1
|
Li R, Liu G, Aili X, Zhang M, Li H, Lu J. Characteristics of cortical thickness in treated HIV-infected individuals with and without cognitive impairment. Eur J Med Res 2025; 30:281. [PMID: 40229906 PMCID: PMC11998410 DOI: 10.1186/s40001-025-02555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND HIV can alter the brain structure and function in the early stage of infection. This study investigated the differences in cortical thickness patterns between healthy controls (HCs) and people living with HIV (PLWH) with asymptomatic neurocognitive impairment (ANI) or cognitive integrity (CI). METHODS Twenty-one ANI, 25 CI, and 24 HCs were recruited and underwent high-resolution T1-weighted magnetic resonance images. Cortical thickness was analyzed using the Computational Anatomy Toolbox, and the correlation analysis was conducted between cortical thickness and clinical and neuropsychological variables. RESULTS Both CI and ANI exhibited decreased cortical thickness, primarily in the left frontal cortices and bilateral limbic system. ANI demonstrated a more pronounced and widespread pattern of cortical thinning. Lower CD4+ counts and higher peak plasma viral load were associated with decreased cortical thickness of the right pericallosal sulcus and middle-posterior part of cingulate gyrus and sulcus in ANI. Conversely, compared to HCs, both ANI and CI showed cortical thickening in the left insula cortex, and ANI tended to have a thicker cortex. Moreover, the increased thickness of left insula cortex in both CI and ANI were positively correlated with attention and working memory. CONCLUSIONS The cortical thickness thinning was observed in the frontal and limbic systems in both ANI and CI. Meanwhile, the thickening of the insular cortex may represent mild neuroinflammation or a transient compensatory mechanism. This study provides new insights into the neural mechanisms underlying HIV-related cognitive impairment and highlights the importance of cortical thickness alteration patterns when assessing cognitive function of PLWH.
Collapse
Affiliation(s)
- Ruili Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Guangxue Liu
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xire Aili
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No. 8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Miao Zhang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No. 8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China.
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China.
| |
Collapse
|
2
|
Chan P, Li X, Li F, Emu B, Price RW, Spudich S. Longitudinal CNS and systemic T-lymphocyte and monocyte activation before and after antiretroviral therapy beginning in primary HIV infection. Front Immunol 2025; 16:1531828. [PMID: 40070827 PMCID: PMC11893981 DOI: 10.3389/fimmu.2025.1531828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Background Trafficking of immune cells to the central nervous system is hypothesized to facilitate HIV entry and immune-induced neuronal injury and is mediated by surface proteins such as chemokine receptors and α4 integrin. We longitudinally assessed immune cell activation and surface marker expression in cerebrospinal fluid (CSF) and blood and their relationship with CSF HIV RNA beginning during primary HIV infection (PHI) before and after antiretroviral therapy (ART). Methods Longitudinal paired blood and CSF were obtained in ART-naïve PHI (<12 month since infection) participants; some independently initiated ART during follow up. Multiparameter flow cytometry of fresh samples determined activation (% CD38+HLADR+) and chemokine receptor expression (% CCR5+ and CXCR3+) on CD4+ and CD8+ T cells, and subtype and α4 integrin expression (% and mean fluorescence intensity (mfi) of CD49d+) on monocytes. HIV RNA was quantified by PCR. Analyses employed Spearman correlation, within-subject correlation, and linear mixed models. Results 51 participants enrolled at a median 3.2 months post HIV transmission with 168 total visits (113 pre-ART, 55 post-ART) and a median of 6.5 months of longitudinal follow up (range 0-40). In pre-ART PHI, frequencies of activated CD4+ and CD8+ T cells were much higher in CSF than in blood, with levels similar to ART-naïve people with chronic HIV infection. Both CSF CD4+ and CD8+ T cell activation increased longitudinally prior to initiation of ART. In multivariate analysis, CSF CD4+ but not CD8+ T cell activation independently predicted CSF HIV RNA. Neither CSF monocyte subtypes or α4 expression correlated with CSF HIV RNA. Blood monocyte α4 MFI correlated with CD4+ and CD8+ T cell activation (p<0.05). Following ART initiation, blood but not CSF T cell activation declined with days on treatment (slope=-0.06, p=0.001). During ART, blood and CSF monocyte α4 MFI correlated with T cell activation (p<0.05). Conclusions In untreated early infection after PHI, immune activation increases over time, and CSF CD4+ T cell activation but not monocyte activation correlates with CSF HIV RNA. Intrathecal T cell activation does not decline during early follow up on ART. Immunomodulating therapies may be needed to prevent neuronal injury and HIV neuroinvasion during early HIV.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| | - Xiang Li
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale University School of Medicine, New Haven, CT, United States
| | - Brinda Emu
- Department of Medicine, Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
3
|
Wang H, Jiu X, Wang Z, Zhang Y. Neuroimaging advances in neurocognitive disorders among HIV-infected individuals. Front Neurol 2025; 16:1479183. [PMID: 40017532 PMCID: PMC11864956 DOI: 10.3389/fneur.2025.1479183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/26/2025] [Indexed: 03/01/2025] Open
Abstract
Although combination antiretroviral therapy (cART) has been widely applied and effectively extends the lifespan of patients infected with human immunodeficiency virus (HIV), these patients remain at a substantially increased risk of developing neurocognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Magnetic resonance imaging (MRI) has emerged as an indispensable tool for characterizing the brain function and structure. In this review, we focus on the applications of various MRI-based neuroimaging techniques in individuals infected with HIV. Functional MRI, structural MRI, diffusion MRI, and quantitative MRI have all contributed to advancing our comprehension of the neurological alterations caused by HIV. It is hoped that more reliable evidence can be achieved to fully determine the driving factors of cognitive impairment in HIV through the combination of multi-modal MRI and the utilization of more advanced neuroimaging analysis methods.
Collapse
Affiliation(s)
- Han Wang
- Department of Radiology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
- Department of Radiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaolin Jiu
- Department of Radiology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
| | - Zihua Wang
- Department of Oncology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
| | - Yanwei Zhang
- Department of Radiology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
He Y, Zhang Y, Jiang T, Cai M, Sun G, Ma Y, Ji J, Yang B, Yang B, Duan J, Wu D, Sun L, Dai L, Zhang Y, Wu H, Jiang W, Zhang T, Wang L. The association between rapid antiretroviral therapy initiation and brain structure and function based on multimodal magnetic resonance imaging in HIV-positive men who have sex with men. BMC Infect Dis 2025; 25:41. [PMID: 39780061 PMCID: PMC11708194 DOI: 10.1186/s12879-024-10397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of treatment guidelines recommend rapid initiation of antiretroviral therapy (ART) after the diagnosis of human immunodeficiency virus (HIV) infection. However, data on the association between rapid ART initiation and alterations in brain structure and function remain limited in people with HIV (PWH). A cross-sectional analysis was conducted on HIV-positive men who have sex with men (MSM) undergoing ART. Fifty-four participants who started ART within 30 days of confirmed HIV diagnosis (rapid ART group) and 20 participants who started ART more than 6 months of confirmed HIV diagnosis (non-rapid ART group) completed clinical assessments and multimodal magnetic resonance imaging scans to obtain both anatomical and resting-state functional images. Compared to PWH in the non-rapid ART group, those in the rapid ART group exhibited a greater total gray matter volume (P = 0.001) and functional changes, including a lower amplitude of low-frequency fluctuations in the left angular gyrus (P < 0.001). Moreover, the results of the main effects and interactions indicated that rapid ART initiation had main effects on major imaging outcomes. The validation analysis results in participants who started ART within 7 days of confirmed HIV diagnosis generally corroborated and complemented the aforementioned findings. Our study demonstrated brain gray matter volume atrophy and functional alterations in PWH of the non-rapid ART group compared to those in the rapid ART group, suggesting that rapid ART initiation may be associated with better brain structure and function changes in HIV-positive MSM.
Collapse
Affiliation(s)
- Yihui He
- Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yang Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Taiyi Jiang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Guangqiang Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yundong Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jiahao Ji
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Bo Yang
- The Second Hospital of Beijing, Beijing, China
| | - Bin Yang
- The Second Hospital of Beijing, Beijing, China
| | - Junyi Duan
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dongxia Wu
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lijun Sun
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Lili Dai
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | | | - Tong Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China.
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China.
| | - Lei Wang
- Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China.
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China.
| |
Collapse
|
5
|
Luo H, Chen J, Liu J, Wang W, Hou C, Jiang X, Ma J, Xu F, Aili X, Zhou Z, Li H. Bridging brain and blood: a prospective view on neuroimaging-exosome correlations in HIV-associated neurocognitive disorders. Front Neurol 2025; 15:1479272. [PMID: 39839878 PMCID: PMC11745957 DOI: 10.3389/fneur.2024.1479272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is a complex neurological complication resulting from human immunodeficiency virus (HIV) infection, affecting about 50% of individuals with HIV and significantly diminishing their quality of life. HAND includes a variety of cognitive, motor, and behavioral disorders, severely impacting patients' quality of life and social functioning. Although combination antiretroviral therapy (cART) has greatly improved the prognosis for HIV patients, the incidence of HAND remains high, underscoring the urgent need to better understand its pathological mechanisms and develop early diagnostic methods. This review highlights the latest advancements in neuroimaging and exosome biomarkers in HAND research. Neuroimaging, particularly magnetic resonance imaging (MRI), offers a non-invasive and repeatable method to monitor subtle changes in brain structure and function, potentially detecting early signs of HAND. Meanwhile, exosomes are nano-sized vesicles secreted by cells that serve as key mediators of intercellular communication, playing a crucial role in the neuropathology of HIV and potentially acting as a critical bridge between peripheral blood and central nervous system lesions. Thus, combining plasma exosome biomarkers with indicators derived from neuroimaging scans may enhance the early diagnosis of HAND. This review summarizes evidence supporting the role of exosomes as reliable biomarkers for early detection and management of HAND. Furthermore, we emphasize the correlation between neuroimaging biomarkers and exosome biomarkers and explore their potential combined use. This review discusses the technical challenges and methodological limitations of integrating these two types of biomarkers and proposes future research directions. This multidisciplinary integrative approach not only promises to improve the neurocognitive health management of HIV patients but may also offer valuable insights for research into other neurodegenerative diseases.
Collapse
Affiliation(s)
- Haixia Luo
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junzhuo Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanke Hou
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xingyuan Jiang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Juming Ma
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Xu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xire Aili
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhongkai Zhou
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Chan P, Spudich S. Central Nervous System Effects of Early HIV Infection and Consequences of Antiretroviral Therapy Initiation during Acute HIV. Viruses 2024; 16:1082. [PMID: 39066244 PMCID: PMC11281648 DOI: 10.3390/v16071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
HIV infection is a multi-organ disease that involves the central nervous system (CNS). While devastating CNS complications such as HIV-associated dementia and CNS opportunistic infection typically manifest years after HIV acquisition, HIV RNA is readily detected in the cerebrospinal fluid in untreated neuroasymptomatic people with HIV, highlighting that HIV neuroinvasion predates overt clinical manifestations. Over the past two decades, increased awareness of HIV infection within the at-risk population, coupled with the accessibility of nucleic acid testing and modern HIV immunoassays, has made the detection of acute and early HIV infection readily achievable. This review aims to summarize research findings on CNS involvement during acute and early HIV infection, as well as the outcomes following the immediate initiation of antiretroviral therapy during this early stage of infection. The knowledge gap in long-term neuroprotection through early ART within the first year of infection will be discussed.
