1
|
Caceres A, Caceres-Alan A, Caceres-Alan T. Toxoplasma gondii infections in pediatric neurosurgery. Childs Nerv Syst 2024; 40:295-301. [PMID: 36943435 DOI: 10.1007/s00381-023-05915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023]
Abstract
Toxoplasma gondii is a parasite that is estimated to infect one-third of the world's population. It is acquired by ingesting contaminated water and food specially undercooked meat, contact with domestic or wild feline feces, and during pregnancy by transplacental transmission.Immunocompetent hosts are usually asymptomatic, and infection will be self-limited, while those patients whose immune system is debilitated by HIV infection, immunosuppressive therapy, long-term steroid treatment, and fetuses infected during gestation will show evidence of systemic activity which is more severe in the central nervous system and eyes due to insufficient immune response caused by their respective blood barriers. Congenital toxoplasmosis has an estimated incidence of 8% in mothers who were seronegative at the beginning of their pregnancy. Infection in the first trimester may result in spontaneous abortion or stillbirth; however, it is estimated that the highest risk for vertical transmission is during the second and third trimesters when blood flow and placenta thickness favor parasitic transmission.Congenital toxoplasmosis can be detected with periodic surveillance in endemic areas, and with appropriate treatment, the risk of vertical transmission can be reduced, and the severity of the disease can be reversed in infected fetuses.While most infected newborns will show no evidence of the disease, those who suffer active intrauterine complications will present with cerebral calcifications in 8-12% of cases, hydrocephalus in 4-30%, and chorioretinitis in 12-15%. Also, seizure disorders, spasticity, and varying degrees of neurocognitive deficits can be found in 12%.Four distinct patterns of hydrocephalus have been described: aqueductal stenosis with lateral and third ventricle dilatation, periforaminal calcifications leading to foramen of Monro stenosis with associated asymmetrical ventricle dilatation, a mix of aqueductal and foramen of Monro stenosis, and overt hydrocephalus without clear evidence of obstruction with predominant dilatation of occipital horns (colpocephaly).While all patients diagnosed with congenital toxoplasmosis should undergo pharmacological treatment, those presenting with hydrocephalus have traditionally been managed with CSF shunting; however, there are reports of at least 50% success when selected cases are treated with endoscopic third ventriculostomy. Successful hydrocephalus management with appropriate treatment leads to better intellectual outcomes.
Collapse
Affiliation(s)
- Adrian Caceres
- Pediatric Neurosurgery Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", CCSS, San José, Costa Rica.
| | - Ariadnna Caceres-Alan
- Pediatric Neurosurgery Department, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", CCSS, San José, Costa Rica
- Universidad de Ciencias Médicas, UCIMED, San José, Costa Rica
| | | |
Collapse
|
2
|
Duy PQ, Mehta NH, Kahle KT. The "microcephalic hydrocephalus" paradox as a paradigm of altered neural stem cell biology. Cereb Cortex 2024; 34:bhad432. [PMID: 37991277 PMCID: PMC10793578 DOI: 10.1093/cercor/bhad432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Characterized by enlarged brain ventricles, hydrocephalus is a common neurological disorder classically attributed to a primary defect in cerebrospinal fluid (CSF) homeostasis. Microcephaly ("small head") and hydrocephalus are typically viewed as two mutually exclusive phenomenon, since hydrocephalus is thought of as a fluid "plumbing" disorder leading to CSF accumulation, ventricular dilatation, and resultant macrocephaly. However, some cases of hydrocephalus can be associated with microcephaly. Recent work in the genomics of congenital hydrocephalus (CH) and an improved understanding of the tropism of certain viruses such as Zika and cytomegalovirus are beginning to shed light into the paradox "microcephalic hydrocephalus" by defining prenatal neural stem cells (NSC) as the spatiotemporal "scene of the crime." In some forms of CH and viral brain infections, impaired fetal NSC proliferation leads to decreased neurogenesis, cortical hypoplasia and impaired biomechanical interactions at the CSF-brain interface that collectively engender ventriculomegaly despite an overall and often striking decrease in head circumference. The coexistence of microcephaly and hydrocephalus suggests that these two phenotypes may overlap more than previously appreciated. Continued study of both conditions may be unexpectedly fertile ground for providing new insights into human NSC biology and our understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
3
|
Schneider MO, Faschingbauer F, Kagan KO, Groß U, Enders M, Kehl S, for the AGG Section Maternal Diseases . Toxoplasma gondii Infection in Pregnancy - Recommendations of the Working Group on Obstetrics and Prenatal Medicine (AGG - Section on Maternal Disorders). Geburtshilfe Frauenheilkd 2023; 83:1431-1445. [PMID: 38046526 PMCID: PMC10689109 DOI: 10.1055/a-2111-7394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 12/05/2023] Open
Abstract
Aim The AGG (Working Group for Obstetrics and Prenatal Diagnostics, Section Maternal Diseases) has issued these recommendations to improve the detection and management of Toxoplasma gondii infection in pregnancy. Methods Members of the Task Force developed the recommendations and statements presented here using recently published literature. The recommendations were adopted after a consensus process by members of the working group. Recommendations This article focuses on the epidemiology and pathophysiology of Toxoplasma gondii infection in pregnancy and includes recommendations for maternal and fetal diagnosis, transmission prophylaxis, therapy, prevention, screening, and peripartum management.
Collapse
Affiliation(s)
- Michael Oliver Schneider
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Faschingbauer
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Oliver Kagan
- Department for Womenʼs Health, University Hospital of Tübingen, Tübingen, Germany
| | - Uwe Groß
- Institute of Medical Microbiology and Virology, University Medical Centre Göttingen, Göttingen, Germany
| | - Martin Enders
- Laboratory Prof. Gisela Enders and Colleagues, Stuttgart, Germany
| | - Sven Kehl
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
4
|
Souza JS, Farani PSG, Ferreira BIS, Barbosa HS, Menna-Barreto RFS, Moreira OC, Mariante RM. Establishment of a murine model of congenital toxoplasmosis and validation of a qPCR assay to assess the parasite load in maternal and fetal tissues. Front Microbiol 2023; 14:1124378. [PMID: 36922978 PMCID: PMC10009190 DOI: 10.3389/fmicb.2023.1124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, a disease that affects warm-blooded animals and one third of the human population worldwide. Pregnant women who have never been exposed to the parasite constitute an important risk group, as infection during pregnancy often leads to congenital toxoplasmosis, the most severe form of the disease. Current therapy for toxoplasmosis is the same as it was 50 years ago and has little or no effect when vertical transmission occurs. Therefore, it is urgent to develop new strategies to prevent mother-to-fetus transmission. The implementation of experimental animal models of congenital toxoplasmosis that reproduces the transmission rates and clinical signs in humans opens an avenue of possibilities to interfere in the progression of the disease. In addition, knowing the parasite load in maternal and fetal tissues after infection, which may be related to organ abnormalities and disease outcome, is another important step in designing a promising intervention strategy. Therefore, we implemented here a murine model of congenital toxoplasmosis with outbred Swiss Webster mice infected intravenously with tachyzoites of the ME49 strain of T. gondii that mimics the frequency of transmission of the parasite, as well as important clinical signs of human congenital toxoplasmosis, such as macrocephaly, in addition to providing a highly sensitive quantitative real-time PCR assay to assess parasite load in mouse tissues. As the disease is not restricted to humans, also affecting several domestic animals, including companion animals and livestock, they can also benefit from the model presented in this study.
