1
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of Differential Sublaminar Feedforward Inhibitory Circuits in CA1 Hippocampus Requires Satb2. J Neurosci 2025; 45:e0737242024. [PMID: 39753301 PMCID: PMC11841754 DOI: 10.1523/jneurosci.0737-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif. We found that the transcriptional regulator SATB2, which is necessary for pyramidal cell differentiation in the neocortex, is selectively expressed in superficial PCs during early postnatal development. To investigate its role in CA1, we conditionally knocked out Satb2 from pyramidal cells during embryonic development using both male and female Emx1IRES-Cre; Satb2flox/flox mice. Loss of Satb2 resulted in increased feedforward inhibition of CA3 Schaffer collateral input to superficial PCs, which matched that observed to deep PCs in control mice. Using paired whole-cell recordings between PCs and PV+ interneurons, we found this was due to an increase in the strength of unitary inhibitory synaptic connections from PV+ interneurons to mutant superficial PCs. Regulation of synapse strength was restricted to inhibitory synapses; excitatory synaptic connections from CA3 to CA1 PCs and CA1 PCs to PV+ interneurons were not affected by loss of Satb2 Finally, we show that SATB2 expression in superficial PCs is necessary to suppress the formation of synapses from PV+ interneurons during synaptogenesis. Thus, early postnatal expression of SATB2 in superficial PCs is necessary for the development of biased feedforward inhibition in CA1.
Collapse
Affiliation(s)
- Meretta A Hanson
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Noor Bibi
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alireza Safa
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Devipriyanka Nagarajan
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Alec H Marshall
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Aidan C Johantges
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
2
|
Hanson MA, Bibi N, Safa A, Nagarajan D, Marshall AH, Johantges AC, Wester JC. Development of differential sublaminar feedforward inhibitory circuits in CA1 hippocampus requires Satb2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576902. [PMID: 38328190 PMCID: PMC10849736 DOI: 10.1101/2024.01.23.576902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying PC differentiation and the development of this inhibitory circuit motif. We found that expression of the transcriptional regulator SATB2 is biased towards superficial PCs during early postnatal development and necessary to suppress PV+ interneuron synapse formation. In the absence of SATB2, the number of PV+ interneuron synaptic puncta surrounding superficial PCs increases during development to match deep PCs. This results in equivalent inhibitory current strength observed in paired whole-cell recordings, and equivalent feedforward inhibition of Schaffer collateral input. Thus, SATB2 is necessary for superficial PC differentiation and biased feedforward inhibition in CA1.
Collapse
|
3
|
Plateau V, Baufreton J, Le Bon-Jégo M. Age-Dependent Modulation of Layer V Pyramidal Neuron Excitability in the Mouse Primary Motor Cortex by D1 Receptor Agonists and Antagonists. Neuroscience 2024; 536:21-35. [PMID: 37952579 DOI: 10.1016/j.neuroscience.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The primary motor cortex (M1) receives dopaminergic (DAergic) projections from the midbrain which play a key role in modulating motor and cognitive processes, such as motor skill learning. However, little is known at the level of individual neurons about how dopamine (DA) and its receptors modulate the intrinsic properties of the different neuronal subpopulations in M1 and if this modulation depends on age. Using immunohistochemistry, we first mapped the cells expressing the DA D1 receptor across the different layers in M1, and quantified the number of pyramidal neurons (PNs) expressing the D1 receptor in the different layers, in young and adult mice. This work reveals that the spatial distribution and the molecular profile of D1 receptor-expressing neurons (D1+) across M1 layers do not change with age. Then, combining whole-cell patch-clamp recordings and pharmacology, we explored ex vivo in young and adult mice the impact of activation or blockade of D1 receptors on D1+ PN intrinsic properties. While the bath application of the D1 receptor agonist induced an increase in the excitability of layer V PNs both in young and adult, we identified a distinct modulation of intrinsic electrical properties of layer V D1+ PNs by D1 receptor antagonist depending on the age of the animal.
Collapse
Affiliation(s)
- Valentin Plateau
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France
| | - Morgane Le Bon-Jégo
- Université de Bordeaux, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France; CNRS UMR 5293, Institut des Maladies Neurodégénératives, 33076 Bordeaux, France.
| |
Collapse
|
4
|
Bilgic Eltan S, Nain E, Catak MC, Ezen E, Sefer AP, Karimi N, Kiykim A, Kolukisa B, Baser D, Bulutoglu A, Kasap N, Yorgun Altunbas M, Yalcin Gungoren E, Kendir Demirkol Y, Kutlug S, Hancioglu G, Dilek F, Yildiran A, Ozen A, Karakoc-Aydiner E, Erman B, Baris S. Evaluation of Clinical and Immunological Alterations Associated with ICF Syndrome. J Clin Immunol 2023; 44:26. [PMID: 38129713 DOI: 10.1007/s10875-023-01620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Immunodeficiency with centromeric instability and facial anomalies (ICF) syndrome is a rare autosomal recessive combined immunodeficiency. The detailed immune responses are not explored widely. We investigated known and novel immune alterations in lymphocyte subpopulations and their association with clinical symptoms in a well-defined ICF cohort. METHODS We recruited the clinical findings from twelve ICF1 and ICF2 patients. We performed detailed immunological evaluation, including lymphocyte subset analyses, upregulation, and proliferation of T cells. We also determined the frequency of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes by flow cytometry. RESULTS There were ten ICF1 and two ICF2 patients. We identified two novel homozygous missense mutations in the ZBTB24 gene. Respiratory tract infections were the most common recurrent infections among the patients. Gastrointestinal system (GIS) involvements were observed in seven patients. All patients received intravenous immunoglobulin replacement therapy and antibacterial prophylaxis; two died during the follow-up period. Immunologically, CD4+ T-cell counts, percentages of recent thymic emigrant T cells, and naive CD4+ T decreased in two, five, and four patients, respectively. Impaired T-cell proliferation and reduced CD25 upregulation were detected in all patients. These changes were more prominent in CD8+ T cells. GIS involvements negatively correlated with CD3+ T-, CD3+CD4+ T-, CD16+CD56+ NK-cell counts, and CD4+/CD8+ T-cell ratios. Further, we observed expanded cTFH cells and reduced Treg and follicular regulatory T cells with a skewing to a TH2-like phenotype in all tested subpopulations. CONCLUSION The ICF syndrome encompasses various manifestations affecting multiple end organs. Perturbed T-cell responses with increased cTFH and decreased Treg cells may provide further insight into the immune aberrations observed in ICF syndrome.
Collapse
Affiliation(s)
- Sevgi Bilgic Eltan
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Ercan Nain
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Mehmet Cihangir Catak
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Ege Ezen
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Asena Pınar Sefer
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Nastaran Karimi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Burcu Kolukisa
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Dilek Baser
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Alper Bulutoglu
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Nurhan Kasap
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Ezgi Yalcin Gungoren
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Yasemin Kendir Demirkol
- Division of Pediatric Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Seyhan Kutlug
- Division of Pediatric Immunology and Allergy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gonca Hancioglu
- Division of Pediatric Immunology and Allergy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Fatih Dilek
- Department of Pediatrics, Faculty of Medicine, Atlas University, Istanbul, Turkey
| | - Alisan Yildiran
- Division of Pediatric Immunology and Allergy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmet Ozen
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| | - Safa Baris
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey.
- Pediatric Allergy and Immunology, Marmara University Hospital, Istanbul, Turkey.
| |
Collapse
|
5
|
Ventresca C, Mohamed W, Russel WA, Ay A, Ingram KK. Machine learning analyses reveal circadian clock features predictive of anxiety among UK biobank participants. Sci Rep 2023; 13:22304. [PMID: 38102312 PMCID: PMC10724169 DOI: 10.1038/s41598-023-49644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Mood disorders, including depression and anxiety, affect almost one-fifth of the world's adult population and are becoming increasingly prevalent. Mutations in circadian clock genes have previously been associated with mood disorders both directly and indirectly through alterations in circadian phase, suggesting that the circadian clock influences multiple molecular pathways involved in mood. By targeting previously identified single nucleotide polymorphisms (SNPs) that have been implicated in anxiety and depressive disorders, we use a combination of statistical and machine learning techniques to investigate associations with the generalized anxiety disorder assessment (GAD-7) scores in a UK Biobank sample of 90,882 individuals. As in previous studies, we observed that females exhibited higher GAD-7 scores than males regardless of genotype. Interestingly, we found no significant effects on anxiety from individual circadian gene variants; only circadian genotypes with multiple SNP variants showed significant associations with anxiety. For both sexes, severe anxiety is associated with a 120-fold increase in odds for individuals with CRY2_AG(rs1083852)/ZBTB20_TT(rs1394593) genotypes and is associated with a near 40-fold reduction in odds for individuals with PER3-A_CG(rs228697)/ZBTB20_TT(rs1394593) genotypes. We also report several sex-specific associations with anxiety. In females, the CRY2/ZBTB20 genotype combination showed a > 200-fold increase in odds of anxiety and PER3/ZBTB20 and CRY1 /PER3-A genotype combinations also appeared as female risk factors. In males, CRY1/PER3-A and PER3-B/ZBTB20 genotype combinations were associated with anxiety risk. Mediation analysis revealed direct associations of CRY2/ZBTB20 variant genotypes with moderate anxiety in females and CRY1/PER3-A variant genotypes with severe anxiety in males. The association of CRY1/PER3-A variant genotypes with severe anxiety in females was partially mediated by extreme evening chronotype. Our results reinforce existing findings that females exhibit stronger anxiety outcomes than males, and provide evidence for circadian gene associations with anxiety, particularly in females. Our analyses only identified significant associations using two-gene combinations, underscoring the importance of combined gene effects on anxiety risk. We describe novel, robust associations between gene combinations involving the ZBTB20 SNP (rs1394593) and risk of anxiety symptoms in a large population sample. Our findings also support previous findings that the ZBTB20 SNP is an important factor in mood disorders, including seasonal affective disorder. Our results suggest that reduced expression of this gene significantly modulates the risk of anxiety symptoms through direct influences on mood-related pathways. Together, these observations provide novel links between the circadian clockwork and anxiety symptoms and identify potential molecular pathways through which clock genes may influence anxiety risk.