Collapse
Affiliation(s)
- Phillip Chan
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
- Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
- Center for Brain and Mind Health, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
7
|
Moschopoulos CD, Stanitsa E, Protopapas K, Kavatha D, Papageorgiou SG, Antoniadou A, Papadopoulos A. Multimodal Approach to Neurocognitive Function in People Living with HIV in the cART Era: A Comprehensive Review. Life (Basel) 2024; 14:508. [PMID: 38672778 PMCID: PMC11050956 DOI: 10.3390/life14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral treatment (cART) has revolutionized the management of human immunodeficiency virus (HIV) and has markedly improved the disease burden and life expectancy of people living with HIV. HIV enters the central nervous system (CNS) early in the course of infection, establishes latency, and produces a pro-inflammatory milieu that may affect cognitive functions, even in the cART era. Whereas severe forms of neurocognitive impairment (NCI) such as HIV-associated dementia have declined over the last decades, milder forms have become more prevalent, are commonly multifactorial, and are associated with comorbidity burdens, mental health, cART neurotoxicity, and ageing. Since 2007, the Frascati criteria have been used to characterize and classify HIV-associated neurocognitive disorders (HAND) into three stages, namely asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia (HAD). These criteria are based on a comprehensive neuropsychological assessment that presupposes the availability of validated, demographically adjusted, and normative population data. Novel neuroimaging modalities and biomarkers have been proposed in order to complement NCI assessments, elucidate neuropathogenic mechanisms, and support HIV-associated NCI diagnosis, monitoring, and prognosis. By integrating neuropsychological assessments with biomarkers and neuroimaging into a holistic care approach, clinicians can enhance diagnostic accuracy, prognosis, and patient outcomes. This review interrogates the value of these modes of assessment and proposes a unified approach to NCI diagnosis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Konstantinos Protopapas
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| |
Collapse
|
8
|
Matic N, Lawson T, Ritchie G, Lowe CF, Romney MG. Testing the limits of multiplex respiratory virus assays for SARS-CoV-2 at high cycle threshold values: Comparative performance of cobas 6800/8800 SARS-CoV-2 & Influenza A/B, Xpert Xpress SARS-CoV-2/Flu/RSV, and cobas Liat SARS-CoV-2 & Influenza A/B. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2024; 8:328-335. [PMID: 38250621 PMCID: PMC10797767 DOI: 10.3138/jammi-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 01/23/2024]
Abstract
Background Multiplex real-time RT-PCR assays for respiratory pathogens are valuable tools to optimize laboratory workflow and turnaround time. At a time when resurgence of influenza and respiratory syncytial virus (RSV) cases have been widely observed along with continued transmission of SARS-CoV-2, timely identification of all circulating respiratory viruses is crucial. This study evaluates the detection of low viral loads of SARS-CoV-2 by four multiplex molecular assays: Roche cobas 6800/8800 SARS-CoV-2 & Influenza A/B Test, Cepheid Xpert Xpress SARS-CoV-2/Flu/RSV, cobas Liat SARS-CoV-2 & Influenza A/B, and a laboratory-developed test (LDT). Methods Retrospective upper respiratory tract specimens positive for various respiratory viruses at a range of cycle threshold (Ct) values (18-40) were tested by four multiplex assays. Positive and negative percent agreement (PPA and NPA) with validated RT-PCR assays were calculated. Results A total of 82 samples were assessed, with discordant results observed in a portion of the samples (10/82, 12.2%) where Ct values were >33. The majority of the discordant results (6/10, 60%) were false negatives. Overall, PPA was 100% (58/58) for cobas 6800, 97.4% (38/39) for GeneXpert, 100% (17/17) for Liat, and 90.5% (57/63) for the LDT. PPA for the LDT increased to 92.1% after manual review of amplification curves. Conclusions Commercial multiplex respiratory virus assays have good performance for samples with medium to high viral loads (Ct values <33). Laboratories should consider appropriate test result review and confirmation protocols to optimize sensitivity, and may consider reporting samples with additional interpretive comments when low viral loads are detected.
Collapse
Affiliation(s)
- Nancy Matic
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Tanya Lawson
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
| | - Gordon Ritchie
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Marc G Romney
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Burdo TH, Robinson JA, Cooley S, Smith MD, Flynn J, Petersen KJ, Nelson B, Westerhaus E, Wisch J, Ances BM. Increased Peripheral Inflammation Is Associated With Structural Brain Changes and Reduced Blood Flow in People With Virologically Controlled HIV. J Infect Dis 2023; 228:1071-1079. [PMID: 37352555 PMCID: PMC10582906 DOI: 10.1093/infdis/jiad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND While antiretroviral therapy (ART) has improved outcomes for people with HIV (PWH), brain dysfunction is still evident. Immune activation and inflammation remain elevated in PWH receiving ART, thereby contributing to morbidity and mortality. Previous studies demonstrated reduced functional and structural changes in PWH; however, underlying mechanisms remain elusive. METHODS Our cohort consisted of PWH with ART adherence and viral suppression ( < 50 copies/mL; N = 173). Measurements included immune cell markers of overall immune health (CD4/CD8 T-cell ratio) and myeloid inflammation (CD16+ monocytes), plasma markers of inflammatory status (soluble CD163 and CD14), and structural and functional neuroimaging (volume and cerebral blood flow [CBF], respectively). RESULTS Decreased CD4/CD8 ratios correlated with reduced brain volume, and higher levels of inflammatory CD16+ monocytes were associated with reduced brain volume in total cortex and gray matter. An increase in plasma soluble CD14-a marker of acute peripheral inflammation attributed to circulating microbial products-was associated with reduced CBF within the frontal, parietal, temporal, and occipital cortices and total gray matter. CONCLUSIONS CD4/CD8 ratio and number of CD16+ monocytes, which are chronic immune cell markers, are associated with volumetric loss in the brain. Additionally, this study shows a potential new association between plasma soluble CD14 and CBF.
Collapse
Affiliation(s)
- Tricia H Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jake A Robinson
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Sarah Cooley
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Mandy D Smith
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jacqueline Flynn
- Department of Microbiology, Immunology, and Inflammation, Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Kalen J Petersen
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Brittany Nelson
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Elizabeth Westerhaus
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Julie Wisch
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
10
|
Savitz J, Goeckner BD, Ford BN, Kent Teague T, Zheng H, Harezlak J, Mannix R, Tugan Muftuler L, Brett BL, McCrea MA, Meier TB. The effects of cytomegalovirus on brain structure following sport-related concussion. Brain 2023; 146:4262-4273. [PMID: 37070698 PMCID: PMC10545519 DOI: 10.1093/brain/awad126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023] Open
Abstract
The neurotrophic herpes virus cytomegalovirus is a known cause of neuropathology in utero and in immunocompromised populations. Cytomegalovirus is reactivated by stress and inflammation, possibly explaining the emerging evidence linking it to subtle brain changes in the context of more minor disturbances of immune function. Even mild forms of traumatic brain injury, including sport-related concussion, are major physiological stressors that produce neuroinflammation. In theory, concussion could predispose to the reactivation of cytomegalovirus and amplify the effects of physical injury on brain structure. However, to our knowledge this hypothesis remains untested. This study evaluated the effect of cytomegalovirus serostatus on white and grey matter structure in a prospective study of athletes with concussion and matched contact-sport controls. Athletes who sustained concussion (n = 88) completed MRI at 1, 8, 15 and 45 days post-injury; matched uninjured athletes (n = 73) completed similar visits. Cytomegalovirus serostatus was determined by measuring serum IgG antibodies (n = 30 concussed athletes and n = 21 controls were seropositive). Inverse probability of treatment weighting was used to adjust for confounding factors between athletes with and without cytomegalovirus. White matter microstructure was assessed using diffusion kurtosis imaging metrics in regions previously shown to be sensitive to concussion. T1-weighted images were used to quantify mean cortical thickness and total surface area. Concussion-related symptoms, psychological distress, and serum concentration of C-reactive protein at 1 day post-injury were included as exploratory outcomes. Planned contrasts compared the effects of cytomegalovirus seropositivity in athletes with concussion and controls, separately. There was a significant effect of cytomegalovirus on axial and radial kurtosis in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion showed greater axial (P = 0.007, d = 0.44) and radial (P = 0.010, d = 0.41) kurtosis than cytomegalovirus negative athletes with concussion. Similarly, there was a significant association of cytomegalovirus with cortical thickness in athletes with concussion but not controls. Cytomegalovirus positive athletes with concussion had reduced mean cortical thickness of the right hemisphere (P = 0.009, d = 0.42) compared with cytomegalovirus negative athletes with concussion and showed a similar trend for the left hemisphere (P = 0.036, d = 0.33). There was no significant effect of cytomegalovirus on kurtosis fractional anisotropy, surface area, symptoms and C-reactive protein. The results raise the possibility that cytomegalovirus infection contributes to structural brain abnormalities in the aftermath of concussion perhaps via an amplification of concussion-associated neuroinflammation. More work is needed to identify the biological pathways underlying this process and to clarify the clinical relevance of this putative viral effect.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Bryna D Goeckner
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bart N Ford
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - T Kent Teague
- Department of Psychiatry, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA
- Department of Surgery, The University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Tulsa, OK 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - L Tugan Muftuler
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Beydoun MA, Beydoun HA, Gale SD, Hedges D, Weiss J, Li Z, Erickson LD, Noren Hooten N, Launer LJ, Evans MK, Zonderman AB. Cardiovascular health, infection burden and their interactive association with brain volumetric and white matter integrity outcomes in the UK Biobank. Brain Behav Immun 2023; 113:91-103. [PMID: 37393057 PMCID: PMC11040741 DOI: 10.1016/j.bbi.2023.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Cardiovascular health is associated with brain magnetic resonance imaging (MRI) markers of pathology and infections may modulate this association. METHODS Using data from 38,803 adults (aged 40-70 years) and followed-up for 5-15 years, we tested associations of prevalent total (47.5%) and hospital-treated infection burden (9.7%) with brain structural and diffusion-weighted MRI (i.e., sMRI and dMRI, respectively) common in dementia phenome. Poor white matter tissue integrity was operationalized with lower global and tract-specific fractional anisotropy (FA) and higher mean diffusivity (MD). Volumetric sMRI outcomes included total, gray matter (GM), white matter (WM), frontal bilateral GM, white matter hyperintensity (WMH), and selected based on previous associations with dementia. Cardiovascular health was measured with Life's Essential 8 score (LE8) converted to tertiles. Multiple linear regression models were used, adjusting for intracranial volumes (ICV) for subcortical structures, and for demographic, socio-economic, and the Alzheimer's Disease polygenic risk score for all outcomes, among potential confounders. RESULTS In fully adjusted models, hospital-treated infections were inversely related to GM (β ± SE: -1042 ± 379, p = 0.006) and directly related to WMH as percent of ICV (Loge transformed) (β ± SE:+0.026 ± 0.007, p < 0.001). Both total and hospital-treated infections were associated with poor WMI, while the latter was inversely related to FA within the lowest LE8 tertile (β ± SE:-0.0011 ± 0.0003, p < 0.001, PLE8×IB < 0.05), a pattern detected for GM, Right Frontal GM, left accumbens and left hippocampus volumes. Within the uppermost LE8 tertile, total infection burden was linked to smaller right amygdala while being associated with larger left frontal GM and right putamen volumes, in the overall sample. Within that uppermost tertile of LE8, caudate volumes were also positively associated with hospital-treated infections. CONCLUSIONS Hospital-treated infections had more consistent deleterious effects on volumetric and white matter integrity brain neuroimaging outcomes compared with total infectious burden, particularly in poorer cardiovascular health groups. Further studies are needed in comparable populations, including longitudinal studies with multiple repeats on neuroimaging markers.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States.
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States
| | - Shawn D Gale
- Department of Psychology and the Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Dawson Hedges
- Department of Psychology and the Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA, United States
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Lance D Erickson
- Department of Sociology, Brigham Young University, Provo, UT, United States
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| |
Collapse
|
12
|
Nightingale S, Ances B, Cinque P, Dravid A, Dreyer AJ, Gisslén M, Joska JA, Kwasa J, Meyer AC, Mpongo N, Nakasujja N, Pebody R, Pozniak A, Price RW, Sandford C, Saylor D, Thomas KGF, Underwood J, Vera JH, Winston A. Cognitive impairment in people living with HIV: consensus recommendations for a new approach. Nat Rev Neurol 2023; 19:424-433. [PMID: 37311873 DOI: 10.1038/s41582-023-00813-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/15/2023]
Abstract
Current approaches to classifying cognitive impairment in people living with HIV can overestimate disease burden and lead to ambiguity around disease mechanisms. The 2007 criteria for HIV-associated neurocognitive disorders (HAND), sometimes called the Frascati criteria, can falsely classify over 20% of cognitively healthy individuals as having cognitive impairment. Minimum criteria for HAND are met on the basis of performance on cognitive tests alone, which might not be appropriate for populations with diverse educational and socioeconomic backgrounds. Imprecise phenotyping of cognitive impairment can limit mechanistic research, biomarker discovery and treatment trials. Importantly, overestimation of cognitive impairment carries the risk of creating fear among people living with HIV and worsening stigma and discrimination towards these individuals. To address this issue, we established the International HIV-Cognition Working Group, which is globally representative and involves the community of people living with HIV. We reached consensus on six recommendations towards a new approach for diagnosis and classification of cognitive impairment in people living with HIV, intended to focus discussion and debate going forward. We propose the conceptual separation of HIV-associated brain injury - including active or pretreatment legacy damage - from other causes of brain injury occurring in people living with HIV. We suggest moving away from a quantitative neuropsychological approach towards an emphasis on clinical context. Our recommendations are intended to better represent the changing profile of cognitive impairment in people living with HIV in diverse global settings and to provide a clearer framework of classification for clinical management and research studies.
