dendritic cells, neutrophils, CD8 T cells, CD4 memory resting T cells, CD4 memory activated T cells, gamma delta T cells, M1 macrophages, plasma cells, activated NK cells, monocytes, M2 macrophages, activated mast cells). Simultaneously, the IPS analysis implied that the higher the MIAT expression, the better the immunotherapy effect. The ROC curve analysis showed that the area under the curve (AUC) value of MIAT was 0.86 (sensitivity = 87.80%, specificity = 75.61%). And the high MIAT expression in serum was positive related to TNM stage (P = 0.032) and lymph node metastasis (P = 0.028). Conclusion MIAT may be a valuable noninvasive diagnostic biomarker for BC and is associated with tumor-infiltrating immune cells in tumor microenvironment, suggesting MIAT as a potential target for future treatment of BC.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Meng Cui
- Department of Laboratory Medicine, The Leshan People's Hospital, Luzhou, Sichuan, 614000, People's Republic of China
| | - Jia Yang
- Department of Laboratory Medicine, The Leshan People's Hospital, Luzhou, Sichuan, 614000, People's Republic of China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
28
|
Feng X, Chen X, Zheng X, Zhu H, Qi Q, Liu S, Zhang H, Che J. Latest Trend of Milk Derived Exosomes: Cargos, Functions, and Applications. Front Nutr 2021; 8:747294. [PMID: 34778341 PMCID: PMC8589029 DOI: 10.3389/fnut.2021.747294] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nanosized phospholipid bilayer vesicles released to the extracellular environment. Exosomes from various tissues or cells are being studied and there has been a growing interest in milk exosomes research due to their emerging role as messengers between cells and the fact that it can be produced in large quantities with rich source of milk. Milk derived exosomes (MDEs) contain lipids, microRNAs, proteins, mRNAs as well as DNA. Studies of exosome cargo have been conducted widely in many research areas, especially exosomal miRNAs. In this paper, we reviewed the current knowledge in isolation and identification, cargos, functions mainly in intestinal tract and immunity system of MDEs. Its application as drug carriers and diseases biomarker are also discussed. Furthermore, we also consider critical challenges of MDEs application and provide possible directions for future research.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaolin Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xucan Zheng
- Foshan Nanhai Poultry Breeding Co., Ltd., Foshan, China
| | - Hui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shen Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jianwei Che
- Department of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
29
|
Liu B, Li X, Yu H, Shi X, Zhou Y, Alvarez S, Naldrett MJ, Kachman SD, Ro SH, Sun X, Chung S, Jing L, Yu J. Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Am J Cancer Res 2021; 11:9311-9330. [PMID: 34646372 PMCID: PMC8490522 DOI: 10.7150/thno.60265] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome drives the development of many complex inflammatory diseases, such as obesity, Alzheimer's disease, and atherosclerosis. However, no medications specifically targeting the NLRP3 inflammasome have become clinically available. Therefore, we aim to identify new inhibitors of the NLRP3 inflammasome in this study. Methods: Vesicle-like nanoparticles (VLNs) were extracted from garlic chives and other Allium vegetables and their effects on the NLRP3 inflammasome were evaluated in primary macrophages. After garlic chive-derived VLNs (GC-VLNs) were found to exhibit potent anti-NLRP3 inflammasome activity in cell culture, such function was further assessed in a murine acute liver injury disease model, as well as in diet-induced obesity. Finally, GC-VLNs were subjected to omics analysis to identify the active components with anti-NLRP3 inflammasome function. Results: GC-VLNs are membrane-enclosed nanoparticles containing lipids, proteins, and RNAs. They dose-dependently inhibit pathways downstream of NLRP3 inflammasome activation, including caspase-1 autocleavage, cytokine release, and pyroptotic cell death in primary macrophages. The inhibitory effects of GC-VLNs on the NLRP3 inflammasome are specific, considering their marginal impact on activation of other inflammasomes. Local administration of GC-VLNs in mice alleviates NLRP3 inflammasome-mediated inflammation in chemical-induced acute liver injury. When administered orally or intravenously, GC-VLNs accumulate in specific tissues and suppress activation of the NLRP3 inflammasome and chronic inflammation in diet-induced obese mice. The phospholipid 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) in GC-VLNs has been identified to inhibit NLRP3 inflammasome activation. Conclusions: Identification of GC-VLNs and their active component DLPC as potent inflammasome inhibitors provides new therapeutic candidates in the treatment of NLRP3 inflammasome-driven diseases.