Collapse
Affiliation(s)
- Jéssica S Souza
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Priscila S G Farani
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.,Department of Biological Science, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Beatriz I S Ferreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Otacilio C Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Qiu ZE, Chen L, Hou XC, Sheng J, Xu JB, Xu JW, Gao DD, Huang ZX, Lei TL, Huang ZY, Peng L, Yang HL, Lin QH, Zhu YX, Guan WJ, Lun ZR, Zhou WL, Zhang YL. Toxoplasma gondii infection triggers ongoing inflammation mediated by increased intracellular Cl - concentration in airway epithelium. J Infect 2023; 86:47-59. [PMID: 36334726 DOI: 10.1016/j.jinf.2022.10.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasma gondii is a widespread parasitic protozoan causing toxoplasmosis including pulmonary toxoplasmosis. As the first line of host defense, airway epithelial cells play critical roles in orchestrating pulmonary innate immunity. However, the mechanism underlying the airway inflammation induced by the T. gondii infection remains largely unclear. This study demonstrated that after infection with T. gondii, the major anion channel located in the apical membranes of airway epithelial cells, cystic fibrosis transmembrane conductance regulator (CFTR), was degraded by the parasite-secreted cysteine proteases. The intracellular Cl- concentration ([Cl-]i) was consequently elevated, leading to activation of nuclear factor-κB (NF-κB) signaling via serum/glucocorticoid regulated kinase 1. Furthermore, the heightened [Cl-]i and activated NF-κB signaling could be sustained in a positive feedback regulatory manner resulting from decreased intracellular cAMP level through NF-κB-mediated up-regulation of phosphodiesterase 4. Conversely, the sulfur-containing compound allicin conferred anti-inflammatory effects on pulmonary toxoplasmosis by decreasing [Cl-]i via activation of CFTR. These results suggest that the intracellular Cl- dynamically modulated by T. gondii mediates sustained airway inflammation, which provides a potential therapeutic target against pulmonary toxoplasmosis.
Collapse
Affiliation(s)
- Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jie Sheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China; Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou 510500, P. R. China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hai-Long Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qin-Hua Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P. R. China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
6
|
Garweg JG, Kieffer F, Mandelbrot L, Peyron F, Wallon M. Long-Term Outcomes in Children with Congenital Toxoplasmosis-A Systematic Review. Pathogens 2022; 11:pathogens11101187. [PMID: 36297244 PMCID: PMC9610672 DOI: 10.3390/pathogens11101187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Even in the absence of manifestations at birth, children with congenital toxoplasmosis (CT) may develop serious long-term sequelae later in life. This systematic review aims to present the current state of knowledge to base an informed decision on how to optimally manage these pregnancies and children. For this, a systematic literature search was performed on 28 July 2022 in PubMed, CENTRAL, ClinicalTrials.gov, Google Scholar and Scopus to identify all prospective and retrospective studies on congenital toxoplasmosis and its long-term outcomes that were evaluated by the authors. We included 31 research papers from several countries. Virulent parasite strains, low socioeconomic status and any delay of treatment seem to contribute to a worse outcome, whereas an early diagnosis of CT as a consequence of prenatal screening may be beneficial. The rate of ocular lesions in treated children increases over time to 30% in European and over 70% in South American children and can be considerably reduced by early treatment in the first year of life. After treatment, new neurological manifestations are not reported, while ocular recurrences are observed in more than 50% of patients, with a mild to moderate impact on quality of life in European cohorts when compared to a significantly reduced quality of life in the more severely affected South American children. Though CT is rare and less severe in Europe when compared with South America, antenatal screening is the only effective way to diagnose and treat affected individuals at the earliest possible time in order to reduce the burden of disease and achieve satisfying outcomes.
Collapse
Affiliation(s)
- Justus G. Garweg
- Swiss Eye Institute, Rotkreuz, and Uveitis Clinic, Berner Augenklinik, Zieglerstrasse 29, 3007 Bern, Switzerland
- Department of Ophthalmology, Inselspital, University Hospital, 3010 Bern, Switzerland
- Correspondence:
| | - François Kieffer
- Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Service de Néonatologie, 75012 Paris, France
| | - Laurent Mandelbrot
- Assistance Publique-Hôpitaux de Paris, Hôpital Louis-Mourier Service de Gynécologie-Obstétrique, 178 rue des Renouillers, 92700 Colombes, France
- Inserm IAME-U1137, 75000 Paris, France
| | - François Peyron
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Department of Parasitology and Medical Mycology, 69004 Lyon, France
| | - Martine Wallon
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Department of Parasitology and Medical Mycology, 69004 Lyon, France
- Walking Team, Centre for Research in Neuroscience in Lyon, 69500 Bron, France
| |
Collapse
|
7
|
Withoeft JA, Da Costa LS, Marian L, Baumbach LF, Do Canto Olegário J, Miletti LC, Canal CW, Casagrande RA. Microcephaly and hydrocephalus in a sheep fetus infected with Neospora caninum in Southern Brazil - Short communication. Acta Vet Hung 2022; 70:226-229. [PMID: 36129791 DOI: 10.1556/004.2022.00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
A case of non-communicating hydrocephalus and microcephaly in a sheep fetus infected with Neospora caninum from Lages, Santa Catarina, Brazil, is reported. Macroscopically, there was moderate flattening and narrowing of the skull, and the portion of the cerebral hemispheres was markedly reduced in size, measuring 3.5 × 3.5 × 0.5 cm, with marked diffuse flattening of the brain gyri and dilation of the lateral ventricles. Cerebrospinal fluid samples were positive to N. caninum detection by PCR. Histologically, there was discrete focal lymphoplasmacytic necrotising encephalitis on the floor of the lateral ventricle, discrete multifocal gliosis and discrete multifocal lymphoplasmacytic myositis. Through the molecular detection of N. caninum in the cerebrospinal fluid, it was possible to report what appears to be the first case of non-communicating hydrocephalus and microcephaly in an ovine fetus infected with N. caninum.