Collapse
Affiliation(s)
- Sam Nightingale
- HIV Mental Health Research Unit, Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Paola Cinque
- Unit of Infectious Diseases, San Raffaele Institute, Milan, Italy
| | - Ameet Dravid
- Department of Medicine, Poona Hospital and Research Centre and Noble Hospital, Pune, India
| | - Anna J Dreyer
- HIV Mental Health Research Unit, Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Magnus Gisslén
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - John A Joska
- HIV Mental Health Research Unit, Division of Neuropsychiatry, Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Judith Kwasa
- Department of Clinical Medicine and Therapeutics, Faculty of Health Science, University of Nairobi, Nairobi, Kenya
| | - Ana-Claire Meyer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Noeline Nakasujja
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Anton Pozniak
- Department of HIV Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Deanna Saylor
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- University Teaching Hospital, Lusaka, Zambia
| | - Kevin G F Thomas
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT), Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Jonathan Underwood
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Department of Infectious Diseases, Cardiff and Vale University Health Board, Cardiff, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Alan Winston
- Department of Infectious Disease, Imperial College London, London, UK
- HIV Clinical Trials, Winston Churchill Wing, St Mary's Hospital, London, UK
| |
Collapse
|
13
|
McMahan C, Dietrich DK, Horne EF, Kelly E, Geannopoulos K, Siyahhan Julnes PS, Ham L, Santamaria U, Lau CY, Wu T, Hsieh HC, Ganesan A, Berjohn C, Kapetanovic S, Reich DS, Nair G, Snow J, Agan BK, Nath A, Smith BR. Neurocognitive Dysfunction With Neuronal Injury in People With HIV on Long-Duration Antiretroviral Therapy. Neurology 2023; 100:e2466-e2476. [PMID: 37105760 PMCID: PMC10264056 DOI: 10.1212/wnl.0000000000207339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/09/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Neurologic outcomes in people with HIV (PWH) on long-duration antiretroviral therapy (ART) are not fully understood, and the underlying pathophysiology is unclear. To address this, we established a cohort of such individuals and compared them with HIV-negative controls using a novel matching technique. Both groups underwent extensive cognitive testing, evaluation for psychiatric measures, and MRI and CSF analyses. METHODS Participants underwent comprehensive neuropsychological testing and completed standardized questionnaires measuring depressive symptoms, perceptions of own functioning, and activities of daily living as part of an observational study. Brain MRI and lumbar puncture were optional. Coarsened Exact Matching was used to reduce between-group differences in age and sex, and weighted linear/logistic regression models were used to assess the effect of HIV on outcomes. RESULTS Data were analyzed from 155 PWH on ART for at least 15 years and 100 HIV-negative controls. Compared with controls, PWH scored lower in the domains of attention/working memory (PWH least square mean [LSM] = 50.4 vs controls LSM = 53.1, p = 0.008) and motor function (44.6 vs 47.7, p = 0.009) and a test of information processing speed (symbol search 30.3 vs 32.2, p = 0.003). They were more likely to self-report a higher number of cognitive difficulties in everyday life (p = 0.011). PWH also reported more depressive symptoms, general anxiety, and use of psychiatric medications (all with p < 0.05). PWH had reduced proportions of subcortical gray matter on MRI (β = -0.001, p < 0.001), and CSF showed elevated levels of neurofilament light chain (664 vs 529 pg/mL, p = 0.01) and tumor necrosis factor α (0.229 vs 0.156 ng/mL, p = 0.0008). DISCUSSION PWH, despite effective ART for over a decade, displayed neurocognitive deficits and mood abnormalities. MRI and CSF analyses revealed reduced brain volume and signs of ongoing neuronal injury and neuroinflammation. As the already large proportion of virologically controlled PWH continues to grow, longitudinal studies should be conducted to elucidate the implications of cognitive, psychiatric, MRI, and CSF abnormalities in this group.
Collapse
Affiliation(s)
- Cynthia McMahan
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Devon K Dietrich
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Elizabeth F Horne
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Erin Kelly
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Katrina Geannopoulos
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Peter Selim Siyahhan Julnes
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Lillian Ham
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Ulisses Santamaria
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Chuen-Yen Lau
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Tianxia Wu
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Hsing-Chuan Hsieh
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Anuradha Ganesan
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Catherine Berjohn
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Suad Kapetanovic
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Daniel S Reich
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Govind Nair
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Joseph Snow
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Brian K Agan
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Avindra Nath
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles
| | - Bryan R Smith
- From the Section of Infections of the Nervous System (C.M., D.K.D., E.F.H., E.K., K.G., P.S.S.J., A.N., B.R.S.), Office of the Clinical Director (T.W.),, and Translational Neuroradiology Section (D.S.R., G.N.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; University of Pittsburgh School of Medicine (C.M.), PA; Duke University School of Medicine (E.F.H.), Durham, NC; Virginia Commonwealth University School of Medicine (E.K.), Richmond; Department of Neurology (K.G.), Case Western Reserve University/University Hospitals Cleveland Medical Center, OH; Department of Psychiatry (P.S.S.J.), Washington University School of Medicine, St. Louis, MO; Office of the Clinical Director (L.H., J.S.), National Institute of Mental Health, NIH, Bethesda, MD; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology (L.H.); Leidos Biomedical Research (U.S.), Frederick, MD; HIV Dynamics and Replication Program (C.-Y.L.), NCI, NIH, Bethesda, Infectious Diseases Clinical Research Program (H.-C.H., A.G., B.K.A.), Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda,; The Henry M. Jackson Foundation for the Advancement of Military Medicine (H.-C.H., A.G., B.K.A.), Bethesda,; Department of Medicine (A.G., B.K.A.), Uniformed Services University, Bethesda, MD; Division of Infectious Diseases (C.B.), Naval Medical Center San Diego, CA; and Department of Psychiatry and the Behavioral Sciences (S.K.), University of Southern California Keck School of Medicine, Los Angeles.
| |
Collapse
|
14
|
Bolzenius J, Sacdalan C, Ndhlovu LC, Sailasuta N, Trautmann L, Tipsuk S, Crowell TA, Suttichom D, Colby DJ, Phanuphak N, Chan P, Premeaux T, Kroon E, Vasan S, Hsu DC, Valcour V, Ananworanich J, Robb ML, Ake JA, Pohl KM, Sriplienchan S, Spudich S, Paul R. Brain volumetrics differ by Fiebig stage in acute HIV infection. AIDS 2023; 37:861-869. [PMID: 36723491 PMCID: PMC10079583 DOI: 10.1097/qad.0000000000003496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE People with chronic HIV exhibit lower regional brain volumes compared to people without HIV (PWOH). Whether imaging alterations observed in chronic infection occur in acute HIV infection (AHI) remains unknown. DESIGN Cross-sectional study of Thai participants with AHI. METHODS One hundred and twelve Thai males with AHI (age 20-46) and 18 male Thai PWOH (age 18-40) were included. Individuals with AHI were stratified into early (Fiebig I-II; n = 32) and late (Fiebig III-V; n = 80) stages of acute infection using validated assays. T1-weighted scans were acquired using a 3 T MRI performed within five days of antiretroviral therapy (ART) initiation. Volumes for the amygdala, caudate nucleus, hippocampus, nucleus accumbens, pallidum, putamen, and thalamus were compared across groups. RESULTS Participants in late Fiebig stages exhibited larger volumes in the nucleus accumbens (8% larger; P = 0.049) and putamen (19%; P < 0.001) when compared to participants in the early Fiebig. Compared to PWOH, participants in late Fiebig exhibited larger volumes of the amygdala (9% larger; P = 0.002), caudate nucleus (11%; P = 0.005), nucleus accumbens (15%; P = 0.004), pallidum (19%; P = 0.001), and putamen (31%; P < 0.001). Brain volumes in the nucleus accumbens, pallidum, and putamen correlated modestly with stimulant use over the past four months among late Fiebig individuals ( P s < 0.05). CONCLUSIONS Findings indicate that brain volume alterations occur in acute infection, with the most prominent differences evident in the later stages of AHI. Additional studies are needed to evaluate mechanisms for possible brain disruption following ART, including viral factors and markers of neuroinflammation.
Collapse
Affiliation(s)
| | - Carlo Sacdalan
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York
| | - Napapon Sailasuta
- Department of Tropical Medicine, Medical Microbiology & Pharmacology, University of Hawaii, Hawaii
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon
| | - Somporn Tipsuk
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Trevor A Crowell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | | | - Donn J Colby
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | | | - Phillip Chan
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Thomas Premeaux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York
| | - Eugène Kroon
- SEARCH, Institute of HIV Research and Innovation, Bangkok, Thailand
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Victor Valcour
- Department of Neurology, University of California, San Francisco, California, USA
| | - Jintanat Ananworanich
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Julie A Ake
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon
| | - Kilian M Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | | | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert Paul
- University of Missouri, St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
15
|
D'Amico D, Barone R, Di Felice V, Ances B, Prideaux B, Eugenin EA. Chronic brain damage in HIV-infected individuals under antiretroviral therapy is associated with viral reservoirs, sulfatide release, and compromised cell-to-cell communication. Cell Mol Life Sci 2023; 80:116. [PMID: 37016051 PMCID: PMC11071786 DOI: 10.1007/s00018-023-04757-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
HIV infection has become a chronic and manageable disease due to the effective use of antiretroviral therapies (ART); however, several chronic aging-related comorbidities, including cognitive impairment, remain a major public health issue. However, these mechanisms are unknown. Here, we identified that glial and myeloid viral reservoirs are associated with local myelin damage and the release of several myelin components, including the lipid sulfatide. Soluble sulfatide compromised gap junctional communication and calcium wave coordination, essential for proper cognition. We propose that soluble sulfatide could be a potential biomarker and contributor to white matter compromise observed in HIV-infected individuals even in the current ART era.
Collapse
Affiliation(s)
- Daniela D'Amico
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Valentina Di Felice
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Beau Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brendan Prideaux
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA.
| | - Eliseo A Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 11Th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
16
|
O’Connor EE, Sullivan EV, Chang L, Hammoud DA, Wilson TW, Ragin AB, Meade CS, Coughlin J, Ances BM. Imaging of Brain Structural and Functional Effects in People With Human Immunodeficiency Virus. J Infect Dis 2023; 227:S16-S29. [PMID: 36930637 PMCID: PMC10022717 DOI: 10.1093/infdis/jiac387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Before the introduction of antiretroviral therapy, human immunodeficiency virus (HIV) infection was often accompanied by central nervous system (CNS) opportunistic infections and HIV encephalopathy marked by profound structural and functional alterations detectable with neuroimaging. Treatment with antiretroviral therapy nearly eliminated CNS opportunistic infections, while neuropsychiatric impairment and peripheral nerve and organ damage have persisted among virally suppressed people with HIV (PWH), suggesting ongoing brain injury. Neuroimaging research must use methods sensitive for detecting subtle HIV-associated brain structural and functional abnormalities, while allowing for adjustments for potential confounders, such as age, sex, substance use, hepatitis C coinfection, cardiovascular risk, and others. Here, we review existing and emerging neuroimaging tools that demonstrated promise in detecting markers of HIV-associated brain pathology and explore strategies to study the impact of potential confounding factors on these brain measures. We emphasize neuroimaging approaches that may be used in parallel to gather complementary information, allowing efficient detection and interpretation of altered brain structure and function associated with suboptimal clinical outcomes among virally suppressed PWH. We examine the advantages of each imaging modality and systematic approaches in study design and analysis. We also consider advantages of combining experimental and statistical control techniques to improve sensitivity and specificity of biotype identification and explore the costs and benefits of aggregating data from multiple studies to achieve larger sample sizes, enabling use of emerging methods for combining and analyzing large, multifaceted data sets. Many of the topics addressed in this article were discussed at the National Institute of Mental Health meeting "Biotypes of CNS Complications in People Living with HIV," held in October 2021, and are part of ongoing research initiatives to define the role of neuroimaging in emerging alternative approaches to identifying biotypes of CNS complications in PWH. An outcome of these considerations may be the development of a common neuroimaging protocol available for researchers to use in future studies examining neurological changes in the brains of PWH.
Collapse
Affiliation(s)
- Erin E O’Connor
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Center for Health Sciences, SRI International, Menlo Park, California, USA
| | - Linda Chang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Ann B Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christina S Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer Coughlin
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Beau M Ances
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Bell RP, Towe SL, Al-Khalil K, Gibson M, Nadeem T, Meade CS. Additive cortical gray matter deficits in people living with HIV who use cocaine. J Neurovirol 2023; 29:53-64. [PMID: 36787045 PMCID: PMC10516130 DOI: 10.1007/s13365-023-01111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023]
Abstract
Cocaine use, which is disproportionately common in people living with HIV (PWH), is known to have neurotoxic effects that may exacerbate HIV neuropathogenesis. While both cocaine use and HIV disease are independently associated with deficits in gray matter (GM) volume, the additive effect of cocaine use to HIV disease on GM volume has not been explored. Here, we investigated subcortical and cortical brain volume differences between four groups of individuals with and without HIV disease and/or cocaine use. Participants also completed a comprehensive neuropsychological testing battery, and HIV disease characteristics were recorded. Within subcortical regions, cocaine use was independently associated with higher volume in the dorsal striatum and pallidum, while HIV disease was associated with lower volume in the nucleus accumbens and thalamus. For cortical regions, there was an additive effect of cocaine use on HIV disease in parietal and occipital lobe volume with PWH who used cocaine displaying the lowest GM volume. Within regions that differed between groups, higher neurocognitive function was positively associated with thalamic, nucleus accumbens, dorsal striatum, and occipital lobe volume. For regions that showed a significant main effect of HIV disease, lower nadir CD4 + T cell count was associated with lower nucleus accumbens and occipital lobe volume. Lower current CD4 + T cell count was associated with lower occipital lobe volume. These results suggest that PWH who use cocaine are at greater risk for cortical atrophy than cocaine use or HIV disease alone.