Collapse
Affiliation(s)
- Cole Ventresca
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Wael Mohamed
- Department of Computer Science, Colgate University, Hamilton, NY, USA
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | | | - Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
6
|
Stoyanov D, Stoyanov GS, Ivanov MN, Spasov RH, Tonchev AB. Transcription Factor Zbtb20 as a Regulator of Malignancy and Its Practical Applications. Int J Mol Sci 2023; 24:13763. [PMID: 37762065 PMCID: PMC10530547 DOI: 10.3390/ijms241813763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Zbtb20 (zinc finger and BTB domain-containing protein 20) is a transcription factor with a zinc finger DNA binding domain and a BTB domain responsible for protein-protein interaction. Recently, this TF has received attention because new data showed its pivotal involvement in normal neural development and its regulatory effects on proliferation and differentiation in different tissues. Zbtb20 was shown to increase proliferation and migration and confer resistance to apoptosis in the contexts of many malignant tumors like hepatocellular carcinoma, non-small-cell lung carcinoma, gastric adenocarcinoma, glioblastoma multiforme, breast cancer, and acute myeloid leukemia. The involvement of Zbtb20 in tumor biology is best studied in hepatocellular carcinoma, where it is a promising candidate as an immunohistochemical tumor marker or may be used in patient screening. Here we review the current data connecting Zbtb20 with malignant tumors.
Collapse
Affiliation(s)
- Dimo Stoyanov
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
| | - George S. Stoyanov
- Department of Clinical Pathology, Complex Oncology Center, 9700 Shumen, Bulgaria
| | - Martin N. Ivanov
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Radoslav H. Spasov
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
| | - Anton B. Tonchev
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| |
Collapse
|
7
|
Ba R, Yang L, Zhang B, Jiang P, Ding Z, Zhou X, Yang Z, Zhao C. FOXG1 drives transcriptomic networks to specify principal neuron subtypes during the development of the medial pallium. SCIENCE ADVANCES 2023; 9:eade2441. [PMID: 36791184 PMCID: PMC9931217 DOI: 10.1126/sciadv.ade2441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The medial pallium (MP) is the major forebrain region underlying learning and memory, spatial navigation, and emotion; however, the mechanisms underlying the specification of its principal neuron subtypes remain largely unexplored. Here, by postmitotic deletion of FOXG1 (a transcription factor linked to autism spectrum disorders and FOXG1 syndrome) and single-cell RNA sequencing of E17.5 MP in mice, we found that FOXG1 controls the specification of upper-layer retrosplenial cortical pyramidal neurons [RSC-PyNs (UL)], subiculum PyNs (SubC-PyNs), CA1-PyNs, CA3-PyNs, and dentate gyrus granule cells (DG-GCs) in the MP. We uncovered subtype-specific and subtype-shared FOXG1-regulated transcriptomic networks orchestrating MP neuron specification. We further demonstrated that FOXG1 transcriptionally represses Zbtb20, Prox1, and Epha4 to prevent CA3-PyN and DG-GC identities during the specification of RSC-PyNs (UL) and SubC-PyNs; FOXG1 directly activates Nr4a2 to promote SubC-PyN identity. We showed that TBR1, controlled by FOXG1 during CA1-PyN specification, was down-regulated. Thus, our study illuminates MP principal neuron subtype specification and related neuropathogenesis.
Collapse
Affiliation(s)
- Ru Ba
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Pengfei Jiang
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhipeng Ding
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue Zhou
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontier Research Center for Brain Science, Fudan University, Shanghai 200032, P.R. China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
8
|
Libotte F, Fabiani M, Margiotti K, Carpineto LS, Monaco F, Raffio R, Mesoraca A, Giorlandino C. De novo 3q13.13q21.2 interstitial deletion and paternal 12p13.3 microdeletion in a fetus with dysplasia of the corpus callosum and ventriculomegaly: A case report. Exp Ther Med 2023; 25:100. [PMID: 36761008 PMCID: PMC9893219 DOI: 10.3892/etm.2023.11799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Chromosome 3q syndrome is a well-known genetic condition caused by interstitial deletion in the long arm of chromosome 3. The phenotype of this syndrome is variable and the great variability in the extent of these deletions leads to a wide spectrum of clinical manifestations. Terminal 12p deletion represents one of the rarest subtelomeric imbalances; patients with distal monosomy 12p present different phenotypes ranging from muscular hypotonia to autism spectrum disorders. The present study reported a prenatal diagnosis of a male fetus presenting ultrasound evidence of corpus callosum dysplasia and ventriculomegaly showing a 3q13q21.2 deletion and a 12p13.33 microdeletion paternally inherited. Among several features previously attributed to the terminal deletion of 3q, corpus callosum dysplasia and ventriculomegaly have rarely been reported together. As the 12p13.33 microdeletion in the father was associated only with muscular hypotonia and joint laxity, the involvement of terminal 12p deletions in the clinical features of the fetus was not possible to verify during the prenatal period. The present case report may provide a reference for prenatal diagnosis and genetic counseling in patients who present 3q13q21.2 deletions and 12p13.33 microdeletion.
Collapse
Affiliation(s)
- Francesco Libotte
- Human Genetics Laboratory, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy
| | - Marco Fabiani
- Human Genetics Laboratory, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy
| | - Katia Margiotti
- Human Genetics Laboratory, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy,Correspondence to: Dr Katia Margiotti, Human Genetics Laboratory, ALTAMEDICA, 45 Viale Liegi, 00198 Rome, Italy
| | | | - Francesca Monaco
- Human Genetics Laboratory, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy
| | - Raffaella Raffio
- Human Genetics Laboratory, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy
| | - Alvaro Mesoraca
- Human Genetics Laboratory, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy
| | - Claudio Giorlandino
- Human Genetics Laboratory, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy,Department of Prenatal Diagnosis, Fetal-Maternal Medical Centre, ALTAMEDICA, 00198 Rome, Italy
| |
Collapse
|
9
|
Jiménez S, Moreno N. Development of subdomains in the medial pallium of Xenopus laevis and Trachemys scripta: Insights into the anamniote-amniote transition. Front Neuroanat 2022; 16:1039081. [PMID: 36406242 PMCID: PMC9670315 DOI: 10.3389/fnana.2022.1039081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
In all vertebrates, the most dorsal region of the telencephalon gives rise to the pallium, which in turn, is formed by at least four evolutionarily conserved histogenetic domains. Particularly in mammals, the medial pallium generates the hippocampal formation. Although this region is structurally different among amniotes, its functions, attributed to spatial memory and social behavior, as well as the specification of the histogenetic domain, appears to be conserved. Thus, the aim of the present study was to analyze this region by comparative analysis of the expression patterns of conserved markers in two vertebrate models: one anamniote, the amphibian Xenopus laevis; and the other amniote, the turtle Trachemys scripta elegans, during development and in adulthood. Our results show that, the histogenetic specification of both models is comparable, despite significant cytoarchitectonic differences, in particular the layered cortical arrangement present in the turtle, not found in anurans. Two subdivisions were observed in the medial pallium of these species: a Prox1 + and another Er81/Lmo4 +, comparable to the dentate gyrus and the mammalian cornu ammonis region, respectively. The expression pattern of additional markers supports this subdivision, which together with its functional involvement in spatial memory tasks, provides evidence supporting the existence of a basic program in the specification and functionality of the medial pallium at the base of tetrapods. These results further suggest that the anatomical differences found in different vertebrates may be due to divergences and adaptations during evolution.
