1
|
Selzer L, VanderVeen LA, Parvangada A, Martin R, Collins SE, Mehrotra M, Callebaut C. Susceptibility Screening of HIV-1 Viruses to Broadly Neutralizing Antibodies, Teropavimab and Zinlirvimab, in People With HIV-1 Suppressed by Antiretroviral Therapy. J Acquir Immune Defic Syndr 2025; 98:64-71. [PMID: 39298557 DOI: 10.1097/qai.0000000000003528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND HIV envelope (env) diversity may result in resistance to broadly neutralizing antibodies (bNAbs). Assessment of genotypic or phenotypic susceptibility to antiretroviral treatment is often performed in people with HIV-1 (PWH) and used for clinical trial screening for HIV-1 bNAb susceptibility. Optimal bNAb susceptibility screening methods are not yet clear. METHODS Phenotypic and genotypic analyses were conducted on 124 screening samples from a phase 1b study of bNAbs teropavimab (3BNC117-LS) and zinlirvimab (10-1074-LS) administered with lenacapavir in virally suppressed PWH. Phenotypic analysis was conducted on integrated HIV-1 provirus and stimulated outgrowth virus, with susceptibility to bNAbs defined as 90% inhibitory concentration ≤2 μg/mL. The proviral DNA HIV env gene was genotyped using deep sequencing, and bNAb susceptibility predicted using published env amino acid signatures. RESULTS Proviral phenotypic results were reported for 109 of 124 samples; 75% (82/109) were susceptible to teropavimab, 65% (71/109) to zinlirvimab, and 50% (55/109) to both bNAbs. Phenotypic susceptibility of outgrowth viruses was available for 39 samples; 56% (22/39) were susceptible to teropavimab, and 64% (25/39) to zinlirvimab. Phenotypic susceptibilities correlated between these methods: teropavimab r = 0.82 ( P < 0.0001); zinlirvimab r = 0.77 ( P < 0.0001). Sixty-seven samples had genotypic and phenotypic data. Proviral genotypic signatures predicted proviral phenotypic susceptibility with high positive predictive value (68%-86% teropavimab; 63%-90% zinlirvimab). CONCLUSIONS bNAb susceptibility was correlated among all 3 in vitro assays used to determine teropavimab and zinlirvimab susceptibility in virally suppressed PWH. These findings may help refine PWH selection criteria for eligibility for future studies.
Collapse
|
2
|
Kilcrease C, Agwu A, Weld ED. Strategic use of salvage long-acting antiretrovirals in the setting of resistance. Am J Health Syst Pharm 2024; 81:1136-1141. [PMID: 39045845 DOI: 10.1093/ajhp/zxae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE Long-acting cabotegravir/rilpivirine (LA-CAB/RPV) was approved for use in virally suppressed patients with human immunodeficiency virus (HIV) in January 2021. While this was a paradigm shift for many patients living with HIV, as LA-CAB/RPV was the first injectable complete regimen for the treatment of HIV, several patient populations, including those lacking virologic suppression, have not been able to easily access this advance in science and care. SUMMARY In this article, we provide an update on 2 patients from our previous report and describe one further patient who experienced treatment failure following initiation of LA-CAB/RPV. Additionally, we review reports published to date of the clinical outcomes of patients with viremia who have accessed LA-CAB/RPV in the setting of baseline resistance-associated mutations (RAMs) to either component and any resulting RAMs at virologic failure. On the basis of this evidence, we recommend that hybrid or all-injectable regimens be considered for patients who have struggled with adherence to oral antiretroviral therapy or have partial or full resistance to one component of LA-CAB/RPV. CONCLUSION The case series reported here adds to literature supporting the notion that LA-CAB/RPV can be successfully used in patients who are viremic.
Collapse
Affiliation(s)
| | - Allison Agwu
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, and Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethel D Weld
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, and Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Siegrist D, Jonsdottir HR, Bouveret M, Boda B, Constant S, Engler OB. Multidrug Combinations against SARS-CoV-2 Using GS-441524 or Ivermectin with Molnupiravir and/or Nirmatrelvir in Reconstituted Human Nasal Airway Epithelia. Pharmaceutics 2024; 16:1262. [PMID: 39458594 PMCID: PMC11510096 DOI: 10.3390/pharmaceutics16101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background. The emergence, global spread, and persistence of SARS-CoV-2 resulted in an unprecedented need for effective antiviral drugs. Throughout the pandemic, various drug development and treatment strategies were adopted, including repurposing of antivirals designed for other viruses along with a multitude of other drugs with varying mechanisms of action (MoAs). Furthermore, multidrug treatment against COVID-19 is an ongoing topic and merits further investigation. Method/Objectives. We assessed the efficacy of multidrug treatment against SARS-CoV-2 in reconstituted human nasal epithelia, using combinations of molnupiravir and nirmatrelvir as a baseline, adding suboptimal concentrations of either GS-441524 or ivermectin, attempting to increase overall antiviral activity while lowering the overall therapeutic dose. Results. Nirmatrelvir combined with molnupiravir, GS-441524, or ivermectin at suboptimal concentrations show increased antiviral activity compared to single treatment. No triple combinations showed improved inhibition of SARS-CoV-2 replication beyond what was observed for double treatments. Conclusions. In general, we observed that the addition of a third compound is not beneficial for antiviral activity, while various double combinations exhibit increased antiviral activity over single treatment.