Collapse
Affiliation(s)
- Jéssica Aline Withoeft
- 1 Laboratório de Patologia Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - Av. Luís de Camões, 2090, Conta Dinheiro, Lages, Santa Catarina, Brazil
| | - Leonardo Silva Da Costa
- 1 Laboratório de Patologia Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - Av. Luís de Camões, 2090, Conta Dinheiro, Lages, Santa Catarina, Brazil
| | - Lucas Marian
- 1 Laboratório de Patologia Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - Av. Luís de Camões, 2090, Conta Dinheiro, Lages, Santa Catarina, Brazil
| | - Letícia Ferreira Baumbach
- 3 Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Juliana Do Canto Olegário
- 3 Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Cláudio Miletti
- 2 Laboratório de Bioquímica de Hemoparasitas e Vetores, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil
| | - Cláudio Wageck Canal
- 3 Laboratório de Virologia Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Renata Assis Casagrande
- 1 Laboratório de Patologia Animal, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina - Av. Luís de Camões, 2090, Conta Dinheiro, Lages, Santa Catarina, Brazil
| |
Collapse
|
8
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, et alFelín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Holfels E, Frim D, McLone D, Penn R, Cohen W, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part I: Introduction and Overview. CURRENT PEDIATRICS REPORTS 2022; 10:57-92. [PMID: 36034212 PMCID: PMC9395898 DOI: 10.1007/s40124-022-00269-w] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Purpose of Review Review building of programs to eliminate Toxoplasma infections. Recent Findings Morbidity and mortality from toxoplasmosis led to programs in USA, Panama, and Colombia to facilitate understanding, treatment, prevention, and regional resources, incorporating student work. Summary Studies foundational for building recent, regional approaches/programs are reviewed. Introduction provides an overview/review of programs in Panamá, the United States, and other countries. High prevalence/risk of exposure led to laws mandating testing in gestation, reporting, and development of broad-based teaching materials about Toxoplasma. These were tested for efficacy as learning tools for high-school students, pregnant women, medical students, physicians, scientists, public health officials and general public. Digitized, free, smart phone application effectively taught pregnant women about toxoplasmosis prevention. Perinatal infection care programs, identifying true regional risk factors, and point-of-care gestational screening facilitate prevention and care. When implemented fully across all demographics, such programs present opportunities to save lives, sight, and cognition with considerable spillover benefits for individuals and societies. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00269-w.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Academia Interamericana de Panamá, Ciudad de Panamá, Panamá
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
| | - Kristen Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Arturo Rebellon
- Sanofi Aventis de Panamá S.A., University of South Florida, Ciudad de Panamá, Panamá
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | | | | | | | | | | | | | - Dan L. Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, D.C. USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Eduardo Ortega-Barria
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
- GSK Vaccines, Panamá, Panamá
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Michael Grigg
- Molecular Parasitology, NIAID, NIH, Bethesda, MD USA
| | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics, Division of Infectious Diseases, The University of Chicago, Chicago, IL USA
| |
Collapse
|
9
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, et alFelín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, Holfels E, Frim D, McLone D, Penn R, Cohen W, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part IV: Understanding and Development of Public Health Strategies and Advances "Take a Village". CURRENT PEDIATRICS REPORTS 2022; 10:125-154. [PMID: 35991908 PMCID: PMC9379243 DOI: 10.1007/s40124-022-00268-x] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Purpose of Review Review international efforts to build a global public health initiative focused on toxoplasmosis with spillover benefits to save lives, sight, cognition and motor function benefiting maternal and child health. Recent Findings Multiple countries' efforts to eliminate toxoplasmosis demonstrate progress and context for this review and new work. Summary Problems with potential solutions proposed include accessibility of accurate, inexpensive diagnostic testing, pre-natal screening and facilitating tools, missed and delayed neonatal diagnosis, restricted access, high costs, delays in obtaining medicines emergently, delayed insurance pre-approvals and high medicare copays taking considerable physician time and effort, harmful shortcuts being taken in methods to prepare medicines in settings where access is restricted, reluctance to perform ventriculoperitoneal shunts promptly when needed without recognition of potential benefit, access to resources for care, especially for marginalized populations, and limited use of recent advances in management of neurologic and retinal disease which can lead to good outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00268-x.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Academia Interamericana de Panama, Ciudad de Panama, Panama
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Hospital San Miguel Arcángel, Ciudad de Panama, Panama
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Arturo Rebellon
- Sanofi Aventis de Panama S.A., University of South Florida, Ciudad de Panama, Panama
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | - Dan L Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, DC USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Eduardo Ortega-Barria
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
- GSK Vaccines, Panama, Panama
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL USA
| |
Collapse
|
10
|
Rojas-Pirela M, Medina L, Rojas MV, Liempi AI, Castillo C, Pérez-Pérez E, Guerrero-Muñoz J, Araneda S, Kemmerling U. Congenital Transmission of Apicomplexan Parasites: A Review. Front Microbiol 2021; 12:751648. [PMID: 34659187 PMCID: PMC8519608 DOI: 10.3389/fmicb.2021.751648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Apicomplexans are a group of pathogenic protists that cause various diseases in humans and animals that cause economic losses worldwide. These unicellular eukaryotes are characterized by having a complex life cycle and the ability to evade the immune system of their host organism. Infections caused by some of these parasites affect millions of pregnant women worldwide, leading to various adverse maternal and fetal/placental effects. Unfortunately, the exact pathogenesis of congenital apicomplexan diseases is far from being understood, including the mechanisms of how they cross the placental barrier. In this review, we highlight important aspects of the diseases caused by species of Plasmodium, Babesia, Toxoplasma, and Neospora, their infection during pregnancy, emphasizing the possible role played by the placenta in the host-pathogen interaction.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Isabel Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | | | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Araneda
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Facultad de Salud y Odontología, Universidad Diego Portales, Santiago, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Villena I. Congenital toxoplasmosis in humans: an update of worldwide rate of congenital infections. Parasitology 2021; 148:1406-1416. [PMID: 34254575 PMCID: PMC11010219 DOI: 10.1017/s0031182021001013] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022]
Abstract
The morbidity due to congenital toxoplasmosis in humans is very high. Most of these infected children are likely to develop symptoms of clinical toxoplasmosis. Sequelae in fetus resulting from Toxoplasma gondii infections in women who become infected with this parasite during pregnancy can be devastating and enormous efforts are directed in some countries to prevent these consequences. Here, an update on congenital toxoplasmosis in humans, especially the rate of congenital infections in humans worldwide, is provided. Although several countries have surveillance programmes, most information on the rate of congenital transmission is from France and Brazil. Because of compulsory national screening programme in France to detect and treat women with recently acquired T. gondii infection with anti-toxoplasma therapy, the rate of congenital transmission and the severity of disease in children are declining. Infections by this parasite are widely prevalent in Brazil. The severity of clinical toxoplasmosis in Brazilian children is very high and may be associated with the genetic characteristics of T. gondii isolates prevailing in animals and humans in Brazil. Virtually little or no information is available on this topic from China, India and other countries in Asia.