Collapse
Affiliation(s)
| | - Nerea Moreno
- *Correspondence: Nerea Moreno, , orcid.org/0000-0002-5578-192X
| |
Collapse
|
10
|
Pan B, Han B, Zhu X, Wang Y, Ji H, Weng J, Liu Y. Dysfunctional microRNA-144-3p/ZBTB20/ERK/CREB1 signalling pathway is associated with MK-801-induced schizophrenia-like abnormalities. Brain Res 2022; 1798:148153. [DOI: 10.1016/j.brainres.2022.148153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
11
|
Dunville K, Tonelli F, Novelli E, Codino A, Massa V, Frontino AM, Galfrè S, Biondi F, Gustincich S, Caleo M, Pandolfini L, Alia C, Cremisi F. Laminin 511 and WNT signalling sustain prolonged expansion of hiPSC-derived hippocampal progenitors. Development 2022; 149:276383. [DOI: 10.1242/dev.200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Using the timely re-activation of WNT signalling in neuralizing human induced pluripotent stem cells (hiPSCs), we have produced neural progenitor cells with a gene expression profile typical of human embryonic dentate gyrus (DG) cells. Notably, in addition to continuous WNT signalling, a specific laminin isoform is crucial to prolonging the neural stem state and to extending progenitor cell proliferation for over 200 days in vitro. Laminin 511 is indeed specifically required to support proliferation and to inhibit differentiation of hippocampal progenitor cells for extended time periods when compared with a number of different laminin isoforms assayed. Global gene expression profiles of these cells suggest that a niche of laminin 511 and WNT signalling is sufficient to maintain their capability to undergo typical hippocampal neurogenesis. Moreover, laminin 511 signalling sustains the expression of a set of genes responsible for the maintenance of a hippocampal neurogenic niche. Finally, xenograft of human DG progenitors into the DG of adult immunosuppressed host mice produces efficient integration of neurons that innervate CA3 layer cells spanning the same area of endogenous hippocampal neuron synapses.
Collapse
Affiliation(s)
- Keagan Dunville
- Laboratorio di Biologia, Scuola Normale Superiore 1 , Pisa, 56126 , Italy
| | - Fabrizio Tonelli
- Laboratorio di Biologia, Scuola Normale Superiore 1 , Pisa, 56126 , Italy
| | - Elena Novelli
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Azzurra Codino
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia 3 , Genova, 16152 , Italy
| | - Verediana Massa
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | | | - Silvia Galfrè
- Department of Biology and Biotechnologies ‘Charles Darwin’, Università La Sapienza 4 , Roma, 00185 , Italy
| | - Francesca Biondi
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Stefano Gustincich
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia 3 , Genova, 16152 , Italy
| | - Matteo Caleo
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Luca Pandolfini
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia 3 , Genova, 16152 , Italy
| | - Claudia Alia
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche 2 , Pisa, 56124 , Italy
| | - Federico Cremisi
- Laboratorio di Biologia, Scuola Normale Superiore 1 , Pisa, 56126 , Italy
| |
Collapse
|
12
|
Nguyen H, Sokpor G, Parichha A, Pham L, Saikhedkar N, Xie Y, Ulmke PA, Rosenbusch J, Pirouz M, Behr R, Stoykova A, Brand-Saberi B, Nguyen HP, Staiger JF, Tole S, Tuoc T. BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain. Front Cell Dev Biol 2022; 10:1011109. [PMID: 36263009 PMCID: PMC9573979 DOI: 10.3389/fcell.2022.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and in situ hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny.
Collapse
Affiliation(s)
- Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | | | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Mehdi Pirouz
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Shubha Tole
- Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| |
Collapse
|
13
|
Expression of Transcription Factor ZBTB20 in the Adult Primate Neurogenic Niche under Physiological Conditions or after Ischemia. Genes (Basel) 2022; 13:genes13091559. [PMID: 36140727 PMCID: PMC9498320 DOI: 10.3390/genes13091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The Zbtb20 gene encodes for a transcription factor that plays an important role in mammalian cortical development. Recently, its expression was reported in the adult mouse subventricular zone (SVZ), a major neurogenic niche containing neural stem cells throughout life. Here, we analyzed its expression in the adult primate anterior SVZ (SVZa) and rostral migratory stream (RMS) using macaque monkeys (Macaca fuscata). We report that the majority of Ki67+ cells, 71.4% in the SVZa and 85.7% in the RMS, co-label for ZBTB20. Nearly all neuroblasts, identified by their Doublecortin expression, were positive for ZBTB20 in both regions. Nearly all GFAP+ neural stem cells/astrocytes were also positive for ZBTB20. Analysis of images derived from a public database of gene expression in control/ischemic monkey SVZa, showed evidence for ZBTB20 upregulation in postischemic monkey SVZa. Furthermore, the co-localization of ZBTB20 with Doublecortin and Ki67 was increased in the postischemic SVZa. Our results suggest that ZBTB20 expression is evolutionarily conserved in the mammalian neurogenic niche and is reactive to ischemia. This opens the possibility for further functional studies on the role of this transcription factor in neurogenesis in primates.
Collapse
|
14
|
Liu J, Yang M, Su M, Liu B, Zhou K, Sun C, Ba R, Yu B, Zhang B, Zhang Z, Fan W, Wang K, Zhong M, Han J, Zhao C. FOXG1 sequentially orchestrates subtype specification of postmitotic cortical projection neurons. SCIENCE ADVANCES 2022; 8:eabh3568. [PMID: 35613274 PMCID: PMC9132448 DOI: 10.1126/sciadv.abh3568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The mammalian neocortex is a highly organized six-layered structure with four major cortical neuron subtypes: corticothalamic projection neurons (CThPNs), subcerebral projection neurons (SCPNs), deep callosal projection neurons (CPNs), and superficial CPNs. Here, careful examination of multiple conditional knockout model mouse lines showed that the transcription factor FOXG1 functions as a master regulator of postmitotic cortical neuron specification and found that mice lacking functional FOXG1 exhibited projection deficits. Before embryonic day 14.5 (E14.5), FOXG1 enforces deep CPN identity in postmitotic neurons by activating Satb2 but repressing Bcl11b and Tbr1. After E14.5, FOXG1 exerts specification functions in distinct layers via differential regulation of Bcl11b and Tbr1, including specification of superficial versus deep CPNs and enforcement of CThPN identity. FOXG1 controls CThPN versus SCPN fate by fine-tuning Fezf2 levels through diverse interactions with multiple SOX family proteins. Thus, our study supports a developmental model to explain the postmitotic specification of four cortical projection neuron subtypes and sheds light on neuropathogenesis.
Collapse
Affiliation(s)
- Junhua Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mengjie Yang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Mingzhao Su
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Bin Liu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Kaixing Zhou
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Congli Sun
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Ru Ba
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baocong Yu
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Baoshen Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Zhe Zhang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Wenxin Fan
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Kun Wang
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Min Zhong
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| | - Junhai Han
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Life Science and Technology,
Southeast University, Nanjing 210009, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human
Diseases, Ministry of Education, School of Medicine, Southeast University,
Nanjing 210009, China
| |
Collapse
|
15
|
Branch CL, Semenov GA, Wagner DN, Sonnenberg BR, Pitera AM, Bridge ES, Taylor SA, Pravosudov VV. The genetic basis of spatial cognitive variation in a food-caching bird. Curr Biol 2021; 32:210-219.e4. [PMID: 34735793 DOI: 10.1016/j.cub.2021.10.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Spatial cognition is used by most organisms to navigate their environment. Some species rely particularly heavily on specialized spatial cognition to survive, suggesting that a heritable component of cognition may be under natural selection. This idea remains largely untested outside of humans, perhaps because cognition in general is known to be strongly affected by learning and experience.1-4 We investigated the genetic basis of individual variation in spatial cognition used by non-migratory food-caching birds to recover food stores and survive harsh montane winters. Comparing the genomes of wild, free-living birds ranging from best to worst in their performance on a spatial cognitive task revealed significant associations with genes involved in neuron growth and development and hippocampal function. These results identify candidate genes associated with differences in spatial cognition and provide a critical link connecting individual variation in spatial cognition with natural selection.
Collapse
Affiliation(s)
- Carrie L Branch
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Dominique N Wagner
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Benjamin R Sonnenberg
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Angela M Pitera
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Eli S Bridge
- Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Vladimir V Pravosudov
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
16
|
Fernandez Garcia-Agudo L, Steixner-Kumar AA, Curto Y, Barnkothe N, Hassouna I, Jähne S, Butt UJ, Grewe K, Weber MS, Green K, Rizzoli S, Nacher J, Nave KA, Ehrenreich H. Brain erythropoietin fine-tunes a counterbalance between neurodifferentiation and microglia in the adult hippocampus. Cell Rep 2021; 36:109548. [PMID: 34433021 DOI: 10.1016/j.celrep.2021.109548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
In adult cornu ammonis hippocampi, erythropoietin (EPO) expression drives the differentiation of new neurons, independent of DNA synthesis, and increases dendritic spine density. This substantial brain hardware upgrade is part of a regulatory circle: during motor-cognitive challenge, neurons experience "functional" hypoxia, triggering neuronal EPO production, which in turn promotes improved performance. Here, we show an unexpected involvement of resident microglia. During EPO upregulation and stimulated neurodifferentiation, either by functional or inspiratory hypoxia, microglia numbers decrease. Treating mice with recombinant human (rh)EPO or exposure to hypoxia recapitulates these changes and reveals the involvement of neuronally expressed IL-34 and microglial CSF1R. Surprisingly, EPO affects microglia in phases, initially by inducing apoptosis, later by reducing proliferation, and overall dampens microglia activity and metabolism, as verified by selective genetic targeting of either the microglial or pyramidal neuronal EPO receptor. We suggest that during accelerating neuronal differentiation, EPO acts as regulator of the CSF1R-dependent microglia.
