1
|
Wilson R, Kovacs D, Crosby M, Ho A. Global Epidemiology and Seasonality of Human Seasonal Coronaviruses: A Systematic Review. Open Forum Infect Dis 2024; 11:ofae418. [PMID: 39113828 PMCID: PMC11304597 DOI: 10.1093/ofid/ofae418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Background We characterized the global epidemiology and seasonality of human coronaviruses (HCoVs) OC43, NL63, 229E, and HKU1. Methods In this systematic review, we searched MEDLINE, EMBASE, Web of Science, SCOPUS, CINAHL, and backward citations for studies published until 1 September 2023. We included studies with ≥12 months of consecutive data and tested for ≥1 HCoV species. Case reports, review articles, animal studies, studies focusing on SARS-CoV-1, SARS-CoV-2, and/or Middle East respiratory syndrome, and those including <100 cases were excluded. Study quality and risk of bias were assessed using Joanna Briggs Institute Critical Appraisal Checklist tools. We reported the prevalence of all HCoVs and individual species. Seasonality was reported for studies that included ≥100 HCoVs annually. This study is registered with PROSPERO, CRD42022330902. Results A total of 201 studies (1 819 320 samples) from 68 countries were included. A high proportion were from China (19.4%; n = 39), whereas the Southern Hemisphere was underrepresented. Most were case series (77.1%, n = 155) with samples from secondary care (74.1%, n = 149). Seventeen (8.5%) studies included asymptomatic controls, whereas 76 (37.8%) reported results for all 4 HCoV species. Overall, OC43 was the most prevalent HCoV. Median test positivity of OC43 and NL63 was higher in children, and 229E and HKU1 in adults. Among 18 studies that described seasonality (17 from the Northern Hemisphere), circulation of all HCoVs mostly peaked during cold months. Conclusions In our comprehensive review, few studies reported the prevalence of individual HCoVs or seasonality. Further research on the burden and circulation of HCoVs is needed, particularly from Africa, South Asia, and Central/South America.
Collapse
Affiliation(s)
- Rory Wilson
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dory Kovacs
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mairi Crosby
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Antonia Ho
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Kakuya F, Terao R, Onoda H, Okubo H, Fujiyasu H, Inyaku F, Fukuura A, Arai T, Kinebuchi T. Epidemiology of endemic human coronavirus infection during the COVID-19 pandemic. J Infect Chemother 2024; 30:400-405. [PMID: 37979777 DOI: 10.1016/j.jiac.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that also includes endemic human coronaviruses (HCoVs) types OC43, HKU1, 229E, and NL63. HCoVs share extensive sequence homology with SARS-CoV-2. It has been assumed that HCoV infection occur primarily in winter and spring in Japan before the coronavirus disease 2019 (COVID-19) pandemic and that its frequency is the same for all age groups. METHODS Nasopharyngeal swab samples were collected for HCoVs and SARS-CoV-2. All medical data were retrospectively analyzed. Our primary objective was to describe the epidemiology of HCoV in the Furano, Japan during the COVID-19 pandemic. Our secondary objective was to compare the prevalence of HCoV with that of SARS-CoV-2. RESULTS From September 2020 to August 2022, 113 (6.2 %) of 1823 cases were positive for any HCoV. The HCoV-NL63 activity peaked in January-March 2021. The HCoV-OC43 activity peaked in June-August 2021. HCoVs were mostly detected at age ≤11 years and most frequently at age ≤2 years. HCoVs showed high detection in 2021, while SARS-CoV-2 showed moderate detection in 2020-2021, but significantly increased in 2022. CONCLUSIONS During the COVID-19 pandemic, HCoV-OC43 activity peaked in the summer. The frequency of HCoV infection varied widely by age group and was higher among those aged ≤11 years. These were different from those reported before the COVID-19 pandemic. These findings suggest that the disease dynamics of HCoVs remain unclear and that continued surveillance is essential in the post-COVID-19 pandemic.
Collapse
Affiliation(s)
- Fujio Kakuya
- Department of Pediatrics, Furano Kyokai Hospital, Furano, Japan.
| | - Ryuta Terao
- Department of Pediatrics, Furano Kyokai Hospital, Furano, Japan
| | - Hikaru Onoda
- Department of Pediatrics, Furano Kyokai Hospital, Furano, Japan
| | - Hitoshi Okubo
- Department of Pediatrics, Furano Kyokai Hospital, Furano, Japan
| | | | - Fumie Inyaku
- Department of Pediatrics, Furano Kyokai Hospital, Furano, Japan
| | - Ai Fukuura
- Department of Internal Medicine, Furano Kyokai Hospital, Furano, Japan
| | - Toshio Arai
- Department of Internal Medicine, Furano Kyokai Hospital, Furano, Japan
| | - Takahiro Kinebuchi
- Department of Clinical Laboratory, Furano Kyokai Hospital, Furano, Japan
| |
Collapse
|
3
|
Townsend JP, Hassler HB, Lamb AD, Sah P, Alvarez Nishio A, Nguyen C, Tew AD, Galvani AP, Dornburg A. Seasonality of endemic COVID-19. mBio 2023; 14:e0142623. [PMID: 37937979 PMCID: PMC10746271 DOI: 10.1128/mbio.01426-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE The seasonality of COVID-19 is important for effective healthcare and public health decision-making. Previous waves of SARS-CoV-2 infections have indicated that the virus will likely persist as an endemic pathogen with distinct surges. However, the timing and patterns of potentially seasonal surges remain uncertain, rendering effective public health policies uninformed and in danger of poorly anticipating opportunities for intervention, such as well-timed booster vaccination drives. Applying an evolutionary approach to long-term data on closely related circulating coronaviruses, our research provides projections of seasonal surges that should be expected at major temperate population centers. These projections enable local public health efforts that are tailored to expected surges at specific locales or regions. This knowledge is crucial for enhancing medical preparedness and facilitating the implementation of targeted public health interventions.
Collapse
Affiliation(s)
- Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Program in Microbiology, Yale University, New Haven, USA
| | - Hayley B. Hassler
- Department of Biostatistics, Yale School of Public Health, New Haven, USA
| | - April D. Lamb
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| | - Pratha Sah
- Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, USA
| | | | - Cameron Nguyen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| | - Alexandra D. Tew
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis, Yale University, New Haven, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, USA
| |
Collapse
|
4
|
Brydak L, Sikora D, Poniedziałek B, Hallmann E, Szymański K, Kondratiuk K, Rzymski P. Association between the Seroprevalence of Antibodies against Seasonal Alphacoronaviruses and SARS-CoV-2 Humoral Immune Response, COVID-19 Severity, and Influenza Vaccination. J Clin Med 2023; 12:1733. [PMID: 36902520 PMCID: PMC10003754 DOI: 10.3390/jcm12051733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
The present study assesses the seroprevalence of antibodies against seasonal human alphacoronaviruses 229E and NL63 among adult patients infected with SARS-CoV-2, and its association with the humoral response to SARS-CoV-2 infection and its severity, and influenza vaccination. A serosurvey was conducted to quantify the presence of IgG antibodies against the nucleocapsid of 229E (anti-229E-N) and NL63 (anti-NL63-N), and anti-SARS-CoV-2 IgG antibodies (against nucleocapsid, receptor-binding domain, S2 domain, envelope, and papain-like protease) for 1313 Polish patients. The seroprevalence of anti-229E-N and anti-NL63 in the studied cohort was 3.3% and 2.4%. Seropositive individuals had a higher prevalence of anti-SARS-CoV-2 IgG antibodies, higher titers of the selected anti-SARS-CoV2 antibodies, and higher odds of an asymptomatic SARS-CoV-2 infection (OR = 2.5 for 229E and OR = 2.7 for NL63). Lastly, the individuals vaccinated against influenza in the 2019/2020 epidemic season had lower odds of seropositivity to 229E (OR = 0.38). The 229E and NL63 seroprevalence was below the expected pre-pandemic levels (up to 10%), likely due to social distancing, increased hygiene, and face masking. The study also suggests that exposure to seasonal alphacoronaviruses may improve humoral responses to SARS-CoV-2 while decreasing the clinical significance of its infection. It also adds to accumulating evidence of the favorable indirect effects of influenza vaccination. However, the findings of the present study are of a correlative nature and thereby do not necessarily imply causation.