Collapse
Affiliation(s)
- Ryan P Bell
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Campus Box 102848, Durham, NC, 27710, USA.
| | - Sheri L Towe
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Campus Box 102848, Durham, NC, 27710, USA
| | - Kareem Al-Khalil
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Campus Box 102848, Durham, NC, 27710, USA
| | - Matthew Gibson
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Campus Box 102848, Durham, NC, 27710, USA
| | - Tauseef Nadeem
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Campus Box 102848, Durham, NC, 27710, USA
| | - Christina S Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Campus Box 102848, Durham, NC, 27710, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Campus, Box 3918, Durham, NC, 27710, USA
| |
Collapse
|
18
|
Priyathilaka TT, Laaker CJ, Herbath M, Fabry Z, Sandor M. Modeling infectious diseases of the central nervous system with human brain organoids. Transl Res 2022; 250:18-35. [PMID: 35811019 PMCID: PMC11185418 DOI: 10.1016/j.trsl.2022.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Bacteria, fungi, viruses, and protozoa are known to infect and induce diseases in the human central nervous system (CNS). Modeling the mechanisms of interaction between pathogens and the CNS microenvironment is essential to understand their pathophysiology and develop new treatments. Recent advancements in stem cell technologies have allowed for the creation of human brain organoids, which more closely resembles the human CNS microenvironment when compared to classical 2-dimensional (2D) cultures. Now researchers can utilize these systems to investigate and reinvestigate questions related to CNS infection in a human-derived brain organoid system. Here in this review, we highlight several infectious diseases which have been tested in human brain organoids and compare similarities in response to these pathogens across different investigations. We also provide a brief overview of some recent advancements which can further enrich this model to develop new and better therapies to treat brain infections.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Collin James Laaker
- Neuroscience Training Program, University of Wisconsin Madison, Madison, Wisconsin
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin.
| |
Collapse
|
19
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
20
|
Wakim KM, Freedman EG, Tivarus ME, Christensen Z, Molholm S, Foxe JJ. Effects of Human Immunodeficiency Virus Infection and Former Cocaine Dependence on Neuroanatomical Measures and Neurocognitive Performance. Neuroscience 2022; 502:77-90. [PMID: 35963584 PMCID: PMC9588737 DOI: 10.1016/j.neuroscience.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Evidence from animal research, postmortem analyses, and magnetic resonance imaging (MRI) investigations indicate substantial morphological alteration in brain structure as a function of human immunodeficiency virus (HIV) or cocaine dependence (CD). Although previous research on HIV+ active cocaine users suggests the presence of deleterious morphological effects in excess of either condition alone, a yet unexplored question is whether there is a similar deleterious interaction in HIV+ individuals with CD who are currently abstinent. To this end, the combinatorial effects of HIV and CD history on regional brain volume, cortical thickness, and neurocognitive performance was examined across four groups of participants in an exploratory study: healthy controls (n = 34), HIV-negative individuals with a history of CD (n = 21), HIV+ individuals with no history of CD (n = 20), HIV+ individuals with a history of CD (n = 15). Our analyses revealed no statistical evidence of an interaction between both conditions on brain morphometry and neurocognitive performance. While descriptively, individuals with comorbid HIV and a history of CD exhibited the lowest neurocognitive performance scores, using Principle Component Analysis of neurocognitive testing data, HIV was identified as the primary driver of neurocognitive impairment. Higher caudate volume was evident in CD+ participants relative to CD- participants. Findings indicate no evidence of compounded differences in neurocognitive function or structural measures of brain integrity in HIV+ individuals in recovery from CD relative to individuals with only one condition.
Collapse
Affiliation(s)
- Kathryn-Mary Wakim
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Madalina E Tivarus
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Zachary Christensen
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Sophie Molholm
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
21
|
Ahmed-Leitao F, Du Plessis S, Konkiewitz EC, Spies G, Seedat S. Altered white matter integrity in the corpus callosum in adults with HIV: a systematic review of diffusion tensor imaging studies. Psychiatry Res Neuroimaging 2022; 326:111543. [PMID: 36126346 DOI: 10.1016/j.pscychresns.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
We systematically reviewed studies comparing differences in the integrity of the corpus callosum in adults with HIV compared to healthy controls, using Diffusion Tensor Imaging (DTI), using search engines Science Direct, Web of Science and PubMed. The search terms used were "HIV", "corpus callosum", and a variation of either "DTI" or "Diffusion Tensor Imaging" with or without the term "adults". We specifically examined the corpus callosum as it is the largest white matter tract in the brain, plays a primary role in cognition, and has been shown to be morphologically altered in people living with HIV. Lower fractional anisotropy (FA) was consistently found in the corpus callosum in people with HIV compared to controls. As most studies used only FA as a measure of diffusion, it would be informative for future research if other DTI metrics, such as mean diffusivity (MD), were also investigated as these metrics may be more sensitive markers of HIV-related neuropathology.
Collapse
Affiliation(s)
- Fatima Ahmed-Leitao
- South African Research Chairs Initiative (SARChI) in Posttraumatic Stress Disorder, Department of Psychiatry, Stellenbosch University, South Africa.
| | - Stefan Du Plessis
- Department of Psychiatry, Stellenbosch University, South Africa; SAMRC Genomics of Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
| | | | - Georgina Spies
- South African Research Chairs Initiative (SARChI) in Posttraumatic Stress Disorder, Department of Psychiatry, Stellenbosch University, South Africa; SAMRC Genomics of Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
| | - Soraya Seedat
- South African Research Chairs Initiative (SARChI) in Posttraumatic Stress Disorder, Department of Psychiatry, Stellenbosch University, South Africa; SAMRC Genomics of Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
22
|
Castaneda G, Fernandez Cruz AL, Brouillette MJ, Mayo NE, Fellows LK. Relationship between reward-related evoked potentials and real-world motivation in older people living with human immunodeficiency virus. Front Aging Neurosci 2022; 14:927209. [PMID: 36118691 PMCID: PMC9475288 DOI: 10.3389/fnagi.2022.927209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
Apathy, a clinical disorder characterized by low motivation, is prevalent in people living with Human Immunodeficiency Virus (HIV). It affects mental and physical health-related quality-of-life, medication adherence, and is associated with cognitive decline. However, the causes of apathy and the underlying brain mechanisms in HIV are unknown. Brain responses to reward may be relevant to understanding apathy and might serve as biomarkers for diagnosis or treatment response. Electroencephalogram (EEG) responses to gain and loss feedback in simple guessing tasks have been related to apathy in neurodegenerative conditions and healthy individuals. The primary aim of this study is to contribute evidence regarding the relationship between two EEG correlates of reward processing, the Reward Positivity, and the Feedback-P300, and real-world motivated behavior indicated by self-reported hours engaged in goal-directed leisure activities per week, in older individuals with well-controlled HIV infection. High-density EEG was collected from 75 participants while they performed a guessing task with gain or loss feedback. We found that a later component of reward processing, the Feedback-P300, was related to real-world engagement, while the earlier Reward Positivity was not. The Feedback-P300 measured with EEG holds promise as a biomarker for motivated behavior in older people living with HIV. These findings lay the groundwork for a better understanding of the neurobiology of apathy in this condition.
Collapse
Affiliation(s)
- Gloria Castaneda
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ana-Lucia Fernandez Cruz
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Marie-Josée Brouillette
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Nancy E. Mayo
- Division of Clinical Epidemiology, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Lesley K. Fellows
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- *Correspondence: Lesley K. Fellows,
| |
Collapse
|
23
|
Rousou X, Furuya-Kanamori L, Kostoulas P, Doi SAR. Diagnostic accuracy of multiplex nucleic acid amplification tests for Campylobacter infection: a systematic review and meta-analysis. Pathog Glob Health 2022; 117:259-272. [PMID: 35815907 PMCID: PMC10081061 DOI: 10.1080/20477724.2022.2097830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Campylobacter infection is one of the most frequently reported foodborne diseases with approximately 230,000 and 1.5 million cases each year in Europe and the USA, respectively. Culture methods are the reference for the diagnosis of Campylobacter infections; however, these methods are complex and time-consuming. Multiplex nucleic acid amplification test is favored due to its rapidity, automatization in the procedure followed and the quick simultaneous testing of numerous foodborne pathogens. The aim of this meta-analysis was to evaluate the accuracy of these tests for the diagnosis of Campylobacter infection. Scopus, Science Direct, PubMed, Web of Science, and Mendeley were searched for peer-reviewed articles. The split component synthesis method with the use of the inverse variance heterogeneity model was chosen for the quantitative meta-analysis. Sensitivity analysis was performed by age category and index test. The literature search found 34 studies involving 28,105 patients with suspected gastroenteritis. The sensitivity and specificity were 95.3% (92.3; 97.1) and 97.1% (95.1; 98.3), respectively, and AUC (area under the curve) was 0.963 (0.947; 0.974). Pediatric patients had a lower sensitivity (87.4, 48.2; 98.1) and higher specificity (99.2, 91.6; 99.9) estimate compared to all ages category (sensitivity 95.3, 91.3; 97.5, specificity 96.7, 93.7; 98.3). Among the various index tests, Seeplex/Allplex and Amplidiag/Novodiag had the lowest estimate for sensitivity (88.9, 73.8; 95.8) and specificity (95.2, 86; 98.4), respectively. BDMax had the highest (sensitivity 98.1, 96.1; 99 and specificity 98.5, 97; 99.3). Multiplex nucleic acid tests showed excellent accuracy and could play an influential role in diagnosing Campylobacter infections.
Collapse
Affiliation(s)
- Xanthoula Rousou
- Laboratory of Epidemiology and Artificial Intelligence, Faculty of Public and One Health, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Luis Furuya-Kanamori
- UQ Centre for Clinical Research, Faculty of Medicine, the University of Queensland, Herston, Queensland, Australia
| | - Polychronis Kostoulas
- Laboratory of Epidemiology and Artificial Intelligence, Faculty of Public and One Health, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Suhail A R Doi
- Department of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
24
|
Chen G, Cai DC, Song F, Zhan Y, Wei L, Shi C, Wang H, Shi Y. Morphological Changes of Frontal Areas in Male Individuals With HIV: A Deformation-Based Morphometry Analysis. Front Neurol 2022; 13:909437. [PMID: 35832184 PMCID: PMC9271794 DOI: 10.3389/fneur.2022.909437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Previous studies on HIV-infected (HIV+) individuals have revealed brain structural alterations underlying HIV-associated neurocognitive disorders. Most studies have adopted the widely used voxel-based morphological analysis of T1-weighted images or tracked-based analysis of diffusion tensor images. In this study, we investigated the HIV-related morphological changes using the deformation-based morphometry (DBM) analysis of T1-weighted images, which is another useful tool with high regional sensitivity. MATERIALS AND METHODS A total of 157 HIV+ (34.7 ± 8.5 years old) and 110 age-matched HIV-uninfected (HIV-) (33.7 ± 10.1 years old) men were recruited. All participants underwent neurocognitive assessments and brain scans, including high-resolution structural imaging and resting-state functional imaging. Structural alterations in HIV+ individuals were analyzed using DBM. Functional brain networks connected to the deformed regions were further investigated in a seed-based connectivity analysis. The correlations between imaging and cognitive or clinical measures were examined. RESULTS The DBM analysis revealed decreased values (i.e., tissue atrophy) in the bilateral frontal regions in the HIV+ group, including bilateral superior frontal gyrus, left middle frontal gyrus, and their neighboring white matter tract, superior corona radiata. The functional connectivity between the right superior frontal gyrus and the right inferior temporal region was enhanced in the HIV+ group, the connectivity strength of which was significantly correlated with the global deficit scores (r = 0.214, P = 0.034), and deficits in learning (r = 0.246, P = 0.014) and recall (r = 0.218, P = 0.031). Increased DBM indexes (i.e., tissue enlargement) of the right cerebellum were also observed in the HIV+ group. CONCLUSION The current study revealed both gray and white matter volume changes in frontal regions and cerebellum in HIV+ individuals using DBM, complementing previous voxel-based morphological studies. Structural alterations were not limited to the local regions but were accompanied by disrupted functional connectivity between them and other relevant regions. Disruptions in neural networks were associated with cognitive performance, which may be related to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Guochao Chen
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan-Chao Cai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengxiang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yi Zhan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chunzi Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuxin Shi
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Ma Q, Shi X, Chen G, Song F, Liu F, Zheng H, Shi Y, Cai DC. HIV-Associated Structural and Functional Brain Alterations in Homosexual Males. Front Neurol 2022; 12:757374. [PMID: 35095719 PMCID: PMC8796998 DOI: 10.3389/fneur.2021.757374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Neuroimaging elucidations have shown structural and functional brain alterations in HIV-infected (HIV+) individuals when compared to HIV-negative (HIV-) controls. However, HIV- groups used in previous studies were not specifically considered for sexual orientation, which also affects the brain structures and functions. The current study aimed to characterize the brain alterations associated with HIV infection while controlling for sexual orientation. METHODS Forty-three HIV+ and 40 HIV- homosexual men (HoM) were recruited and underwent resting-state MRI scanning. Group differences in gray matter volume (GMV) were assessed using a voxel-based morphometry analysis. Brain regions with the altered GMV in the HIV+ HoM group were then taken as regions of interest in a seed-based analysis to identify altered functional connectivity. Furthermore, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity values were compared between the two groups to evaluate the HIV-associated functional abnormalities in local brain regions. RESULTS HIV+ HoM showed significantly increased GMV in the bilateral parahippocampal gyrus and amygdala, and decreased GMV in the right inferior cerebellum, compared with the HIV- HoM. The brain regions with increased GMV were hyper-connected with the left superior cerebellum, right lingual gyrus, and left precuneus in the HIV+ HoM. Moreover, the ALFF values of the right fusiform gyrus, and left parahippocampal gyrus were increased in the HIV+ HoM. The regional homogeneity values of the right anterior cingulate and paracingulate gyri, and left superior cerebellum were decreased in the HIV+ HoM. CONCLUSION When the study population was restricted to HoM, HIV+ individuals exhibited structural alterations in the limbic system and cerebellum, and functional abnormalities in the limbic, cerebellum, and visual network. These findings complement the existing knowledge on the HIV-associated neurocognitive impairment from the previous neuroimaging studies by controlling for the potential confounding factor, sexual orientation. Future studies on brain alternations with the exclusion of related factors like sexual orientation are needed to understand the impact of HIV infection on neurocognitive function more accurately.
