1
|
Mitsi V, Ruiz A, Polizu C, Farzinpour Z, Ramakrishnan A, Serafini RA, Parise EM, Floodstrand M, Sial OK, Gaspari S, Tang CY, Nestler EJ, Schmidt EF, Shen L, Zachariou V. RGS4 Actions in Mouse Prefrontal Cortex Modulate Behavioral and Transcriptomic Responses to Chronic Stress and Ketamine. Mol Pharmacol 2024; 105:272-285. [PMID: 38351270 PMCID: PMC10949159 DOI: 10.1124/molpharm.123.000753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/16/2024] [Indexed: 03/16/2024] Open
Abstract
The signal transduction protein, regulator of G protein signaling 4 (RGS4), plays a prominent role in physiologic and pharmacological responses by controlling multiple intracellular pathways. Our earlier work identified the dynamic but distinct roles of RGS4 in the efficacy of monoamine-targeting versus fast-acting antidepressants. Using a modified chronic variable stress (CVS) paradigm in mice, we demonstrate that stress-induced behavioral abnormalities are associated with the downregulation of RGS4 in the medial prefrontal cortex (mPFC). Knockout of RGS4 (RGS4KO) increases susceptibility to CVS, as mutant mice develop behavioral abnormalities as early as 2 weeks after CVS resting-state functional magnetic resonance imaging I (rs-fMRI) experiments indicate that stress susceptibility in RGS4KO mice is associated with changes in connectivity between the mediodorsal thalamus (MD-THL) and the mPFC. Notably, RGS4KO also paradoxically enhances the antidepressant efficacy of ketamine in the CVS paradigm. RNA-sequencing analysis of naive and CVS samples obtained from mPFC reveals that RGS4KO triggers unique gene expression signatures and affects several intracellular pathways associated with human major depressive disorder. Our analysis suggests that ketamine treatment in the RGS4KO group triggers changes in pathways implicated in synaptic activity and responses to stress, including pathways associated with axonal guidance and myelination. Overall, we show that reducing RGS4 activity triggers unique gene expression adaptations that contribute to chronic stress disorders and that RGS4 is a negative modulator of ketamine actions. SIGNIFICANCE STATEMENT: Chronic stress promotes robust maladaptation in the brain, but the exact intracellular pathways contributing to stress vulnerability and mood disorders have not been thoroughly investigated. In this study, the authors used murine models of chronic stress and multiple methodologies to demonstrate the critical role of the signal transduction modulator regulator of G protein signaling 4 in the medial prefrontal cortex in vulnerability to chronic stress and the efficacy of the fast-acting antidepressant ketamine.
Collapse
Affiliation(s)
- Vasiliki Mitsi
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Claire Polizu
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Zahra Farzinpour
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Madeline Floodstrand
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Omar K Sial
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Sevasti Gaspari
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Cheuk Y Tang
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Eric F Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience and Friedman Brain Institute (V.M., A.Ru., C.P., A.Ra., R.A.S., E.M.P. M.F., S.G., E.J.N., L.S.) and BioMedical Engineering and Imaging Institute (C.Y.T.), Icahn School of Medicine at Mount Sinai, New York, New York; University of Crete, Department of Basic Sciences, Crete, Greece (V.M.); Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts (Z.F., R.A.S., V.Z.); Department of Psychology, Texas A&M University, College Station, Texas (O.K.S.); and Laboratory of Molecular Biology, Rockefeller University, New York, New York (E.F.S.)