Collapse
|
30
|
Hu Y, Thaler J, Nieuwland R. Extracellular Vesicles in Human Milk. Pharmaceuticals (Basel) 2021; 14:1050. [PMID: 34681274 PMCID: PMC8539554 DOI: 10.3390/ph14101050] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Milk supports the growth and development of infants. An increasing number of mostly recent studies have demonstrated that milk contains a hitherto undescribed component called extracellular vesicles (EVs). This presents questions regarding why milk contains EVs and what their function is. Recently, we showed that EVs in human milk expose tissue factor, the protein that triggers coagulation or blood clotting, and that milk-derived EVs promote coagulation. Because bovine milk, which also contains EVs, completely lacks this coagulant activity, important differences are present in the biological functions of human milk-derived EVs between species. In this review, we will summarize the current knowledge regarding the presence and biochemical composition of milk EVs, their function(s) and potential clinical applications such as in probiotics, and the unique problems that milk EVs encounter in vivo, including survival of the gastrointestinal conditions encountered in the newborn. The main focus of this review will be human milk-derived EVs, but when available, we will also include information regarding non-human milk for comparison.
Collapse
Affiliation(s)
- Yong Hu
- Laboratory of Experimental Clinical Chemistry and Vesicle Observation Center, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Biomedical Engineering & Physics, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry and Vesicle Observation Center, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
31
|
Exosomes as a New Delivery Vehicle in Inflammatory Bowel Disease. Pharmaceutics 2021; 13:pharmaceutics13101644. [PMID: 34683937 PMCID: PMC8539337 DOI: 10.3390/pharmaceutics13101644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a type of chronic relapsing inflammatory disease. The pathogenesis of IBD is still unclear, which may involve environmental factors, genetic factors, intestinal microbiota disorder, and abnormal immune responses. Exosomes (30–150 nm) are found in various body fluids, including blood, saliva, urine, and cerebrospinal fluid. Exosomes mediate intercellular communication and regulate cell biological activity by carrying non-coding RNAs, proteins, and lipids. There is evidence that exosomes are involved in the pathogenesis of IBD. In view of the important roles of exosomes in the pathogenesis of IBD, this work systematically reviews the latest research progress of exosomes in IBD, especially the roles of exosomes as non-coding RNA delivery systems in the pathogenesis of IBD, including a disordered immune response, barrier function, and intestinal microbiota. The review will help to clarify the pathogenesis of IBD and explore new diagnostic markers and therapeutic targets for patients with IBD.
Collapse
|
32
|
Ong SL, Blenkiron C, Haines S, Acevedo-Fani A, Leite JAS, Zempleni J, Anderson RC, McCann MJ. Ruminant Milk-Derived Extracellular Vesicles: A Nutritional and Therapeutic Opportunity? Nutrients 2021; 13:2505. [PMID: 34444665 PMCID: PMC8398904 DOI: 10.3390/nu13082505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Milk has been shown to contain a specific fraction of extracellular particles that are reported to resist digestion and are purposefully packaged with lipids, proteins, and nucleic acids to exert specific biological effects. These findings suggest that these particles may have a role in the quality of infant nutrition, particularly in the early phase of life when many of the foundations of an infant's potential for health and overall wellness are established. However, much of the current research focuses on human or cow milk only, and there is a knowledge gap in how milk from other species, which may be more commonly consumed in different regions, could also have these reported biological effects. Our review provides a summary of the studies into the extracellular particle fraction of milk from a wider range of ruminants and pseudo-ruminants, focusing on how this fraction is isolated and characterised, the stability and uptake of the fraction, and the reported biological effects of these fractions in a range of model systems. As the individual composition of milk from different species is known to differ, we propose that the extracellular particle fraction of milk from non-traditional and minority species may also have important and distinct biological properties that warrant further study.