Collapse
Affiliation(s)
- Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
| | - Hulda R. Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital University Hospital, 3010 Bern, Switzerland
| | - Mendy Bouveret
- Epithelix Sàrl, Plan-les-Ouates, 1228 Geneva, Switzerland
| | - Bernadett Boda
- Epithelix Sàrl, Plan-les-Ouates, 1228 Geneva, Switzerland
| | | | - Olivier B. Engler
- Spiez Laboratory, Federal Office for Civil Protection, 3700 Spiez, Switzerland
| |
Collapse
|
4
|
Fabeni L, Armenia D, Abbate I, Gagliardini R, Mazzotta V, Bertoli A, Gennari W, Forbici F, Berno G, Piermatteo L, Borghi V, Pinnetti C, Vergori A, Mondi A, Parruti G, Di Sora F, Iannetta M, Lichtner M, Latini A, Mussini C, Sarmati L, Perno CF, Girardi E, Antinori A, Ceccherini-Silberstein F, Maggi F, Santoro MM. HIV-1 transmitted drug resistance in newly diagnosed individuals in Italy over the period 2015-21. J Antimicrob Chemother 2024; 79:2152-2162. [PMID: 39028674 PMCID: PMC11368429 DOI: 10.1093/jac/dkae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Transmitted drug resistance (TDR) is still a critical aspect for the management of individuals living with HIV-1. Thus, its evaluation is crucial to optimize HIV care. METHODS Overall, 2386 HIV-1 protease/reverse transcriptase and 1831 integrase sequences from drug-naïve individuals diagnosed in north and central Italy between 2015 and 2021 were analysed. TDR was evaluated over time. Phylogeny was generated by maximum likelihood. Factors associated with TDR were evaluated by logistic regression. RESULTS Individuals were mainly male (79.1%) and Italian (56.2%), with a median (IQR) age of 38 (30-48). Non-B infected individuals accounted for 44.6% (N = 1065) of the overall population and increased over time (2015-2021, from 42.1% to 51.0%, P = 0.002). TDR prevalence to any class was 8.0% (B subtype 9.5% versus non-B subtypes 6.1%, P = 0.002) and remained almost constant over time. Overall, 300 transmission clusters (TCs) involving 1155 (48.4%) individuals were identified, with a similar proportion in B and non-infected individuals (49.7% versus 46.8%, P = 0.148). A similar prevalence of TDR among individuals in TCs and those out of TCs was found (8.2% versus 7.8%, P = 0.707).By multivariable analysis, subtypes A, F, and CFR02_AG were negatively associated with TDR. No other factors, including being part of TCs, were significantly associated with TDR. CONCLUSIONS Between 2015 and 2021, TDR prevalence in Italy was 8% and remained almost stable over time. Resistant strains were found circulating regardless of being in TCs, but less likely in non-B subtypes. These results highlight the importance of a continuous surveillance of newly diagnosed individuals for evidence of TDR to inform clinical practice.
Collapse
Affiliation(s)
- Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Daniele Armenia
- Departmental Faculty, UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Isabella Abbate
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Roberta Gagliardini
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Valentina Mazzotta
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Ada Bertoli
- Laboratory of Virology, Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - William Gennari
- Molecular Microbiology and Virology Unit, Department of Laboratory Medicine and Pathological Anatomy, Policlinic of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Forbici
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giulia Berno
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | | | - Vanni Borghi
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Carmela Pinnetti
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessandra Vergori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Annalisa Mondi
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giustino Parruti
- Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy
| | - Fiorella Di Sora
- Unit of Clinical Immunology, San Giovanni Addolorata Hospital, Rome, Italy
| | - Marco Iannetta
- Department of Infectious Diseases, University Hospital Tor Vergata, Rome, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza University of Rome, Polo Pontino, Latina, Italy
- Sant'Andrea Hospital, Clinical Infectious Diseases, Rome, Italy
| | - Alessandra Latini
- Sexually Transmitted Infection/Human Immunodeficiency Virus Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Cristina Mussini
- Department of Infectious Diseases, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Loredana Sarmati
- Department of Infectious Diseases, University Hospital Tor Vergata, Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesú Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | | | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | | |
Collapse
|
5
|
Tkachuk S, Ready E, Chan S, Hawkes J, Janzen Cheney T, Kapler J, Kreutzwiser D, Akagi L, Coombs M, Giguere P, Hughes C, Kelly D, Livingston S, Martel D, Naccarato M, Nhean S, Pozniak C, Ramsey T, Robinson L, Smith J, Swidrovich J, Symes J, Yoong D, Tseng A. Role of the pharmacist caring for people at risk of or living with HIV in Canada. Can Pharm J (Ott) 2024; 157:218-239. [PMID: 39310805 PMCID: PMC11412478 DOI: 10.1177/17151635241267350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 02/27/2024] [Indexed: 09/25/2024]