Collapse
Affiliation(s)
- Lidia Brydak
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, 00-791 Warsaw, Poland
| | - Dominika Sikora
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznan, Poland
| | - Ewelina Hallmann
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, 00-791 Warsaw, Poland
| | - Karol Szymański
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, 00-791 Warsaw, Poland
| | - Katarzyna Kondratiuk
- Department of Influenza Research, National Influenza Center at the National Institute of Public Health NIH—National Research Institute in Warsaw, 00-791 Warsaw, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806 Poznan, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806 Poznan, Poland
| |
Collapse
|
5
|
Frutos AM, Balmaseda A, Vydiswaran N, Patel M, Ojeda S, Brouwer A, Tutino R, Cai S, Bakker K, Sanchez N, Lopez R, Kuan G, Gordon A. Burden and seasonality of primary and secondary symptomatic common cold coronavirus infections in Nicaraguan children. Influenza Other Respir Viruses 2023; 17:e13078. [PMID: 36494188 PMCID: PMC9835451 DOI: 10.1111/irv.13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current SARS-CoV-2 pandemic highlights the need for an increased understanding of coronavirus epidemiology. In a pediatric cohort in Nicaragua, we evaluate the seasonality and burden of common cold coronavirus (ccCoV) infection and evaluate likelihood of symptoms in reinfections. METHODS Children presenting with symptoms of respiratory illness were tested for each of the four ccCoVs (NL63, 229E, OC43, and HKU1). Annual blood samples collected before ccCoV infection were tested for antibodies against each ccCoV. Seasonality was evaluated using wavelet and generalized additive model (GAM) analyses, and age-period effects were investigated using a Poisson model. We also evaluate the risk of symptom presentation between primary and secondary infections. RESULTS In our cohort of 2576 children from 2011 to 2016, we observed 595 ccCoV infections and 107 cases of ccCoV-associated lower respiratory infection (LRI). The overall incidence rate was 61.1 per 1000 person years (95% confidence interval (CI): 56.3, 66.2). Children under two had the highest incidence of ccCoV infections and associated LRI. ccCoV incidence rapidly decreases until about age 6. Each ccCoV circulated throughout the year and demonstrated annual periodicity. Peaks of NL63 typically occurred 3 months before 229E peaks and 6 months after OC43 peaks. Approximately 69% of symptomatic ccCoV infections were secondary infections. There was slightly lower risk (rate ratio (RR): 0.90, 95% CI: 0.83, 0.97) of LRI between secondary and primary ccCoV infections among participants under the age of 5. CONCLUSIONS ccCoV spreads annually among children with the greatest burden among ages 0-1. Reinfection is common; prior infection is associated with slight protection against LRI among the youngest children.
Collapse
Affiliation(s)
- Aaron M. Frutos
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Angel Balmaseda
- Health Center Sócrates Flores VivasMinistry of HealthManaguaNicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnósticoy ReferenciaMinistry of HealthManaguaNicaragua
| | - Nivea Vydiswaran
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Mayuri Patel
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | | | - Andrew Brouwer
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Rebecca Tutino
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Shuwei Cai
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin Bakker
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | | | - Roger Lopez
- Laboratorio Nacional de Virología, Centro Nacional de Diagnósticoy ReferenciaMinistry of HealthManaguaNicaragua
- Sustainable Sciences InstituteManaguaNicaragua
| | - Guillermina Kuan
- Health Center Sócrates Flores VivasMinistry of HealthManaguaNicaragua
- Sustainable Sciences InstituteManaguaNicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Li N, Li X, Wu J, Zhang S, Zhu L, Chen Q, Fan Y, Wu Z, Xie S, Chen Q, Wang N, Wu N, Luo C, Shu Y, Luo H. Pre-existing humoral immunity to low pathogenic human coronaviruses exhibits limited cross-reactive antibodies response against SARS-CoV-2 in children. Front Immunol 2022; 13:1042406. [PMCID: PMC9626651 DOI: 10.3389/fimmu.2022.1042406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding domain antigens of SARS-CoV-2. Additionally, the re-infections with different LPH-CoVs occurred frequently in children and tended to increase the cross-reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven samples with a median age of 1.4 years old had detected neutralizing activity for the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven samples contained anti-S IgG antibodies against HCoV-OC43. Together, these data suggest that children’s pre-existing antibodies to LPH-CoVs have limited cross-reactive neutralizing antibodies against SRAS-CoV-2.
Collapse
Affiliation(s)
- Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - XueYun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Fan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Sidian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ning Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Wu
- Department of Epidemiology, Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China
- *Correspondence: Huanle Luo, ; Yuelong Shu,
| |
Collapse
|
7
|
Takashima MD, Grimwood K, Sly PD, Lambert SB, Ware RS. Interference between rhinovirus and other RNA respiratory viruses in the first 2-years of life: A longitudinal community-based birth cohort study. J Clin Virol 2022; 155:105249. [PMID: 35939878 DOI: 10.1016/j.jcv.2022.105249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Cross-sectional studies report negative associations between rhinovirus and other RNA respiratory viruses. However, longitudinal studies with frequent, serial sampling are needed to identify the directionality of this relationship and its nature. OBJECTIVE To investigate the association between rhinovirus and other RNA respiratory viruses detected 1-week apart. METHODS The Observational Research in Childhood Infectious Diseases cohort study was conducted in Brisbane, Australia (2010-2014). Parents collected nasal swabs weekly from birth until age 2-years. Swabs were analysed by real-time polymerase chain reaction. The association between new rhinovirus detections and five other RNA viruses (influenza, respiratory syncytial virus, parainfluenza viruses, seasonal human coronaviruses, and human metapneumovirus) in paired swabs 1-week apart were investigated. RESULTS Overall, 157 children provided 8,101 swabs, from which 4,672 paired swabs 1-week apart were analysed. New rhinovirus detections were negatively associated with new pooled RNA respiratory virus detections 1-week later (adjusted odds ratio (aOR) 0.48; 95% confidence interval (CI): 0.13-0.83), as were pooled RNA virus detections with new rhinovirus detections the following week (aOR 0.34; 95%CI: 0.09-0.60). At the individual species level, rhinovirus had the strongest negative association with new seasonal human coronavirus detections in the subsequent week (aOR 0.34; 95%CI: 0.120.95) and respiratory syncytial virus had the strongest negative association with rhinovirus 1-week later (aOR 0.21; 95%CI: 0.050.88). CONCLUSION A strong, negative bidirectional association was observed between rhinovirus and other RNA viruses in a longitudinal study of a community-based cohort of young Australian children. This suggests within-host interference between RNA respiratory viruses.