| |
Collapse
|
2
|
Datta D, Perone I, Morozov YM, Arellano J, Duque A, Rakic P, van Dyck CH, Arnsten AFT. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer's disease. Cereb Cortex 2023; 33:11501-11516. [PMID: 37874022 PMCID: PMC10724870 DOI: 10.1093/cercor/bhad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Isabella Perone
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jon Arellano
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alvaro Duque
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Amy F T Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
4
|
Hyun SA, Ko MY, Jang S, Lee BS, Rho J, Kim KK, Kim WY, Ka M. Bisphenol-A impairs synaptic formation and function by RGS4-mediated negative regulation of BDNF/NTRK2 signaling in the cerebral cortex. Dis Model Mech 2022; 15:276081. [PMID: 35781563 PMCID: PMC9346518 DOI: 10.1242/dmm.049177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Bisphenol-A (BPA) is a representative endocrine disruptor, widely used in a variety of products including plastics, medical equipment and receipts. Hence, most people are exposed to BPA via the skin, digestive system or inhalation in everyday life. Furthermore, BPA crosses the blood–brain barrier and is linked to multiple neurological dysfunctions found in neurodegenerative and neuropsychological disorders. However, the mechanisms underlying BPA-associated neurological dysfunctions remain poorly understood. Here, we report that BPA exposure alters synapse morphology and function in the cerebral cortex. Cortical pyramidal neurons treated with BPA showed reduced size and number of dendrites and spines. The density of excitatory synapses was also decreased by BPA treatment. More importantly, we found that BPA disrupted normal synaptic transmission and cognitive behavior. RGS4 and its downstream BDNF/NTRK2 pathway appeared to mediate the effect of BPA on synaptic and neurological function. Our findings provide molecular mechanistic insights into anatomical and physiological neurotoxic consequences related to a potent endocrine modifier. Summary: Bisphenol-A (BPA) disrupts normal synaptic transmission and cognitive behavior in mice. Rgs4 transcription factor and its downstream BDNF/NTRK2 pathway appear to mediate the effect of BPA on synaptic and neurological function.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kee K Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| |
Collapse
|
5
|
Mirabella F, Desiato G, Mancinelli S, Fossati G, Rasile M, Morini R, Markicevic M, Grimm C, Amegandjin C, Termanini A, Peano C, Kunderfranco P, di Cristo G, Zerbi V, Menna E, Lodato S, Matteoli M, Pozzi D. Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity 2021; 54:2611-2631.e8. [PMID: 34758338 PMCID: PMC8585508 DOI: 10.1016/j.immuni.2021.10.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Collapse
Affiliation(s)
- Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Sara Mancinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giuliana Fossati
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marco Rasile
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marija Markicevic
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Christina Grimm
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland
| | - Clara Amegandjin
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alberto Termanini
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, 20089 Rozzano, Milan, Italy; Genomic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatic Unit, Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Graziella di Cristo
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada; CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Valerio Zerbi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich 8057, Switzerland; Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich 8057, Switzerland
| | - Elisabetta Menna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy
| | - Simona Lodato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
6
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
7
|
Jeon JH, Oh TR, Park S, Huh S, Kim JH, Mai BK, Lee JH, Kim SH, Lee MJ. The Antipsychotic Drug Clozapine Suppresses the RGS4 Polyubiquitylation and Proteasomal Degradation Mediated by the Arg/N-Degron Pathway. Neurotherapeutics 2021; 18:1768-1782. [PMID: 33884581 PMCID: PMC8608952 DOI: 10.1007/s13311-021-01039-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Although diverse antipsychotic drugs have been developed for the treatment of schizophrenia, most of their mechanisms of action remain elusive. Regulator of G-protein signaling 4 (RGS4) has been reported to be linked, both genetically and functionally, with schizophrenia and is a physiological substrate of the arginylation branch of the N-degron pathway (Arg/N-degron pathway). Here, we show that the atypical antipsychotic drug clozapine significantly inhibits proteasomal degradation of RGS4 proteins without affecting their transcriptional expression. In addition, the levels of Arg- and Phe-GFP (artificial substrates of the Arg/N-degron pathway) were significantly elevated by clozapine treatment. In silico computational model suggested that clozapine may interact with active sites of N-recognin E3 ubiquitin ligases. Accordingly, treatment with clozapine resulted in reduced polyubiquitylation of RGS4 and Arg-GFP in the test tube and in cultured cells. Clozapine attenuated the activation of downstream effectors of G protein-coupled receptor signaling, such as MEK1 and ERK1, in HEK293 and SH-SY5Y cells. Furthermore, intraperitoneal injection of clozapine into rats significantly stabilized the endogenous RGS4 protein in the prefrontal cortex. Overall, these results reveal an additional therapeutic mechanism of action of clozapine: this drug posttranslationally inhibits the degradation of Arg/N-degron substrates, including RGS4. These findings imply that modulation of protein post-translational modifications, in particular the Arg/N-degron pathway, may be a novel molecular therapeutic strategy against schizophrenia.