Collapse
Affiliation(s)
- Siew Ling Ong
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1051, New Zealand;
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1051, New Zealand
| | - Stephen Haines
- Beyond Food Innovation Centre of Excellence, AgResearch Ltd., Lincoln 7674, New Zealand;
| | - Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Juliana A. S. Leite
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Rachel C. Anderson
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| | - Mark J. McCann
- Smart Foods Innovation Centre of Excellence, Te Ohu Rangahau Kai, AgResearch Ltd., Massey University Campus, Palmerston North 4410, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand; (A.A.-F.); (J.A.S.L.)
| |
Collapse
|
33
|
Jiang X, You L, Zhang Z, Cui X, Zhong H, Sun X, Ji C, Chi X. Biological Properties of Milk-Derived Extracellular Vesicles and Their Physiological Functions in Infant. Front Cell Dev Biol 2021; 9:693534. [PMID: 34249944 PMCID: PMC8267587 DOI: 10.3389/fcell.2021.693534] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are released by all cells under pathological and physiological conditions. EVs harbor various biomolecules, including protein, lipid, non-coding RNA, messenger RNA, and DNA. In 2007, mRNA and microRNA (miRNA) carried by EVs were found to have regulatory functions in recipient cells. The biological function of EVs has since then increasingly drawn interest. Breast milk, as the most important nutritional source for infants, contains EVs in large quantities. An increasing number of studies have provided the basis for the hypothesis associated with information transmission between mothers and infants via breast milk-derived EVs. Most studies on milk-derived EVs currently focus on miRNAs. Milk-derived EVs contain diverse miRNAs, which remain stable both in vivo and in vitro; as such, they can be absorbed across different species. Further studies have confirmed that miRNAs derived from milk-derived EVs can resist the acidic environment and enzymatic hydrolysis of the digestive tract; moreover, they can be absorbed by intestinal cells in infants to perform physiological functions. miRNAs derived from milk EVs have been reported in the maturation of immune cells, regulation of immune response, formation of neuronal synapses, and development of metabolic diseases such as obesity and diabetes. This article reviews current status and advances in milk-derived EVs, including their history, biogenesis, molecular contents, and biological functions. The effects of milk-derived EVs on growth and development in both infants and adults were emphasized. Finally, the potential application and future challenges of milk-derived EVs were discussed, providing comprehensive understanding and new insight into milk-derived EVs.