Collapse
Affiliation(s)
- J. P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - F. H. A. Murata
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - C. K. Cerqueira-Cézar
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - O. C. H. Kwok
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD20705-2350, USA
| | - I. Villena
- Parasitology, Mycology Laboratory, National Reference Centre for Toxoplasmosis, Toxoplasma Biological Resources Centre, CHU Reims and University Reims Champagne Ardenne ESCAPE EA7510, 51097, Reims, France
| |
Collapse
|
12
|
Guevara RB, Fox BA, Bzik DJ. A Family of Toxoplasma gondii Genes Related to GRA12 Regulate Cyst Burdens and Cyst Reactivation. mSphere 2021; 6:e00182-21. [PMID: 33883265 PMCID: PMC8546695 DOI: 10.1128/msphere.00182-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii causes a chronic infection that renders the immunocompromised human host susceptible to toxoplasmic encephalitis triggered by cyst reactivation in the central nervous system. The dense granule protein GRA12 is a major parasite virulence factor required for parasite survival during acute infection. Here, we characterized the role of four GRA12-related genes in acute and chronic stages of infection. While GRA12A, GRA12B, and GRA12D were highly expressed in asexual stage tachyzoites and bradyzoites, expression of GRA12C appeared to be restricted to the sexual stages. In contrast to deletion of GRA12 (Δgra12), no major defects in acute virulence were observed in Δgra12A, Δgra12B, or Δgra12D parasites, though Δgra12B parasites exhibited an increased tachyzoite replication rate. Bradyzoites secreted GRA12A, GRA12B, and GRA12D and incorporated these molecules into the developing cyst wall, as well as the cyst matrix in distinct patterns. Similar to GRA12, GRA12A, GRA12B, and GRA12D colocalized with the dense granules in extracellular tachyzoites, with GRA2 and the intravacuolar network in the tachyzoite stage parasitophorous vacuole and with GRA2 in the cyst matrix and cyst wall. Chronic stage cyst burdens were decreased in mice infected with Δgra12A parasites and were increased in mice infected with Δgra12B parasites. However, Δgra12B cysts were not efficiently maintained in vivo Δgra12A, Δgra12B, and Δgra12D in vitro cysts displayed a reduced reactivation efficiency, and reactivation of Δgra12A cysts was delayed. Collectively, our results suggest that a family of genes related to GRA12 play significant roles in the formation, maintenance, and reactivation of chronic stage cysts.IMPORTANCE If host immunity weakens, Toxoplasma gondii cysts recrudesce in the central nervous system and cause a severe toxoplasmic encephalitis. Current therapies target acute stage infection but do not eliminate chronic cysts. Parasite molecules that mediate the development and persistence of chronic infection are poorly characterized. Dense granule (GRA) proteins such as GRA12 are key virulence factors during acute infection. Here, we investigated four GRA12-related genes. GRA12-related genes were not major virulence factors during acute infection. Instead, GRA12-related proteins localized at the cyst wall and cyst matrix and played significant roles in cyst development, persistence, and reactivation during chronic infection. Similar to GRA12, the GRA12-related proteins selectively associated with the intravacuolar network of membranes inside the vacuole. Collectively, our results support the hypothesis that GRA12 proteins associated with the intravacuolar membrane system support parasite virulence during acute infection and cyst development, persistence, and reactivation during chronic infection.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
13
|
Arranz-Solís D, Carvalheiro CG, Zhang ER, Grigg ME, Saeij JPJ. Toxoplasma GRA Peptide-Specific Serologic Fingerprints Discriminate Among Major Strains Causing Toxoplasmosis. Front Cell Infect Microbiol 2021; 11:621738. [PMID: 33680990 PMCID: PMC7935526 DOI: 10.3389/fcimb.2021.621738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The severity of toxoplasmosis depends on a combination of host and parasite factors. Among them, the Toxoplasma strain causing the infection is an important determinant of the disease outcome. Type 2 strains dominate in Europe, whereas in North America type 2, followed by type 3 and 12 strains are commonly isolated from wildlife and patients. To identify the strain type a person is infected with, serological typing provides a promising alternative to the often risky and not always possible biopsy-based DNA methods of genotyping. However, despite recent advances in serotyping, improvements in the sensitivity and specificity are still needed, and it does not yet discriminate among the major Toxoplasma lineages infecting people. Moreover, since infections caused by non-1/2/3 strains have been associated with more severe disease, the ability to identify these is critical. In the present study we investigated the diagnostic potential of an ELISA-based assay using 28 immunogenic Toxoplasma peptides derived from a recent large-scale peptide array screen. Our results show that a discrete number of peptides, derived from Toxoplasma dense granule proteins (GRA3, GRA5, GRA6, and GRA7) was sufficient to discriminate among archetypal strains that infect mice and humans. The assay specifically relies on ratios that compare individual serum reactivities against GRA-specific polymorphic peptide variants in order to determine a "reactivity fingerprint" for each of the major strains. Importantly, nonarchetypal strains that possess a unique combination of alleles, different from types 1/2/3, showed either a non-reactive, or different combinatorial, mixed serum reactivity signature that was diagnostic in its own right, and that can be used to identify these strains. Of note, we identified a distinct "HG11/12" reactivity pattern using the GRA6 peptides that is able to distinguish HG11/12 from archetypal North American/European strain infections.
Collapse
Affiliation(s)
- David Arranz-Solís
- Pathology, Microbiology and Immunology Department, Veterinary Medicine School 3A, University of California Davis, Davis, CA, United States
| | - Cristina G. Carvalheiro
- Laboratory of Parasitic Diseases, Molecular Parasitology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States,Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Elizabeth R. Zhang
- Laboratory of Parasitic Diseases, Molecular Parasitology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael E. Grigg
- Laboratory of Parasitic Diseases, Molecular Parasitology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeroen P. J. Saeij
- Pathology, Microbiology and Immunology Department, Veterinary Medicine School 3A, University of California Davis, Davis, CA, United States,*Correspondence: Jeroen P. J. Saeij,
| |
Collapse
|
14
|
Ottaru S, Mirambo MM, Kabyemera R, Kidenya BR, Seugendo M, Msanga DR, Ngoya P, Morona D, Mshana SE. Predictors of Toxoplasma gondii IgG Seropositivity and Cranial Ultrasound Patterns among Children with Hydrocephalus. Int J Pediatr 2020; 2020:8326348. [PMID: 32963556 PMCID: PMC7492872 DOI: 10.1155/2020/8326348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Toxoplasma gondii infection during pregnancy is associated with serious neonatal complications, including hydrocephalus. In many high-income countries, T. gondii screening and treatment during the antenatal period are routinely carried out to prevent associated complications, whereas in most low-income countries, there is no routine screening of T. gondii during pregnancy. Despite the parasite being common in Tanzania, there is a paucity of information on the prevalence of T. gondii and cranial ultrasound patterns among children with hydrocephalus. METHODS An analytical cross-sectional hospital-based study involving 125 infants with hydrocephalus attending the Bugando Medical Centre (BMC) was conducted between May 2017 and February 2018. Sociodemographic and other relevant information was collected using a pretested data collection tool. Venous blood samples were collected, and sera were used for the detection of specific T. gondii antibodies by indirect enzyme-linked immunosorbent assay (ELISA) as per manufacturer's instructions. Data were analysed using STATA version 13 software. RESULTS The mean age of enrolled children was 4.8 ± 3.5 months. Out of 125 infants with hydrocephalus, 29 (23.2%, 95% CI: 21-36) were seropositive for T. gondii-specific IgG antibodies. By multiple generalized linear model analysis, being male (aRR = 1.1, 95% CI: 0.9-1.5, p = 0.049), higher birth order (aRR = 1.2, 95% CI: 1.0-1.5, p = 0.023), consumption of fish meat (aRR = 1.6, 95% CI: 1.2-2.3, p = 0.003), and using other methods of cooking meat than boiling (aRR = 1.7, 95% CI: 1.1-2.5, p = 0.015) were independent risk factors for T. gondii IgG seropositivity. Obstructive hydrocephalus was significantly more common among T. gondii-seronegative infants compared to IgG-seropositive infants (31.3% [30/96] vs. 13.8% [4/29]; p = 0.049). CONCLUSIONS A significant proportion of infants with nonobstructive hydrocephalus are T. gondii IgG seropositive, and this is predicted by male gender, increase of birth order, consuming fish, and using other methods of cooking meat than boiling. These facts highlight the importance of continuing health education for pregnant women regarding T. gondii transmission and the need to follow-up their infants so that appropriate counselling and management can be provided.