Affiliation(s)
- Stacey Tkachuk
- Women and Children’s Health Centre of British Columbia, Provincial Health Services Authority, Vancouver, British Columbia
- UBC Faculty of Pharmaceutical Sciences, Vancouver, British Columbia
| | - Erin Ready
- UBC Faculty of Pharmaceutical Sciences, Vancouver, British Columbia
- St. Paul’s Hospital Ambulatory Pharmacy, Providence Health Care, Vancouver, British Columbia
| | - Shanna Chan
- Winnipeg Regional Health Authority Regional Pharmacy Program, Winnipeg, Manitoba
| | - Jennifer Hawkes
- UBC Faculty of Pharmaceutical Sciences, Vancouver, British Columbia
- University Hospital of Northern BC, Northern Health, Prince George, British Columbia
| | - Tracy Janzen Cheney
- Winnipeg Regional Health Authority Regional Pharmacy Program, Winnipeg, Manitoba
| | - Jeff Kapler
- Southern Alberta Clinic, Alberta Health Services, Calgary, Alberta
| | | | - Linda Akagi
- St. Paul’s Hospital Ambulatory Pharmacy, Providence Health Care, Vancouver, British Columbia
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia
| | - Michael Coombs
- School of Pharmacy, Memorial University, St. John’s, Newfoundland
| | - Pierre Giguere
- Pharmacy Department, The Ottawa Hospital, Ottawa, Ontario
- Ottawa Hospital Research Institute, Ottawa, Ontario
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, Ontario
| | - Christine Hughes
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta
| | - Deborah Kelly
- School of Pharmacy, Memorial University, St. John’s, Newfoundland
| | - Sheri Livingston
- Tecumseh Byng Program, Windsor Regional Hospital, Windsor, Ontario
| | - Dominic Martel
- Pharmacy Department, Centre hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec
- Centre de recherche du CHUM (CRCHUM), Montreal, Quebec
| | | | - Salin Nhean
- Luminis Health Doctors Community Medical Center, Lanham, Maryland, USA
| | - Carley Pozniak
- Positive Living Program, Royal University Hospital, Saskatoon, Saskatchewan
| | - Tasha Ramsey
- Pharmacy Department, Nova Scotia Health Authority, Halifax, Nova Scotia
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia
| | | | | | - Jaris Swidrovich
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario
| | - Jodi Symes
- Pharmacy Department, Saint John Regional Hospital, Horizon Health Network, Saint John, New Brunswick
| | - Deborah Yoong
- St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario
| | - Alice Tseng
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario
- Toronto General Hospital, University Health Network, Toronto, Ontario
| |
Collapse
|
6
|
Scholten S, Cahn P, Portilla J, Bisshop F, Hodder S, Ruane P, Kaplan R, Wynne BR, Man CY, Grove R, Wang R, Jones B, Ait-Khaled M, Kisare M, Okoli C. Dolutegravir/Lamivudine Efficacy and Safety Outcomes in People With HIV-1 With or Without Historical Resistance Results at Screening: 48-Week Pooled Analysis. Open Forum Infect Dis 2024; 11:ofae365. [PMID: 39015350 PMCID: PMC11250229 DOI: 10.1093/ofid/ofae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Background Drug resistance testing aids in appropriate antiretroviral therapy selection to improve treatment success but may not be readily available. We evaluated the impact of switching to dolutegravir/lamivudine (DTG/3TC) using pooled data from the TANGO and SALSA trials in adults who were virologically suppressed with or without historical resistance results at screening. Methods Adults who were virologically suppressed (HIV-1 RNA <50 copies/mL for >6 months) with no prior virologic failure were randomized to switch to DTG/3TC (TANGO, n = 369; SALSA, n = 246) or continue their current antiretroviral regimen (CAR; TANGO, n = 372; SALSA, n = 247). Week 48 HIV-1 RNA ≥50 and <50 copies/mL (Snapshot algorithm, Food and Drug Administration; intention-to-treat exposed), CD4+ cell count, and safety were analyzed by availability of historical resistance results. Results Overall, 294 of 615 (48%) participants in the DTG/3TC group and 277 of 619 (45%) participants in the CAR group had no historical resistance results at screening. At week 48, proportions with Snapshot HIV-1 RNA ≥50 copies/mL were low (≤1.1%) and similar across treatment groups and by historical resistance results availability. High proportions (91%-95%) maintained virologic suppression through week 48, regardless of results availability. Across both subgroups of results availability, greater increases in CD4+ cell count from baseline to week 48 occurred with DTG/3TC vs CAR. No participants taking DTG/3TC had confirmed virologic withdrawal, regardless of historical resistance results availability. One participant undergoing CAR without historical resistance results had confirmed virologic withdrawal; no resistance was detected. Overall, DTG/3TC was well tolerated; few adverse events led to withdrawal. Conclusions Findings support DTG/3TC as a robust switch option for adults who are virologically suppressed with HIV-1 and no prior virologic failure, regardless of historical resistance results availability. Clinical trial registration TANGO: NCT03446573, https://clinicaltrials.gov/study/NCT03446573. SALSA: NCT04021290, https://clinicaltrials.gov/study/NCT04021290.