Collapse
Affiliation(s)
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yasmina Curto
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nadine Barnkothe
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sebastian Jähne
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Umer Javed Butt
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katharina Grewe
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin S Weber
- Institute of Neuropathology and Department of Neurology, UMG, Göttingen, Germany
| | - Kim Green
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Silvio Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
17
|
den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021; 22:e52803. [PMID: 34260143 PMCID: PMC8339667 DOI: 10.15252/embr.202152803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- International Max Planck Research School for Language SciencesMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Karthikeyan Devaraju
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
18
|
Wang C, Xiong M, Gratuze M, Bao X, Shi Y, Andhey PS, Manis M, Schroeder C, Yin Z, Madore C, Butovsky O, Artyomov M, Ulrich JD, Holtzman DM. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 2021; 109:1657-1674.e7. [PMID: 33831349 PMCID: PMC8141024 DOI: 10.1016/j.neuron.2021.03.024] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease and directly influences tauopathy and tau-mediated neurodegeneration. ApoE4 has strong deleterious effects on both parameters. In the brain, apoE is produced and secreted primarily by astrocytes and by activated microglia. The cell-specific role of each form of apoE in the setting of neurodegeneration has not been determined. We generated P301S Tau/Aldh1l1-CreERT2/apoE3flox/flox or Tau/Aldh1l1-CreERT2/apoE4flox/flox mice. At 5.5 months of age, after the onset of tau pathology, we administered tamoxifen or vehicle and compared mice at 9.5 months of age. Removing astrocytic APOE4 markedly reduced tau-mediated neurodegeneration and decreased phosphorylated tau (pTau) pathology. Single-nucleus RNA sequencing analysis revealed striking gene expression changes in all cell types, with astrocytic APOE4 removal decreasing disease-associated gene signatures in neurons, oligodendrocytes, astrocytes, and microglia. Removal of astrocytic APOE4 decreased tau-induced synaptic loss and microglial phagocytosis of synaptic elements, suggesting a key role for astrocytic apoE in synaptic degeneration.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - Monica Xiong
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - Maud Gratuze
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - Xin Bao
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - Yang Shi
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | | | - Melissa Manis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - Caitlin Schroeder
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA.
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
19
|
Pomeshchik Y, Klementieva O, Gil J, Martinsson I, Hansen MG, de Vries T, Sancho-Balsells A, Russ K, Savchenko E, Collin A, Vaz AR, Bagnoli S, Nacmias B, Rampon C, Sorbi S, Brites D, Marko-Varga G, Kokaia Z, Rezeli M, Gouras GK, Roybon L. Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Reports 2020; 15:256-273. [PMID: 32589876 PMCID: PMC7363942 DOI: 10.1016/j.stemcr.2020.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The hippocampus is important for memory formation and is severely affected in the brain with Alzheimer disease (AD). Our understanding of early pathogenic processes occurring in hippocampi in AD is limited due to tissue unavailability. Here, we report a chemical approach to rapidly generate free-floating hippocampal spheroids (HSs), from human induced pluripotent stem cells. When used to model AD, both APP and atypical PS1 variant HSs displayed increased Aβ42/Aβ40 peptide ratios and decreased synaptic protein levels, which are common features of AD. However, the two variants differed in tau hyperphosphorylation, protein aggregation, and protein network alterations. NeuroD1-mediated gene therapy in HSs-derived progenitors resulted in modulation of expression of numerous genes, including those involved in synaptic transmission. Thus, HSs can be harnessed to unravel the mechanisms underlying early pathogenic changes in the hippocampi of AD patients, and provide a robust platform for the development of therapeutic strategies targeting early stage AD.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Medical Microspectroscopy, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Jeovanis Gil
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Isak Martinsson
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Marita Grønning Hansen
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Tessa de Vries
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Sancho-Balsells
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Kaspar Russ
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden
| | - Anna Collin
- Department of Clinical Genetics and Pathology, Office for Medical Services, Lund SE-221 85, Sweden
| | - Ana Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Silvia Bagnoli
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse; CNRS, UPS, Toulouse Cedex 9, France
| | - Sandro Sorbi
- Laboratorio di Neurogenetica, Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Laboratory of Stem Cells and Restorative Neurology, Department of Clinical Sciences, BMC B10, Lund University, Lund SE-221 84, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, BMC D13, Lund University, Lund SE-221 84, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, Lund SE-221 84, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, Lund University, Lund SE-221 84, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| |
Collapse
|
20
|
Zhang L, Song NN, Zhang Q, Mei WY, He CH, Ma P, Huang Y, Chen JY, Mao B, Lang B, Ding YQ. Satb2 is required for the regionalization of retrosplenial cortex. Cell Death Differ 2020; 27:1604-1617. [PMID: 31666685 PMCID: PMC7206047 DOI: 10.1038/s41418-019-0443-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023] Open
Abstract
The retrosplenial cortex (Rsp) is a transitional cortex located between the neocortex and archicortex, but the molecular mechanism specifying Rsp from the archicortex remains elusive. We here report that the transcription factor Satb2 is required for specifying Rsp identity during its morphogenesis. In Satb2 CKO mice, the boundary between the Rsp and archicortex [i.e., subiculum (SubC)] disappears as early as E17.5, and Rsp efferent projection is aberrant. Rsp-specific genes are lost, whereas SubC-specific genes are ectopically expressed in Rsp of Satb2 CKO mice. Furthermore, cell-autonomous role of Satb2 in maintaining Rsp neuron identity is revealed by inactivation of Satb2 in Rsp neurons. Finally, Satb2 represses the transcription of Nr4a2. The misexpression of Nr4a2 together with Ctip2 induces expression of SubC-specific genes in wild-type Rsp, and simultaneous knockdown of these two genes in Rsp Satb2-mutant cells prevents their fate transition to SubC identity. Thus, Satb2 serves as a determinant gene in the Rsp regionalization by repressing Nr4a2 and Ctip2 during cortical development.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Ning-Ning Song
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qiong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wan-Ying Mei
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jia-Yin Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China
- Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 410011, Hunan, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Ripamonti S, Shomroni O, Rhee JS, Chowdhury K, Jahn O, Hellmann KP, Bonn S, Brose N, Tirard M. SUMOylation controls the neurodevelopmental function of the transcription factor Zbtb20. J Neurochem 2020; 154:647-661. [PMID: 32233089 DOI: 10.1111/jnc.15008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6 -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild-type and Zbtb20 knock-out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20-dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.
Collapse
Affiliation(s)
- Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Orr Shomroni
- NGS Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kamal Chowdhury
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus Peter Hellmann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
22
|
Alby C, Boutaud L, Bessières B, Serre V, Rio M, Cormier-Daire V, de Oliveira J, Ichkou A, Mouthon L, Gordon CT, Bonnière M, Mechler C, Nitschke P, Bole C, Lyonnet S, Bahi-Buisson N, Boddaert N, Colleaux L, Roth P, Ville Y, Vekemans M, Encha-Razavi F, Attié-Bitach T, Thomas S. Novel de novo ZBTB20 mutations in three cases with Primrose syndrome and constant corpus callosum anomalies. Am J Med Genet A 2019; 176:1091-1098. [PMID: 29681083 DOI: 10.1002/ajmg.a.38684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/16/2018] [Accepted: 02/25/2018] [Indexed: 11/06/2022]
Abstract
Corpus callosum (CC) is the major brain commissure connecting homologous areas of cerebral hemispheres. CC anomalies (CCAs) are the most frequent brain anomalies leading to variable neurodevelopmental outcomes making genetic counseling difficult in the absence of a known etiology that might inform the prognosis. Here, we used whole exome sequencing, and a targeted capture panel of syndromic CCA known causal and candidate genes to screen a cohort of 64 fetuses with CCA observed upon autopsy, and 34 children with CCA and intellectual disability. In one fetus and two patients, we identified three novel de novo mutations in ZBTB20, which was previously shown to be causal in Primrose syndrome. In addition to CCA, all cases presented with additional features of Primrose syndrome including facial dysmorphism and macrocephaly or megalencephaly. All three variations occurred within two out of the five zinc finger domains of the transcriptional repressor ZBTB20. Through homology modeling, these variants are predicted to result in local destabilization of each zinc finger domain suggesting subsequent abnormal repression of ZBTB20 target genes. Neurohistopathological analysis of the fetal case showed abnormal regionalization of the hippocampal formation as well as a reduced density of cortical upper layers where originate most callosal projections. Here, we report novel de novo ZBTB20 mutations in three independent cases with characteristic features of Primrose syndrome including constant CCA. Neurohistopathological findings in fetal case corroborate the observed key role of ZBTB20 during hippocampal and neocortical development. Finally, this study highlights the crucial role of ZBTB20 in CC development in human.