Collapse
Affiliation(s)
- Qiong Ma
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiudong Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guochao Chen
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengxiang Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengjun Liu
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Huang Zheng
- Shanghai Commercial Sex Worker (CSW) & Man Have Sex With Man (MSM) Center, Shanghai, China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan-Chao Cai
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Longitudinal trajectories of brain volume in combined antiretroviral therapy treated and untreated simian immunodeficiency virus-infected rhesus macaques. AIDS 2021; 35:2433-2443. [PMID: 34870927 PMCID: PMC8631166 DOI: 10.1097/qad.0000000000003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We used simian immunodeficiency virus (SIV)-infected nonhuman primates to investigate longitudinal changes of brain volume caused by SIV and the effect of combined antiretroviral therapy (cART). In addition, the relation between viral load, immune status, and brain volume were explored. DESIGN A longitudinal study of two healthy controls, five SIVmac239-infected macaques received cART (SIV+cART+) at 40 days postinnoculation, and five SIVmac239-infected macaques received no therapy (SIV+cART-). METHODS Structural T1-weighted MRI, blood and cerebrospinal fluid testing were acquired at multiple time points for 48 weeks postinfection (wpi). Brain volume was estimated using region of interest (ROI)-based analysis. Volume differences were compared among three groups. Linear regression models tested the associations between brain volumes and biomarkers (viral load, CD4+ T-cell count, CD4+/CD8+ ratio). RESULTS In our model, brain volume alteration in SIV-infected macaques can be detected at 12 wpi in several brain regions. As the infection progresses, the SIV+cART- macaques displayed generalized gray matter atrophy at the endpoint. Though initiate cART right after acute infection, SIV+cART+ macaques still displayed brain atrophy but showed signs of reversibility. Plasma viral load is mainly associated with subcortical nucleus volume whereas CD4+ T-cell count and CD4+/CD8+ ratio in plasma were associated with widespread cortical volume. CONCLUSION The SIVmac239-infected Chinese origin macaque is a valid model for neuroHIV. Brain atrophy caused by SIV infection can be relieved, even reversed, by cART. Our model also provides new insights into understanding the pathogenesis of brain injury in people with HIV (PWH).
Collapse
|
27
|
O’Connor EE, Zeffiro TA, Lopez OL, Becker JT. Differential Effects of AIDS and Chronic Human Immunodeficiency Virus Infection on Gray Matter Volume. Clin Infect Dis 2021; 73:e2303-e2310. [PMID: 33053187 PMCID: PMC8492157 DOI: 10.1093/cid/ciaa1552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Age, human immunodeficiency virus (HIV) infection, illicit drug use, and central nervous system (CNS) opportunistic infections can affect brain structure, with the striatum being particularly sensitive to HIV effects. Nevertheless, the impact of non-CNS AIDS-defining illness (ADI) on brain structure has been less investigated. We examined ADI and HIV effects on brain volume. METHODS In a cross-sectional study, including 95 virally suppressed seropositive and 84 demographically matched, seronegative participants, we examined serostatus and ADI effects. Cortical and subcortical gray matter volume (GMV) regions of interest were estimated with computational neuroanatomy techniques applied to high-resolution, T1-weighted magnetic resonance imaging data. Linear regression was used to model HIV serostatus and ADI effects on global and regional GMV, adjusting for age, sex, CD4 nadir, drug use, and total intracranial volume. RESULTS While HIV serostatus was associated with lower striatal volume (B = -.59 [95% confidence interval {CI}, -1.08 to -.10]), co-occurring ADI was independently associated with lower striatal volume (B = -.73 [95% CI, -1.36 to -.09]). ADI was also associated with lower global (B = -19.35 [95% CI, -32.42 to -6.29]) and regional GMV. CONCLUSIONS While HIV infection is associated with a localized effect on striatal structure, having a prior ADI is a strong predictor of smaller global and regional GMV. The lack of interaction between HIV serostatus or ADI with age suggests that chronic HIV infection and ADI have independent effects on brain structure, without associated accelerated lower volume with age. ADI history should be incorporated into statistical adjustments in HIV neuroimaging analysis. These findings also lend support to current HIV treatment guidelines urging prompt antiretroviral therapy initiation after HIV diagnosis.
Collapse
Affiliation(s)
- Erin E O’Connor
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas A Zeffiro
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James T Becker
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Psychology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Li R, Qi Y, Shi L, Wang W, Zhang A, Luo Y, Kung WK, Jiao Z, Liu G, Li H, Zhang L. Brain Volumetric Alterations in Preclinical HIV-Associated Neurocognitive Disorder Using Automatic Brain Quantification and Segmentation Tool. Front Neurosci 2021; 15:713760. [PMID: 34456678 PMCID: PMC8385127 DOI: 10.3389/fnins.2021.713760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to determine if people living with HIV (PLWH) in preclinical human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND), with no clinical symptoms and without decreased daily functioning, suffer from brain volumetric alterations and its patterns. Method Fifty-nine male PLWH at the HAND preclinical stage were evaluated, including 19 subjects with asymptomatic neurocognitive impairment (ANI), 17 subjects with cognitive abnormality that does not reach ANI (Not reach ANI), and 23 subjects with cognitive integrity. Moreover, 23 healthy volunteers were set as the seronegative normal controls (NCs). These individuals underwent sagittal three-dimensional T1-weighted imaging (3D T1WI). Quantified data and volumetric measures of brain structures were automatically segmented and extracted using AccuBrain®. In addition, the multiple linear regression analysis was performed to analyze the relationship of volumes of brain structures and clinical variables in preclinical HAND, and the correlations of the brain volume parameters with different cognitive function states were assessed by Pearson's correlation analysis. Results The significant difference was shown in the relative volumes of the ventricular system, bilateral lateral ventricle, thalamus, caudate, and left parietal lobe gray matter between the preclinical HAND and NCs. Furthermore, the relative volumes of the bilateral thalamus in preclinical HAND were negatively correlated with attention/working memory (left: r = -0.271, p = 0.042; right: r = -0.273, p = 0.040). Higher age was associated with increased relative volumes of the bilateral lateral ventricle and ventricular system and reduced relative volumes of the left thalamus and parietal lobe gray matter. The lower CD4+/CD8+ ratio was associated with increased relative volumes of the left lateral ventricle and ventricular system. Longer disease course was associated with increased relative volumes of the bilateral thalamus. No significant difference was found among preclinical HAND subgroups in all indices, and the difference between the individual groups (Not reach ANI and Cognitive integrity groups) and NCs was also insignificant. However, there was a significant difference between ANI and NCs in the relative volumes of the bilateral caudate and lateral ventricle. Conclusion Male PLWH at the HAND preclinical stage suffer from brain volumetric alterations. AccuBrain® provides potential value in evaluating HIV-related neurocognitive dysfunction.
Collapse
Affiliation(s)
- Ruili Li
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Aidong Zhang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | | | - Zengxin Jiao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Guangxue Liu
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Schantell M, Taylor BK, Lew BJ, O'Neill JL, May PE, Swindells S, Wilson TW. Gray matter volumes discriminate cognitively impaired and unimpaired people with HIV. Neuroimage Clin 2021; 31:102775. [PMID: 34375884 PMCID: PMC8358696 DOI: 10.1016/j.nicl.2021.102775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Current diagnostic criteria of HIV-associated neurocognitive disorders (HAND) rely on neuropsychological assessments. The aim of this study was to evaluate if gray matter volumes (GMV) can distinguish people with HAND, neurocognitively unimpaired people with HIV (unimpaired PWH), and uninfected controls using linear discriminant analyses. METHODS A total of 231 participants, including 110 PWH and 121 uninfected controls, completed a neuropsychological assessment and an MRI protocol. Among PWH, HAND (n = 48) and unimpaired PWH (n = 62) designations were determined using the widely accepted Frascati criteria. We then assessed the extent to which GMV, corrected for intracranial volume, could accurately distinguish the three groups using linear discriminant analysis. Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, area under the curve (AUC), and accuracy were computed for each model using the classification results based on GMV compared to the neuropsychological assessment. RESULTS The best performing model was comprised of bilaterally combined GMV and was stratified by sex. Among males, sensitivity was 85.2% (95% CI: 66.3%-95.8%), specificity was 97.0% (95% CI: 91.6%-99.4%), and the AUC was 0.91 (95% CI: 0.83-0.99). Among females, sensitivity was 100.0% (95% CI: 83.9%-100.0%), specificity was 98.8% (95% CI: 93.4%-100.0%), and the AUC was 0.99 (95% CI: 0.98-1.00). CONCLUSIONS GMV accurately discriminated HAND from unimpaired PWH and controls. Measures of GMV may be highly sensitive to HAND, and revisions to the Frascati criteria should consider including GMV in conjunction with a neuropsychological assessment to diagnose HAND.
Collapse
Affiliation(s)
- Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jennifer L O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA.
| |
Collapse
|
30
|
Fernandez Cruz AL, Chen CM, Sanford R, Collins DL, Brouillette MJ, Mayo NE, Fellows LK. Multimodal neuroimaging markers of variation in cognitive ability in older HIV+ men. PLoS One 2021; 16:e0243670. [PMID: 34314416 PMCID: PMC8315526 DOI: 10.1371/journal.pone.0243670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/12/2021] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE This study used converging methods to examine the neural substrates of cognitive ability in middle-aged and older men with well-controlled HIV infection. METHODS Seventy-six HIV+ men on antiretroviral treatment completed an auditory oddball task and an inhibitory control (Simon) task while time-locked high-density EEG was acquired; 66 had usable EEG data from one or both tasks; structural MRI was available for 43. We investigated relationships between task-evoked EEG responses, cognitive ability and immunocompromise. We also explored the structural correlates of these EEG markers in the sub-sample with complete EEG and MRI data (N = 27). RESULTS EEG activity was associated with cognitive ability at later (P300) but not earlier stages of both tasks. Only the oddball task P300 was reliably associated with HIV severity (nadir CD4). Source localization confirmed that the tasks engaged partially distinct circuits. Thalamus volume correlated with oddball task P300 amplitude, while globus pallidus volume was related to the P300 in both tasks. INTERPRETATION This is the first study to use task-evoked EEG to identify neural correlates of individual differences in cognition in men living with well-controlled HIV infection, and to explore the structural basis of the EEG markers. We found that EEG responses evoked by the oddball task are more reliably related to cognitive performance than those evoked by the Simon task. We also provide preliminary evidence for a subcortical contribution to the effects of HIV infection severity on P300 amplitudes. These results suggest brain mechanisms and candidate biomarkers for individual differences in cognition in HIV.