Collapse
Affiliation(s)
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | | | - Fiona Bisshop
- Holdsworth House Medical Brisbane, Queensland, Australia
| | - Sally Hodder
- West Virginia Clinical and Translational Science Institute, Morgantown, West Virginia, USA
| | - Peter Ruane
- Ruane Clinical Research, Los Angeles, California, USA
| | | | | | - Choy Y Man
- ViiV Healthcare, Durham, North Carolina, USA
| | | | - Ruolan Wang
- ViiV Healthcare, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
7
|
Srivastva S, Chakravarty J, Kushwaha AK. Prevalence of HIV Drug Resistance Mutations among Treatment-Naive People Living with HIV in a Tertiary Care Center in India. Am J Trop Med Hyg 2024; 110:713-718. [PMID: 38442417 PMCID: PMC10993842 DOI: 10.4269/ajtmh.23-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/28/2023] [Indexed: 03/07/2024] Open
Abstract
India has the third-largest number of people living with HIV (PLHIV) in the world. A national program provides free access to standard uniform antiretroviral therapy. However, the program is not monitored by comprehensive drug resistance surveys. The aim of this study was to determine the prevalence of HIV drug resistance mutations (DRMs) among treatment-naive PLHIV in a large antiretroviral treatment center of the national program. This cross-sectional study was done in 2017 and involved 200 consecutive treatment-naive PLHIV. A target fragment of 1,306 bp in the reverse transcriptase and protease regions was amplified. Identification of mutations and drug resistance interpretation was done by HIV Genotypic Resistance Interpretation and International Antiviral Society-USA list. Sequencing was successful in 177 samples. The majority (98.8%; 175/177) belonged to subtype C. Nineteen of 177 patients (10.7%; 95% CI: 6.2%-15.3%) had at least one major DRM. The prevalence of non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations was 10.2% (18/177). The most frequent mutations were E138A/K, A98G, K103N, V179D, and K101H/E. The prevalence of nucleoside reverse transcriptase inhibitor (NRTI) mutations was 1.1% (2/177). None of the samples had major protease inhibitor resistance mutations. The prevalence of NNRTI mutations in this study was >10%, crossing the threshold recommended by the WHO to change the NNRTI-based first-line regimen to non-NNRTI based. In 2021, the national program replaced efavirenz with dolutegravir in the first-line regimen of tenofovir, lamivudine, and efavirenz. As the majority (64%) of PLHIV in India are accessing free ART from the national program, this study highlights the need for regular nationally representative drug resistance surveys for optimizing antiretroviral regimens in the program.
Collapse
Affiliation(s)
- Shweta Srivastva
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jaya Chakravarty
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anurag Kumar Kushwaha
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Obeagu EI, Obeagu GU. Utilization of immunological ratios in HIV: Implications for monitoring and therapeutic strategies. Medicine (Baltimore) 2024; 103:e37354. [PMID: 38428854 PMCID: PMC10906605 DOI: 10.1097/md.0000000000037354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains a significant global health concern, necessitating ongoing research and innovation in the quest for improved disease management. Traditional markers for monitoring HIV progression and the effectiveness of antiretroviral therapy have limitations in capturing the intricate immune responses and inflammatory dynamics in people with HIV. In recent years, the concept of inflammation ratios has gained prominence as a valuable tool for assessing and understanding the complex interplay between inflammation, immune function, and HIV. In this abstract, we provide an overview of the emerging field of utilizing inflammation ratios in the context of HIV and its implications for disease monitoring and therapeutic strategies. These ratios, such as the CD4/CD8 ratio, neutrophil-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio, offer a more comprehensive assessment of an individual's immune status and inflammatory state. By exploring the clinical implications of inflammation ratios, including their potential to predict disease complications and guide personalized treatment approaches, this publication sheds light on the potential benefits of incorporating inflammation ratios into routine HIV care. Furthermore, we emphasize the importance of ongoing research in this field to further refine our understanding of the utility and significance of inflammation ratios in improving the lives of people with HIV.
Collapse
|
9
|
DelRosso LM, Yang D, Khan MS, Mogavero MP, Schifitto G, Ferri R. Sleep Disorders and Challenges in People Living with Human Immunodeficiency Virus: A Narrative Literature Review. CURRENT SLEEP MEDICINE REPORTS 2024; 10:217-225. [DOI: 10.1007/s40675-024-00283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 01/03/2025]
|
10
|
Alves AMCV, de Brito ÉHS, de Araújo MFM, de Hollanda Celestino JJ, Leite ACRDM, Cruz GS, Azevedo NF, Rodrigues CF. Antifungal Susceptibility and Candida sp. Biofilm Production in Clinical Isolates of HIV-Positive Brazilian Patients under HAART Therapy. Biomedicines 2024; 12:310. [PMID: 38397912 PMCID: PMC10886575 DOI: 10.3390/biomedicines12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of the present study was to characterize biofilms formed by Candida spp. clinical isolates (n = 19), isolated from the oral mucosa of HIV-positive patients. For characterizing the biofilms formed by several Candida sp. strains, isolated from HIV-positive patients, in terms of formed biomass, matrix composition and antifungal susceptibility profile, clinical isolates (n = 19) were collected from oral mucosa and identified. The biofilm of the samples was cultured with fluconazole (1250 mg/L), voriconazole (800 mg/L), anidulafungin (2 mg/L) or amphotericin B (2 mg/L). Afterwards, the quantification of the total biomass was performed using crystal violet assay, while the proteins and carbohydrates levels were quantified in the matrix. The results showed a predominance of C. albicans, followed by C. krusei. Around 58% of the Candida spp. biofilm had susceptibility to fluconazole and voriconazole (800 mg/L), 53% to anidulafungin and 74% to amphotericin B. C. krusei presented both the lowest and the highest biofilm matrix contents in polysaccharides and proteins. The low resistance to antifungal agents reported here was probably due to the fact that none of the participants had a prolonged exposure to these antifungals. A predominance of less virulent Candida spp. strains with low or no resistance to antifungals was observed. This can be attributed to a low fungal selective pressure. This most probably happened due to a low fungal selective pressure but also due to a good adherence to HAART therapy, which guarantees a stable and stronger immune patient response.