Collapse
Affiliation(s)
- Jun Hyoung Jeon
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Tae Rim Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyoung Park
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunghoo Huh
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Hyeon Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jung Hoon Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Se Hyun Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
8
|
Song Z, Li F, He C, Yu J, Li P, Li Z, Yang M, Cheng S. In-depth transcriptomic analyses of LncRNA and mRNA expression in the hippocampus of APP/PS1 mice by Danggui-Shaoyao-San. Aging (Albany NY) 2020; 12:23945-23959. [PMID: 33221745 PMCID: PMC7762474 DOI: 10.18632/aging.104068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease with a high incidence worldwide, and with no medications currently able to prevent the progression of AD. Danggui-Shaoyao-San (DSS) is widely used in traditional Chinese medicine (TCM) and has been proven to be effective for memory and cognitive dysfunction, yet its precise mechanism remains to be delineated. The present study was designed to investigate the genome-wide expression profile of long non-coding RNAs (LncRNAs) and messenger RNAs (mRNAs) in the hippocampus of APP/PS1 mice after DSS treatment by RNA sequencing. A total of 285 differentially expressed LncRNAs and 137 differentially expressed mRNAs were identified (fold-change ≥2.0 and P < 0.05). Partial differentially expressed LncRNAs and mRNAs were selected to verify the RNA sequencing results by quantitative polymerase chain reaction (qPCR). A co-expression network was established to analyze co-expressed LncRNAs and genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to evaluate the biological functions related to the differentially co-expressed LncRNAs, and the results showed that the co-expressed LncRNAs were mainly involved in AD development from distinct origins, such as APP processing, neuron migration, and synaptic transmission. Our research describes the lncRNA and mRNA expression profiles and functional networks involved in the therapeutic effect of DSS in APP/PS1 mice model. The results suggest that the therapeutic effect of DSS on AD involves the expression of LncRNAs. Our findings provide a new perspective for research on the treatment of complex diseases using traditional Chinese medicine prescriptions.
Collapse
Affiliation(s)
- Zhenyan Song
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Fuzhou Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Chunxiang He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Jingping Yu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ping Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ze Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Miao Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| |
Collapse
|
9
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
10
|
The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:306-327. [PMID: 29309830 DOI: 10.1016/j.pnpbp.2017.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 12/13/2022]
Abstract
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets.
Collapse
|
11
|
Schwarz E. A gene-based review of RGS4 as a putative risk gene for psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 2018; 177:267-273. [PMID: 28544755 DOI: 10.1002/ajmg.b.32547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
Considerable efforts have been made to characterize RGS4 as a potential candidate gene for schizophrenia. Investigations span across numerous modalities and include explorations of genetic risk associations, mRNA and protein levels in the brain, and functionally relevant interactions with other candidate genes as well as links to schizophrenia relevant neural phenotypes. While these lines of investigations have yielded partially inconsistent findings, they provide a perspective on RGS4 as an important part of a larger biological system contributing to schizophrenia risk. This gene-based review aims to provide a comprehensive overview of published data from different experimental modalities and discusses the current knowledge of RGS4's systems-biological impact on the schizophrenia pathology.
Collapse
Affiliation(s)
- Emanuel Schwarz
- Medical Faculty Mannheim, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| |
Collapse
|
12
|
Abstract
Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of distributed neural network, including the circuitry of the dorsolateral prefrontal cortex (DLPFC). Accordingly, individuals diagnosed with schizophrenia show reduced DLPFC activation while performing working-memory tasks. This lower DLPFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower DLPFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. Studies using human postmortem brain tissue provide a robust way to investigate and characterize these cellular and circuitry alterations at multiple levels of resolution, and such studies provide essential information that cannot be obtained either through in vivo studies in humans or through experimental animal models. Studies examining neuronal morphology, protein expression and localization, and transcript levels indicate that a microcircuit composed of excitatory pyramidal cells and inhibitory interneurons containing the calcium-binding protein parvalbumin is altered in the DLPFC of subjects with schizophrenia and likely contributes to DLPFC dysfunction.