Collapse
Affiliation(s)
- Caroline Alby
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Lucile Boutaud
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Bettina Bessières
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Valérie Serre
- UMR7592 CNRS Jacques Monod Institute Paris Diderot University, Paris, France
| | - Marlene Rio
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Valerie Cormier-Daire
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163 Institut Imagine, Paris, France
| | - Judith de Oliveira
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Amale Ichkou
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Linda Mouthon
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Maryse Bonnière
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Charlotte Mechler
- Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Patrick Nitschke
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Bioinformatics Core Facility Paris-Descartes Sorbonne Paris Cité University Institut Imagine, Paris, France
| | - Christine Bole
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Genomics Core Facility, Paris Descartes-Sorbonne Paris Cité University Institut Imagine, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Nadia Bahi-Buisson
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Nathalie Boddaert
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Department of Pediatric Radiology, Hospital Necker-Enfants Malades AP-HP, Paris, France
| | - Laurence Colleaux
- Paris Descartes Sorbonne Paris Cité, Paris, France.,Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, INSERM UMR1163 Institut Imagine, Paris, France
| | - Philippe Roth
- Department of Obstetrics and Fetal Medicine, Hospital Necker-Enfants-Malade APHP, Paris, France
| | - Yves Ville
- Department of Obstetrics and Fetal Medicine, Hospital Necker-Enfants-Malade APHP, Paris, France
| | - Michel Vekemans
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Féréchté Encha-Razavi
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France.,Department of genetics, Hospital Necker-Enfants Malades Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR1163 Institut Imagine, Paris, France.,Paris Descartes Sorbonne Paris Cité, Paris, France
| |
Collapse
|
23
|
Ong ML, Tuan TA, Poh J, Teh AL, Chen L, Pan H, MacIsaac JL, Kobor MS, Chong YS, Kwek K, Saw SM, Godfrey KM, Gluckman PD, Fortier MV, Karnani N, Meaney MJ, Qiu A, Holbrook JD. Neonatal amygdalae and hippocampi are influenced by genotype and prenatal environment, and reflected in the neonatal DNA methylome. GENES BRAIN AND BEHAVIOR 2019; 18:e12576. [PMID: 31020763 DOI: 10.1111/gbb.12576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 04/13/2019] [Indexed: 12/28/2022]
Abstract
The amygdala and hippocampus undergo rapid development in early life. The relative contribution of genetic and environmental factors to the establishment of their developmental trajectories has yet to be examined. We performed imaging on neonates and examined how the observed variation in volume and microstructure of the amygdala and hippocampus varied by genotype, and compared with prenatal maternal mental health and socioeconomic status. Gene × Environment models outcompeted models containing genotype or environment only to best explain the majority of measures but some, especially of the amygdaloid microstructure, were best explained by genotype only. Models including DNA methylation measured in the neonate umbilical cords outcompeted the Gene and Gene × Environment models for the majority of amygdaloid measures and minority of hippocampal measures. This study identified brain region-specific gene networks associated with individual differences in fetal brain development. In particular, genetic and epigenetic variation within CUX1 was highlighted.
Collapse
Affiliation(s)
- Mei-Lyn Ong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Ta A Tuan
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Joann Poh
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Ai L Teh
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Li Chen
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Hong Pan
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,School of Computer Engineering, Nanyang Technological University (NTU), Singapore
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yap S Chong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Kenneth Kwek
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Seang M Saw
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter D Gluckman
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Centre for Human Evolution, Adaptation and disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V Fortier
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Michael J Meaney
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Sackler Program for Epigenetics & Psychobiology at McGill University, Douglas University Mental Health Institute, McGill University, Montreal, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore.,Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Joanna D Holbrook
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| |
Collapse
|
24
|
What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry 2019; 9:68. [PMID: 30718449 PMCID: PMC6362194 DOI: 10.1038/s41398-019-0412-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 11/09/2022] Open
Abstract
There has been a limited number of systematic reviews conducted to summarize the overview of the relationship between DNA methylation and depression, and to critically appraise the roles of major study characteristics in the accuracy of study findings. This systematic review aims to critically appraise the impact of study characteristics on the association between DNA methylation and depression, and summarize the overview of this association. Electronic databases and gray literatures until December 2017 were searched for English-language studies with standard diagnostic criteria of depression. A total of 67 studies were included in this review along with a summary of their study characteristics. We grouped the findings into etiological and treatment studies. Majority of these selected studies were recently published and from developed countries. Whole blood samples were the most studied common tissues. Bisulfite conversion, along with pyrosequencing, was widely used to test the DNA methylation level across all the studies. High heterogeneity existed among the studies in terms of experimental and statistical methodologies and study designs. As recommended by the Cochrane guideline, a systematic review without meta-analysis should be undertaken. This review has, in general, found that DNA methylation modifications were associated with depression. Subgroup analyses showed that most studies found BDNF and SLC6A4 hypermethylations to be associated with MDD or depression in general. In contrast, studies on NR3C1, OXTR, and other genes, which were tested by only few studies, reported mixed findings. More longitudinal studies using standardized experimental and laboratory methodologies are needed in future studies to enable more systematical comparisons and quantitative synthesis.
Collapse
|
25
|
Jones KA, Luo Y, Dukes-Rimsky L, Srivastava DP, Koul-Tewari R, Russell TA, Shapiro LP, Srivastava AK, Penzes P. Neurodevelopmental disorder-associated ZBTB20 gene variants affect dendritic and synaptic structure. PLoS One 2018; 13:e0203760. [PMID: 30281617 PMCID: PMC6169859 DOI: 10.1371/journal.pone.0203760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Dendritic spine morphology and dendritic arborization are key determinants of neuronal connectivity and play critical roles in learning, memory and behavior function. Recently, defects of ZBTB20, a BTB and zinc finger domain containing transcriptional repressor, have been implicated in a wide range of neurodevelopmental disorders, including intellectual disability and autism. Here we show distinct effects of expression of two major isoforms, long and short, of ZBTB20, and its neurodevelopmental disorder-linked variants, on dendritic architecture of cultured rat cortical pyramidal neurons. The N-terminal of ZBTB20 showed a role in regulating dendritic spine morphology. Two ZBTB20 single nucleotide variants, located at the N-terminal and central regions of the protein and potentially conferring autism risk, altered dendritic spine morphology. In contrast, a single nucleotide variant identified in patients with intellectual disability and located at the C-terminus of ZBTB20 affected dendritic arborization and dendritic length but had no effect on dendritic spine morphology. Furthermore, truncation of the extreme C-terminus of ZBTB20 caused spine and dendritic morphological changes that were similar but distinct from those caused by the C-terminal variant. Taken together, our study suggests ZBTB20's role in dendritic and synaptic structure and provide possible mechanisms of its effect in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kelly A. Jones
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yue Luo
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
| | - Lynn Dukes-Rimsky
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
| | - Deepak P. Srivastava
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Richa Koul-Tewari
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Theron A. Russell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Lauren P. Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Anand K. Srivastava
- J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, United States of America
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail: (PP); (AKS)
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail: (PP); (AKS)
| |
Collapse
|
26
|
Ho KWD, Han S, Nielsen JV, Jancic D, Hing B, Fiedorowicz J, Weissman MM, Levinson DF, Potash JB. Genome-wide association study of seasonal affective disorder. Transl Psychiatry 2018; 8:190. [PMID: 30217971 PMCID: PMC6138666 DOI: 10.1038/s41398-018-0246-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/18/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Family and twin studies have shown a genetic component to seasonal affective disorder (SAD). A number of candidate gene studies have examined the role of variations within biologically relevant genes in SAD susceptibility, but few genome-wide association studies (GWAS) have been performed to date. The authors aimed to identify genetic risk variants for SAD through GWAS. The authors performed a GWAS for SAD in 1380 cases and 2937 controls of European-American (EA) origin, selected from samples for GWAS of major depressive disorder and of bipolar disorder. Further bioinformatic analyses were conducted to examine additional genomic and biological evidence associated with the top GWAS signals. No susceptibility loci for SAD were identified at a genome-wide significant level. The strongest association was at an intronic variant (rs139459337) within ZBTB20 (odds ratio (OR) = 1.63, p = 8.4 × 10-7), which encodes a transcriptional repressor that has roles in neurogenesis and in adult brain. Expression quantitative trait loci (eQTL) analysis showed that the risk allele "T" of rs139459337 is associated with reduced mRNA expression of ZBTB20 in human temporal cortex (p = 0.028). Zbtb20 is required for normal murine circadian rhythm and for entrainment to a shortened day. Of the 330 human orthologs of murine genes directly repressed by Zbtb20, there were 32 associated with SAD in our sample (at p < 0.05), representing a significant enrichment of ZBTB20 targets among our SAD genetic association signals (fold = 1.93, p = 0.001). ZBTB20 is a candidate susceptibility gene for SAD, based on a convergence of genetic, genomic, and biological evidence. Further studies are necessary to confirm its role in SAD.