Collapse
Affiliation(s)
- Sofia Ottaru
- Department of Paediatrics & Child Health, Bugando Medical Centre, P.O. Box 370, Mwanza, Tanzania
| | - Mariam M. Mirambo
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Rogatus Kabyemera
- Department of Paediatrics & Child Health, Bugando Medical Centre, P.O. Box 370, Mwanza, Tanzania
| | - Benson R. Kidenya
- Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Mwanaisha Seugendo
- Department of Paediatrics & Child Health, Bugando Medical Centre, P.O. Box 370, Mwanza, Tanzania
| | - Delfina R. Msanga
- Department of Paediatrics & Child Health, Bugando Medical Centre, P.O. Box 370, Mwanza, Tanzania
| | - Patrick Ngoya
- Department of Radiology, Bugando Medical Centre, P.O. Box 370, Mwanza, Tanzania
| | - Domenica Morona
- Department of Medical Parasitology and Entomology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
| |
Collapse
|
15
|
Patel SK, Zamorano-Fernandez J, Nagaraj U, Bierbrauer KS, Mangano FT. Not all ventriculomegaly is created equal: diagnostic overview of fetal, neonatal and pediatric ventriculomegaly. Childs Nerv Syst 2020; 36:1681-1696. [PMID: 31701277 DOI: 10.1007/s00381-019-04384-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Fetal ventriculomegaly refers to a condition in which there is enlargement of the ventricular spaces, typically on prenatal ultrasound. It can be associated with other CNS or extra-CNS abnormalities, and this relationship is crucial to understand as it affects overall neonatal outcome. Isolated ventriculomegaly has been described in the literature with variable clinical outcome. Typically, outcome is based on the etiology and degree of ventriculomegaly. When associated with a pathologic condition, ventriculomegaly can be a result of hydrocephalus. While initial diagnosis is usually made on prenatal ultrasound, fetal magnetic resonance imaging is preferred to further elucidate any associated CNS malformations. In this paper, the authors aim to provide a comprehensive review of the diagnosis, associated etiologies, prognosis, and treatment options related to fetal, neonatal, and pediatric ventriculomegaly and hydrocephalus. In addition, preliminary data is provided from our institutional cohort of patients with a prenatal diagnosis of ventriculomegaly followed through the perinatal period.
Collapse
Affiliation(s)
- Smruti K Patel
- Department of Neurosurgery, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 2016, Cincinnati, OH, 45229-3026, USA
| | - Jorge Zamorano-Fernandez
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2016, Cincinnati, OH, 45229-3026, USA
| | - Usha Nagaraj
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karin S Bierbrauer
- Department of Neurosurgery, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 2016, Cincinnati, OH, 45229-3026, USA.,Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2016, Cincinnati, OH, 45229-3026, USA
| | - Francesco T Mangano
- Department of Neurosurgery, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 2016, Cincinnati, OH, 45229-3026, USA. .,Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2016, Cincinnati, OH, 45229-3026, USA.
| |
Collapse
|
16
|
Choi HG, Gao FF, Zhou W, Sun PR, Yuk JM, Lee YH, Cha GH. The Role of PI3K/AKT Pathway and NADPH Oxidase 4 in Host ROS Manipulation by Toxoplasma gondii. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:237-247. [PMID: 32615737 PMCID: PMC7338895 DOI: 10.3347/kjp.2020.58.3.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 01/13/2023]
Abstract
Dendritic cell is one of the first innate immune cell to encounter T. gondii after the parasite crosses the host intestinal epithelium. T. gondii requires intact DC as a carrier to infiltrate into host central nervous system (CNS) without being detected or eliminated by host defense system. The mechanism by which T. gondii avoids innate immune defense of host cell, especially in the dendritic cell is unknown. Therefore, we examined the role of host PI3K/AKT signaling pathway activation by T. gondii in dendritic cell. T. gondii infection or T. gondii excretory/secretory antigen (TgESA) treatment to the murine dendritic cell line DC2.4 induced AKT phosphorylation, and treatment of PI3K inhibitors effectively suppressed the T. gondii proliferation but had no effect on infection rate or invasion rate. Furthermore, it is found that T. gondii or TgESA can reduce H2O2-induced intracellular reactive oxygen species (ROS) as well as host endogenous ROS via PI3K/AKT pathway activation. While searching for the main source of the ROS, we found that NADPH oxidase 4 (NOX4) expression was controlled by T. gondii infection or TgESA treatment, which is in correlation with previous observation of the ROS reduction by identical treatments. These findings suggest that the manipulation of the host PI3K/AKT signaling pathway and NOX4 expression is an essential mechanism for the down-regulation of ROS, and therefore, for the survival and the proliferation of T. gondii.
Collapse
Affiliation(s)
- Hei Gwon Choi
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Fei-Fei Gao
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Wei Zhou
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea.,Institute of Immunology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271-000, Shandong, China
| | - Pu-Reum Sun
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Jae-Min Yuk
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Young-Ha Lee
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Guang-Ho Cha
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| |
Collapse
|
17
|
Codaccioni C, Picone O, Lambert V, Maurice P, Pomar L, Winer N, Guibaud L, Lavergne RA, Saliou AH, Quinio D, Benachi A, Noel C, Ville Y, Cuillier F, Pomares C, Ferret N, Filisetti D, Weingertner AS, Vequeau-Goua V, Cateau E, Benoist G, Wallon M, Dommergues M, Villena I, Mandelbrot L. Ultrasound features of fetal toxoplasmosis: A contemporary multicenter survey in 88 fetuses. Prenat Diagn 2020; 40:1741-1752. [PMID: 32506432 DOI: 10.1002/pd.5756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/16/2020] [Accepted: 05/23/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To describe the lesions detected by prenatal ultrasound examination in congenital toxoplasmosis (CT). METHODS We retrospectively analyzed all cases of fetal infection with Toxoplasma gondii with ultrasound anomalies described by fetal medicine experts in 2009 to 2019 in 30 French centers. RESULTS Eighty-eight cases of CT were included. Forty-five (51.1%) had one or more cerebral signs only, 35 (39.8%) had cerebral plus extracerebral signs and 8 (9.1%) had extracerebral signs only. The main cerebral signs were intracranial hyperechogenic nodular foci (n = 60) of which 20 were isolated, ventriculomegalies (n = 44) which generally increased during follow-up, and periventricular abscesses (n = 12). The main extracerebral signs were hepatomegaly and/or splenomegaly (n = 14), small for gestational age (n = 14), ascites (n = 14, including 2 with hydrops), and hyperechogenic bowel (n = 11). Maternal infection occurred mostly in the first or second trimester (81 cases), periconceptionally in one and in the third trimester in six cases. The first ultrasound signs were detected after a median of 7 weeks (range: 1.4; 24.0) following maternal toxoplasmosis seroconversion. CONCLUSION While no sign was specific of CT, there were typical associations of cerebral signs with or without extracerebral signs. Detailed ultrasound examination could improve prognostic evaluation, as well as diagnosis of CT in settings lacking serological screening.