Collapse
Affiliation(s)
- Jill R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
13
|
Association between RGS4 variants and psychotic-like experiences in nonclinical individuals. Eur Arch Psychiatry Clin Neurosci 2017; 267:19-24. [PMID: 26910404 DOI: 10.1007/s00406-016-0676-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022]
Abstract
The psychosis phenotype is expressed across a continuum known as schizotypy, which ranges from personality variation through subclinical symptoms to severe psychopathology. The study of subclinical manifestations in non-affected individuals minimizes confounding factors associated with the clinical phenotype and facilitates the differentiation of dimension-specific etiological mechanisms. The aim of the present study was to investigate the association between the variation in the regulator of G-protein signaling 4 (RGS4) gene, a putative candidate gene for psychosis previously associated with schizophrenia endophenotypes, and psychotic-like experiences (PLEs). In total, 808 healthy individuals completed the community assessment of psychic experiences (CAPE) to measure positive and negative PLEs and provided a DNA sample. Two RGS4 single-nucleotide polymorphisms (SNPs) (rs951436 [SNP4] and rs2661319 [SNP18]) were genotyped. Analyses of covariance (ANCOVA) were used to explore the association of positive and negative PLEs with RGS4 variation. Our results showed associations of positive and negative PLEs with the two polymorphisms studied: subjects with the T allele (SNP4) and the A allele (SNP18) had higher scores on both the positive and the negative dimensions. Haplotypic analyses supported these results, showing the highest scores in those with the TA haplotype (SNP4-SNP18). The RGS4 variants might exert gene-specific modulating effects on psychosis proneness.
Collapse
|
14
|
Kimoto S, Glausier JR, Fish KN, Volk DW, Bazmi HH, Arion D, Datta D, Lewis DA. Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull 2016; 42:396-405. [PMID: 26424323 PMCID: PMC4753606 DOI: 10.1093/schbul/sbv139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-methyl-d-aspartate receptor (NMDAR) hypofunction in the dorsolateral prefrontal cortex (DLPFC) has been implicated in the pathology of schizophrenia. NMDAR activity is negatively regulated by some G protein-coupled receptors (GPCRs). Signaling through these GPCRs is reduced by Regulator of G protein Signaling 4 (RGS4). Thus, lower levels of RGS4 would enhance GPCR-mediated reductions in NMDAR activity and could contribute to NMDAR hypofunction in schizophrenia. In this study, we quantified RGS4 mRNA and protein levels at several levels of resolution in the DLPFC from subjects with schizophrenia and matched healthy comparison subjects. To investigate molecular mechanisms that could contribute to altered RGS4 levels, we quantified levels of small noncoding RNAs, known as microRNAs (miRs), which regulate RGS4 mRNA integrity after transcription. RGS4 mRNA and protein levels were significantly lower in schizophrenia subjects and were positively correlated across all subjects. The RGS4 mRNA deficit was present in pyramidal neurons of DLPFC layers 3 and 5 of the schizophrenia subjects. In contrast, levels of miR16 were significantly higher in the DLPFC of schizophrenia subjects, and higher miR16 levels predicted lower RGS4 mRNA levels. These findings provide convergent evidence of lower RGS4 mRNA and protein levels in schizophrenia that may result from increased expression of miR16. Given the role of RGS4 in regulating GPCRs, and consequently the strength of NMDAR signaling, these findings could contribute to the molecular substrate for NMDAR hypofunction in DLPFC pyramidal cells in schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA; Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David W Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - H Holly Bazmi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Dibyadeep Datta
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
15
|
Gerber KJ, Squires KE, Hepler JR. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity. Mol Pharmacol 2016; 89:273-86. [PMID: 26655302 PMCID: PMC4727123 DOI: 10.1124/mol.115.102210] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022] Open
Abstract
The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Kyle J Gerber
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - Katherine E Squires
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| | - John R Hepler
- Programs in Molecular and Systems Pharmacology (K.J.G., K.E.S., J.R.H.) and Neuroscience (J.R.H.), Department of Pharmacology (K.J.G., K.E.S., J.R.H.), Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
RGS4 is involved in the generation of abnormal involuntary movements in the unilateral 6-OHDA-lesioned rat model of Parkinson's disease. Neurobiol Dis 2014; 70:138-48. [PMID: 24969021 DOI: 10.1016/j.nbd.2014.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022] Open
Abstract
Regulators of G-protein signalling (RGS) proteins are implicated in striatal G-protein coupled receptor (GPCR) sensitisation in the pathophysiology of l-DOPA-induced abnormal involuntary movements (AIMs), also known as dyskinesia (LID), in Parkinson's disease (PD). In this study, we investigated RGS protein subtype 4 in the expression of AIMs in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of LID. The effects of RGS4 antisense brain infusion on the behavioural and molecular correlates of l-DOPA priming in 6-OHDA-lesioned rats were assessed. In situ hybridisation revealed that repeated l-DOPA/benserazide treatment caused an elevation of RGS4 mRNA levels in the striatum, predominantly in the lateral regions. The increased expression of RGS4 mRNA in the rostral striatum was found to positively correlate with the behavioural (AIM scores) and molecular (pre-proenkephalin B, PPE-B expression) markers of LID. We found that suppressing the elevation of RGS4 mRNA in the striatum by continuous infusion of RGS4 antisense oligonucleotides, via implanted osmotic mini-pumps, during l-DOPA priming, reduced the induction of AIMs. Moreover, ex vivo analyses of the rostral dorsolateral striatum showed that RGS4 antisense infusion attenuated l-DOPA-induced elevations of PPE-B mRNA and dopamine-stimulated [(35)S]GTPγS binding, a marker used for measuring dopamine receptor super-sensitivity. Taken together, these data suggest that (i) RGS4 proteins play an important pathophysiological role in the development and expression of LID and (ii) suppressing the elevation of RGS4 mRNA levels in l-DOPA priming attenuates the associated pathological changes in LID, dampening its physiological expression. Thus, modulating RGS4 proteins could prove beneficial in the treatment of dyskinesia in PD.