Collapse
Affiliation(s)
- Kwo Wei David Ho
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Shizhong Han
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jakob V Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Dubravka Jancic
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Benjamin Hing
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Jess Fiedorowicz
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Myrna M Weissman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The New York State Psychiatric Institute, New York, NY, USA
| | - Douglas F Levinson
- Department of Psychiatry, Stanford University School of Medicine, Palo Alto, CA, USA
| | - James B Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Zbtb20 Regulates Developmental Neurogenesis in the Olfactory Bulb and Gliogenesis After Adult Brain Injury. Mol Neurobiol 2018; 56:567-582. [DOI: 10.1007/s12035-018-1104-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/03/2018] [Indexed: 01/02/2023]
|
28
|
Blume M, Inoguchi F, Sugiyama T, Owada Y, Osumi N, Aimi Y, Taki K, Katsuyama Y. Dab1 contributes differently to the morphogenesis of the hippocampal subdivisions. Dev Growth Differ 2017; 59:657-673. [DOI: 10.1111/dgd.12393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marissa Blume
- School for Mental Health and Neuroscience; European Graduate School of Neuroscience; Maastricht University; Maastricht 6229 ER The Netherlands
- Department of Developmental Neuroscience; Graduate School of Medicine; Tohoku University; Sendai 980-8575 Japan
| | - Fuduki Inoguchi
- Department of Anatomy; Shiga University of Medical Science; Otsu 520-2192 Japan
| | - Taku Sugiyama
- Department of Developmental Neuroscience; Graduate School of Medicine; Tohoku University; Sendai 980-8575 Japan
| | - Yuji Owada
- Department of Organ Anatomy; Graduate School of Medicine; Tohoku University; Sendai 980-8575 Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience; Graduate School of Medicine; Tohoku University; Sendai 980-8575 Japan
| | - Yoshinari Aimi
- Department of Anatomy; Shiga University of Medical Science; Otsu 520-2192 Japan
| | - Kosuke Taki
- Department of Anatomy; Shiga University of Medical Science; Otsu 520-2192 Japan
| | - Yu Katsuyama
- Department of Developmental Neuroscience; Graduate School of Medicine; Tohoku University; Sendai 980-8575 Japan
- Department of Anatomy; Shiga University of Medical Science; Otsu 520-2192 Japan
- Department of Organ Anatomy; Graduate School of Medicine; Tohoku University; Sendai 980-8575 Japan
| |
Collapse
|
29
|
Cipriani S, Journiac N, Nardelli J, Verney C, Delezoide AL, Guimiot F, Gressens P, Adle-Biassette H. Dynamic Expression Patterns of Progenitor and Neuron Layer Markers in the Developing Human Dentate Gyrus and Fimbria. Cereb Cortex 2017; 27:358-372. [PMID: 26443441 PMCID: PMC5894254 DOI: 10.1093/cercor/bhv223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular mechanisms that orchestrate the development of the human dentate gyrus are not known. In this study, we characterized the formation of human dentate and fimbrial progenitors and postmitotic neurons from 9 gestational weeks (GW9) to GW25. PAX6+ progenitor cells remained proliferative until GW16 in the dentate ventricular zone. By GW11, the secondary dentate matrix had developed in the intermediate zone, surrounding the dentate anlage and streaming toward the subpial layer. This secondary matrix contained proliferating PAX6+ and/or TBR2+ progenitors. In parallel, SOX2+ and PAX6+ fimbrial cells were detected approaching the dentate anlage, representing a possible source of extra-dentate progenitors. By GW16, when the granule cell layer could be delineated, a hilar matrix containing PAX6+ and some TBR2+ progenitors had become identifiable. By GW25, when the 2 limbs of the granule cell layer had formed, the secondary dentate matrix was reduced to a pool of progenitors at the fimbrio-dentate junction. Although human dentate development recapitulates key steps previously described in rodents, differences seemed to emerge in neuron layer markers expression. Further studies are necessary to better elucidate their role in dentate formation and connectivity.
Collapse
Affiliation(s)
- Sara Cipriani
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Nathalie Journiac
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Jeannette Nardelli
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Catherine Verney
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Anne-Lise Delezoide
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
- Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
- Service de Biologie du Développement, Hôpital Robert-Debré, APHP, Paris, France
| | - Pierre Gressens
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
| | - Homa Adle-Biassette
- INSERM UMR 1141, Hôpital Robert-Debré, Paris, France
- Faculté de Médecine Denis Diderot, Université Paris 7, Paris, France
- Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère, APHP, Paris, France
| |
Collapse
|
30
|
Qu Z, Zhang H, Huang M, Shi G, Liu Z, Xie P, Li H, Wang W, Xu G, Zhang Y, Yang L, Huang G, Takahashi JS, Zhang WJ, Xu Y. Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. eLife 2016; 5:e17171. [PMID: 27657167 PMCID: PMC5033604 DOI: 10.7554/elife.17171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
Many animals display morning and evening bimodal activities in the day/night cycle. However, little is known regarding the potential components involved in the regulation of bimodal behavioral rhythms in mammals. Here, we identified that the zinc finger protein gene Zbtb20 plays a crucial role in the regulation of bimodal activities in mice. Depletion of Zbtb20 in nerve system resulted in the loss of early evening activity, but the increase of morning activity. We found that Zbtb20-deficient mice exhibited a pronounced decrease in the expression of Prokr2 and resembled phenotypes of Prok2 and Prokr2-knockout mice. Injection of adeno-associated virus-double-floxed Prokr2 in suprachiasmatic nucleus could partly restore evening activity in Nestin-Cre; Zbtb20fl/fl (NS-ZB20KO) mice. Furthermore, loss of Zbtb20 in Foxg1 loci, but intact in the suprachiasmatic nucleus, was not responsible for the unimodal activity of NS-ZB20KO mice. Our study provides evidence that ZBTB20-mediated PROKR2 signaling is critical for the evening behavioral rhythms.
Collapse
Affiliation(s)
- Zhipeng Qu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hai Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Moli Huang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guangsen Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Pancheng Xie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hui Li
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Wei Wang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yang Zhang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Ling Yang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guocun Huang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Ying Xu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| |
Collapse
|
31
|
Hervé B, Fauvert D, Dard R, Roume J, Cognard S, Goidin D, Lozach F, Molina-Gomes D, Vialard F. The emerging microduplication 3q13.31: Expanding the genotype-phenotype correlations of the reciprocal microdeletion 3q13.31 syndrome. Eur J Med Genet 2016; 59:463-9. [DOI: 10.1016/j.ejmg.2016.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/18/2016] [Accepted: 08/23/2016] [Indexed: 01/26/2023]
|
32
|
Tonchev AB, Tuoc TC, Rosenthal EH, Studer M, Stoykova A. Zbtb20 modulates the sequential generation of neuronal layers in developing cortex. Mol Brain 2016; 9:65. [PMID: 27282384 PMCID: PMC4901408 DOI: 10.1186/s13041-016-0242-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022] Open
Abstract
Background During corticogenesis, genetic programs encoded in progenitor cells at different developmental stages and inherited in postmitotic neurons specify distinct layer and area identities. Transcription factor Zbtb20 has been shown to play a role for hippocampal development but whether it is implicated in mammalian neocortical morphogenesis remains unknown. Results Here, we report that during embyogenesis transcription factor Zbtb20 has a dynamic spatio-temporal expression pattern in mitotic cortical progenitors through which it modulates the sequential generation of cortical neuronal layer identities. Zbtb20 knock out mice exhibited enhanced populations of early born L6-L4 neuronal subtypes and a dramatic reduction of the late born L3/L2 neurons. This defect was due to a temporal misbalance in the production of earlier versus later born neurons, leading to a progressive diminishing of the progenitor pool for the generation of L3-L2 neurons. Zbtb20 implements these temporal effects in part by binding to promoter of the orphan nuclear receptor CoupTF1/Nr2f1. In addition to its effects exerted in cortical progenitors, the postmitotic expression of Zbtb20 in L3/L2 neurons starting at birth may contribute to their proper differentiation and migration. Conclusions Our findings reveal Zbtb20 as a novel temporal regulator for the generation of layer-specific neuronal identities. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0242-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anton B Tonchev
- Molecular Developmental Neurobiology Laboratory, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077, Gottingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Göttingen, Germany. .,Department of Anatomy, Histology and Embryology, Medical University-Varna, Varna, Bulgaria.
