1
|
Nakamuta S, Zhang Z, Nikaido M, Yokoyama T, Yamamoto Y, Nakamuta N. Type 2 vomeronasal receptor expression in the olfactory organ of African lungfish, Protopterus annectens. Cell Tissue Res 2024; 398:79-91. [PMID: 39347998 DOI: 10.1007/s00441-024-03918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
The olfactory organ of tetrapods, with few exceptions, comprises the main and accessory organs: olfactory epithelium (OE) and vomeronasal organ (VNO). Unlike tetrapods, teleost fish lack a VNO. However, lungfish, a type of sarcopterygian fish closely related to tetrapods, possesses a lamellar OE similar to the OE of teleosts and a recess epithelium (RecE) resembling the amphibian VNO. The RecE has been hypothesized as a primordial VNO. Olfactory receptors in tetrapods are distinctively expressed in the OE and VNO. For instance, type 2 vomeronasal receptors (V2Rs) in Xenopus are categorized into those exclusively expressed in the OE and those solely expressed in the VNO. It remains unclear whether V2Rs are differentially expressed between the lamellar OE and RecE in lungfish. This study investigated V2R expression in the lamellar OE and RecE of the African lungfish, Protopterus annectens. P. annectens V2Rs were categorized into three groups: those exclusively expressed in the lamellar OE, those exclusively expressed in the RecE, and those expressed in both the lamellar OE and RecE. V2Rs exclusively expressed in the RecE and those expressed in both the lamellar OE and RecE formed a distinct clade in the phylogenetic tree, whereas others were solely expressed in the lamellar OE. These findings suggest that lungfish V2R expression represents an intermediate stage toward complete segregation between V2Rs expressed in the OE and those expressed in the VNO.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Zicong Zhang
- Institute for the Advanced Study of Human Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8550, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| |
Collapse
|
2
|
Nakamuta S, Yamamoto Y, Miyazaki M, Sakuma A, Nikaido M, Nakamuta N. Type 1 vomeronasal receptors expressed in the olfactory organs of two African lungfish, Protopterus annectens and Protopterus amphibius. J Comp Neurol 2022; 531:116-131. [PMID: 36161277 DOI: 10.1002/cne.25416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Lungfish are the fish related most closely to tetrapods. The olfactory organ of lungfish contains two distinct sensory epithelia: the lamellar olfactory epithelium (OE) and the recess epithelium (RecE). Based on their ultrastructural and histological characteristics, the lamellar OE and the RecE are considered to correspond respectively to the teleost OE and a primitive vomeronasal organ (VNO). In tetrapods, the OE and VNO have been shown to express different families of olfactory receptors; for example, in mammals, the OE expresses odorant receptors and trace amine-associated receptors, while the VNO expresses type 1 (V1Rs) and type 2 (V2Rs) vomeronasal receptors. In the present study, we examined the expression of V1Rs in the olfactory organs of two African lungfish, Protopterus annectens and Protopterus amphibius. RNA sequencing and phylogenetic analyses identified 29 V1R genes in P. annectens and 50 V1R genes in P. amphibius. Most V1Rs identified in these lungfish were classified as the tetrapod-type V1Rs initially found in tetrapods and distinct from fish-type V1Rs. In teleost, which all lack a VNO, all olfactory receptors are expressed in the OE, while in Xenopus V1Rs are expressed exclusively in the OE, and not in the VNO. In situ hybridization analysis indicated that lungfish V1Rs were expressed mainly in the lamellar OE and rarely in the RecE. These results imply that V1R expression in lungfish represents an intermediate step toward the complete segregation of V1R expression between the OE and VNO, reflecting the phylogenetic position of lungfish between teleosts and amphibians.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Atsuhiro Sakuma
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
3
|
Sakuma A, Zhang Z, Suzuki E, Nagasawa T, Nikaido M. A transcriptomic reevaluation of the accessory olfactory organ in Bichir (Polypterus senegalus). ZOOLOGICAL LETTERS 2022; 8:5. [PMID: 35135614 PMCID: PMC8822828 DOI: 10.1186/s40851-022-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Fish possess one olfactory organ called the olfactory epithelium (OE), by which various chemical substances are detected. On the other hand, tetrapods possess two independent olfactory organs called the main olfactory epithelium (MOE) and vomeronasal organ (VNO), each of which mainly detects general odorants and pheromones, respectively. Traditionally, the VNO, so-called concentrations of vomeronasal neurons, was believed to have originated in tetrapods. However, recent studies have identified a primordial VNO in lungfish, implying that the origin of the VNO was earlier than traditionally expected. In this study, we examined the presence/absence of the VNO in the olfactory organ of bichir (Polypterus senegalus), which is the most ancestral group of extant bony vertebrates. In particular, we conducted a transcriptomic evaluation of the accessory olfactory organ (AOO), which is anatomically separated from the main olfactory organ (MOO) in bichir. As a result, several landmark genes specific to the VNO and MOE in tetrapods were both expressed in the MOO and AOO, suggesting that these organs were not functionally distinct in terms of pheromone and odorant detection. Instead, differentially expressed gene (DEG) analysis showed that DEGs in AOO were enriched in genes for cilia movement, implying its additional and specific function in efficient water uptake into the nasal cavity other than chemosensing. This transcriptomic study provides novel insight into the long-standing question of AOO function in bichir and suggests that VNO originated in the lineage of lobe-finned fish during vertebrate evolution.