Collapse
|
17
|
Arnsten AFT, Jin LE. Molecular influences on working memory circuits in dorsolateral prefrontal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:211-31. [PMID: 24484703 DOI: 10.1016/b978-0-12-420170-5.00008-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The working memory circuits of the primate dorsolateral prefrontal cortex (dlPFC) are modulated in a unique manner, often opposite to the molecular mechanisms needed for long-term memory consolidation. Working memory, our "mental sketch pad" is an ephemeral process, whereby transient, mental representations form the foundation for abstract thought. The microcircuits that generate mental representations are found in deep layer III of the dlPFC, where pyramidal cells excite each other to keep information "in mind" through NMDA receptor synapses on spines. The catecholaminergic and cholinergic arousal systems have rapid and flexible influences on the strength of these connections, thus allowing coordination between arousal and cognitive states. These modulators can rapidly weaken connectivity, for example, as occurs during uncontrollable stress, via feedforward calcium-cAMP signaling opening potassium (K(+)) channels near synapses on spines. Lower levels of calcium-cAMP-K(+) channel signaling provide negative feedback within recurrent excitatory circuits, and help to gate inputs to shape the contents of working memory. There are also explicit mechanisms to inhibit calcium-cAMP signaling and strengthen connectivity, for example, postsynaptic α2A-adrenoceptors on spines. This work has led to the development of the α2A agonist, guanfacine, for the treatment of a variety of dlPFC disorders. In mental illness, there are a variety of genetic insults to the molecules that normally serve to inhibit calcium-cAMP signaling in spines, thus explaining why so many genetic insults can lead to the same phenotype of impaired dlPFC cognitive function. Thus, the molecular mechanisms that provide mental flexibility may also confer vulnerability when dysregulated in cognitive disorders.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lu E Jin
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Li SJ, Li Y, Cui SC, Qi Y, Zhao JJ, Liu XY, Xu P, Chen XH. Splicing factor transformer-2β (Tra2β) regulates the expression of regulator of G protein signaling 4 (RGS4) gene and is induced by morphine. PLoS One 2013; 8:e72220. [PMID: 23977258 PMCID: PMC3747076 DOI: 10.1371/journal.pone.0072220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022] Open
Abstract
Regulator of G protein signaling 4 (RGS4) is a critical modulator of G protein-coupled receptor (GPCR)-mediated signaling and plays important roles in many neural process and diseases. Particularly, drug-induced alteration in RGS4 protein levels is associated with acute and chronic effects of drugs of abuse. However, the precise mechanism underlying the regulation of RGS4 expression is largely unknown. Here, we demonstrated that the expression of RGS4 gene was subject to regulation by alternative splicing of the exon 6. Transformer-2β (Tra2β), an important splicing factor, bound to RGS4 mRNA and increased the relative level of RGS4-1 mRNA isoform by enhancing the inclusion of exon 6. Meanwhile, Tra2β increased the expression of full-length RGS4 protein. In rat brain, Tra2β was co-localized with RGS4 in multiple opioid action-related brain regions. In addition, the acute and chronic morphine treatment induced alteration in the expression level of Tra2β in rat locus coerulus (LC) in parallel to that of RGS4 proteins. It suggests that induction of this splicing factor may contribute to the change of RGS4 level elicited by morphine. Taken together, the results provide the evidence demonstrating the function of Tra2β as a new mediator in opioid-induced signaling pathway via regulating RGS4 expression.