Collapse
Affiliation(s)
- Mari D Takashima
- Menzies Health Institute Queensland and School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Queensland, Australia.
| | - Keith Grimwood
- Menzies Health Institute Queensland and School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Queensland, Australia; Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast 4215, Queensland, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane 4101, Queensland, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Stephen B Lambert
- UQ Centre for Clinical Research, The University of Queensland, Herston 4006, Queensland, Australia; National Centre for Immunisation Research and Surveillance, Westmead 2145, New South Wales, Australia
| | - Robert S Ware
- Menzies Health Institute Queensland and School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Queensland, Australia
| |
Collapse
|
8
|
Venceslau MT, Lebreiro GP, Leitão GDS, Alves BKAMDF, Gouvea LA, Pastura GMC, Anachoreta TD, da Rocha RCS, Maciel FQ, Cordeiro CC, Castiñeiras TMPP, Abreu TF, Frota ACC, Varella RB, Guimarães MAAM, Hofer CB. Neurological Manifestations Associated With SARS-CoV-2 in Children: A Case Series. J Cent Nerv Syst Dis 2022; 14:11795735221102740. [PMID: 35633836 PMCID: PMC9131375 DOI: 10.1177/11795735221102740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurological manifestations of COVID-19 may affect both central and peripheral nervous systems. Unlike in adults, in whom majority of severe cases derive from respiratory complications, neurological involvement is one of the main causes of severe COVID-19 in children. This study aimed to detect viral respiratory pathogens, mainly SARS-CoV-2, in nasopharynx and cerebrospinal fluid samples utilizing qRT-PCR (TaqMan) in a pediatric population in Brazil. We evaluated four children with neurological symptoms and laboratory-confirmed SARS-CoV-2 infection: three presenting with meningoencephalitis and one presenting with Guillain-Barré syndrome. All four patients had mild respiratory symptoms. SARS-CoV-2 RNA was identified in two cerebrospinal fluid samples. SARS-CoV-2 involvement should be considered for differential diagnosis in pediatric cases presenting neurological alterations even if symptoms such as headache, anosmia, or dizziness are absent.
Collapse
Affiliation(s)
- Marianna Tavares Venceslau
- Department of Preventive Medicine, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil
| | - Giuliana Pucarelli Lebreiro
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Gabrielly de Souza Leitão
- Department of Pediatric Neurology, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | | | - Luane Abdalla Gouvea
- Department of Pediatric Neurology, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Giuseppe Mario Carmine Pastura
- Department of Pediatric Neurology, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Thiago Dias Anachoreta
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Regina Cláudia Silva da Rocha
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Fernanda Queiroz Maciel
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Catherine Crespo Cordeiro
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | | | - Thalita Fernandes Abreu
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Ana Cristina Cisne Frota
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| | - Rafael Brandão Varella
- Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Brazil
| | | | - Cristina Barroso Hofer
- Department of Preventive Medicine, University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil
- Department of Pediatric Infectious Diseases, Instituto de Puericultura Pediatria Martagão Gesteira, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Ding L, Xiong X, Yu G, Li C, Wang H, Yang Y, Wu S, Cai X. Nursing Care of 26 Infants Born to Mothers With COVID-19. Adv Neonatal Care 2022; 22:15-21. [PMID: 34670953 PMCID: PMC8815632 DOI: 10.1097/anc.0000000000000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Novel coronavirus disease (COVID-19) has spread throughout the world; yet, there are few reports of neonatal cases. Thus, information about related clinical care experience is scarce. CLINICAL FINDINGS This case report includes 26 infants admitted to the neonatal intensive care unit (NICU) of Tongji Hospital in Wuhan City who were born to mothers with suspected/confirmed COVID-19. The nursing and medical staff implemented care of these infants in strict accordance with infection control measures. INTERVENTION Emergency measures for the prevention and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the NICU were developed, and neonatal isolation, observation, and treatment were performed. OUTCOMES Vital signs of the 26 infants remained stable during isolation and treatment, and no complications occurred. During the study period, neither the infants nor the nursing and medical staff were infected with SARS-CoV-2. PRACTICE RECOMMENDATIONS Based on our strict practices, infants born to mothers with suspected/confirmed COVID-19 should receive care in a single-patient room to support infection control and provide enhanced observation. During initial contact and nursing care, increased attention should be given to the protection of infants born to mothers with suspected/confirmed COVID-19.
Collapse
Affiliation(s)
- Lingli Ding
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Xiaoju Xiong
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Genzhen Yu
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Changyan Li
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Hui Wang
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yiran Yang
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Shanshan Wu
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Xianglian Cai
- Tongji Hospital, affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
10
|
Zafari M, Rad MTS, Mohseni F. Coronavirus Disease 2019 (COVID-19) and Pregnancy: A Narrative Review. Curr Pediatr Rev 2022; 18:97-102. [PMID: 34544347 DOI: 10.2174/1573396317666210920152541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
A novel viral respiratory disease caused by severe acute respiratory syndrome, coronavirus 2 (SARS-COV-2), is responsible for a pandemic situation in the world. Pregnant women are susceptible to this virus due to physiologic changes in the immunologic system. The risk of some adverse pregnancy outcomes, such as death, stillbirth, preeclampsia, and intrauterine fetal distress, may increase in infected pregnant women. Infected women should be isolated and investigated, and they should admit to a designated hospital with adequate facilities and multi-disciplinary expertise to manage them. Furthermore, the chances of adverse neonatal complications, such as small for gestational age, large for gestational age, shortness of breath, thrombocytopenia with abnormal liver function, rapid heart rate, vomiting, and pneumothorax, may increase in an affected neonate. This study reviews the problems and guidelines of covid-19 in pregnancy.