Collapse
Affiliation(s)
- Anelise Maria Costa Vasconcelos Alves
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza 60430-170, Ceará, Brazil;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Érika Helena Salles de Brito
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | | | - Juliana Jales de Hollanda Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | - Ana Caroline Rocha de Melo Leite
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | - Gabriela Silva Cruz
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Luso-Phony, Redenção 62790-000, Ceará, Brazil; (É.H.S.d.B.); (J.J.d.H.C.); (A.C.R.d.M.L.)
| | - Nuno Filipe Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Célia Fortuna Rodrigues
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- 1H-TOXRUN—One Health Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário—CESPU, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
11
|
Planinić A, Begovac J, Rokić F, Šimičić P, Oroz M, Jakovac K, Vugrek O, Zidovec-Lepej S. Characterization of Human Immunodeficiency Virus-1 Transmission Clusters and Transmitted Drug-Resistant Mutations in Croatia from 2019 to 2022. Viruses 2023; 15:2408. [PMID: 38140649 PMCID: PMC10747707 DOI: 10.3390/v15122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Molecular epidemiology of HIV-1 infection is challenging due to the highly diverse HIV-genome. We investigated the genetic diversity and prevalence of transmitted drug resistance (TDR) followed by phylogenetic analysis in 270 HIV-1 infected, treatment-naïve individuals from Croatia in the period 2019-2022. The results of this research confirmed a high overall prevalence of TDR of 16.7%. Resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside RTIs (NNRTIs), and protease inhibitors (PIs) was found in 9.6%, 7.4%, and 1.5% of persons, respectively. No resistance to integrase strand-transfer inhibitors (INSTIs) was found. Phylogenetic analysis revealed that 173/229 sequences (75.5%) were part of transmission clusters, and the largest identified was T215S, consisting of 45 sequences. Forward transmission was confirmed in several clusters. We compared deep sequencing (DS) with Sanger sequencing (SS) on 60 randomly selected samples and identified additional surveillance drug resistance mutations (SDRMs) in 49 of them. Our data highlight the need for baseline resistance testing in treatment-naïve persons. Although no major INSTIs were found, monitoring of SDRMs to INSTIs should be continued due to the extensive use of first- and second-generation INSTIs.
Collapse
Affiliation(s)
- Ana Planinić
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Dr. Fran Mihaljević, 10000 Zagreb, Croatia;
| | - Josip Begovac
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Filip Rokić
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (F.R.); (K.J.); (O.V.)
| | - Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia;
| | - Maja Oroz
- Cytogenetic Laboratory, Department of Obstetrics and Gynecology, Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia;
| | - Katja Jakovac
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (F.R.); (K.J.); (O.V.)
| | - Oliver Vugrek
- Ruđer Bošković Institute, 10000 Zagreb, Croatia; (F.R.); (K.J.); (O.V.)
| | - Snjezana Zidovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases Dr. Fran Mihaljević, 10000 Zagreb, Croatia;
| |
Collapse
|
12
|
Ferrer P, Ramos V, Puente MI, Afani A. Preliminary report of transmitted drug resistance to integrase strand chain transfer inhibitors in treatment-naïve HIV infected patients. Diagn Microbiol Infect Dis 2023; 107:116083. [PMID: 37778156 DOI: 10.1016/j.diagmicrobio.2023.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Transmitted Resistance exists in a newly diagnosed person who has not yet started their treatment. Our objective was to obtain a profile of HIV-1 resistance to integrase inhibitors in newly diagnosed treatment-naïve patients. Fifty people newly diagnosed with HIV-1 infection who had never received antiretroviral treatment were recruited. The complete integrase gene was amplified by nested RTPCR and the sequences obtained were analyzed with the ReCall and HIVdb v9.0. The overall prevalence transmitted due to mutations with some impact on integrase strand transfer inhibitors (INSTI) activity during the study period was 8%. The major E138K mutation was detected in only 1 patient and the secondary G163R mutation was detected in the other 3. The transmitted resistance for the first generation INSTI was 8% and for the second generation it was 0%. In Chile the resistance transmitted to INSTI is low and it is in according values detect in other part of the world.