Collapse
Affiliation(s)
- Camille Codaccioni
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Louis Mourier, APHP Nord Université de Paris, Colombes, France.,Inserm, IAME, Université de Paris, Paris, France
| | - Olivier Picone
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Louis Mourier, APHP Nord Université de Paris, Colombes, France.,Inserm, IAME, Université de Paris, Paris, France
| | - Véronique Lambert
- Service de Gynécologie-Obstétrique, Centre Hospitalier de l'Ouest Guyanais, St Laurent du Maroni, France
| | - Paul Maurice
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Foetale, Hôpital Trousseau, APHP Sorbonne, Paris, France
| | - Léo Pomar
- Service de Gynécologie-Obstétrique, Centre Hospitalier de l'Ouest Guyanais, St Laurent du Maroni, France
| | - Norbert Winer
- Centre Hospitalier Universitaire de Nantes, Service de Gynécologie-Obstétrique, NUN, INRA, UMR 1280, Phan, Université de Nantes, Nantes, France
| | - Laurent Guibaud
- Centre Hospitalier Universitaire de Nantes, Laboratoire Parasitologie et Mycologie, and NUN, INRA, UMR 1280, Phan, Université de Nantes, Nantes, France
| | - Rose-Anne Lavergne
- Service de Radiologie, Centre Hospitalier Universitaire de Lyon, Lyon, France
| | - Anne-Hélène Saliou
- Service de Gynécologie-Obstétrique, Centre Hospitalier Régional et Universitaire de Brest, Brest, France
| | - Dorothée Quinio
- Laboratoire Parasitologie et Mycologie, Centre Hospitalier Régional et Universitaire de Brest, Brest, France
| | - Alexandra Benachi
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Antoine Béclère, Université Paris-Saclay, Clamart, France
| | - Catherine Noel
- Service de Gynécologie-Obstétrique, Centre Hospitalier René Dubos, Pontoise, France
| | - Yves Ville
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Necker Enfants Malades APHP Centre Université de Paris, Paris, France
| | - Fabrice Cuillier
- Service de Gynécologie-Obstétrique, Centre Hospitalier Régional Félix Guyon, Saint-Denis, Réunion, France
| | - Christelle Pomares
- Centre Hospitalier Universitaire de Nice, Service de Parasitologie-Mycologie, C3M INSERM 1065, Université Côte d'Azur, Nice, France
| | - Nicole Ferret
- Centre Hospitalier Universitaire de Nice, Service de Pédiatrie, Université Côte d'Azur, Nice, France
| | - Denis Filisetti
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Anne-Sophie Weingertner
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Valérie Vequeau-Goua
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Estelle Cateau
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Guillaume Benoist
- Service de Gynécologie-Obstétrique, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Martine Wallon
- Service de Parasitologie-Mycologie, Centre Hospitalier Universitaire de Lyon, Lyon, France
| | - Marc Dommergues
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital de la Pité-Salpêtrière, APHP Sorbonne, Paris, France
| | - Isabelle Villena
- Centre National de Référence de la Toxoplasmose, Centre de Ressources Biologiques Toxoplasma, Service de Parasitologie-Mycologie, EA 7510, UFR Médecine, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Laurent Mandelbrot
- Assistance Publique-Hôpitaux de Paris, Service de Gynécologie-Obstétrique, Hôpital Louis Mourier, APHP Nord Université de Paris, Colombes, France.,Inserm, IAME, Université de Paris, Paris, France
| |
Collapse
|
18
|
Guevara RB, Fox BA, Bzik DJ. Succinylated Wheat Germ Agglutinin Colocalizes with the Toxoplasma gondii Cyst Wall Glycoprotein CST1. mSphere 2020; 5:e00031-20. [PMID: 32132158 PMCID: PMC7056803 DOI: 10.1128/msphere.00031-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/16/2020] [Indexed: 11/20/2022] Open
Abstract
The glycosylated mucin domain of the Toxoplasma gondii cyst wall glycoprotein CST1 is heavily stained by Dolichos biflorus agglutinin, a lectin that binds to N-acetylgalactosamine. The cyst wall is also heavily stained by the chitin binding lectin succinylated wheat germ agglutinin (s-WGA), which selectively binds to N-acetylglucosamine-decorated structures. Here, we tracked the localization of N-acetylglucosamine-decorated structures that bind to s-WGA in immature and mature in vitro cysts. s-WGA localization was observed at the cyst periphery 6 h after the differentiation of the tachyzoite-stage parasitophorous vacuole. By day 1 and at all later times after differentiation, s-WGA was localized in a continuous staining pattern at the cyst wall. Coinciding with the maturation of the cyst matrix by day 3 of cyst development, s-WGA also localized in a continuous matrix pattern inside the cyst. s-WGA localized in both the outer and inner layer regions of the cyst wall and in a continuous matrix pattern inside mature 7- and 10-day-old cysts. In addition, s-WGA colocalized in the cyst wall with CST1, suggesting that N-acetylglucosamine- and N-acetylgalactosamine-decorated molecules colocalized in the cyst wall. In contrast to CST1, GRA4, and GRA6, the relative accumulation of the molecules that bind s-WGA in the cyst wall was not dependent on the expression of GRA2. Our results suggest that GRA2-dependent and GRA2-independent mechanisms regulate the trafficking and accumulation of glycosylated molecules that colocalize in the cyst wall.IMPORTANCE Chronic Toxoplasma gondii infection is maintained in the central nervous system by thick-walled cysts. If host immunity wanes, cysts recrudesce and cause severe and often lethal toxoplasmic encephalitis. Currently, there are no therapies to eliminate cysts, and little biological information is available regarding cyst structure(s). Here, we investigated cyst wall molecules recognized by succinylated wheat germ agglutinin (s-WGA), a lectin that specifically binds to N-acetylglucosamine-decorated structures. N-Acetylglucosamine regulates cell signaling and plays structural roles at the cell surface in many organisms. The cyst wall and cyst matrix were heavily stained by s-WGA in mature cysts and were differentially stained during cyst development. The relative accumulation of molecules that bind to s-WGA in the cyst wall was not dependent on the expression of GRA2. Our findings suggest that glycosylated cyst wall molecules gain access to the cyst wall via GRA2-dependent and GRA2-independent mechanisms and colocalize in the cyst wall.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
19
|
Arranz-Solís D, Cordeiro C, Young LH, Dardé ML, Commodaro AG, Grigg ME, Saeij JPJ. Serotyping of Toxoplasma gondii Infection Using Peptide Membrane Arrays. Front Cell Infect Microbiol 2019; 9:408. [PMID: 31850240 PMCID: PMC6895565 DOI: 10.3389/fcimb.2019.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii can cause chronic infections in most warm-blooded animals, including humans. In the USA, strains belonging to four different Toxoplasma clonal lineages (types 1, 2, 3, and 12) are commonly isolated, whereas strains not belonging to these lineages are predominant in other continents such as South America. Strain type plays a pivotal role in determining the severity of Toxoplasma infection. Therefore, it is epidemiologically relevant to develop a non-invasive and inexpensive method for determining the strain type in Toxoplasma infections and to correlate the genotype with disease outcome. Serological typing is based on the fact that many host antibodies are raised against immunodominant parasite proteins that are highly polymorphic between strains. However, current serological assays can only reliably distinguish type 2 from non-type 2 infections. To improve these assays, mouse, rabbit, and human infection serum were reacted against 950 peptides from 62 different polymorphic Toxoplasma proteins by using cellulose membrane peptide arrays. This allowed us to identify the most antigenic peptides and to pinpoint the most relevant polymorphisms that determine strain specificity. Our results confirm the utility of previously described peptides and identify novel peptides that improve and increase the specificity of the assay. In addition, a large number of novel proteins showed potential to be used for Toxoplasma diagnosis. Among these, peptides derived from several rhoptry, dense granule, and surface proteins represented promising candidates that may be used in future experiments to improve Toxoplasma serotyping. Moreover, a redesigned version of the published GRA7 typing peptide performed better and specifically distinguished type 3 from non-type 3 infections in sera from mice, rabbits, and humans.