Collapse
Affiliation(s)
- Atsuhiro Sakuma
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Zicong Zhang
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Eri Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tatsuki Nagasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
4
|
Peng ZL, Wu W, Tang CY, Ren JL, Jiang D, Li JT. Transcriptome Analysis Reveals Olfactory System Expression Characteristics of Aquatic Snakes. Front Genet 2022; 13:825974. [PMID: 35154285 PMCID: PMC8829814 DOI: 10.3389/fgene.2022.825974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Animal olfactory systems evolved with changes in habitat to detect odor cues from the environment. The aquatic environment, as a unique habitat, poses a formidable challenge for olfactory perception in animals, since the higher density and viscosity of water. The olfactory system in snakes is highly specialized, thus providing the opportunity to explore the adaptive evolution of such systems to unique habitats. To date, however, few studies have explored the changes in gene expression features in the olfactory systems of aquatic snakes. In this study, we carried out RNA sequencing of 26 olfactory tissue samples (vomeronasal organ and olfactory bulb) from two aquatic and two non-aquatic snake species to explore gene expression changes under the aquatic environment. Weighted gene co-expression network analysis showed significant differences in gene expression profiles between aquatic and non-aquatic habitats. The main olfactory systems of the aquatic and non-aquatic snakes were regulated by different genes. Among these genes, RELN may contribute to exploring gene expression changes under the aquatic environment by regulating the formation of inhibitory neurons in the granular cell layer and increasing the separation of neuronal patterns to correctly identify complex chemical information. The high expression of TRPC2 and V2R family genes in the accessory olfactory systems of aquatic snakes should enhance their ability to bind water-soluble odor molecules, and thus obtain more information in hydrophytic habitats. This work provides an important foundation for exploring the olfactory adaptation of snakes in special habitats.
Collapse
Affiliation(s)
- Zhong-Liang Peng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Yang Tang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jin-Long Ren
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dechun Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jia-Tang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin Nay Pyi Taw, Myanmar
- *Correspondence: Jia-Tang Li,
| |
Collapse
|
5
|
Woodley SK, Staub NL. Pheromonal communication in urodelan amphibians. Cell Tissue Res 2021; 383:327-345. [PMID: 33427952 DOI: 10.1007/s00441-020-03408-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/15/2020] [Indexed: 01/24/2023]
Abstract
Pheromonal communication is an ancient and pervasive sensory modality in urodelan amphibians. One family of salamander pheromones (the sodefrin precursor-like factor (SPF) family) originated 300 million years ago, at the origin of amphibians. Although salamanders are often thought of as relatively simple animals especially when compared to mammals, the pheromonal systems are varied and complex with nuanced effects on behavior. Here, we review the function and evolution of pheromonal signals involved in male-female reproductive interactions. After describing common themes of salamander pheromonal communication, we describe what is known about the rich diversity of pheromonal communication in each salamander family. Several pheromones have been described, ranging from simple, invariant molecules to complex, variable blends of pheromones. While some pheromones elicit overt behavioral responses, others have more nuanced effects. Pheromonal signals have diversified within salamander lineages and have experienced rapid evolution. Once receptors have been matched to pheromonal ligands, rapid advance can be made to better understand the olfactory detection and processing of salamander pheromones. In particular, a large number of salamander species deliver pheromones across the skin of females, perhaps reflecting a novel mode of pheromonal communication. At the end of our review, we list some of the many intriguing unanswered questions. We hope that this review will inspire a new generation of scientists to pursue work in this rewarding field.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Nancy L Staub
- Biology Department, Gonzaga University, Spokane, WA, 99203, USA
| |
Collapse
|
6
|