Collapse
Affiliation(s)
- Ana Lucia Fernandez Cruz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chien-Ming Chen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ryan Sanford
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - D. Louis Collins
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nancy E. Mayo
- School of Physical and Occupational Therapy, Division of Clinical Epidemiology, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Lesley K. Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Lew BJ, Schantell MD, O’Neill J, Morsey B, Wang T, Ideker T, Swindells S, Fox HS, Wilson TW. Reductions in Gray Matter Linked to Epigenetic HIV-Associated Accelerated Aging. Cereb Cortex 2021; 31:3752-3763. [PMID: 33822880 PMCID: PMC8258439 DOI: 10.1093/cercor/bhab045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
A growing literature suggests a relationship between HIV-infection and a molecular profile of age acceleration. However, despite the widely known high prevalence of HIV-related brain atrophy and HIV-associated neurocognitive disorder (HAND), epigenetic age acceleration has not been linked to HIV-related changes in structural MRI. We applied morphological MRI methods to study the brain structure of 110 virally suppressed participants with HIV infection and 122 uninfected controls age 22-72. All participants were assessed for cognitive impairment, and blood samples were collected from a subset of 86 participants with HIV and 83 controls to estimate epigenetic age. We examined the group-level interactive effects of HIV and chronological age and then used individual estimations of epigenetic age to understand the relationship between age acceleration and brain structure. Finally, we studied the effects of HAND. HIV-infection was related to gray matter reductions, independent of age. However, using epigenetic age as a biomarker for age acceleration, individual HIV-related age acceleration was associated with reductions in total gray matter. HAND was associated with decreases in thalamic and hippocampal gray matter. In conclusion, despite viral suppression, accentuated gray matter loss is evident with HIV-infection, and greater biological age acceleration specifically relates to such gray matter loss.
Collapse
Affiliation(s)
- Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Mikki D Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198-8440, USA
| | - Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198-8440, USA
| | - Howard S Fox
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE 68010, USA
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198-8440, USA
| |
Collapse
|
32
|
WANG Z, MANION MM, LAIDLAW E, RUPERT A, LAU CY, SMITH BR, NATH A, SERETI I, HAMMOUD DA. Redistribution of brain glucose metabolism in people with HIV after antiretroviral therapy initiation. AIDS 2021; 35:1209-1219. [PMID: 33710014 PMCID: PMC8556661 DOI: 10.1097/qad.0000000000002875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We evaluated brain glucose metabolism in people living with HIV (PWH) with [18F]-Fluoro-Deoxyglucose (FDG) PET/computed tomography (CT) before and after antiretroviral therapy (ART) initiation. DESIGN We conducted a longitudinal study wherein ART-naive late-presenting untreated PWH with CD4+ cell counts less than 100 cells/μl were prospectively assessed for FDG uptake at baseline and at 4-8 weeks (n = 22) and 19-26 months (n = 11) following ART initiation. METHODS Relative uptake in the subcortical regions (caudate, putamen and thalamus) and cortical regions (frontal, parietal, temporal and occipital cortices) were compared across time and correlated with biomarkers of disease activity and inflammation, in addition to being compared with a group of uninfected individuals (n = 10). RESULTS Before treatment initiation, putaminal and caudate relative FDG uptake values in PWH were significantly higher than in uninfected controls. Relative putaminal and thalamic uptake significantly decreased shortly following ART initiation, while frontal cortex values significantly increased. FDG uptake changes correlated with changes in CD4+ cell counts and viral load, and, in the thalamus, with IL-6R and sCD14. Approximately 2 years following ART initiation, there was further decrease in subcortical relative uptake values, reaching levels below those of uninfected controls. CONCLUSION Our findings support pretreatment basal ganglia and thalamic neuroinflammatory changes in PWH, which decrease after treatment with eventual unmasking of long-term irreversible neuronal damage. Meanwhile, increased frontal cortex metabolism following ART initiation suggests reversible cortical dysfunction which improves with virologic control and increased CD4+ cell counts. Early initiation of treatment after HIV diagnosis and secondary control of inflammation are thus necessary to halt neurological damage in PWH.
Collapse
Affiliation(s)
- Zeping WANG
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Maura M. MANION
- Laboratory of Immunoregulation, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth LAIDLAW
- Laboratory of Immunoregulation, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam RUPERT
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chuen-Yen LAU
- National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan R. SMITH
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland, USA
| | - Avindra NATH
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland, USA
| | - Irini SERETI
- Laboratory of Immunoregulation, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dima A HAMMOUD
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Effects of integrase inhibitor-based antiretroviral therapy on brain outcomes according to time since acquisition of HIV-1 infection. Sci Rep 2021; 11:11289. [PMID: 34050221 PMCID: PMC8163778 DOI: 10.1038/s41598-021-90678-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 11/08/2022] Open
Abstract
Integrase strand transfer inhibitors (INSTI) are a main component of the current antiretroviral regimens recommended for treatment of HIV infection. However, little is known about the impact of INSTI on neurocognition and neuroimaging. We developed a prospective observational trial to evaluate the effects of INSTI-based antiretroviral therapy on comprehensive brain outcomes (cognitive, functional, and imaging) according to the time since HIV-1 acquisition. We recruited men living with HIV who initiated antiretroviral therapy with INSTI < 3 months since the estimated date of HIV-1 acquisition (n = 12) and > 6 months since estimated date of HIV-1 acquisition (n = 15). We also recruited a group of matched seronegative individuals (n = 15). Assessments were performed at baseline (before initiation of therapy in HIV arms) and at weeks 4 and 48. Baseline cognitive functioning was comparable between the arms. At week 48, we did not find cognitive differences between starting therapy with INSTI earlier than 3 months or later than 6 months after acquisition of HIV-1 infection. Functional status was poorer in individuals diagnosed earlier. This effect recovered 48 weeks after initiation of therapy. Regarding brain imaging, we found that men living with HIV initiating antiretroviral therapy later experienced a greater decrease in medial orbitofrontal cortex over time, with expected negative repercussions for decision-making tasks.
Collapse
|
34
|
Chen Y, Dubey P, Müller HG, Bruchhage M, Wang JL, Deoni S. Modeling sparse longitudinal data in early neurodevelopment. Neuroimage 2021; 237:118079. [PMID: 34000395 DOI: 10.1016/j.neuroimage.2021.118079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Early childhood is a period marked by rapid brain growth accompanied by cognitive and motor development. However, it remains unclear how early developmental skills relate to neuroanatomical growth across time with no growth quantile trajectories of typical brain development currently available to place and compare individual neuroanatomical development. Even though longitudinal neuroimaging data have become more common, they are often sparse, making dynamic analyses at subject level a challenging task. Using the Principal Analysis through Conditional Expectation (PACE) approach geared towards sparse longitudinal data, we investigate the evolution of gray matter, white matter and cerebrospinal fluid volumes in a cohort of 446 children between the ages of 1 and 120 months. For each child, we calculate their dynamic age-varying association between the growing brain and scores that assess cognitive functioning, applying the functional varying coefficient model. Using local Fréchet regression, we construct age-varying growth percentiles to reveal the evolution of brain development across the population. To further demonstrate its utility, we apply PACE to predict individual trajectories of brain development.
Collapse
Affiliation(s)
- Yaqing Chen
- Department of Statistics, University of California, Davis, Davis, CA, 95616, USA
| | - Paromita Dubey
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Hans-Georg Müller
- Department of Statistics, University of California, Davis, Davis, CA, 95616, USA
| | - Muriel Bruchhage
- Advanced Baby Imaging Lab, Hasbro Children's Hospital, Rhode Island Hospital, Providence, RI, 02903, USA; Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, 02912, USA
| | - Jane-Ling Wang
- Department of Statistics, University of California, Davis, Davis, CA, 95616, USA
| | - Sean Deoni
- Advanced Baby Imaging Lab, Hasbro Children's Hospital, Rhode Island Hospital, Providence, RI, 02903, USA; Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, 02912, USA; Department of Radiology, Warren Alpert Medical School at Brown University, Providence, RI, 02912, USA; Maternal, Newborn, and Child Health Discovery & Tools, Bill & Melinda Gates Foundation, Seattle, WA, USA.
| |
Collapse
|
35
|
Zhao J, Ma Z, Chen F, Li L, Ren M, Li A, Jing B, Li H. Human immune deficiency virus-related structural alterations in the brain are dependent on age. Hum Brain Mapp 2021; 42:3131-3140. [PMID: 33755269 PMCID: PMC8193536 DOI: 10.1002/hbm.25423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Currently, it is still unknown whether human immune deficiency virus (HIV)‐related structural alterations in the brain are dependent on age. With people living with HIV at different ages, we aim to investigate age‐specific structural alterations in HIV patients. Eighty‐three male HIV patients and eighty‐three age‐matched male controls were enrolled, and high‐resolution T1 weighted images were collected and analyzed with four morphological metrics. Then, statistical analyses were respectively conducted to ascertain HIV effects, age effects, and medication effects in brain structure of HIV patients, and the relationship with neuropsychological evaluations were further explored. Finally, discriminative performances of these structural abnormalities were quantitatively testified with three machine learning models. Compared with healthy controls, HIV patients displayed lower gray matter volumes (GMV), lower gyrification index, deeper sulcus depth, and larger cortical thickness (CTH). Age‐specific differences were found in GMV and CTH: young‐aged HIV patients displayed more obvious morphological alterations than middle‐aged HIV patients when comparing corresponding age‐matched healthy controls. Furthermore, age‐specific long‐term medication effect of combination antiretroviral therapy were also presented. Additionally, several subcortical structural changes were negatively associated with language, attention and motor functions. Finally, three machine learning models demonstrated young‐aged HIV patients were easier to be recognized than middle‐aged HIV patients. Our study indicated young‐aged HIV patients were more vulnerable to HIV infection in brain structure than middle‐aged patients, and future studies should not ignore the age effect in studying the HIV‐related abnormalities.
Collapse
Affiliation(s)
- Jing Zhao
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
- Department of RadiologyBeijing Youan Hospital, Capital Medical UniversityBeijingChina
| | - Zhe Ma
- Department of RadiologyHenan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhouHenanChina
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Feng Chen
- Department of RadiologyBeijing Youan Hospital, Capital Medical UniversityBeijingChina
| | - Li Li
- Department of RadiologyBeijing Youan Hospital, Capital Medical UniversityBeijingChina
| | - Meiji Ren
- Department of RadiologyBeijing Youan Hospital, Capital Medical UniversityBeijingChina
| | - Aixin Li
- Center for Infectious DiseasesBeijing Youan Hospital, Capital Medical UniversityBeijingChina
| | - Bin Jing
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Hongjun Li
- School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
- Department of RadiologyBeijing Youan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
36
|
Qi Y, Xu M, Wang W, Wang YY, Liu JJ, Ren HX, Liu MM, Li RL, Li HJ. Early prediction of putamen imaging features in HIV-associated neurocognitive impairment syndrome. BMC Neurol 2021; 21:106. [PMID: 33750319 PMCID: PMC7941706 DOI: 10.1186/s12883-021-02114-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background To explore the correlation between the volume of putamen and brain cognitive impairment in patients with HIV and to predict the feasibility of early-stage HIV brain cognitive impairment through radiomics. Method Retrospective selection of 90 patients with HIV infection, including 36 asymptomatic neurocognitive impairment (ANI) patients and 54 pre-clinical ANI patients in Beijing YouAn Hospital. All patients received comprehensive neuropsychological assessment and MRI scanning. 3D Slicer software was used to acquire volume of interest (VOI) and radiomics features. Clinical variables and volume of putamen were compared between patients with ANI and pre-clinical ANI. The Kruskal Wallis test was used to analysis multiple comparisons between groups. The relationship between cognitive scores and VOI was compared using linear regression. For radiomics, principal component analysis (PCA) was used to reduce model overfitting and calculations and then a support vector machine (SVM) was used to build a binary classification model. For model performance evaluation, we used an accuracy, sensitivity, specificity and receiver operating characteristic curve (ROC). Result There were no significant differences in clinical variables between ANI group and pre-clinical-ANI group (P>0.05). The volume of bilateral putamen was significantly different between AHI group and pre-clinical group (P<0.05), but there was only a trend in the left putamen between ANI-treatment group and pre-clinical treatment group(P = 0.063). Reduced cognitive scores in Verbal Fluency, Attention/Working Memory, Executive Functioning, memory and Speed of Information Processing were negatively correlated with the increased VOI (P<0.05), but the correlation was relatively low. In diagnosing the ANI from pre-clinical ANI, the mean area under the ROC curves (AUC) were 0.85 ± 0.22, the mean sensitivity and specificity were 63.12 ± 5.51 and 94.25% ± 3.08%. Conclusion The volumes of putamen in patients with ANI may be larger than patients with pre-clinical ANI, the change of the volume of the putamen may have a certain process; there is a relationship between putamen and cognitive impairment, but the exact mechanism is unclear. Radiomics may be a useful tool for predicting early stage HAND in patients with HIV.