Collapse
Affiliation(s)
- Shu-Jing Li
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Laboratory of Genomic Physiology and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ya Li
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shi-chao Cui
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Qi
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jing-Jing Zhao
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiao-Yan Liu
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xian-Hua Chen
- State Key Laboratory of Medical Neurobiology and Department of Neurobiology,School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Laboratory of Genomic Physiology and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
19
|
Bastin G, Heximer SP. Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013; 288:21836-49. [PMID: 23733193 DOI: 10.1074/jbc.m113.466888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
20
|
Arnsten AFT, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 2012; 76:223-39. [PMID: 23040817 PMCID: PMC3488343 DOI: 10.1016/j.neuron.2012.08.038] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2012] [Indexed: 12/26/2022]
Abstract
This review describes unique neuromodulatory influences on working memory prefrontal cortical (PFC) circuits that coordinate cognitive strength with arousal state. Working memory arises from recurrent excitation within layer III PFC pyramidal cell NMDA circuits, which are afflicted in aging and schizophrenia. Neuromodulators rapidly and flexibly alter the efficacy of these synaptic connections, while leaving the synaptic architecture unchanged, a process called dynamic network connectivity (DNC). Increases in calcium-cAMP signaling open ion channels in long, thin spines, gating network connections. Inhibition of calcium-cAMP signaling by stimulating α2A-adrenoceptors on spines strengthens synaptic efficacy and increases network firing, whereas optimal stimulation of dopamine D1 receptors sculpts network inputs to refine mental representation. Generalized increases in calcium-cAMP signaling during fatigue or stress disengage dlPFC recurrent circuits, reduce firing and impair top-down cognition. Impaired DNC regulation contributes to age-related cognitive decline, while genetic insults to DNC proteins are commonly linked to schizophrenia.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale Medical School, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
21
|
Arnsten AFT. Prefrontal cortical network connections: key site of vulnerability in stress and schizophrenia. Int J Dev Neurosci 2011; 29:215-23. [PMID: 21345366 PMCID: PMC3115784 DOI: 10.1016/j.ijdevneu.2011.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 01/01/2023] Open
Abstract
The symptoms of schizophrenia involve profound dysfunction of the prefrontal cortex (PFC). PFC networks create our "mental sketch pad", and PFC dysfunction contributes to symptoms such as cognitive deficits, thought disorder, delusions and hallucinations. Neuropathological studies of schizophrenia have shown marked loss of dendritic spines in deep layer III, the sublayer where PFC microcircuits reside. The microcircuits consist of recurrent excitatory pyramidal cell networks that interconnect on spines, and excite each other via NMDA receptor signaling. The pyramidal cell persistent firing is sculpted by lateral inhibition from GABAergic basket and chandelier cells, thus creating tuned, persistent firing needed for accurate representational knowledge (i.e., working memory). The strength of pyramidal cell network connections is markedly and flexibly altered by intracellular signaling pathways in dendritic spines, a process called dynamic network connectivity (DNC). DNC proteins such as HCN channels are concentrated on dendritic spines in deep layer III. Under optimal conditions, network inputs to pyramidal cells are strengthened by noradrenergic alpha-2A inhibition of cAMP-HCN channel signaling, and sculpted by dopamine D1-cAMP-HCN channel weakening of inappropriate inputs. However, with stress exposure, high levels of cAMP-HCN channel signaling produces a collapse in network firing. With chronic stress exposure, spines reduce in size and are lost, and this process involves increased PKC signaling. Importantly, molecules that normally strengthen PFC networks connections and/or reverse the stress response, are often genetically altered in schizophrenia. As exposure to stress is a key factor in the precipitation of schizophrenic symptoms, these dysregulated signaling pathways in deep layer III may interact with already vulnerable circuitry to cause spine loss and the descent into illness.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale Medical School, 333 Cedar St., New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Volk DW, Eggan SM, Lewis DA. Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia. Am J Psychiatry 2010; 167:1489-98. [PMID: 20889653 PMCID: PMC2997877 DOI: 10.1176/appi.ajp.2010.10030318] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Certain cognitive deficits in individuals with schizophrenia have been linked to disturbed gamma-aminobutyric acid (GABA) and glutamate neurotrans-mission in the prefrontal cortex. Thus, it is important to understand how the mechanisms that regulate GABA and glutamate neurotransmission are altered in schizophrenia. For example, group I metabo-tropic glutamate receptors (mGluR1α, mGluR5) modulate both GABA and gluta-mate systems. In addition, regulator of G protein signaling 4 (RGS4) reduces intra-cellular signaling through several different G protein-coupled receptors, including group I mGluRs. Finally, the endocannabinoid system plays an important role in regulating GABA and glutamate neurotrans-mission. The status of endocannabinoid ligands, such as 2-arachidonoylglycerol, can be inferred in part through measures of diacylglycerol lipase and monoglyceride lipase, which synthesize and degrade 2-arachidonoylglycerol, respectively. METHOD Quantitative polymerase chain reaction was used to measure mRNA levels for group I mGluRs, RGS4, and markers of the endocannabinoid system in the prefrontal cortex Brodmann's area 9 of 42 schizophrenia subjects and matched normal comparison subjects. Similar analyses in monkeys chronically exposed to haloperidol, olanzapine, or placebo were also conducted. RESULTS Schizophrenia subjects had higher mRNA levels for mGluR1α and lower mRNA levels for RGS4, and these differences did not appear to be attributable to antipsychotic medications or other potential confounds. In contrast, no differences between subject groups were found in mRNA levels for endocannabinoid synthesizing and metabolizing enzymes. CONCLUSIONS Together, higher mGluR1α and lower RGS4 mRNA levels may represent a disturbed "molecular hub" in schizophrenia that may disrupt the function of prefrontal cortical networks, including both GABA and glutamate systems.
Collapse
Affiliation(s)
- David W. Volk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Stephen M. Eggan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - David A. Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
23
|
Rivero G, Gabilondo AM, García-Sevilla JA, La Harpe R, Morentín B, Javier Meana J. Characterization of regulators of G-protein signaling RGS4 and RGS10 proteins in the postmortem human brain. Neurochem Int 2010; 57:722-9. [DOI: 10.1016/j.neuint.2010.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
|
24
|
Arnsten AFT, Paspalas CD, Gamo NJ, Yang Y, Wang M. Dynamic Network Connectivity: A new form of neuroplasticity. Trends Cogn Sci 2010; 14:365-75. [PMID: 20554470 PMCID: PMC2914830 DOI: 10.1016/j.tics.2010.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 01/31/2023]
Abstract
Prefrontal cortical (PFC) working memory functions depend on pyramidal cell networks that interconnect on dendritic spines. Recent research has revealed that the strength of PFC network connections can be rapidly and reversibly increased or decreased by molecular signaling events within slender, elongated spines: a process we term Dynamic Network Connectivity (DNC). This newly discovered form of neuroplasticity provides great flexibility in mental state, but also confers vulnerability and limits mental capacity. A remarkable number of genetic and/or environmental insults to DNC signaling cascades are associated with cognitive disorders such as schizophrenia and age-related cognitive decline. These insults can dysregulate network connections and erode higher cognitive abilities, leading to symptoms such as forgetfulness, susceptibility to interference, and disorganized thought and behavior.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department Neurobiology, Yale Medical School, 333 Cedar St., New Haven, CT 06510, USA.
| | | | | | | | | |
Collapse
|
25
|
Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 2009; 10:410-22. [PMID: 19455173 DOI: 10.1038/nrn2648] [Citation(s) in RCA: 1845] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prefrontal cortex (PFC) - the most evolved brain region - subserves our highest-order cognitive abilities. However, it is also the brain region that is most sensitive to the detrimental effects of stress exposure. Even quite mild acute uncontrollable stress can cause a rapid and dramatic loss of prefrontal cognitive abilities, and more prolonged stress exposure causes architectural changes in prefrontal dendrites. Recent research has begun to reveal the intracellular signalling pathways that mediate the effects of stress on the PFC. This research has provided clues as to why genetic or environmental insults that disinhibit stress signalling pathways can lead to symptoms of profound prefrontal cortical dysfunction in mental illness.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|