Collapse
Affiliation(s)
- Mandana Zafari
- Health Reproductive Research Center, Sari Branch, Islamic Azad University, Sari, Iran
| | - Mohammad Taha Saadati Rad
- Psychiatry and Behavioral Science Center, Addiction Institute, Mazandaran University of Medical Science, Sari, Iran
| | - Fatemeh Mohseni
- Department of Nursing and Midwifery Science, Sari Branch, Islamic Azad University, Sari, Iran
| |
Collapse
|
11
|
Mathisen M, Basnet S, Christensen A, Sharma AK, Tylden G, Krokstad S, Valentiner-Branth P, Strand TA. Viral and Atypical Bacterial Detection in Young Nepalese Children Hospitalized with Severe Pneumonia. Microbiol Spectr 2021; 9:e0055121. [PMID: 34704788 PMCID: PMC8549725 DOI: 10.1128/spectrum.00551-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory viruses cause a substantial proportion of respiratory tract infections in children but are underrecognized as a cause of severe pneumonia hospitalization in low-income settings. We employed 22 real-time PCR assays and retrospectively reanalyzed 610 nasopharyngeal aspirate specimens from children aged 2 to 35 months with severe pneumonia (WHO definition) admitted to Kanti Childrens' Hospital in Kathmandu, Nepal, from January 2006 through June 2008. Previously, ≥1 of 7 viruses had been detected by multiplex reverse transcription-PCR in 30% (188/627) of cases. Reanalyzing the stored specimens, we detected ≥1 pathogens, including 18 respiratory viruses and 3 atypical bacteria, in 98.7% (602/610) of cases. Rhinovirus (RV) and respiratory syncytial virus (RSV) were the most common, detected in 318 (52.1%) and 299 (49%) cases, respectively, followed by adenovirus (AdV) (10.6%), human metapneumovirus (hMPV) (9.7%), parainfluenza virus type 3 (8.4%), and enterovirus (7.7%). The remaining pathogens were each detected in less than 5%. Mycoplasma pneumoniae was most common among the atypical bacteria (3.7%). Codetections were observed in 53.3% of cases. Single-virus detection was more common for hMPV (46%) and RSV (41%) than for RV (22%) and AdV (6%). The mean cycle threshold value for detection of each pathogen tended to be lower in single-pathogen detections than in codetections. This finding was significant for RSV, RV, and AdV. RSV outbreaks occurred at the end of the monsoon or during winter. An expanded diagnostic PCR panel substantially increased the detection of respiratory viruses in young Nepalese children hospitalized with severe pneumonia. IMPORTANCE Respiratory viruses are an important cause of respiratory tract infections in children but are underrecognized as a cause of pneumonia hospitalization in low-income settings. Previously, we detected at least one of seven respiratory viruses by PCR in 30% of young Nepalese children hospitalized with severe pneumonia over a period of 36 months. Using updated PCR assays detecting 21 different viruses and atypical bacteria, we reanalyzed 610 stored upper-respiratory specimens from these children. Respiratory viruses were detected in nearly all children hospitalized for pneumonia. RSV and rhinovirus were the predominant pathogens detected. Detection of two or more pathogens was observed in more than 50% of the pneumonia cases. Single-virus detection was more common for human metapneumovirus and RSV than for rhinovirus and adenovirus. The concentration of virus was higher (low cycle threshold [CT] value) for single detected pathogens, hinting at a high viral load as a marker of clinical significance.
Collapse
Affiliation(s)
- Maria Mathisen
- Department of Medical Microbiology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Sudha Basnet
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Andreas Christensen
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Arun K. Sharma
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Garth Tylden
- Department of Microbiology and Infection control, University Hospital of North Norway, Tromsø, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Palle Valentiner-Branth
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Infectious Disease Preparedness, Copenhagen, Denmark
| | - Tor A. Strand
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
12
|
Subissi L, Bossuyt N, Reynders M, Gérard M, Dauby N, Lacor P, Daelemans S, Lissoir B, Holemans X, Magerman K, Jouck D, Bourgeois M, Delaere B, Quoilin S, Van Gucht S, Thomas I, Barbezange C. Spotlight influenza: Extending influenza surveillance to detect non-influenza respiratory viruses of public health relevance: analysis of surveillance data, Belgium, 2015 to 2019. ACTA ACUST UNITED AC 2021; 26. [PMID: 34558405 PMCID: PMC8462033 DOI: 10.2807/1560-7917.es.2021.26.38.2001104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BackgroundSeasonal influenza-like illness (ILI) affects millions of people yearly. Severe acute respiratory infections (SARI), mainly influenza, are a leading cause of hospitalisation and mortality. Increasing evidence indicates that non-influenza respiratory viruses (NIRV) also contribute to the burden of SARI. In Belgium, SARI surveillance by a network of sentinel hospitals has been ongoing since 2011.AimWe report the results of using in-house multiplex qPCR for the detection of a flexible panel of viruses in respiratory ILI and SARI samples and the estimated incidence rates of SARI associated with each virus.MethodsWe defined ILI as an illness with onset of fever and cough or dyspnoea. SARI was defined as an illness requiring hospitalisation with onset of fever and cough or dyspnoea within the previous 10 days. Samples were collected in four winter seasons and tested by multiplex qPCR for influenza virus and NIRV. Using catchment population estimates, we calculated incidence rates of SARI associated with each virus.ResultsOne third of the SARI cases were positive for NIRV, reaching 49.4% among children younger than 15 years. In children younger than 5 years, incidence rates of NIRV-associated SARI were twice that of influenza (103.5 vs 57.6/100,000 person-months); co-infections with several NIRV, respiratory syncytial viruses, human metapneumoviruses and picornaviruses contributed most (33.1, 13.6, 15.8 and 18.2/100,000 person-months, respectively).ConclusionEarly testing for NIRV could be beneficial to clinical management of SARI patients, especially in children younger than 5 years, for whom the burden of NIRV-associated disease exceeds that of influenza.
Collapse
Affiliation(s)
- Lorenzo Subissi
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden.,National Influenza Centre, Sciensano, Brussels, Belgium
| | - Nathalie Bossuyt
- Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, Algemeen Ziekenhuis Sint-Jan, Brugge-Oostende AV, Belgium
| | - Michèle Gérard
- Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium
| | - Nicolas Dauby
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium
| | - Patrick Lacor
- Internal Medicine-Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Siel Daelemans
- Pediatric Pulmonary and Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | | | - Xavier Holemans
- Infectiology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Koen Magerman
- Infection Control, Jessa Ziekenhuis, Hasselt, Belgium.,Clinical Laboratory, Jessa Ziekenhuis, Hasselt, Belgium
| | - Door Jouck
- Infection Control, Jessa Ziekenhuis, Hasselt, Belgium
| | - Marc Bourgeois
- Centre Hospitalier Universitaire UCL Namur, Ysoir, Belgium
| | | | - Sophie Quoilin
- Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | | | | | | |
Collapse
|
13
|
Fischer N, Dauby N, Bossuyt N, Reynders M, Gérard M, Lacor P, Daelemans S, Lissoir B, Holemans X, Magerman K, Jouck D, Bourgeois M, Delaere B, Quoilin S, Van Gucht S, Thomas I, Barbezange C, Subissi L. Monitoring of human coronaviruses in Belgian primary care and hospitals, 2015-20: a surveillance study. LANCET MICROBE 2021; 2:e105-e114. [PMID: 33937883 PMCID: PMC8064766 DOI: 10.1016/s2666-5247(20)30221-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Seasonal human coronaviruses (hCoVs) broadly circulate in humans. Their epidemiology and effect on the spread of emerging coronaviruses has been neglected thus far. We aimed to elucidate the epidemiology and burden of disease of seasonal hCoVs OC43, NL63, and 229E in patients in primary care and hospitals in Belgium between 2015 and 2020. Methods We retrospectively analysed data from the national influenza surveillance networks in Belgium during the winter seasons of 2015–20. Respiratory specimens were collected through the severe acute respiratory infection (SARI) and the influenza-like illness networks from patients with acute respiratory illness with onset within the previous 10 days, with measured or reported fever of 38°C or greater, cough, or dyspnoea; and for patients admitted to hospital for at least one night. Potential risk factors were recorded and patients who were admitted to hospital were followed up for the occurrence of complications or death for the length of their hospital stay. All samples were analysed by multiplex quantitative RT-PCRs for respiratory viruses, including seasonal hCoVs OC43, NL63, and 229E. We estimated the prevalence and incidence of seasonal hCoV infection, with or without co-infection with other respiratory viruses. We evaluated the association between co-infections and potential risk factors with complications or death in patients admitted to hospital with seasonal hCoV infections by age group. Samples received from week 8, 2020, were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Findings 2573 primary care and 6494 hospital samples were included in the study. 161 (6·3%) of 2573 patients in primary care and 371 (5·7%) of 6494 patients admitted to hospital were infected with a seasonal hCoV. OC43 was the seasonal hCoV with the highest prevalence across age groups and highest incidence in children admitted to hospital who were younger than 5 years (incidence 9·0 [95% CI 7·2–11·2] per 100 000 person-months) and adults older than 65 years (2·6 [2·1–3·2] per 100 000 person-months). Among 262 patients admitted to hospital with seasonal hCoV infection and with complete information on potential risk factors, 66 (73·3%) of 90 patients who had complications or died also had at least one potential risk factor (p=0·0064). Complications in children younger than 5 years were associated with co-infection (24 [36·4%] of 66; p=0·017), and in teenagers and adults (≥15 years), more complications arose in patients with a single hCoV infection (49 [45·0%] of 109; p=0·0097). In early 2020, the Belgian SARI surveillance detected the first SARS-CoV-2-positive sample concomitantly with the first confirmed COVID-19 case with no travel history to China. Interpretation The main burden of severe seasonal hCoV infection lies with children younger than 5 years with co-infections and adults aged 65 years and older with pre-existing comorbidities. These age and patient groups should be targeted for enhanced observation when in medical care and in possible future vaccination strategies, and co-infections in children younger than 5 years should be considered during diagnosis and treatment. Our findings support the use of national influenza surveillance systems for seasonal hCoV monitoring and early detection, and monitoring of emerging coronaviruses such as SARS-CoV-2. Funding Belgian Federal Public Service Health, Food Chain Safety, and Environment; Belgian National Insurance Health Care (Institut national d'assurance maladie-invalidité/Rijksinstituut voor ziekte-en invaliditeitsverzekering); and Regional Health Authorities (Flanders Agentschap zorg en gezondheid, Brussels Commission communautaire commune, Wallonia Agence pour une vie de qualité).