Collapse
Affiliation(s)
- Xue Jiang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Lianghui You
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhenxing Zhang
- The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hong Zhong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingzhen Sun
- The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Chenbo Ji
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xia Chi
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
34
|
Zeng B, Wang H, Luo J, Xie M, Zhao Z, Chen X, Wang D, Sun J, Xi Q, Chen T, Zhang Y. Porcine Milk-Derived Small Extracellular Vesicles Promote Intestinal Immunoglobulin Production through pIgR. Animals (Basel) 2021; 11:ani11061522. [PMID: 34073819 PMCID: PMC8225040 DOI: 10.3390/ani11061522] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary As the irreplaceable nutrient source for young mammals, milk has a number of biological functions. Milk derived extracellular vesicles are a recently discovered component of milk and have potential regulatory effects on intestinal health and immunity. In this study, in vivo and in vitro experiments were performed to examine the effects of porcine milk small extracellular vesicles (PM-sEVs) on intestinal immunity. As a result, PM-sEVs promoted intestinal secretory immunoglobulin A (SIgA) levels, and increased the expression levels of the polymeric immunoglobulin receptor (pIgR) both in mice and piglet. We identified circ-XPO4 in PM-sEVs as a crucial circRNA, which promotes the expression of pIgR via the suppression of miR-221-5p in the intestinal cell. In conclusion, our research provides a new understanding of the nutritional physiology of porcine milk in intestinal immunity. Abstract Secretory immunoglobulin A (SIgA) plays an important role in gut acquired immunity and mucosal homeostasis. Breast milk is the irreplaceable nutritional source for mammals after birth. Current studies have shown the potential functional role of milk-derived small extracellular vesicles (sEVs) and their RNAs cargo in intestinal health and immune regulation. However, there is a lack of studies to demonstrate how milk-derived sEVs affect intestinal immunity in recipient. In this study, through in vivo experiments, we found that porcine milk small extracellular vesicles (PM-sEVs) promoted intestinal SIgA levels, and increased the expression levels of polymeric immunoglobulin receptor (pIgR) both in mice and piglet. We examined the mechanism of how PM-sEVs increased the expression level of pIgR in vitro by using a porcine small intestine epithelial cell line (IPEC-J2). Through bioinformatics analysis, dual-luciferase reporter assays, and overexpression or knockdown of the corresponding non-coding RNAs, we identified circ-XPO4 in PM-sEVs as a crucial circRNA, which leads to the expression of pIgR via the suppression of miR-221-5p in intestinal cells. Importantly, we also observed that oral administration of PM-sEVs increased the level of circ-XPO4 and decreased the level of miR-221-5p in small intestine of piglets, indicating that circRNAs in milk-derived sEVs act as sponge for miRNAs in recipients. This study, for the first time, reveals that PM-sEVs have a capacity to stimulate intestinal SIgA production by delivering circRNAs to receptors and sponging the recipient’s original miRNAs, and also provides valuable data for insight into the role and mechanism of animal milk sEVs in intestinal immunity.
Collapse
|
35
|
Chen X, Liu B, Li X, An TT, Zhou Y, Li G, Wu‐Smart J, Alvarez S, Naldrett MJ, Eudy J, Kubik G, Wilson RA, Kachman SD, Cui J, Yu J. Identification of anti-inflammatory vesicle-like nanoparticles in honey. J Extracell Vesicles 2021; 10:e12069. [PMID: 33613874 PMCID: PMC7879699 DOI: 10.1002/jev2.12069] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
Honey has been used as a nutrient, an ointment, and a medicine worldwide for many centuries. Modern research has demonstrated that honey has many medicinal properties, reflected in its anti-microbial, anti-oxidant, and anti-inflammatory bioactivities. Honey is composed of sugars, water and a myriad of minor components, including minerals, vitamins, proteins and polyphenols. Here, we report a new bioactive component‒vesicle-like nanoparticles‒in honey (H-VLNs). These H-VLNs are membrane-bound nano-scale particles that contain lipids, proteins and small-sized RNAs. The presence of plant-originated plasma transmembrane proteins and plasma membrane-associated proteins suggests the potential vesicle-like nature of these particles. H-VLNs impede the formation and activation of the nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome, which is a crucial inflammatory signalling platform in the innate immune system. Intraperitoneal administration of H-VLNs in mice alleviates inflammation and liver damage in the experimentally induced acute liver injury. miR-4057 in H-VLNs was identified in inhibiting NLRP3 inflammasome activation. Together, our studies have identified anti-inflammatory VLNs as a new bioactive agent in honey.