Collapse
Affiliation(s)
- Yu Qi
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Man Xu
- Information and Communication Engineering Department Beijing University of Posts and Telecommunications, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Yuan-Yuan Wang
- Department of Radiology, Beijing Second Hospital, Beijing, China
| | - Jiao-Jiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China
| | - Hai-Xia Ren
- Information and Communication Engineering Department Beijing University of Posts and Telecommunications, Beijing, China
| | - Ming-Ming Liu
- Physical Examination Center, Cang zhou Central Hospital, Cang zhou, China
| | - Rui-Li Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China.
| | - Hong-Jun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao Youanmen Wai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
37
|
Clifford DB. Thinking About Getting Older With Human Immunodeficiency Virus. Clin Infect Dis 2021; 70:2649-2651. [PMID: 31343069 DOI: 10.1093/cid/ciz675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
|
38
|
Liu D, Zhao C, Wang W, Wang Y, Li R, Sun J, Liu J, Liu M, Zhang X, Liang Y, Li H. Altered Gray Matter Volume and Functional Connectivity in Human Immunodeficiency Virus-Infected Adults. Front Neurosci 2020; 14:601063. [PMID: 33343289 PMCID: PMC7744568 DOI: 10.3389/fnins.2020.601063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
People living with human immunodeficiency virus (HIV) (PLWH) are at high risk of neurocognitive impairment. The pathogenesis of neurocognitive impairment remains unclear, and there is still no diagnostic biomarker. By coupling three-dimensional T1-weighted imaging and resting-state functional imaging, we explored structural and functional alterations in PLWH and examined whether such imaging alterations had the potential to denote neurocognitive function. A total of 98 PLWH and 47 seronegative controls aged 20-53 years were recruited. Structural alterations were first explored between HIV-negative controls and PLWH. Subsequently, brain regions showing gray matter alterations were used as seeds for separate whole-brain functional connectivity (FC) analysis. Finally, the relationships between imaging alterations and cognitive function were explored. PLWH suffered from thalamus, occipital lobe, and hippocampus/parahippocampus atrophy. Visual cortices in PLWH showed decreased anticorrelation with the posterior cingulate cortex and left angular gyrus of the default mode network. FC within the visual cortices (between the left calcarine and right calcarine) and in the thalamic prefrontal circuit and between the thalamus and somatosensory association cortex were also altered. In addition, FC between the left thalamus and right dorsolateral prefrontal cortex in the cognitively impaired group was significantly different from that in the cognitively normal group in PLWH. Partial correlation analysis uncorrected for multiple comparisons suggested that some imaging alterations can be associated with neurocognition. Our study supports the presence of brain atrophy and functional reconfiguration in PLWH. Imaging alterations can be associated with neurocognitive function. We hold that neuroimaging is a promising approach in evaluating PLWH and might have the potential to clarify the pathogenesis of HIV-associated neurocognitive disorder.
Collapse
Affiliation(s)
- Dan Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Cui Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Wang
- Department of Radiology, Beijing Second Hospital, Beijing, China
| | - Ruili Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jun Sun
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mingming Liu
- Physical Examination Center, Cangzhou Central Hospital, Hebei, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing University of Aeronautics and Astronautics, Beijing, China
| |
Collapse
|
39
|
Chelala L, O'Connor EE, Barker PB, Zeffiro TA. Meta-analysis of brain metabolite differences in HIV infection. NEUROIMAGE-CLINICAL 2020; 28:102436. [PMID: 33383609 PMCID: PMC7596344 DOI: 10.1016/j.nicl.2020.102436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Numerous studies have used magnetic resonance spectroscopy (MRS) neurometabolite measurements to study HIV infection effects. While many have reported differences in total N-Acetylaspartate (tNAA), myo-Inositol (mI), and total Choline (tCho), there have been no meta-analyses performed to evaluate concordance across studies. PURPOSE To evaluate the consistency of HIV serostatus effects on brain metabolites. STUDY SELECTION The sample included studies conducted between 1993 and 2019 reporting HIV infection effects measured using proton MRS. tNAA/tCr ratios (21 papers), tCho/tCr ratios (21 papers), mI/tCr ratios (17 papers) and quantitative tCr (9 papers), sampling from basal ganglia (BG), gray matter (GM), and white matter (WM) were included. DATA ANALYSIS Random effects meta-analysis using inverse variance weighting and bias corrected standardized mean differences (SMDs) was used. Meta-regression examined effects of publication year and data acquisition technique differences. DATA SYNTHESIS BG SMDs related to positive serostatus were -0.10 [-0.39; 0.18] tNAA/tCr, 0.27 [0.05; 0.49] tCho/tCr, 0.60 [0.31; 0.90] mI/tCr, and -0.26 [-0.59; 0.06] tCr. GM SMDs related to serostatus were -0.29 [-0.49; -0.09] tNAA/tCr, 0.37 [0.19; 0.54] tCho/tCr, 0.41 [0.15; 0.68] mI/tCr, and -0.24 [-0.45; -0.03] tCr. WM SMDs related to serostatus were -0.52 [-0.79; -0.25] tNAA/tCr, 0.41 [0.21; 0.61] tCho/tCr, 0.59 [0.24; 0.94] mI/tCr, and -0.03 [-0.25; 0.19] tCr. WM regions showed larger serostatus effect sizes than BG and GM. I2 ranged from 52 to 88% for the metabolite ratios. Both GM and WM tNAA/tCr SMDs were lower with increasing calendar year. LIMITATIONS Many studies pooled participants with varying treatment, infection, and comorbidity durations. CONCLUSIONS HIV neurometabolite studies showed consistently lower tNAA/tCr, higher tCho/tCr and higher mI/tCr ratios associated with chronic HIV infection. Substantial between-study variation may have resulted from measurement technique variations, study population differences and HIV treatment changes over time. Higher WM tCho/tCr and mI/tCr may reflect reactive gliosis or myelin turnover. Neurometabolite measurements can reliably detect chronic HIV infection effects and may be useful in understanding the pathophysiology of cognitive and sensorimotor decline following HIV infection. CLASSIFICATION OF EVIDENCE This study provides Class II evidence of neurometabolite differences in chronic HIV infection.
Collapse
Affiliation(s)
- Lydia Chelala
- University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Erin E O'Connor
- University of Maryland, School of Medicine, Baltimore, MD, United States.
| | - Peter B Barker
- Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Thomas A Zeffiro
- University of Maryland, School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
40
|
Winston A, Spudich S. Cognitive disorders in people living with HIV. Lancet HIV 2020; 7:e504-e513. [PMID: 32621876 DOI: 10.1016/s2352-3018(20)30107-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
High rates of cognitive disorders in antiretroviral-treated people living with HIV have been described worldwide. The exact prevalence of such cognitive disorders is determined by the definitions used, and the presence of these cognitive disorders significantly impacts the overall wellbeing of people with HIV. With the cohort of people with HIV becoming increasingly older, and having high rates of comorbidities and concomitant medication use, rates of cognitive disorders are likely to increase. Conversely, interventions are being sought to reduce the size of the latent HIV reservoir. If successful, such interventions are likely to also reduce the HIV reservoir in the brain compartment, which could result in improvements in cognitive function and reduced rates of impairment.
Collapse
Affiliation(s)
- Alan Winston
- Department of Infectious Disease, Imperial College London, London, UK; HIV Clinical Trials, Winston Churchill Wing, St Mary's Hospital, London, UK.
| | - Serena Spudich
- Department of Neurology, Yale University, New Haven, CT, USA
| |
Collapse
|
41
|
Gorska AM, Eugenin EA. The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Front Cell Infect Microbiol 2020; 10:261. [PMID: 32670889 PMCID: PMC7326772 DOI: 10.3389/fcimb.2020.00261] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous system (CNS). HIV-1 and viral proteins compromise glutamate synaptic transmission, resulting in poor cell-to-cell signaling and bystander toxicity. In this study, we identified that myeloid HIV-1-brain reservoirs survive in Glu and glutamine (Gln) as a major source of energy. Thus, we found a link between synaptic compromise, metabolomics of viral reservoirs, and viral persistence. In the current manuscript we will discuss all these interactions and the potential to achieve eradication and cure using this unique metabolic profile.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
42
|
Chen J, Tan L, Liao Y, Long J, Zhou Y, Wei J, Zhou Y. Chemokine CCL2 impairs spatial memory and cognition in rats via influencing inflammation, glutamate metabolism and apoptosis-associated genes expression- a potential mechanism for HIV-associated neurocognitive disorder. Life Sci 2020; 255:117828. [PMID: 32454160 DOI: 10.1016/j.lfs.2020.117828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/16/2023]
Abstract
AIMS To explore the role of chemokine CC motif ligand 2 (CCL2) in spatial memory and cognition impairment, and the underlying mechanisms focused on inflammatory, glutamate metabolistic and apoptotic- associated mRNA expression. MATERIALS AND METHODS Stereotaxic surgery was performed here to establish a rat model by bilateral intra-hippocampal injection of CCL2. Morris water maze (MWM) and Novel object recognition test (NORT) were used to assess the learning, memory and cognitive ability respectively. RT-PCR was used to detect the relative mRNA expression of inflammatory, glutamate metabolistic and apoptotic- associated indexes. Nissl and TUNEL staining were performed to observe the morphological changes of hippocampal CA1 zone and quantified the apoptosis of hippocampal neurons of CA1 zones respectively. KEY FINDINGS We found CCL2 injured cognitive function in rats. Six days after CCL2 injection, we revealed the following obvious mRNA expression changes: (1) increasing of the neuroinflammatory cytokines IL-1β, CXCL-10, IL-6; (2) decreasing of the glutamate transporters GLT-1 and GLAST and increasing of PAG; (3) increasing of the apoptotic genes caspase-8, caspase-3 and Bax, while decreasing the anti-apoptotic gene Bcl-2. Further, Nissl staining and TUNEL confirmed the injury of the structure of hippocampal CA1 zones and the apoptosis of hippocampal neurons. SIGNIFICANCE Our results indicated that CCL2 impaired spatial memory and cognition, the involving mechanisms may link to the up-regulation of mRNA expression of the three major pathological events: inflammation, excitotoxicity and neuronal apoptosis, which were involved in HIV-associated neurocognitive disorder (HAND). Taken together, these findings suggest a potential therapeutic strategy against CCL2.
Collapse
Affiliation(s)
- Jianmin Chen
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Liqiu Tan
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yuanjun Liao
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jiangyi Long
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yinjun Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Jinbin Wei
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.
| | - Yan Zhou
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China.