Collapse
Affiliation(s)
- Natalie Fischer
- National Influenza Centre, Sciensano, Brussels, Belgium.,European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Nicolas Dauby
- Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium.,Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Bossuyt
- Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, Algemeen Ziekenhuis Sint-Jan, Brugge-Oostende AV, Bruge, Belgium
| | - Michèle Gérard
- Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium
| | - Patrick Lacor
- Internal Medicine-Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Siel Daelemans
- Pediatric Pulmonary and Infectious Diseases, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Bénédicte Lissoir
- Department of Microbiology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Xavier Holemans
- Infectiology, Grand Hôpital de Charleroi, Charleroi, Belgium
| | - Koen Magerman
- Clinical Laboratory, Jessa Ziekenhuis, Hasselt, Belgium.,Department of Infection Control, Jessa Ziekenhuis, Hasselt, Belgium
| | - Door Jouck
- Department of Infection Control, Jessa Ziekenhuis, Hasselt, Belgium
| | - Marc Bourgeois
- Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | | | - Sophie Quoilin
- Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | | | | | | | - Lorenzo Subissi
- National Influenza Centre, Sciensano, Brussels, Belgium.,European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| |
Collapse
|
14
|
Subissi L, Bossuyt N, Reynders M, Gérard M, Dauby N, Bourgeois M, Delaere B, Quoilin S, Van Gucht S, Thomas I, Barbezange C. Capturing respiratory syncytial virus season in Belgium using the influenza severe acute respiratory infection surveillance network, season 2018/19. ACTA ACUST UNITED AC 2021; 25. [PMID: 33006303 PMCID: PMC7531071 DOI: 10.2807/1560-7917.es.2020.25.39.1900627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Respiratory syncytial virus (RSV) is a common cause of severe respiratory illness in young children (< 5 years old) and older adults (≥ 65 years old) leading the World Health Organization (WHO) to recommend the implementation of a dedicated surveillance in countries. Aim We tested the capacity of the severe acute respiratory infection (SARI) hospital network to contribute to RSV surveillance in Belgium. Methods During the 2018/19 influenza season, we started the SARI surveillance for influenza in Belgium in week 40, earlier than in the past, to follow RSV activity, which usually precedes influenza virus circulation. While the WHO SARI case definition for influenza normally used by the SARI hospital network was employed, flexibility over the fever criterion was allowed, so patients without fever but meeting the other case definition criteria could be included in the surveillance. Results Between weeks 40 2018 and 2 2019, we received 508 samples from SARI patients. We found an overall RSV detection rate of 62.4% (317/508), with rates varying depending on the age group: 77.6% in children aged < 5 years (253/326) and 34.4% in adults aged ≥ 65 years (44/128). Over 90% of the RSV-positive samples also positive for another tested respiratory virus (80/85) were from children aged < 5 years. Differences were also noted between age groups for symptoms, comorbidities and complications. Conclusion With only marginal modifications in the case definition and the period of surveillance, the Belgian SARI network would be able to substantially contribute to RSV surveillance and burden evaluation in children and older adults, the two groups of particular interest for WHO.
Collapse
Affiliation(s)
- Lorenzo Subissi
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden.,National Influenza Centre, Sciensano, Brussels, Belgium
| | - Nathalie Bossuyt
- Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, Algemeen Ziekenhuis Sint-Jan, Brugge-Oostende AV, Belgium
| | - Michèle Gérard
- Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium
| | - Nicolas Dauby
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Centre Hospitalier Universitaire St-Pierre, Brussels, Belgium
| | - Marc Bourgeois
- Centre Hospitalier Universitaire UCL Namur, Ysoir, Belgium
| | | | - Sophie Quoilin
- Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | | | | | | |
Collapse
|
15
|
Correia W, Dorta-Guerra R, Sanches M, Almeida Semedo CDJB, Valladares B, de Pina-Araújo IIM, Carmelo E. Study of the Etiology of Acute Respiratory Infections in Children Under 5 Years at the Dr. Agostinho Neto Hospital, Praia, Santiago Island, Cabo Verde. Front Pediatr 2021; 9:716351. [PMID: 34650939 PMCID: PMC8505963 DOI: 10.3389/fped.2021.716351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Acute respiratory infections are one of the major causes of morbidity and mortality in children under 5 years in developing countries and are a challenge for the health system of these countries. In Cabo Verde, despite the lack of recent studies, data indicate that it affects thousands of children, being the fourth leading cause of infant mortality in 2013. The aim of this study was to identify and describe the etiological agents associated with acute respiratory tract infections in children under 5 years old, and their associated risk factors, such as clinical symptoms or socio-demographic characteristics. Methods: Naso-pharyngeal samples were collected from children under 5 years attending at Dr. Agostinho Neto Hospital (Praia, Santiago Island, Cabo Verde) with suspected ARI at different time-points during 2019. Samples were analyzed using FilmArray® Respiratory Panel v. 2.0 Plus to identify etiological agents of ARI. A questionnaire with socio-demographic information was also collected for each participant. Data analyses were carried out using the IBM SPSS version 25 (IBM Corporation, Armonk, NY) and R 3.5.1 statistical software. Results: A total of 129 naso-pharyngeal samples were included in the study. Seventeen different etiologic agents of respiratory infections were identified. HRV/EV was the most frequent agent detected, followed by FluA H3 and RSV. Coinfection with two or more pathogens was detected in up to 20% of positive samples. The results were analyzed in terms of age-group, sex, period of the year and other social and demographic factors. Conclusion: Viruses are the main causative agents of ARI in children <5 years attending at the pediatrics service at the Dr. Agostinho Neto Hospital in Praia city, Santiago Island, Cabo Verde. Some factors are described in this study as statistically associated with the presence of an infectious agent, such as having one or more children sharing the bedroom with an adult and the presence of some clinical symptoms. The data addresses the need for studies on respiratory tract infections in Cabo Verde.