Collapse
Affiliation(s)
- Xingyi Chen
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Baolong Liu
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Xingzhi Li
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Thuy T. An
- Department of Computer Science and EngineeringUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - You Zhou
- Center for BiotechnologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Gang Li
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Judy Wu‐Smart
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Sophie Alvarez
- Nebraska Center for Biotechnology, University of Nebraska‐LincolnProteomics and Metabolomics FacilityNebraskaUSA
| | - Michael J. Naldrett
- Nebraska Center for Biotechnology, University of Nebraska‐LincolnProteomics and Metabolomics FacilityNebraskaUSA
| | - James Eudy
- Department of Genetics Cell Biology and AnatomyUniversity of Nebraska Medical Center, 985915 Nebraska Medical CenterOmahaNebraskaUSA
| | - Gregory Kubik
- Genomics Core Facility, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Richard A. Wilson
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Stephen D. Kachman
- Department of StatisticsUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Juan Cui
- Department of Computer Science and EngineeringUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Jiujiu Yu
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
36
|
Wani S, Man Law IK, Pothoulakis C. Role and mechanisms of exosomal miRNAs in IBD pathophysiology. Am J Physiol Gastrointest Liver Physiol 2020; 319:G646-G654. [PMID: 33026230 PMCID: PMC7792667 DOI: 10.1152/ajpgi.00295.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exosomes represent secretory membranous vesicles used for the information exchange between cells and organ-to-organ communication. Exosome crosstalk mechanisms are involved in the regulation of several inflammatory bowel disease (IBD)-associated pathophysiological intestinal processes such as barrier function, immune responses, and intestinal flora. Functional biomolecules, mainly noncoding RNAs (ncRNAs), are believed to be transmitted between the mammalian cells via exosomes that likely play important roles in cell-to-cell communication, both locally and systemically. MicroRNAs (miRNAs) encapsulated in exosomes have generated substantial interest because of their critical roles in multiple pathophysiological processes. In addition, exosomal miRNAs are implicated in the gut health. MiRNAs are selectively and actively loaded into the exosomes and then transferred to the target recipient cell where they manipulate cell function through posttranscriptional silencing of target genes. Intriguingly, miRNA profile of exosomes differs from their cellular counterparts suggesting an active sorting and packaging mechanism of exosomal miRNAs. Even more exciting is the involvement of posttranscriptional modifications in the specific loading of miRNAs into exosomes, but the underlying mechanisms of how these modifications direct ncRNA sorting have not been established. This review gives a brief overview of the status of exosomes and exosomal miRNAs in IBD and also discusses potential mechanisms of exosomal miRNA sorting and delivering.
Collapse
Affiliation(s)
- Sameena Wani
- Vatche and Tamar Manoukian Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Vatche and Tamar Manoukian Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
37
|
Zeng B, Chen T, Luo JY, Zhang L, Xi QY, Jiang QY, Sun JJ, Zhang YL. Biological Characteristics and Roles of Noncoding RNAs in Milk-Derived Extracellular Vesicles. Adv Nutr 2020; 12:1006-1019. [PMID: 33080010 PMCID: PMC8166544 DOI: 10.1093/advances/nmaa124] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have diverse roles in the transport of proteins, lipids, and nucleic acids between cells, and they serve as mediators of intercellular communication. Noncoding RNAs (ncRNAs) that are present in EVs, including microRNAs, long noncoding RNAs, and circular RNAs, have been found to participate in complex networks of interactions and regulate a wide variety of genes in animals. Milk is an important source of nutrition for humans and other mammals. Evidence suggests that milk-derived EVs contain abundant ncRNAs, which are stable and can be transported to the offspring and other consumers. Current data suggest a strong link between milk EV ncRNAs and many biological processes, and these ncRNAs have been drawing increasing attention and might play an epigenetic regulatory role in recipients, though further research is still necessary to understand their precise roles. The present review introduces basic information about milk EV ncRNAs, summarizes their expression profiles, biological characteristics, and functions based on current knowledge, and discusses their biological roles, indeterminate issues, and perspectives. Our goal is to provide a deeper understanding of the physiological effects of milk EV ncRNAs on offspring and to provide a reference for future research in this field.
Collapse
Affiliation(s)
- Bin Zeng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun-Yi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qian-Yun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing-Yan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | | | | |
Collapse
|