Collapse
Affiliation(s)
- Pablo Ferrer
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Verónica Ramos
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Maria Ignacia Puente
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Alejandro Afani
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Jörimann L, Tschumi J, Zeeb M, Leemann C, Schenkel CD, Neumann K, Chaudron SE, Zaheri M, Frischknecht P, Neuner-Jehle N, Kuster H, Braun DL, Grube C, Kouyos R, Metzner KJ, Günthard HF. Absence of Proviral Human Immunodeficiency Virus (HIV) Type 1 Evolution in Early-Treated Individuals With HIV Switching to Dolutegravir Monotherapy During 48 Weeks. J Infect Dis 2023; 228:907-918. [PMID: 37498738 PMCID: PMC10547464 DOI: 10.1093/infdis/jiad292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is treated with antiretroviral therapy (ART), usually consisting of 2-3 different drugs, referred to as combination ART (cART). Our recent randomized clinical trial comparing a switch to dolutegravir monotherapy with continuation of cART in early-treated individuals demonstrated sustained virological suppression over 48 weeks. Here, we characterize the longitudinal landscape of the HIV-1 reservoir in these participants, with particular attention to potential differences between treatment groups regarding evidence of evolution as a proxy for low-level replication. Near full-length HIV-1 proviral polymerase chain reaction and next-generation sequencing was applied to longitudinal peripheral blood mononuclear cell samples to assess proviral evolution and the potential emergence of drug resistance mutations (DRMs). Neither an increase in genetic distance nor diversity over time was detected in participants of both treatment groups. Single proviral analysis showed high proportions of defective proviruses and low DRM numbers. No evidence for evolution during dolutegravir monotherapy was found in these early-treated individuals.
Collapse
Affiliation(s)
- Lisa Jörimann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Jasmin Tschumi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Marius Zeeb
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Christine Leemann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Corinne D Schenkel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Sandra E Chaudron
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Paul Frischknecht
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
| | - Nadia Neuner-Jehle
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Herbert Kuster
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Dominique L Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Christina Grube
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
| | - Roger Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich
- Institute of Medical Virology, University of Zurich, Switzerland
| | | |
Collapse
|
14
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
Carr A, Mackie NE, Paredes R, Ruxrungtham K. HIV drug resistance in the era of contemporary antiretroviral therapy: A clinical perspective. Antivir Ther 2023; 28:13596535231201162. [PMID: 37749751 DOI: 10.1177/13596535231201162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Contemporary antiretroviral therapy (ART) regimens have high barriers to the development of drug resistance. However, resistance to earlier antiretrovirals and uncommon cases of resistance to contemporary ART illustrate the continued need for good clinical management of HIV drug resistance. Here, we describe HIV drug-resistance mechanisms, the interaction of HIV drug-resistant mutations and the patterns of drug resistance to contemporary ART. We then provide guidance on the management of HIV drug resistance, including how to limit the development of resistance and manage virologic failure that is complicated by resistance. To complement this, links to resources and treatment guidelines are provided that can assist with the interpretation of HIV drug resistance test results and optimal ART selection in the clinic.
Collapse
Affiliation(s)
- Andrew Carr
- HIV and Immunology Unit, St Vincent's Hospital, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | | | - Roger Paredes
- Department of Infectious Diseases, Hospital Germans Trias i Pujol, Barcelona, Spain
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
| | - Kiat Ruxrungtham
- Chula Vaccine Research Center (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| |
Collapse
|
16
|
Rajendran M, Ferran MC, Mouli L, Babbitt GA, Lynch ML. Evolution of drug resistance drives destabilization of flap region dynamics in HIV-1 protease. BIOPHYSICAL REPORTS 2023; 3:100121. [PMID: 37662576 PMCID: PMC10469570 DOI: 10.1016/j.bpr.2023.100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
The HIV-1 protease is one of several common key targets of combination drug therapies for human immunodeficiency virus infection and acquired immunodeficiency syndrome. During the progression of the disease, some individual patients acquire drug resistance due to mutational hotspots on the viral proteins targeted by combination drug therapies. It has recently been discovered that drug-resistant mutations accumulate on the "flap region" of the HIV-1 protease, which is a critical dynamic region involved in nonspecific polypeptide binding during invasion and infection of the host cell. In this study, we utilize machine learning-assisted comparative molecular dynamics, conducted at single amino acid site resolution, to investigate the dynamic changes that occur during functional dimerization and drug binding of wild-type and common drug-resistant versions of the main protease. We also use a multiagent machine learning model to identify conserved dynamics of the HIV-1 main protease that are preserved across simian and feline protease orthologs. We find that a key conserved functional site in the flap region, a solvent-exposed isoleucine (Ile50) that controls flap dynamics is functionally targeted by drug resistance mutations, leading to amplified molecular dynamics affecting the functional ability of the flap region to hold the drugs. We conclude that better long-term patient outcomes may be achieved by designing drugs that target protease regions that are less dependent upon single sites with large functional binding effects.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Maureen C. Ferran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Leora Mouli