Collapse
Affiliation(s)
- Wilson Correia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain.,Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de La Laguna, La Laguna, Spain
| | - Mitza Sanches
- Hospital Dr. Agostinho Neto, Ministry of Health and Social Security of Cabo Verde, Praia, Cabo Verde
| | | | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain.,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain
| | | | - Emma Carmelo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Spain.,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Spain.,Red de Investigación Colaborativa en Enfermedades Tropicales (RICET), Madrid, Spain
| |
Collapse
|
16
|
Epidemiology of Coronavirus Infection in Children and Their Impact on Lung Health: Finding From a Birth Cohort Study. Pediatr Infect Dis J 2020; 39:e452-e454. [PMID: 32925544 DOI: 10.1097/inf.0000000000002884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this birth cohort, coronavirus acute respiratory infection was detected in 6.5% of the episodes; the commonest strain was OC43, followed by NL63, HKU1, and 229E. Children with coronavirus acute respiratory infection during infancy had significantly decreased forced expiratory volume in 0.5 seconds, forced expiratory flow between 25% and 75% of forced vital capacity, and peak expiratory flow at 3 years of age.
Collapse
|
17
|
Cimolai N. Complicating Infections Associated with Common Endemic Human Respiratory Coronaviruses. Health Secur 2020; 19:195-208. [PMID: 33186086 DOI: 10.1089/hs.2020.0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses OC43, 229E, NL63, and HKU1 are endemic human respiratory coronaviruses that typically cause mild to moderate upper respiratory infections, similar to the common cold. They also may cause simple and complicated lower respiratory infections, otitis media, asthma exacerbations, gastroenteritis, and a few systemic complications. These viruses are usually seasonal (with winter dominance) and affect nearly all age groups. The seasonal and annual variation in virus prevalence has implications for understanding the concept of acquired immunity and its persistence or diminution. Coronaviruses generally have outbreak potential in susceptible populations of any age, particularly in patients with comorbidities, who tend to have increased clinical disease. These 4 coronaviruses are often found in the context of what appears to be coinfection with other pathogens, but especially other viruses. If coronaviruses are not specifically tested for, the sole detection of a viral copathogen would suggest the pathogen is the causative agent, when a coronavirus may be culpable, or both. The detection of these viruses in circumstances where respiratory viruses are generally sought in clinical samples is, therefore, justified. These pathogens can be chronically shed from the respiratory tract, which is more likely to occur among immunocompromised and complicated patients. These viruses share the potential for genetic drift. The genome is among the largest of RNA viruses, and the capability of these viruses to further change is likely underestimated. Given the potential disease among humans, it is justified to search for effective antiviral chemotherapy for these viruses and to consider uses in niche situations should effective therapy be defined. Whereas SARS-CoV-2 may follow the epidemiological pattern of SARS-CoV and extinguish slowly over time, there is yet concern that SARS-CoV-2 may establish itself as an endemic human respiratory coronavirus similar to OC43, 2299E, NL63, and HKU1. Until sufficient data are acquired to better understand the potential of SARS-CoV-2, continued work on antiviral therapy and vaccination is imperative.
Collapse
Affiliation(s)
- Nevio Cimolai
- Nevio Cimolai, MD, FRCPC, is a Professor, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia; he is also Medical Staff, Pathology and Laboratory Medicine, Children's and Women's Health Centre of British Columbia; both in Vancouver, Canada
| |
Collapse
|
18
|
Grimwood K, Lambert SB, Ware RS. Endemic Non-SARS-CoV-2 Human Coronaviruses in a Community-Based Australian Birth Cohort. Pediatrics 2020; 146:peds.2020-009316. [PMID: 32887791 DOI: 10.1542/peds.2020-009316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The coronavirus (CoV) disease 2019 pandemic has drawn attention to the CoV virus family. However, in community settings, there is limited information on these viruses in healthy children. We explored the epidemiology of the 4 endemic (non-severe acute respiratory syndrome CoV 2) human coronaviruses (HCoVs) by species, including acute illness episodes, risk factors, and health care burden in Australian children in the first 2 years of life. METHODS The Observational Research in Childhood Infectious Diseases community-based cohort was a prospective study of acute respiratory illnesses in children from birth until their second birthday. Parents recorded daily symptoms, maintained an illness-burden diary, and collected weekly nasal swabs, which were tested for 17 respiratory viruses, including HCoVs, by real-time polymerase chain reaction assays. RESULTS Overall, 158 children participating in Observational Research in Childhood Infectious Diseases provided 11 126 weekly swabs, of which 168 were HCoV-positive involving 130 incident episodes. HCoV-NL63 and HCoV-OC43 were most commonly detected, accounting for two-thirds of episodes. Whereas 30 children had different HCoVs detected on different occasions, 7 were reinfected with the same species. HCoV incidence in the first 2 years of life was 0.76 episodes per child-year (95% confidence interval [CI] 0.63 to 0.91), being greatest in the second year (1.06; 95% CI 0.84 to 1.33) and during winter (1.32; 95% CI 1.02 to 1.71). Fifty percent of HCoV episodes were symptomatic, and 24.2% led to health care contact. CONCLUSIONS In children, HCoV infections are common, recurrent, and frequently asymptomatic. In future studies, researchers should determine transmission pathways and immune mechanisms.
Collapse
Affiliation(s)
- Keith Grimwood
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia; .,Departments of Paediatrics and Infectious Diseases, Gold Coast Health, Southport, Queensland, Australia; and
| | - Stephen B Lambert
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert S Ware
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
19
|
Bhatta S, Sayed A, Ranabhat B, Bhatta RK, Acharya Y. New-Onset Seizure as the Only Presentation in a Child With COVID-19. Cureus 2020; 12:e8820. [PMID: 32742835 PMCID: PMC7384710 DOI: 10.7759/cureus.8820] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 11/08/2022] Open
Abstract
We present a child with a new-onset isolated afebrile seizure in coronavirus disease 2019 (COVID-19). This patient, an 11-year-old Hispanic male, was brought to our ED in New York city on May 01, 2020, during the ongoing COVID-19 crisis with seizure. There was no fever and/or respiratory and gastrointestinal complaints. His general and systemic examination did not reveal any abnormality. Similarly, his biochemical profiles were within normal limits, and the radiological study, including a chest X-ray and CT scan, showed normal findings. His polymerase chain reaction (PCR) was positive for SARS-CoV2. The patient was admitted for observation after consultation with pediatric neurology, and his condition progressively improved with anti-seizure medications. This case highlights the need for recognizing an uncommon and atypical presentation in COVID-19 as the new cases are unfolding rapidly across the globe.