Collapse
Affiliation(s)
- David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cynthia Cordeiro
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States.,Biology Department, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lucy H Young
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Marie Laure Dardé
- Faculty of Medicine, Parasitologie-Mycologie, UMR INSERM 1094, National Reference Center and Biological Resource Center for Toxoplasmosis, CHU Dupuytren 2, Limoges, France
| | - Alessandra G Commodaro
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeroen P J Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Pomares C, Devillard S, Holmes TH, Olariu TR, Press CJ, Ramirez R, Talucod J, Estran R, Su C, Dubey JP, Ajzenberg D, Montoya JG. Genetic Characterization of Toxoplasma gondii DNA Samples Isolated From Humans Living in North America: An Unexpected High Prevalence of Atypical Genotypes. J Infect Dis 2019; 218:1783-1791. [PMID: 29982713 DOI: 10.1093/infdis/jiy375] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 11/12/2022] Open
Abstract
Background Whereas in Europe most of Toxoplasma gondii genotypes belong to the type II lineage, in Latin America, type II is rare and atypical strains predominate. In North America, data on T. gondii genotypes in humans are scarce. Methods In this study, T. gondii DNA samples from 67 patients with diagnosed toxoplasmosis in the United States were available for genotyping. Discriminant analysis of principal components was used to infer each atypical genotype to a geographic area where patients were probably infected. Associations between genotype, disease severity, immune status, and geographic region were also estimated. Results Of 67 DNA samples, 41 were successfully genotyped: 18 (43.9%) and 5 (12.2%) were characterized as types II and III, respectively. The remaining 18 genotypes (43.9%) were atypical and were assigned to a geographic area. Ten genotypes originated from Latin America, 7 from North America, and 1 from Asia (China). In North America, unlike in Europe, T. gondii atypical genotypes are common in humans and, unlike in Latin America, type II strains are still present with significant frequency. Conclusions Clinicians should be aware that atypical genotypes are common in North America and have been associated with severe ocular and systemic disease and unusual presentations of toxoplasmosis in immunocompetent patients.
Collapse
Affiliation(s)
- Christelle Pomares
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California.,Division of Infectious Diseases, Department of Medicine, California.,Institut national de la santé et de la recherche médicale, U1065, Centre Méditerranéen de Médecine Moléculaire, Virulence Microbienne et Signalisation Inflammatoire-Université de la Côte d'Azur, Faculté de Médecine.,Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, Nice
| | - Sébastien Devillard
- Université Lyon, Université Claude Bernard Lyon 1, Centre national de la recherche scientifique, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne
| | - Tyson H Holmes
- Division of Infectious Diseases, Department of Medicine, California.,Stanford University Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, California
| | | | - Cynthia J Press
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California
| | - Raymund Ramirez
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California
| | - Jeanne Talucod
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California
| | - Remy Estran
- Ecole Supérieure de Commerce de Paris Europe, Paris
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville
| | - Jitender P Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Maryland
| | - Daniel Ajzenberg
- Institut national de la santé et de la recherche médicale, University of Limoges, Centre Hospitalier Universitaire Limoges, Unité Mixte de Recherche_S, Tropical Neuroepidemiology, Institute of Neuroepidemiology and Tropical Neurology, Limoges, France
| | - Jose G Montoya
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, National Reference Center for the Study and Diagnosis of Toxoplasmosis, California.,Division of Infectious Diseases, Department of Medicine, California
| |
Collapse
|
21
|
Human toxoplasmosis: a systematic review for genetic diversity of Toxoplasma gondii in clinical samples. Epidemiol Infect 2018; 147:e36. [PMID: 30394261 PMCID: PMC6518561 DOI: 10.1017/s0950268818002947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii (T. gondii) as an obligate intracellular protozoan with a worldwide distribution can infect virtually all warm-blooded animals and humans. This study aims to provide a summary of the available data on genotypes of T. gondii in human. Five databases including MEDLINE in PubMed, Scopus, Science Direct, Web of Science and Google Scholar were searched for the T. gondii genotyping in human during 1995-August 2017. Next, we screened all the articles based on the inclusion and exclusion criteria. Overall, 26 studies were eligible regarding genotyping T. gondii in human samples. In clonal genotyping, 167 out of 286 cases (58%) were infected with type II. Genetic characterisation of T. gondii isolates displayed that type II was the most predominant genotype in human with the prevalence of 64.3%, 62.1% and 41.7% in patients with AIDS, congenital and ocular toxoplasmosis, respectively. In ToxoDB genotyping, most individuals were infected with genotypes #9 and #65 (21.2%). Based on these results, genotype profile of T. gondii isolates is different throughout the world. The strains in Asian and African countries are characterised by low genetic diversity, while in North and South America a wide diversity of this parasite is found. In countries without any data (e.g. Australia, Western and Southern Africa and Western Asia), identification of T. gondii genotypes might discover higher genetic diversity.
Collapse
|
22
|
Khan K, Khan W. Congenital toxoplasmosis: An overview of the neurological and ocular manifestations. Parasitol Int 2018; 67:715-721. [PMID: 30041005 DOI: 10.1016/j.parint.2018.07.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite which is known to infect one-third of the total world population chronically though it is asymptomatic in immunocompetent patients. However, in an immunocompromised patient or an infected fetus, it may cause devastating effects. The parasite may cross the placenta of an infected pregnant woman and probably infect the fetus congenitally. The severity of the infection depends on the gestational age at which the infection has occurred i.e., if it has occurred in the early phase, the rate of transmission is low but the severity is high if the fetus is infected and if it has occurred in the later phase then transmission rate is higher while the severity would be low. Congenital toxoplasmosis may result in non-specific consequences like abortion, intra-uterine growth restriction, jaundice, hepatosplenomegaly or even intra-uterine death. It may also result in neurological or ocular manifestations like intracranial calcifications, hydrocephalus or retinochoroiditis. The diagnosis may be done by serological screening of anti-Toxoplasma antibodies (IgM and IgG) while PCR of the amniotic fluid or the placenta is the confirmatory test. Acute or chronic infections may be differentiated by IgG avidity tests. The treatment regimens include spiramycin to prevent congenital transmission from an infected mother, pyrimethamine, sulfadoxine and folinic acid to treat the infected fetus, CSF shunting for the treatment of hydrocephalus and a combination of pyrimethamine, azithromycin, and corticosteroids for treating ocular toxoplasmosis.
Collapse
Affiliation(s)
- Khadija Khan
- Department of Zoology, Section of Parasitology, Aligarh Muslim University, India
| | - Wajihullah Khan
- Department of Zoology, Section of Parasitology, Aligarh Muslim University, India.
| |
Collapse
|
23
|
The Child With Macrocephaly: Differential Diagnosis and Neuroimaging Findings. AJR Am J Roentgenol 2018; 210:848-859. [DOI: 10.2214/ajr.17.18693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Wallon M, Peyron F. Congenital Toxoplasmosis: A Plea for a Neglected Disease. Pathogens 2018; 7:E25. [PMID: 29473896 PMCID: PMC5874751 DOI: 10.3390/pathogens7010025] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 11/16/2022] Open
Abstract
Maternal infection by Toxoplasma gondii during pregnancy may have serious consequences for the fetus, ranging from miscarriage, central nervous system involvement, retinochoroiditis, or subclinical infection at birth with a risk of late onset of ocular diseases. As infection in pregnant women is usually symptomless, the diagnosis relies only on serological tests. Some countries like France and Austria have organized a regular serological testing of pregnant women, some others have no prenatal program of surveillance. Reasons for these discrepant attitudes are many and debatable. Among them are the efficacy of antenatal treatment and cost-effectiveness of such a program. A significant body of data demonstrated that rapid onset of treatment after maternal infection reduces the risk and severity of fetal infection. Recent cost-effectiveness studies support regular screening. This lack of consensus put both pregnant women and care providers in a difficult situation. Another reason why congenital toxoplasmosis is disregarded in some countries is the lack of precise information about its impact on the population. Precise estimations on the burden of the disease can be achieved by systematic screening that will avoid bias or underreporting of cases and provide a clear view of its outcome.