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | | |
Collapse
|
17
|
Jaha B, Schenkel CD, Jörimann L, Huber M, Zaheri M, Neumann K, Leemann C, Calmy A, Cavassini M, Kouyos RD, Günthard HF, Metzner KJ. Prevalence of HIV-1 drug resistance mutations in proviral DNA in the Swiss HIV Cohort Study, a retrospective study from 1995 to 2018. J Antimicrob Chemother 2023; 78:2323-2334. [PMID: 37545164 PMCID: PMC10477134 DOI: 10.1093/jac/dkad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Genotypic resistance testing (GRT) is routinely performed upon diagnosis of HIV-1 infection or during virological failure using plasma viral RNA. An alternative source for GRT could be cellular HIV-1 DNA. OBJECTIVES A substantial number of participants in the Swiss HIV Cohort Study (SHCS) never received GRT. We applied a method that enables access to the near full-length proviral HIV-1 genome without requiring detectable viraemia. METHODS Nine hundred and sixty-two PBMC specimens were received. Our two-step nested PCR protocol was applied to generate two overlapping long-range amplicons of the HIV-1 genome, sequenced by next-generation sequencing (NGS) and analysed by MinVar, a pipeline to detect drug resistance mutations (DRMs). RESULTS Six hundred and eighty-one (70.8%) of the samples were successfully amplified, sequenced and analysed by MinVar. Only partial information of the pol gene was contained in 82/681 (12%), probably due to naturally occurring deletions in the proviral sequence. All common HIV-1 subtypes were successfully sequenced. We detected at least one major DRM at high frequency (≥15%) in 331/599 (55.3%) individuals. Excluding APOBEC-signature (G-to-A mutation) DRMs, 145/599 (24.2%) individuals carried at least one major DRM. RT-inhibitor DRMs were most prevalent. The experienced time on ART was significantly longer in DRM carriers (P = 0.001) independent of inclusion or exclusion of APOBEC-signature DRMs. CONCLUSIONS We successfully applied a reliable and efficient method to analyse near full-length HIV-1 proviral DNA and investigated DRMs in individuals with undetectable or low viraemia. Additionally, our data underscore the need for new computational tools to exclude APOBEC-related hypermutated NGS sequence reads for reporting DRMs.
Collapse
Affiliation(s)
- Bashkim Jaha
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corinne D Schenkel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Lisa Jörimann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Kathrin Neumann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Christine Leemann
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Inzaule SC, Siedner MJ, Little SJ, Avila-Rios S, Ayitewala A, Bosch RJ, Calvez V, Ceccherini-Silberstein F, Charpentier C, Descamps D, Eshleman SH, Fokam J, Frenkel LM, Gupta RK, Ioannidis JP, Kaleebu P, Kantor R, Kassaye SG, Kosakovsky Pond SL, Kouamou V, Kouyos RD, Kuritzkes DR, Lessells R, Marcelin AG, Mbuagbaw L, Minalga B, Ndembi N, Neher RA, Paredes R, Pillay D, Raizes EG, Rhee SY, Richman DD, Ruxrungtham K, Sabeti PC, Schapiro JM, Sirivichayakul S, Steegen K, Sugiura W, van Zyl GU, Vandamme AM, Wensing AM, Wertheim JO, Gunthard HF, Jordan MR, Shafer RW. Recommendations on data sharing in HIV drug resistance research. PLoS Med 2023; 20:e1004293. [PMID: 37738247 PMCID: PMC10558071 DOI: 10.1371/journal.pmed.1004293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/06/2023] [Indexed: 09/24/2023] Open
Abstract
• Human immunodeficiency virus (HIV) drug resistance has implications for antiretroviral treatment strategies and for containing the HIV pandemic because the development of HIV drug resistance leads to the requirement for antiretroviral drugs that may be less effective, less well-tolerated, and more expensive than those used in first-line regimens. • HIV drug resistance studies are designed to determine which HIV mutations are selected by antiretroviral drugs and, in turn, how these mutations affect antiretroviral drug susceptibility and response to future antiretroviral treatment regimens. • Such studies collectively form a vital knowledge base essential for monitoring global HIV drug resistance trends, interpreting HIV genotypic tests, and updating HIV treatment guidelines. • Although HIV drug resistance data are collected in many studies, such data are often not publicly shared, prompting the need to recommend best practices to encourage and standardize HIV drug resistance data sharing. • In contrast to other viruses, sharing HIV sequences from phylogenetic studies of transmission dynamics requires additional precautions as HIV transmission is criminalized in many countries and regions. • Our recommendations are designed to ensure that the data that contribute to HIV drug resistance knowledge will be available without undue hardship to those publishing HIV drug resistance studies and without risk to people living with HIV.