Collapse
Affiliation(s)
| | - Abida Sayed
- Medicine and Research, Avalon University School of Medicine, Willemstad, CUW
| | - Bandana Ranabhat
- Pediatrics, College of Medical Sciences, Bharatpur, Chitwan, NPL
| | - Raj Kumar Bhatta
- Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, IND
| | - Yogesh Acharya
- Vascular and Endovascular Surgery, Western Vascular Institute, Galway, IRL
| |
Collapse
|
20
|
Dugue R, Cay-Martínez KC, Thakur KT, Garcia JA, Chauhan LV, Williams SH, Briese T, Jain K, Foca M, McBrian DK, Bain JM, Lipkin WI, Mishra N. Neurologic manifestations in an infant with COVID-19. Neurology 2020; 94:1100-1102. [PMID: 32327489 PMCID: PMC7455334 DOI: 10.1212/wnl.0000000000009653] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rachelle Dugue
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY.
| | - Karla C Cay-Martínez
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Kiran T Thakur
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Joel A Garcia
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Lokendra V Chauhan
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Simon H Williams
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Thomas Briese
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Komal Jain
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Marc Foca
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Danielle K McBrian
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Jennifer M Bain
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - W Ian Lipkin
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| | - Nischay Mishra
- From the Department of Neurology (R.D., K.C.C.-M., K.T.T., D.K.M., J.M.B.), Columbia University Irving Medical Center; Center for Infection and Immunity (J.A.G., L.V.C., S.H.W., T.B., K.J., W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Epidemiology (W.I.L., N.M.), Mailman School of Public Health, Columbia University; Department of Pediatric Infectious Disease (M.F.), Columbia University Irving Medical Center; and New York Presbyterian Hospital (R.D., K.C.C.-M., K.T.T., M.F., D.K.M., J.M.B.), Columbia University Medical Center, New York, NY
| |
Collapse
|
21
|
Zimmermann P, Curtis N. COVID-19 in Children, Pregnancy and Neonates: A Review of Epidemiologic and Clinical Features. Pediatr Infect Dis J 2020; 39:469-477. [PMID: 32398569 PMCID: PMC7363381 DOI: 10.1097/inf.0000000000002700] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has spread rapidly across the globe. In contrast to initial reports, recent studies suggest that children are just as likely as adults to become infected with the virus but have fewer symptoms and less severe disease. In this review, we summarize the epidemiologic and clinical features of children infected with SARS-CoV-2 reported in pediatric case series to date. We also summarize the perinatal outcomes of neonates born to women infected with SARS-CoV-2 in pregnancy. We found 11 case series including a total of 333 infants and children. Overall, 83% of the children had a positive contact history, mostly with family members. The incubation period varied between 2 and 25 days with a mean of 7 days. The virus could be isolated from nasopharyngeal secretions for up to 22 days and from stool for more than 30 days. Co-infections were reported in up to 79% of children (mainly mycoplasma and influenza). Up to 35% of children were asymptomatic. The most common symptoms were cough (48%; range 19%-100%), fever (42%; 11%-100%) and pharyngitis (30%; 11%-100%). Further symptoms were nasal congestion, rhinorrhea, tachypnoea, wheezing, diarrhea, vomiting, headache and fatigue. Laboratory test parameters were only minimally altered. Radiologic findings were unspecific and included unilateral or bilateral infiltrates with, in some cases, ground-glass opacities or consolidation with a surrounding halo sign. Children rarely needed admission to intensive care units (3%), and to date, only a small number of deaths have been reported in children globally. Nine case series and 2 case reports described outcomes of maternal SARS-CoV-2 infection during pregnancy in 65 women and 67 neonates. Two mothers (3%) were admitted to intensive care unit. Fetal distress was reported in 30% of pregnancies. Thirty-seven percent of women delivered preterm. Neonatal complications included respiratory distress or pneumonia (18%), disseminated intravascular coagulation (3%), asphyxia (2%) and 2 perinatal deaths. Four neonates (3 with pneumonia) have been reported to be SARS-CoV-2 positive despite strict infection control and prevention procedures during delivery and separation of mother and neonates, meaning vertical transmission could not be excluded.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Australia
| |
Collapse
|
22
|
Shrestha R, Shrestha S, Khanal P, KC B. Nepal's first case of COVID-19 and public health response. J Travel Med 2020; 27:taaa024. [PMID: 32104884 PMCID: PMC7107523 DOI: 10.1093/jtm/taaa024] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Ranish Shrestha
- Infection Control Unit, Nepal Cancer Hospital and Research Center, Harisidhhi, 44700 Lalitpur, Nepal
| | - Sunil Shrestha
- Department of Pharmacy, Nepal Cancer Hospital and Research Center, Harisidhhi, 44700 Lalitpur, Nepal
- Department of Pharmaceutical and Health Service Research, Nepal Health Research and Innovation Foundation, 44700 Lalitpur, Nepal
| | - Pratik Khanal
- Central Department of Public Health, Institute of Medicine, 44600 Kathmandu, Nepal
| | - Bhuvan KC
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
23
|
Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020. [PMID: 32310621 DOI: 10.1097/inf.0000000000002660)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
|
24
|
Zimmermann P, Curtis N. Coronavirus Infections in Children Including COVID-19: An Overview of the Epidemiology, Clinical Features, Diagnosis, Treatment and Prevention Options in Children. Pediatr Infect Dis J 2020; 39:355-368. [PMID: 32310621 PMCID: PMC7158880 DOI: 10.1097/inf.0000000000002660] [Citation(s) in RCA: 684] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses (CoVs) are a large family of enveloped, single-stranded, zoonotic RNA viruses. Four CoVs commonly circulate among humans: HCoV2-229E, -HKU1, -NL63 and -OC43. However, CoVs can rapidly mutate and recombine leading to novel CoVs that can spread from animals to humans. The novel CoVs severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012. The 2019 novel coronavirus (SARS-CoV-2) is currently causing a severe outbreak of disease (termed COVID-19) in China and multiple other countries, threatening to cause a global pandemic. In humans, CoVs mostly cause respiratory and gastrointestinal symptoms. Clinical manifestations range from a common cold to more severe disease such as bronchitis, pneumonia, severe acute respiratory distress syndrome, multi-organ failure and even death. SARS-CoV, MERS-CoV and SARS-CoV-2 seem to less commonly affect children and to cause fewer symptoms and less severe disease in this age group compared with adults, and are associated with much lower case-fatality rates. Preliminary evidence suggests children are just as likely as adults to become infected with SARS-CoV-2 but are less likely to be symptomatic or develop severe symptoms. However, the importance of children in transmitting the virus remains uncertain. Children more often have gastrointestinal symptoms compared with adults. Most children with SARS-CoV present with fever, but this is not the case for the other novel CoVs. Many children affected by MERS-CoV are asymptomatic. The majority of children infected by novel CoVs have a documented household contact, often showing symptoms before them. In contrast, adults more often have a nosocomial exposure. In this review, we summarize epidemiologic, clinical and diagnostic findings, as well as treatment and prevention options for common circulating and novel CoVs infections in humans with a focus on infections in children.