Collapse
Affiliation(s)
- Martine Wallon
- Hospices Civils de Lyon, Institut de Parasitologie et Mycologie Médicale, Hôpital de la Croix Rousse, F-69317 Lyon, France.
- Waking team, Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR 5292, F-69008 Lyon, France.
| | - François Peyron
- Hospices Civils de Lyon, Institut de Parasitologie et Mycologie Médicale, Hôpital de la Croix Rousse, F-69317 Lyon, France.
| |
Collapse
|
25
|
Hydrocephalus associated to congenital Zika syndrome: does shunting improve clinical features? Childs Nerv Syst 2018; 34:101-106. [PMID: 29086073 DOI: 10.1007/s00381-017-3636-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Congenital Zika syndrome (CZS) is a new entity with little information about its course and natural history. It is known that prenatal infection by Zika virus is associated to disrupted nervous system development, leading to typical neurological disabilities and deformities. Some children present progressive ventriculomegaly and hydrocephalus associated to aggravation of seizures and neurological impairment. The aim of this study is to evaluate the development of hydrocephalus and the impact of ventriculoperitoneal shunt insertion in the clinical condition of these children. METHODS Data was obtained from chart review, direct interviews with patients' parents, direct neurological examination, and analysis of pre- and postoperative neuroimages. RESULTS A group of 115 patients had CZS diagnosis from November 2015 to July 2017. Among them, 21 (18.3%) patients had ventricular enlargement noted on follow-up CT scans. Six children (28.6%) underwent a ventriculoperitoneal shunt and all had some improvement after surgery concerning either waking time during the day and better interaction. Overall improvement was also noted in seizures. Spasticity decrease and more cervical control were also achieved. In two out of six cases, a slight increase in parenchymal length could be noted on the CT scans. CONCLUSION This series points out the possibility of hypertensive hydrocephalus development in CZS patients. Affected children may benefit from VP shunt insertion. These findings suggest a dual pathology association: fetal brain disruption and primary cortical malformation by the virus itself and hypertensive hydrocephalus. This is already seen in some cases of congenital rubella, toxoplasmosis, or cytomegalovirus-associated hydrocephalus.
Collapse
|
26
|
Kalyvas AV, Kalamatianos T, Pantazi M, Lianos GD, Stranjalis G, Alexiou GA. Maternal environmental risk factors for congenital hydrocephalus: a systematic review. Neurosurg Focus 2016; 41:E3. [DOI: 10.3171/2016.8.focus16280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE
Congenital hydrocephalus (CH) is one of the most frequent CNS congenital malformations, representing an entity with serious pathological consequences. Although several studies have previously assessed child-related risk factors associated with CH development, there is a gap of knowledge on maternal environmental risk factors related to CH. The authors have systematically assessed extrinsic factors in the maternal environment that potentially confer an increased risk of CH development.
METHODS
The Cochrane Library, MEDLINE, and EMBASE were systematically searched for works published between 1966 and December 2015 to identify all relevant articles published in English. Only studies that investigated environmental risk factors concerning the mother—either during gestation or pregestationally—were included.
RESULTS
In total, 13 studies (5 cohorts, 3 case series, 3 case-control studies, 1 meta-analysis, and 1 case report) meeting the inclusion criteria were identified. Maternal medication or alcohol use during gestation; lifestyle modifiable maternal pathologies such as obesity, diabetes, or hypertension; lack of prenatal care; and a low socioeconomic status were identified as significant maternal environmental risk factors for CH development. Maternal infections and trauma to the mother during pregnancy have also been highlighted as potential mother-related risk factors for CH.
CONCLUSIONS
Congenital hydrocephalus is an important cause of serious infant health disability that can lead to health inequalities among adults. The present study identified several maternal environmental risk factors for CH, thus yielding important scientific information relevant to prevention of some CH cases. However, further research is warranted to confirm the impact of the identified factors and examine their underlying behavioral and/or biological basis, leading to the generation of suitable prevention strategies.
Collapse
Affiliation(s)
| | | | - Mantha Pantazi
- 2Department of Pediatrics, General Hospital of Ioannina “G. Hatzikosta”; and
| | | | - George Stranjalis
- 1Department of Neurosurgery, Evangelismos Hospital, University of Athens
| | | |
Collapse
|
27
|
Affiliation(s)
- Rima McLeod
- Ophthalmology and Visual Sciences, Pediatrics (Division of Infectious Diseases) Toxoplasmosis Center, University of Chicago
| | - Kelsey M Wheeler
- Ophthalmology and Visual Sciences, Pediatrics (Division of Infectious Diseases) Toxoplasmosis Center, University of Chicago
| | - Kenneth Boyer
- Department of Pediatrics (Division of Infectious Diseases), Rush-Presbyterian-St Luke's Hospital and Rush University School of Medicine, Chicago, Illinois
| |
Collapse
|
28
|
Wilking H, Thamm M, Stark K, Aebischer T, Seeber F. Prevalence, incidence estimations, and risk factors of Toxoplasma gondii infection in Germany: a representative, cross-sectional, serological study. Sci Rep 2016; 6:22551. [PMID: 26936108 PMCID: PMC4776094 DOI: 10.1038/srep22551] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/16/2016] [Indexed: 12/18/2022] Open
Abstract
Representative data on the extent of endemicity, burden, and risk of human toxoplasmosis are scarce. We assessed the prevalence and determinants of seropositivity of Toxoplasma gondii among adult participants of a nationwide representative cross-sectional survey in Germany. Sera collected from a representative cohort of adults (age 18-79; n = 6,663) in Germany were tested for anti-T. gondii IgG antibodies. Interview-derived data were used to evaluate associated factors. Multivariable logistic regression was applied using sampling weights and accounting for survey design cluster effects. Seroprevalence increased from 20% (95%-CI:17-23%) in the 18-29 age group to 77% (95%-CI:73-81%) in the 70-79 age group. Male gender, keeping cats and BMI ≥30 were independent risk factors for seropositivity, while being vegetarian and high socio-economic status were negatively associated. Based on these data, we estimate 1.1% of adults and 1.3% of women aged 18-49 to seroconvert each year. This implies 6,393 seroconversions annually during pregnancies. We conclude that T. gondii infection in Germany is highly prevalent and that eating habits (consuming raw meat) appear to be of high epidemiological relevance. High numbers of seroconversions during pregnancies pose substantial risks for unborn children. Efforts to raise awareness of toxoplasmosis in public health programs targeting to T. gondii transmission control are therefore strongly advocated.
Collapse
Affiliation(s)
- Hendrik Wilking
- Unit for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, 13353 Berlin, Germany
| | - Michael Thamm
- Central Epidemiological Laboratory, Robert Koch Institute, 13302 Berlin, Germany
| | - Klaus Stark
- Unit for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, 13353 Berlin, Germany
| | - Toni Aebischer
- Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| | - Frank Seeber
- Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
29
|
Wallon M, Peyron F. Effect of Antenatal Treatment on the Severity of Congenital Toxoplasmosis. Clin Infect Dis 2015; 62:811-2. [PMID: 26689954 DOI: 10.1093/cid/civ1035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Martine Wallon
- Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital de la Croix Rousse Physiologie Intégrée du Système d'Éveil Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, France
| | - François Peyron
- Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital de la Croix Rousse
| |
Collapse
|