| | - Tran Cong Tuoc
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Göttingen, Germany.,Molecular Neurobiology Group, Institute of Neuroanatomy, University of Goettingen Medical Center, Goettingen, Germany
| | - Eva H Rosenthal
- Molecular Developmental Neurobiology Laboratory, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077, Gottingen, Germany
| | - Michèle Studer
- University Nice Sophia Antipolis, iBV, UMR 7277, F-06108, Nice, France.,Inserm, iBV, U1091, F-06108, Nice, France
| | - Anastassia Stoykova
- Molecular Developmental Neurobiology Laboratory, Max Planck Institute of Biophysical Chemistry, Am Fassberg, 37077, Gottingen, Germany. .,Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Göttingen, Germany. .,Department of Anatomy, Histology and Embryology, Medical University-Varna, Varna, Bulgaria.
| |
Collapse
|
33
|
Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun 2016; 7:11102. [PMID: 27000654 PMCID: PMC4804180 DOI: 10.1038/ncomms11102] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/19/2016] [Indexed: 11/08/2022] Open
Abstract
Multipotent neural precursor cells (NPCs) generate astrocytes at late stages of mammalian neocortical development. Many signalling pathways that regulate astrocytogenesis directly induce the expression of GFAP, a marker of terminally differentiated astrocytes. However, astrocyte specification occurs before GFAP expression and essential factors for the specification step have remained elusive. Here we show that Zbtb20 regulates astrocyte specification in the mouse neocortex. Zbtb20 is highly expressed in late-stage NPCs and their astrocytic progeny. Overexpression and knockdown of Zbtb20 promote and suppress astrocytogenesis, respectively, although Zbtb20 does not directly activate the Gfap promoter. Astrocyte induction by Zbtb20 is suppressed by knockdown of Sox9 or NFIA. Furthermore, in the astrocyte lineage, Zbtb20 directly represses the expression of Brn2, which encodes a protein necessary for upper-layer neuron specification. Zbtb20 is thus a key determinant of astrocytogenesis, in which it collaborates with Sox9 and NFIA, and acts in part through direct repression of Brn2 expression. Astrocytes in the brain are derived from neural precursor cells (NPCs). Here, Motoshi Nagao and colleagues show that the transcription repressor Zbtb20 regulates astrocyte specification in the mouse neocortex.
Collapse
|
34
|
Sterlin D, Velasco G, Moshous D, Touzot F, Mahlaoui N, Fischer A, Suarez F, Francastel C, Picard C. Genetic, Cellular and Clinical Features of ICF Syndrome: a French National Survey. J Clin Immunol 2016; 36:149-59. [PMID: 26851945 DOI: 10.1007/s10875-016-0240-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/31/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Autosomal recessive deficiencies of DNMT3B or ZBTB24 account for two-thirds of cases of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). This primary immunodeficiency (PID) is characterized mainly by an antibody deficiency, facial abnormalities and centromeric instability. We analyzed the national cohort of patients with ICF syndrome with the aim of providing a more detailed description of the phenotype and management of patients with ICF syndrome. METHODS Demographic, genetic, immunological, and clinical features were recorded for each patient. RESULTS In the French cohort, seven of the nine patients carried DNMT3B mutations, six of which had never been described before. One patient had compound heterozygous ZBTB24 mutations. All patients were found to lack CD19(+)CD27(+) memory B cells. This feature is a major diagnostic criterion for both ICF1 and ICF2. Patients suffered both bacterial and viral infections, and three patients developed bronchiectasis. Autoimmune manifestations (hepatitis, nephritis and thyroiditis) not previously reported in ICF1 patients were also detected in two of our ICF1 patients. The mode of treatment and outcome of the French patients are reported, by genetic defect, and compared with those for 68 previously reported ICF patients. Immunoglobulin (Ig) replacement treatment was administered to all nine French patients. One ICF1 patient presented severe autoimmune manifestations and pancytopenia and underwent allogeneic hematopoietic stem cell transplantation (HSCT), but she died from unknown causes 6 years post-transplant. CONCLUSION Autoimmune signs are uncommon in ICF syndrome, but, when present, they affect patient outcome and require immunosuppressive treatment. The long-term outcome of ICF patients has been improved by the combination of IgG replacement and antibiotic prophylaxis.
Collapse
Affiliation(s)
- Delphine Sterlin
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), University Paris Descartes, 149 rue de Sevres, 75015, Paris, France
| | - Guillaume Velasco
- CNRS UMR7216, Epigenetics and Cell Fate, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Despina Moshous
- Pediatric Immuno-Hematology Unit, Necker Children's Hospital, APHP, Université Paris Descartes, Paris, France.,INSERM UMR1163, Imagine Institute, Necker Medical School, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| | - Fabien Touzot
- Pediatric Immuno-Hematology Unit, Necker Children's Hospital, APHP, Université Paris Descartes, Paris, France.,INSERM UMR1163, Imagine Institute, Necker Medical School, Sorbonne Paris Cité, University Paris Descartes, Paris, France.,Laboratory of Molecular Mechanisms of Hematologic Disorders and Therapeutic Implications, INSERM UMR1163, Imagine Institut, Necker Medical School, University Paris Descartes, Paris, France.,Biotherapy Department, Necker-Enfants Malades Hospital, APHP, University Paris Descartes, Paris, France
| | - Nizar Mahlaoui
- Pediatric Immuno-Hematology Unit, Necker Children's Hospital, APHP, Université Paris Descartes, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker - Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alain Fischer
- Pediatric Immuno-Hematology Unit, Necker Children's Hospital, APHP, Université Paris Descartes, Paris, France.,INSERM UMR1163, Imagine Institute, Necker Medical School, Sorbonne Paris Cité, University Paris Descartes, Paris, France.,College de France, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker - Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Felipe Suarez
- Adult Hematology Unit, Necker Children's Hospital, APHP, University Paris Descartes, Paris, France.,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker - Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.,INSERM UMR1163 and CNRS ERL8254, Imagine Institute, Necker Medical School, Sorbonne Paris Cité, University Paris Descartes, Paris, France
| | - Claire Francastel
- CNRS UMR7216, Epigenetics and Cell Fate, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), University Paris Descartes, 149 rue de Sevres, 75015, Paris, France. .,Pediatric Immuno-Hematology Unit, Necker Children's Hospital, APHP, Université Paris Descartes, Paris, France. .,Laboratory of the Human Genetics of Infectious Diseases, INSERM UMR1163, Imagine Institute, Necker Medical School, Sorbonne Paris Cité, University Paris Descartes, Paris, France. .,French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker - Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
35
|
Giddaluru S, Espeseth T, Salami A, Westlye LT, Lundquist A, Christoforou A, Cichon S, Adolfsson R, Steen VM, Reinvang I, Nilsson LG, Le Hellard S, Nyberg L. Genetics of structural connectivity and information processing in the brain. Brain Struct Funct 2016; 221:4643-4661. [PMID: 26852023 PMCID: PMC5102980 DOI: 10.1007/s00429-016-1194-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Understanding the genetic factors underlying brain structural connectivity is a major challenge in imaging genetics. Here, we present results from genome-wide association studies (GWASs) of whole-brain white matter (WM) fractional anisotropy (FA), an index of microstructural coherence measured using diffusion tensor imaging. Data from independent GWASs of 355 Swedish and 250 Norwegian healthy adults were integrated by meta-analysis to enhance power. Complementary GWASs on behavioral data reflecting processing speed, which is related to microstructural properties of WM pathways, were performed and integrated with WM FA results via multimodal analysis to identify shared genetic associations. One locus on chromosome 17 (rs145994492) showed genome-wide significant association with WM FA (meta P value = 1.87 × 10-08). Suggestive associations (Meta P value <1 × 10-06) were observed for 12 loci, including one containing ZFPM2 (lowest meta P value = 7.44 × 10-08). This locus was also implicated in multimodal analysis of WM FA and processing speed (lowest Fisher P value = 8.56 × 10-07). ZFPM2 is relevant in specification of corticothalamic neurons during brain development. Analysis of SNPs associated with processing speed revealed association with a locus that included SSPO (lowest meta P value = 4.37 × 10-08), which has been linked to commissural axon growth. An intergenic SNP (rs183854424) 14 kb downstream of CSMD1, which is implicated in schizophrenia, showed suggestive evidence of association in the WM FA meta-analysis (meta P value = 1.43 × 10-07) and the multimodal analysis (Fisher P value = 1 × 10-07). These findings provide novel data on the genetics of WM pathways and processing speed, and highlight a role of ZFPM2 and CSMD1 in information processing in the brain.