Collapse
Affiliation(s)
- Petra Zimmermann
- From the Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne
- Infectious Diseases Research Group, Murdoch Children’s Research Institute
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Ogimi C, Kim YJ, Martin ET, Huh HJ, Chiu CH, Englund JA. What's New With the Old Coronaviruses? J Pediatric Infect Dis Soc 2020; 9:210-217. [PMID: 32314790 PMCID: PMC7188130 DOI: 10.1093/jpids/piaa037] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Coronaviruses contribute to the burden of respiratory diseases in children, frequently manifesting in upper respiratory symptoms considered to be part of the "common cold." Recent epidemics of novel coronaviruses recognized in the 21st century have highlighted issues of zoonotic origins of transmissible respiratory viruses and potential transmission, disease, and mortality related to these viruses. In this review, we discuss what is known about the virology, epidemiology, and disease associated with pediatric infection with the common community-acquired human coronaviruses, including species 229E, OC43, NL63, and HKU1, and the coronaviruses responsible for past world-wide epidemics due to severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus.
Collapse
Affiliation(s)
- Chikara Ogimi
- Department of Pediatrics, Seattle Children’s Hospital Research Institute, University of Washington, Seattle, Washington, USA
| | - Yae Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung Universit,y College of Medicine, Taoyuan, Taiwan
| | - Janet A Englund
- Department of Pediatrics, Seattle Children’s Hospital Research Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
|
27
|
Boonyaratanakornkit J, Englund JA, Magaret AS, Bu Y, Tielsch JM, Khatry SK, Katz J, Kuypers J, Shrestha L, LeClerq SC, Steinhoff MC, Chu HY. Primary and Repeated Respiratory Viral Infections Among Infants in Rural Nepal. J Pediatric Infect Dis Soc 2020; 9:21-29. [PMID: 30423150 PMCID: PMC7317152 DOI: 10.1093/jpids/piy107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Respiratory viruses cause significant morbidity and death in infants; 99% of such deaths occur in resource-limited settings. Risk factors for initial and repeated respiratory viral infections in young infants in resource-limited settings have not been well described. METHODS From 2011 to 2014, a birth cohort of infants in rural Nepal was enrolled and followed with weekly household-based active surveillance for respiratory symptoms until 6 months of age. Respiratory illness was defined as having any of the following: fever, cough, wheeze, difficulty breathing, and/or a draining ear. We tested nasal swabs of infants with respiratory illness for multiple respiratory viruses by using a reverse transcription polymerase chain reaction assay. The risk of primary and repeated infections with the same virus was evaluated using Poisson regression. RESULTS Of 3528 infants, 1726 (49%) had a primary infection, and 419 (12%) had a repeated infection. The incidences of respiratory viral infection in infants were 1816 per 1000 person-years for primary infections and 1204 per 1000 person-years for repeated infection with the same virus. Exposure to other children and male sex were each associated with an increased risk for primary infection (risk ratios, 1.13 [95% confidence interval (CI), 1.06-1.20] and 1.14 [95% CI, 1.02-1.27], respectively), whereas higher maternal education was associated with a decreased risk for both primary and repeated infections (risk ratio, 0.96 [95% CI, 0.95-0.98]). The incidence of subsequent infection did not change when previous infection with the same or another respiratory virus occurred. Illness duration and severity were not significantly different in the infants between the first and second episodes for any respiratory virus tested. CONCLUSIONS In infants in rural Nepal, repeated respiratory virus infections were frequent, and we found no decrease in illness severity with repeated infections and no evidence of replacement with another virus. Vaccine strategies and public health interventions that provide durable protection in the first 6 months of life could decrease the burden of repeated infections by multiple respiratory viruses, particularly in low-resource countries.
Collapse
Affiliation(s)
| | - Janet A Englund
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle
| | - Amalia S Magaret
- Department of Laboratory Medicine, University of Washington, Seattle
- Department of Biostatistics, University of Washington, Seattle
| | - Yunqi Bu
- Department of Biostatistics, University of Washington, Seattle
| | - James M Tielsch
- Department of Global Health, Milken School of Public Health, George Washington University, Washington, DC
| | | | - Joanne Katz
- Department of International Health, Johns Hopkins University, Baltimore, Maryland
| | - Jane Kuypers
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Laxman Shrestha
- Department of Pediatrics and Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Steven C LeClerq
- Department of Pediatrics and Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | | | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle
| |
Collapse
|
28
|
[Emergency response plan for the neonatal intensive care unit during epidemic of 2019 novel coronavirus]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:91-95. [PMID: 32051072 PMCID: PMC7390008 DOI: 10.7499/j.issn.1008-8830.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 06/10/2023]
Abstract
2019 novel coronavirus (2019-nCoV) infection has been spreading in China since December 2019. Neonates are presumably the high-risk population susceptible to 2019-nCoV due to immature immune function. The neonatal intensive care unit (NICU) should be prepared for 2019-nCoV infections as far as possible. The emergency response plan enables the efficient response capability of NICU. During the epidemic of 2019-nCoV, the emergency response plan for the NICU should be based on the actual situation, including diagnosis, isolation, and treatment, as well as available equipment and staffing, and take into account the psychosocial needs of the families and neonatal care staff.
Collapse
|
29
|
Etiology of Coinfections in Children with Influenza during 2015/16 Winter Season in Nepal. Int J Microbiol 2018; 2018:8945142. [PMID: 30510579 PMCID: PMC6230385 DOI: 10.1155/2018/8945142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/05/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
Acute respiratory infections (ARIs) are one of the major public health problems in developing countries like Nepal. Besides the influenza, several other pathogens are responsible for acute respiratory infection in children. Etiology of infections is poorly characterized at the course of clinical management, and hence empirical antimicrobial agents are used. The objective of this study was to characterize the influenza and other respiratory pathogens by real-time PCR assay. A total of 175 throat swab specimens of influenza-positive cases collected at National Influenza Center, Nepal, during the 2015/16 winter season were selected for detecting other respiratory copathogens. Total nucleic acid was extracted using Pure Link viral RNA/DNA mini kit (Invitrogen), and multiplex RT-PCR assays were performed. Influenza A and B viruses were found in 120 (68.6%) and 55 (31.4%) specimens, respectively, among which coinfections were found in 106 (60.6%) specimens. Among the influenza A-positive cases, 25 (20.8%) were A/H1N1 pdm09 and 95 (79.2%) were A/H3 subtypes. Viruses coinfected frequently with influenza virus in children were rhinovirus (26; 14.8%), respiratory syncytial virus A/B (19; 10.8%), adenovirus (14; 8.0%), coronavirus (CoV)-HKU1 (14; 8.0%), CoV-OC43 (5; 2.9%), CoV-229E (2; 1.1%), metapneumovirus A/B (5; 2.9%), bocavirus (6; 3.4%), enterovirus (5; 2.9%), parainfluenza virus-1 (3; 1.7%), and parainfluenza virus-3 (2; 1.1%). Coinfection of Mycoplasma pneumoniae with influenza virus was found in children (5; 2.8%). Most of the viral infection occurred in young children below 5 years of age. In addition to influenza virus, nine different respiratory pathogens were detected, of which coinfections of rhinovirus and respiratory syncytial virus A/B were predominantly found in children. This study gives us better information on the respiratory pathogen profile and coinfection combinations which are important for diagnosis and treatment of ARIs.
Collapse
|