Weiss L, Manzini I, Hassenklöver T. Olfaction across the water-air interface in anuran amphibians. Cell Tissue Res 2021; 383:301-325. [PMID: 33496878 PMCID: PMC7873119 DOI: 10.1007/s00441-020-03377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Abdali SS, Nakamuta S, Yamamoto Y, Nakamuta N. Distribution of cells expressing vomeronasal receptors in the olfactory organ of turtles. J Vet Med Sci 2020; 82:1068-1079. [PMID: 32727968 PMCID: PMC7468070 DOI: 10.1292/jvms.20-0207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Generally, the olfactory organ of vertebrates consists of the olfactory epithelium (OE)
and the vomeronasal organ (VNO). The OE contains ciliated olfactory receptor neurons
(ORNs), while the VNO contains microvillous ORNs. The ORNs in the OE express odorant
receptors (ORs), while those in the VNO express type 1 and type 2
vomeronasal receptors (V1Rs and V2Rs). In turtles, the
olfactory organ consists of the upper (UCE) and lower chamber epithelia (LCE). The UCE
contains ciliated ORNs, while the LCE contains microvillous ORNs. Here we investigated the
distribution of cells expressing vomeronasal receptors in the olfactory organ of turtles.
The turtle vomeronasal receptors were encoded by two V1R genes and two
V2R genes. Among them, V2R1 and V2R26
were mainly expressed in the LCE, while V1R3 was expressed both in the
UCE and LCE. Notably, vomeronasal receptors were expressed by a limited number of ORNs,
which was confirmed by the expression of the gene encoding TRPC2, an ion channel involved
in the signal transduction of vomeronasal receptors. Furthermore, expression of
ORs by the majority of ORNs was suggested by the expression of the gene
encoding CNGA2, an ion channel involved in the signal transduction of ORs. Thus, olfaction
of turtle seems to be mediated mainly by the ORs rather than the vomeronasal receptors.
More importantly, the relationship between the fine structure of ORNs and the expression
of olfactory receptors are not conserved among turtles and other vertebrates.
Collapse
Affiliation(s)
- Sayed Sharif Abdali
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Yoshio Yamamoto
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Nobuaki Nakamuta
- United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.,Laboratory of Veterinary Anatomy, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
8
|
Wilburn DB, Arnold SJ, Houck LD, Feldhoff PW, Feldhoff RC. Gene Duplication, Co-option, Structural Evolution, and Phenotypic Tango in the Courtship Pheromones of Plethodontid Salamanders. HERPETOLOGICA 2017. [DOI: 10.1655/herpetologica-d-16-00082.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Damien B. Wilburn
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Stevan J. Arnold
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Lynne D. Houck
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Pamela W. Feldhoff
- Department of Biochemistry, University of Louisville, Louisville, KY 40292, USA
| | - Richard C. Feldhoff
- Department of Biochemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
9
|
Wilburn DB, Doty KA, Chouinard AJ, Eddy SL, Woodley SK, Houck LD, Feldhoff RC. Olfactory effects of a hypervariable multicomponent pheromone in the red-legged salamander, Plethodon shermani. PLoS One 2017; 12:e0174370. [PMID: 28358844 PMCID: PMC5373537 DOI: 10.1371/journal.pone.0174370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Chemical communication via chemosensory signaling is an essential process for promoting and modifying reproductive behavior in many species. During courtship in plethodontid salamanders, males deliver a mixture of non-volatile proteinaceous pheromones that activate chemosensory neurons in the vomeronasal epithelium (VNE) and increase female receptivity. One component of this mixture, Plethodontid Modulating Factor (PMF), is a hypervariable pheromone expressed as more than 30 unique isoforms that differ between individual males-likely driven by co-evolution with female receptors to promote gene duplication and positive selection of the PMF gene complex. Courtship trials with females receiving different PMF isoform mixtures had variable effects on female mating receptivity, with only the most complex mixtures increasing receptivity, such that we believe that sufficient isoform diversity allows males to improve their reproductive success with any female in the mating population. The aim of this study was to test the effects of isoform variability on VNE neuron activation using the agmatine uptake assay. All isoform mixtures activated a similar number of neurons (>200% over background) except for a single purified PMF isoform (+17%). These data further support the hypothesis that PMF isoforms act synergistically in order to regulate female receptivity, and different putative mechanisms are discussed.