Collapse
Affiliation(s)
- Sudheer Giddaluru
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Thomas Espeseth
- K.G. Jebsen Center for Psychosis Research, Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0424, Oslo, Norway.,Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, 11330, Stockholm, Sweden
| | - Lars T Westlye
- K.G. Jebsen Center for Psychosis Research, Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, 0424, Oslo, Norway.,Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.,Department of Statistics, USBF, Umeå University, 90187, Umeå, Sweden
| | - Andrea Christoforou
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4058, Basel, Switzerland.,Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, 52425, Juelich, Germany.,Department of Genomics, Life and Brain Center, University of Bonn, 53127, Bonn, Germany
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, 90187, Umeå, Sweden
| | - Vidar M Steen
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ivar Reinvang
- Department of Psychology, University of Oslo, 0317, Oslo, Norway
| | - Lars Göran Nilsson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden.,ARC, Karolinska Institutet, Stockholm, Sweden
| | - Stéphanie Le Hellard
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021, Bergen, Norway.,K.G.Jebsen Center for Psychosis Research and the Norwegian Center for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187, Umeå, Sweden. .,Department of Radiation Sciences, Umeå University, 90187, Umeå, Sweden. .,Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
36
|
Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19). PLoS One 2015; 10:e0140010. [PMID: 26465886 PMCID: PMC4605768 DOI: 10.1371/journal.pone.0140010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.
Collapse
|
37
|
Quintela I, Gomez-Guerrero L, Fernandez-Prieto M, Resches M, Barros F, Carracedo A. Female patient with autistic disorder, intellectual disability, and co-morbid anxiety disorder: Expanding the phenotype associated with the recurrent 3q13.2-q13.31 microdeletion. Am J Med Genet A 2015; 167A:3121-9. [PMID: 26332054 DOI: 10.1002/ajmg.a.37292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 08/02/2015] [Indexed: 01/13/2023]
Abstract
In recent years, the advent of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays and its use as a first genetic test for the diagnosis of patients with neurodevelopmental phenotypes has allowed the identification of novel submicroscopic chromosomal abnormalities (namely, copy number variants or CNVs), imperceptible by conventional cytogenetic techniques. The 3q13.31 microdeletion syndrome (OMIM #615433) has been defined as a genomic disorder mainly characterized by developmental delay, postnatal overgrowth, hypotonia, genital abnormalities in males, and characteristic craniofacial features. Although the 3q13.31 CNVs are variable in size, a 3.4 Mb recurrently altered region at 3q13.2-q13.31 has been recently described and non-allelic homologous recombination (NAHR) mediated by flanking human endogenous retrovirus (HERV-H) elements has been suggested as the mechanism of deletion formation. We expand the phenotypic spectrum associated with this recurrent deletion performing the clinical description of a 9-year-old female patient with autistic disorder, total absence of language, intellectual disability, anxiety disorder and disruptive, and compulsive eating behaviors. The array-based molecular karyotyping allowed the identification of a de novo recurrent 3q13.2-q13.31 deletion encompassing 25 genes. In addition, we compare her clinical phenotype with previous reports of patients with neurodevelopmental and behavioral disorders and proximal 3q microdeletions. Finally, we also review the candidate genes proposed so far for these phenotypes.
Collapse
Affiliation(s)
- Ines Quintela
- Grupo de Medicina Xenomica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado-Plataforma de Recursos Biomoleculares y Bioinformaticos-Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain
| | - Lorena Gomez-Guerrero
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain
| | - Montse Fernandez-Prieto
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain
| | - Mariela Resches
- Departamento de Psicologia Evolutiva y de la Educacion, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado-Plataforma de Recursos Biomoleculares y Bioinformaticos-Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain.,Grupo de Medicina Xenomica, CIBERER, Fundacion Publica Galega de Medicina Xenomica-SERGAS, Santiago de Compostela, Spain.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Benítez-Burraco A, Boeckx C. Possible functional links among brain- and skull-related genes selected in modern humans. Front Psychol 2015; 6:794. [PMID: 26136701 PMCID: PMC4468360 DOI: 10.3389/fpsyg.2015.00794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
The sequencing of the genomes from extinct hominins has revealed that changes in some brain-related genes have been selected after the split between anatomically-modern humans and Neanderthals/Denisovans. To date, no coherent view of these changes has been provided. Following a line of research we initiated in Boeckx and Benítez-Burraco (2014a), we hypothesize functional links among most of these genes and their products, based on the existing literature for each of the gene discussed. The genes we focus on are found mutated in different cognitive disorders affecting modern populations and their products are involved in skull and brain morphology, and neural connectivity. If our hypothesis turns out to be on the right track, it means that the changes affecting most of these proteins resulted in a more globular brain and ultimately brought about modern cognition, with its characteristic generativity and capacity to form and exploit cross-modular concepts, properties most clearly manifested in language.
Collapse
Affiliation(s)
| | - Cedric Boeckx
- Catalan Institute for Research and Advanced Studies , Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona , Barcelona, Spain
| |
Collapse
|
39
|
Luzzati F. A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program. Front Neurosci 2015; 9:162. [PMID: 26029038 PMCID: PMC4429232 DOI: 10.3389/fnins.2015.00162] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/20/2015] [Indexed: 12/31/2022] Open
Abstract
The neocortex is unique to mammals and its evolutionary origin is still highly debated. The neocortex is generated by the dorsal pallium ventricular zone, a germinative domain that in reptiles give rise to the dorsal cortex. Whether this latter allocortical structure contains homologs of all neocortical cell types it is unclear. Recently we described a population of DCX+/Tbr1+ cells that is specifically associated with the layer II of higher order areas of both the neocortex and of the more evolutionary conserved piriform cortex. In a reptile similar cells are present in the layer II of the olfactory cortex and the DVR but not in the dorsal cortex. These data are consistent with the proposal that the reptilian dorsal cortex is homologous only to the deep layers of the neocortex while the upper layers are a mammalian innovation. Based on our observations we extended these ideas by hypothesizing that this innovation was obtained by co-opting a lateral and/or ventral pallium developmental program. Interestingly, an analysis in the Allen brain atlas revealed a striking similarity in gene expression between neocortical layers II/III and piriform cortex. We thus propose a model in which the early neocortical column originated by the superposition of the lateral olfactory and dorsal cortex. This model is consistent with the fossil record and may account not only for the topological position of the neocortex, but also for its basic cytoarchitectural and hodological features. This idea is also consistent with previous hypotheses that the peri-allocortex represents the more ancient neocortical part. The great advances in deciphering the molecular logic of the amniote pallium developmental programs will hopefully enable to directly test our hypotheses in the next future.
Collapse
Affiliation(s)
- Federico Luzzati
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin Turin, Italy ; Neuroscience Institute Cavalieri Ottolenghi Orbassano, Truin, Italy
| |
Collapse
|
40
|
Cipriani S, Nardelli J, Verney C, Delezoide AL, Guimiot F, Gressens P, Adle-Biassette H. Dynamic Expression Patterns of Progenitor and Pyramidal Neuron Layer Markers in the Developing Human Hippocampus. Cereb Cortex 2015; 26:1255-71. [DOI: 10.1093/cercor/bhv079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
41
|
Rasmussen MB, Nielsen JV, Lourenço CM, Melo JB, Halgren C, Geraldi CVL, Marques W, Rodrigues GR, Thomassen M, Bak M, Hansen C, Ferreira SI, Venâncio M, Henriksen KF, Lind-Thomsen A, Carreira IM, Jensen NA, Tommerup N. Neurodevelopmental disorders associated with dosage imbalance ofZBTB20correlate with the morbidity spectrum of ZBTB20 candidate target genes. J Med Genet 2014; 51:605-13. [DOI: 10.1136/jmedgenet-2014-102535] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Belvindrah R, Nosten-Bertrand M, Francis F. Neuronal migration and its disorders affecting the CA3 region. Front Cell Neurosci 2014; 8:63. [PMID: 24624057 PMCID: PMC3941003 DOI: 10.3389/fncel.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/13/2014] [Indexed: 11/15/2022] Open
Abstract
In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Richard Belvindrah
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Marika Nosten-Bertrand
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMR-S 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie, Univ Paris 06 Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
43
|
Shuvarikov A, Campbell IM, Dittwald P, Neill NJ, Bialer MG, Moore C, Wheeler PG, Wallace SE, Hannibal MC, Murray MF, Giovanni MA, Terespolsky D, Sodhi S, Cassina M, Viskochil D, Moghaddam B, Herman K, Brown CW, Beck CR, Gambin A, Cheung SW, Patel A, Lamb AN, Shaffer LG, Ellison JW, Ravnan JB, Stankiewicz P, Rosenfeld JA. Recurrent HERV-H-mediated 3q13.2-q13.31 deletions cause a syndrome of hypotonia and motor, language, and cognitive delays. Hum Mutat 2013; 34:1415-23. [PMID: 23878096 DOI: 10.1002/humu.22384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/11/2013] [Indexed: 11/09/2022]
Abstract
We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of ~5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.
Collapse
Affiliation(s)
- Andrey Shuvarikov
- Signature Genomic Laboratories, PerkinElmer, Inc, Spokane, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|