| |
Collapse
|
43
|
Nass SR, Hahn YK, McLane VD, Varshneya NB, Damaj MI, Knapp PE, Hauser KF. Chronic HIV-1 Tat exposure alters anterior cingulate cortico-basal ganglia-thalamocortical synaptic circuitry, associated behavioral control, and immune regulation in male mice. Brain Behav Immun Health 2020; 5:100077. [PMID: 33083793 PMCID: PMC7571616 DOI: 10.1016/j.bbih.2020.100077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 12/28/2022] Open
Abstract
HIV-1 selectively disrupts neuronal integrity within specific brain regions, reflecting differences in viral tropism and/or the regional differences in the vulnerability of distinct neuronal subpopulations within the CNS. Deficits in prefrontal cortex (PFC)-mediated executive function and the resultant loss of behavioral control are a particularly debilitating consequence of neuroHIV. To explore how HIV-1 disrupts executive function, we investigated the effects of 48 h, 2 and/or 8 weeks of HIV-1 Tat exposure on behavioral control, synaptic connectivity, and neuroimmune function in the anterior cingulate cortex (ACC) and associated cortico-basal ganglia (BG)-thalamocortical circuitry in adult, Tat transgenic male mice. HIV-1 Tat exposure increased novelty-exploration in response to novel food, flavor, and environmental stimuli, suggesting that Tat triggers increased novelty-exploration in situations of competing motivation (e.g., drive to feed or explore vs. fear of novel, brightly lit open areas). Furthermore, Tat induced adaptability in response to an environmental stressor and pre-attentive filtering deficits. The behavioral insufficiencies coincided with decreases in the inhibitory pre- and post-synaptic proteins, synaptotagmin 2 and gephyrin, respectively, in the ACC, and alterations in specific pro- and anti-inflammatory cytokines out of 23 assayed. The interaction of Tat exposure and the resultant time-dependent, selective alterations in CCL4, CXCL1, IL-12p40, and IL-17A levels in the PFC predicted significant decreases in adaptability. Tat decreased dendritic spine density and cortical VGLUT1 inputs, while increasing IL-1β, IL-6, CCL5, and CCL11 in the striatum. Alternatively, IL-1α, CCL5, and IL-13 were decreased in the mediodorsal thalamus despite the absence of synaptic changes. Thus, HIV-1 Tat appears to uniquely and systematically disrupt immune regulation and the inhibitory and excitatory synaptic balance throughout the ACC-BG-thalamocortical circuitry resulting in a loss of behavioral control.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
| | - Virginia D. McLane
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Neil B. Varshneya
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980059, Richmond, VA, 23298-0059, USA
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, P.O. Box 980613, VA, 23298-0613, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980709, Richmond, VA, 23298-0709, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, P.O. Box 980059, Richmond, VA, 23298-0059, USA
| |
Collapse
|
44
|
Zahr NM, Sullivan EV, Pohl KM, Pfefferbaum A, Saranathan M. Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV. Hum Brain Mapp 2020; 41:1351-1361. [PMID: 31785046 PMCID: PMC7268080 DOI: 10.1002/hbm.24880] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/15/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Volumes of thalamic nuclei are differentially affected by disease-related processes including alcoholism and human immunodeficiency virus (HIV) infection. This MRI study included 41 individuals diagnosed with alcohol use disorders (AUD, 12 women), 17 individuals infected with HIV (eight women), and 49 healthy controls (24 women) aged 39 to 75 years. A specialized, high-resolution acquisition protocol enabled parcellation of five thalamic nuclei: anterior [anterior ventral (AV)], posterior [pulvinar (Pul)], medial [mediodorsal (MD)], and ventral [including ventral lateral posterior (VLp) and ventral posterior lateral (VPl)]. An omnibus mixed-model approach solving for volume considered the "fixed effects" of nuclei, diagnosis, and their interaction while covarying for hemisphere, sex, age, and supratentorial volume (svol). The volume by diagnosis interaction term was significant; the effects of hemisphere and sex were negligible. Follow-up mixed-model tests thus evaluated the combined (left + right) volume of each nucleus separately for effects of diagnosis while controlling for age and svol. Only the VLp showed diagnoses effects and was smaller in the AUD (p = .04) and HIV (p = .0003) groups relative to the control group. In the AUD group, chronic back pain (p = .008) and impaired deep tendon ankle reflex (p = .0005) were associated with smaller VLp volume. In the HIV group, lower CD4 nadir (p = .008) was associated with smaller VLp volume. These results suggest that the VLp is differentially sensitive to disease processes associated with AUD and HIV.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Kilian M. Pohl
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | - Adolf Pfefferbaum
- Neuroscience ProgramSRI InternationalMenlo ParkCalifornia
- Department of Psychiatry and Behavioral SciencesStanford University School of MedicineCalifornia
| | | |
Collapse
|
45
|
Lewis-de Los Angeles CP, Williams PL, Jenkins LM, Huo Y, Malee K, Alpert KI, Uban KA, Herting MM, Csernansky JG, Nichols SL, Van Dyke RB, Sowell ER, Wang L. Brain morphometric differences in youth with and without perinatally-acquired HIV: A cross-sectional study. NEUROIMAGE-CLINICAL 2020; 26:102246. [PMID: 32251906 PMCID: PMC7132093 DOI: 10.1016/j.nicl.2020.102246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022]
Abstract
We performed vertex-wise analyses comparing grey matter in youth with and without perinatally-acquired HIV (PHIV). PHIV youth had reduced cortical thickness, surface area, and gyrification compared to control youth. PHIV youth did not exhibit the same pattern of inverse grey matter-age relationships that were observed in control youth.
Youth with perinatally-acquired HIV (PHIV) experience specific and global cognitive deficits at increased rates compared to typically-developing HIV-uninfected youth. In youth with PHIV, HIV infects the brain early in development. Neuroimaging studies have demonstrated altered grey matter morphometry in youth with PHIV compared to typically-developing youth. This study examined cortical thickness, surface area, and gyrification of grey matter in youth (age 11–20 years old) with PHIV (n = 40) from the Pediatric HIV/AIDS Cohort Study (PHACS) compared to typically-developing presumed HIV uninfected and unexposed youth (n = 80) from the Pediatric Imaging, Neurocognition and Genetics Study (PING) using structural magnetic resonance imaging. This study also examined the relationship between grey matter morphometry and age. Youth with PHIV had reduced cortical thickness, surface area, and gyrification compared to typically-developing youth. In addition, an inverse relationship between age and grey matter volume was found in typically-developing youth, but was not observed in youth with PHIV. Longitudinal studies are necessary to understand the neurodevelopmental trajectory of youth with PHIV.
Collapse
Affiliation(s)
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA, USA; Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lisanne M Jenkins
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Yanling Huo
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathleen Malee
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Kristina A Uban
- Department of Public Health, University of California Irvine, Irvine, CA, USA
| | - Megan M Herting
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA
| | - Sharon L Nichols
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Russell B Van Dyke
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, USA; Department of Radiology, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
46
|
Absence of peripapillary retinal nerve-fiber-layer thinning in combined antiretroviral therapy-treated, well-sustained aviremic persons living with HIV. PLoS One 2020; 15:e0229977. [PMID: 32155200 PMCID: PMC7064175 DOI: 10.1371/journal.pone.0229977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare peripapillary retinal nerve-fiber–layer (pRNFL) thickness, total retina macular volume, and ganglion-cell-layer (GCL) macular volume and thickness between persons living with HIV (PLHIVs) with well-controlled infections and good immune recovery, and sex- and age-matched HIV-uninfected controls (HUCs). Methods This prospective cross-sectional study (www.clinicaltrials.gov identifier: NCT02003989) included 56 PLHIVs, infected for ≥10 [median 20.2] years and with sustained plasma HIV-load suppression on combined antiretroviral therapy (cART) for ≥5 years, and 56 matched HUCs. Participants underwent spectral-domain optical coherence tomography (SD-OCT) with thorough ophthalmological examinations and brain magnetic resonance imaging (MRI). Their overall and quadrant pRNFL thicknesses, total macular volumes, and GCL macular volumes and thicknesses were compared. Cerebral small-vessel diseases (CSVD) complied with STRIVE criteria. Results Median [interquartile range, IQR] ages of PLHIVs and HUCs, respectively, were 52 [46–60] and 52 [44–60] years. Median [IQR] PLHIVs’ nadir CD4+ T-cell count and current CD4/CD8 T-cell ratio were 249/μL [158–350] and 0.95 [0.67–1.10], respectively; HIV-seropositivity duration was 20.2 [15.9–24.5] years; cART duration was 16.8 [12.6–18.6] years; and aviremia duration was 11.4 [7.8–13.6] years. No significant between-group pRNFL thickness, total macular volume, macular GCL-volume and -thickness differences were found. MRI-detected CSVD in 21 (38%) PLHIVs and 14 (25%) HUCs was associated with overall thinner pRNFLs, and smaller total retina and GCL macular volumes, independently of HIV status. Conclusions SD-OCT could not detect pRNFL thinning or macular GCL-volume reduction in well-sustained, aviremic, cART-treated PLHIVs who achieved good immune recovery. However, CSVD was associated with thinner pRNFLs and GCLs, independently of HIV status.
Collapse
|
47
|
Regional brain volumetric changes despite 2 years of treatment initiated during acute HIV infection. AIDS 2020; 34:415-426. [PMID: 31725432 DOI: 10.1097/qad.0000000000002436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To assess changes in regional brain volumes after 24 months among individuals who initiated combination antiretroviral therapy (cART) within weeks of HIV exposure. DESIGN Prospective cohort study of Thai participants in the earliest stages of HIV-1infection. METHODS Thirty-four acutely HIV-infected individuals (AHI; Fiebig I-V) underwent brain magnetic resonance (MR) imaging and MR spectroscopy at 1.5 T and immediately initiated cART. Imaging was repeated at 24 months. Regional brain volumes were quantified using FreeSurfer's longitudinal pipeline. Voxel-wise analyses using tensor-based morphometry (TBM) were conducted to verify regional assessments. Baseline brain metabolite levels, blood and cerebrospinal fluid biomarkers assessed by ELISA, and peripheral blood monocyte phenotypes measured by flow cytometry were examined as predictors of significant volumetric change. RESULTS Participants were 31 ± 8 years old. The estimated mean duration of infection at cART initiation was 15 days. Longitudinal analyses revealed reductions in volumes of putamen (P < 0.001) and caudate (P = 0.006). TBM confirmed significant atrophy in the putamen and caudate, and also in thalamic and hippocampal regions. In exploratory post-hoc analyses, higher baseline frequency of P-selectin glycoprotein ligand-1 (PSGL-1)-expressing total monocytes correlated with greater caudate volumetric decrease (ρ = 0.67, P = 0.017), whereas the baseline density of PSGL-1-expressing inflammatory (CD14CD16) monocytes correlated with putamen atrophy (ρ = 0.65, P = 0.022). CONCLUSION Suppressive cART initiated during AHI may not prevent brain atrophy. Volumetric decrease appears greater than expected age-related decline, although examination of longitudinal change in demographically similar HIV-uninfected Thai individuals is needed. Mechanisms underlying progressive HIV-related atrophy may include early activation and enhanced adhesive and migratory capacity of circulating monocyte populations.
Collapse
|
48
|
Potential for early antiretroviral therapy to reduce central nervous system HIV-1 persistence. AIDS 2019; 33 Suppl 2:S135-S144. [PMID: 31789814 DOI: 10.1097/qad.0000000000002326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
: Although treatment with antiretroviral therapy (ART) improves central nervous inflammation, limits viral replication detected in the cerebrospinal fluid, and prevents severe clinical neurological disease in most individuals, HIV-1 can persist in the central nervous system (CNS) despite ART. Recent observations that initiation of ART early in the course of infection limits the size of systemic HIV reservoirs, parallel clinical reports of increased rates of posttreatment viral control in early treatment cohorts, and an understanding of the dynamics of HIV-1 infection and neuropathogenesis during early infection provides rationale to consider that ART started early in the course of HIV-1 infection may have a beneficial effect on CNS HIV-1 persistence. Early ART may restrict the initial establishment of HIV-1 infection in cells of the CNS, and furthermore, may reduce levels of immune activation and inflammation that allow perpetuation of CNS infection. In this review, we consider the precedent set by studies of the impact of early treatment on systemic HIV-1 reservoirs, summarize the current understanding of early CNS HIV-1 exposure and its effects, and examine the evidence for a benefit in the CNS compartment of early treatment.
Collapse
|
49
|
Abstract
: The persistence of HIV in the central nervous system is somewhat controversial particularly in the context of HIV viral suppression from combined antiretroviral therapy. Further, its significance in relation to HIV pathogenesis in the context of HIV-associated neurocognitive disorders, systemic HIV pathogenesis, and eradication in general, but especially from the brain, are even more contentious. This review will discuss each of these aspects in detail, highlighting new data, particularly from recent conference presentations.
Collapse
|
50
|
Kallianpur KJ, Walker M, Gerschenson M, Shikuma CM, Gangcuangco LMA, Kohorn L, Libutti DE, Nir TM, Jahanshad N, Thompson PM, Paul R. Systemic Mitochondrial Oxidative Phosphorylation Protein Levels Correlate with Neuroimaging Measures in Chronically HIV-Infected Individuals. AIDS Res Hum Retroviruses 2019; 36:83-91. [PMID: 31617381 DOI: 10.1089/aid.2019.0240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Few studies have examined systemic mitochondrial function in conjunction with brain imaging in human immunodeficiency virus (HIV) disease. Oxidative phosphorylation enzyme protein levels of peripheral blood mononuclear cells were measured in association with neuroimaging indices in 28 HIV+ individuals. T1-weighted magnetic resonance imaging yielded volumes of seven brain regions of interest; diffusion tensor imaging determined fractional anisotropy (FA) and mean diffusivity (MD) in the corpus callosum (CC). Higher nicotinamide adenine dinucleotide dehydrogenase levels correlated with lower volumes of thalamus (p = .005) and cerebral white matter (p = .049) and, in the CC, with lower FA (p = .011, body; p = .005, genu; p = .009, total CC) and higher MD (p = .023, body; p = .035, genu; p = .019, splenium; p = .014, total CC). Greater cytochrome c oxidase levels correlated with lower thalamic (p = .034) and cerebellar gray matter (p = .021) volumes. The results indicate that systemic mitochondrial cellular bioenergetics are associated with brain health in HIV.
Collapse
Affiliation(s)
- Kalpana J. Kallianpur
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
- Center for Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii
| | - Maegen Walker
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Louie Mar A. Gangcuangco
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Lindsay Kohorn
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Daniel E. Libutti
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Talia M. Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck USC School of Medicine, Marina del Rey, California
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck USC School of Medicine, Marina del Rey, California
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck USC School of Medicine, Marina del Rey, California
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri, St. Louis, Missouri
| |
Collapse
|