Collapse
Affiliation(s)
- Damien B. Wilburn
- Dept of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- Dept of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Kari A. Doty
- Dept of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Adam J. Chouinard
- Dept of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Sarah L. Eddy
- Dept of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Sarah K. Woodley
- Dept of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Lynne D. Houck
- Dept of Zoology, Oregon State University, Corvallis, Oregon, United States of America
| | - Richard C. Feldhoff
- Dept of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
10
|
Silva L, Antunes A. Vomeronasal Receptors in Vertebrates and the Evolution of Pheromone Detection. Annu Rev Anim Biosci 2017; 5:353-370. [DOI: 10.1146/annurev-animal-022516-022801] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Wilburn DB, Swanson WJ. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J Proteomics 2015; 135:12-25. [PMID: 26074353 DOI: 10.1016/j.jprot.2015.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/10/2023]
Abstract
UNLABELLED Sexual reproduction and the exchange of genetic information are essential biological processes for species across all branches of the tree of life. Over the last four decades, biochemists have continued to identify many of the factors that facilitate reproduction, but the molecular mechanisms that mediate this process continue to elude us. However, a recurring observation in this research has been the rapid evolution of reproductive proteins. In animals, the competing interests of males and females often result in arms race dynamics between pairs of interacting proteins. This phenomenon has been observed in all stages of reproduction, including pheromones, seminal fluid components, and gamete recognition proteins. In this article, we review how the integration of evolutionary theory with biochemical experiments can be used to study interacting reproductive proteins. Examples are included from both model and non-model organisms, and recent studies are highlighted for their use of state-of-the-art genomic and proteomic techniques. SIGNIFICANCE Despite decades of research, our understanding of the molecular mechanisms that mediate fertilization remain poorly characterized. To date, molecular evolutionary studies on both model and non-model organisms have provided some of the best inferences to elucidating the molecular underpinnings of animal reproduction. This review article details how biochemical and evolutionary experiments have jointly enhanced the field for 40 years, and how recent work using high-throughput genomic and proteomic techniques have shed additional insights into this crucial biological process.
Collapse
Affiliation(s)
- Damien B Wilburn
- Department of Genome Sciences, University of Washington, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, United States
| |
Collapse
|
12
|
Woodley S. Chemosignals, hormones, and amphibian reproduction. Horm Behav 2015; 68:3-13. [PMID: 24945995 DOI: 10.1016/j.yhbeh.2014.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/24/2014] [Accepted: 06/09/2014] [Indexed: 11/23/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction.
Collapse
Affiliation(s)
- Sarah Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
13
|
Wilburn DB, Eddy SL, Chouinard AJ, Arnold SJ, Feldhoff RC, Houck LD. Pheromone isoform composition differentially affects female behaviour in the red-legged salamander, Plethodon shermani. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2014.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Proteomic analyses of courtship pheromones in the redback salamander, Plethodon cinereus. J Chem Ecol 2014; 40:928-39. [PMID: 25179396 DOI: 10.1007/s10886-014-0489-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/07/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
The evolutionary success of plethodontid salamanders for ~100 MY is due partly to the use of courtship pheromones that regulate female receptivity. In ~90 % of plethodontid species, males deliver pheromones by "scratching" a female's dorsum, where pheromones diffuse transdermally into the bloodstream. However, in a single clade, representing ~10 % of Plethodon spp., males apply pheromones to the female's nares for olfactory delivery. Molecular studies have identified three major pheromone families: Plethodontid Receptivity Factor (PRF), Plethodontid Modulating Factor (PMF), and Sodefrin Precursor-like Factor (SPF). SPF and PMF genes are relatively ancient and found in all plethodontid species; however, PRF is found exclusively in the genus Plethodon - which includes species with transdermal, olfactory, and intermediate delivery behaviors. While previous proteomic analyses suggested PRF and PMF are dominant in slapping species and SPF is dominant in non-Plethodon scratching species, it was unclear how protein expression of different pheromone components may vary across delivery modes within Plethodon. Therefore, the aim of this study was to proteomically characterize the pheromones of a key scratching species in this evolutionary transition, Plethodon cinereus. Using mass spectrometry-based techniques, our data support the functional replacement of SPF by PRF in Plethodon spp. and an increase in PMF gene duplication events in both lineage-dependent and delivery-dependent manners. Novel glycosylation was observed on P. cinereus PRFs, which may modulate the metabolism and/or mechanism of action for PRF in scratching species. Cumulatively, these molecular data suggest that the replacement of pheromone components (e.g., SPF by PRF) preceded the evolutionary transition of the functional complex from transdermal to olfactory delivery.
Collapse
|
15
|
Wilburn DB, Bowen KE, Doty KA, Arumugam S, Lane AN, Feldhoff PW, Feldhoff RC. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani. PLoS One 2014; 9:e96975. [PMID: 24849290 PMCID: PMC4029566 DOI: 10.1371/journal.pone.0096975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/15/2014] [Indexed: 11/18/2022] Open
Abstract
In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique adaptation may establish new paradigms for how receptor:ligand pairs co-evolve, in particular with respect to sexual conflict.
Collapse
Affiliation(s)
- Damien B. Wilburn
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Kathleen E. Bowen
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Kari A. Doty
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Sengodagounder Arumugam
- J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Andrew N. Lane
- J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Pamela W. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Richard C. Feldhoff
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
16
|
Nakada T, Hagino-Yamagishi K, Nakanishi K, Yokosuka M, Saito TR, Toyoda F, Hasunuma I, Nakakura T, Kikuyama S. Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs. J Comp Neurol 2014; 522:3501-19. [PMID: 24771457 DOI: 10.1002/cne.23619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022]
Abstract
We analyzed the expression of G protein α subunits and the axonal projection into the brain in the olfactory system of the semiaquatic newt Cynops pyrrhogaster by immunostaining with antibodies against Gαolf and Gαo , by in situ hybridization using probes for Gαolf , Gαo , and Gαi2 , and by neuronal tracing with DiI and DiA. The main olfactory epithelium (OE) consists of two parts, the ventral OE and dorsal OE. In the ventral OE, the Gαolf - and Gαo -expressing neurons are located in the apical and basal zone of the OE, respectively. This zonal expression was similar to that of the OE in the middle cavity of the fully aquatic toad Xenopus laevis. However, the Gαolf - and Gαo -expressing neurons in the newt ventral OE project their axons toward the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), respectively, whereas in Xenopus, the axons of both neurons project solely toward the MOB. In the dorsal OE of the newt, as in the principal cavity of Xenopus, the majority of the neurons express Gαolf and extend their axons into the MOB. In the vomeronasal organ (VNO), the neurons mostly express Gαo . These neurons and quite a few Gαolf -expressing neurons project their axons toward the AOB. This feature is similar to that in the terrestrial toad Bufo japonicus and is different from that in Xenopus, in which VNO neurons express solely Gαo , although their axons invariably project toward the AOB. We discuss the findings in the light of diversification and evolution of the vertebrate olfactory system.
Collapse
Affiliation(s)
- Tomoaki Nakada
- Department of Comparative and Behavioral Medicine, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, 180-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sansone A, Syed AS, Tantalaki E, Korsching SI, Manzini I. Trpc2 is expressed in two olfactory subsystems, the main and the vomeronasal system of larval Xenopus laevis. ACTA ACUST UNITED AC 2014; 217:2235-8. [PMID: 24737764 PMCID: PMC4986728 DOI: 10.1242/jeb.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Complete segregation of the main olfactory epithelium (MOE) and the vomeronasal epithelium is first observed in amphibians. In contrast, teleost fishes possess a single olfactory surface, in which genetic components of the main and vomeronasal olfactory systems are intermingled. The transient receptor potential channel TRPC2, a marker of vomeronasal neurons, is present in the single fish sensory surface, but is already restricted to the vomeronasal epithelium in a terrestrial amphibian, the red-legged salamander (Plethodon shermani). Here we examined the localization of TRPC2 in an aquatic amphibian and cloned the Xenopus laevis trpc2 gene. We show that it is expressed in both the MOE and the vomeronasal epithelium. This is the first description of a broad trpc2 expression in the MOE of a tetrapod. The expression pattern of trpc2 in the MOE is virtually undistinguishable from that of MOE-specific v2rs, indicating that they are co-expressed in the same neuronal subpopulation.
Collapse
Affiliation(s)
- Alfredo Sansone
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Adnan S Syed
- Institute of Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Evangelia Tantalaki
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Sigrun I Korsching
- Institute of Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | - Ivan Manzini
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| |
Collapse
|
18
|
Abstract
Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas "ancestral" v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates.
Collapse
|