Collapse
Affiliation(s)
- Seth C. Inzaule
- Amsterdam Institute for Global Health and Development, and Department of Global Health, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Siedner
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan J. Little
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Santiago Avila-Rios
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Alisen Ayitewala
- National Health Laboratories and Diagnostic Services, Ministries of Health, Kampala, Uganda
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service de Virologie, Paris, France
| | | | - Charlotte Charpentier
- Service de Virologie, Université Paris Cité, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Diane Descamps
- Service de Virologie, Université Paris Cité, INSERM, IAME, UMR 1137, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph Fokam
- Virology Laboratory, Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé, Cameroon, and Faculty of Health Sciences, University of Buea, Yaoundé, Cameroon
| | - Lisa M. Frenkel
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom
| | - John P.A. Ioannidis
- Department of Medicine, Department of Epidemiology and Population Health, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, United States of America
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Entebbe, Uganda
| | - Rami Kantor
- Department of Medicine, Brown University, The Miriam Hospital, Providence, Rhode Island, United States of America
| | - Seble G. Kassaye
- Department of Medicine, Division of Infectious Diseases, Georgetown University, Washington DC, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Vinie Kouamou
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland and Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Daniel R. Kuritzkes
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Lessells
- Affiliation is KwaZulu-Natal Research Innovation & Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| | - Anne-Genevieve Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière—Charles Foix, Laboratoire de Virologie, Paris, France
| | - Lawrence Mbuagbaw
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Brian Minalga
- Office of HIV/AIDS Network Coordination, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nicaise Ndembi
- Institute of Human Virology Nigeria, Herbert Macaulay Way, Abuja, Nigeria
| | | | - Roger Paredes
- Department of Infectious Diseases & irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Elliot G. Raizes
- United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Douglas D. Richman
- Center for AIDS Research, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Kiat Ruxrungtham
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | | | - Kim Steegen
- Department of Molecular Medicine and Haematology, National Health Laboratory Service, Johannesburg, South Africa
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Gert U. van Zyl
- Division of Medical Virology, Stellenbosch University and National Health Laboratory Service, Cape Town, South Africa
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
- Center for Global Health And Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Annemarie M.J. Wensing
- University Medical Center Utrecht, the Netherlands and Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, San Diego, La Jolla, California, United States of America
| | - Huldrych F. Gunthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland and Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Michael R. Jordan
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
19
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
20
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
21
|
Gaitan NC, D’Antoni ML, Acosta RK, Gianella S, Little SJ, Chaillon A. Brief Report: Comparative Analysis of Pre-existing HIV Drug Resistance Mutations in Proviral DNA Using Next-Generation Sequencing and Routine HIV RNA Genotyping. J Acquir Immune Defic Syndr 2023; 93:213-218. [PMID: 36961945 PMCID: PMC10272101 DOI: 10.1097/qai.0000000000003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND We investigated whether deep sequencing of archived HIV DNA of antiretroviral-naive persons with acute/early HIV infection could identify transmitted drug resistance mutations (DRM), per the IAS drug resistance algorithm, which are not detected by routine bulk (consensus) sequencing. METHODS Deep sequencing of HIV DNA from peripheral blood mononuclear cells and consensus sequencing from concurrent blood plasma (BP) was performed from antiretroviral (ART)-naive adults with recent infection. We compared the prevalence of low-frequency (2%-20%) and high-frequency (>20%) nonnucleoside reverse transcriptase inhibitor (NNRTI), nucleoside reverse transcriptase inhibitor (NRTI), and protease inhibitor (PI) DRM. RESULTS Overall, 190 individuals were included, 72 (37.9%) with acute, 20 (10.5%) with very early, and 98 (51.6%) with recent HIV infection. Although all DRM detected in plasma appeared in archived proviral DNA, 9 high-frequency mutations were only detected in HIV DNA. These included 3 NRTI mutations, 4 NNRTI mutations, 1 PI mutation, and 1 H221Y (associated rilpivirine resistance) mutation. When considering DRM <20%, 11 NNRTI, 7 NRTI, 6 PI, and 3 F227L (associated doravirine resistance) mutations were found exclusively in HIV DNA. Interestingly, although 2 high-frequency M184V appeared in both DNA and RNA, low-frequency M184I were exclusive to HIV DNA (n = 6). No participants experienced virologic failure after initiating ART during the median 25.39 ± 3.13 months of follow-up on treatment. CONCLUSION Although most high-frequency DRMs were consistently detected in HIV RNA and HIV DNA, the presence of low-frequency DRM in proviral DNA may be relevant for clinicians because these mutations could become dominant under drug selection pressure.
Collapse
Affiliation(s)
- Noah C Gaitan
- Division of Infectious Diseases & Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | | - Sara Gianella
- Division of Infectious Diseases & Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Susan J Little
- Division of Infectious Diseases & Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Antoine Chaillon
- Division of Infectious Diseases & Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
22
|
Wang R, Wright J, Saggu P, Ait-Khaled M, Moodley R, Parry CM, Lutz T, Podzamczer D, Moore R, Górgolas Hernández-Mora M, Kinder C, Wynne B, van Wyk J, Underwood M. Assessing the Virologic Impact of Archived Resistance in the Dolutegravir/Lamivudine 2-Drug Regimen HIV-1 Switch Study TANGO through Week 144. Viruses 2023; 15:1350. [PMID: 37376649 DOI: 10.3390/v15061350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The TANGO study (ClinicalTrials.gov, NCT03446573) demonstrated that switching to dolutegravir/lamivudine (DTG/3TC) was non-inferior to continuing tenofovir alafenamide-based regimens (TBR) through week 144. Retrospective baseline proviral DNA genotypes were performed for 734 participants (post-hoc analysis) to assess the impact of archived, pre-existing drug resistance on 144-week virologic outcomes by last on-treatment viral load (VL) and Snapshot. A total of 320 (86%) participants on DTG/3TC and 318 (85%) on TBR had both proviral genotype data and ≥1 on-treatment post-baseline VL results and were defined as the proviral DNA resistance analysis population. Archived International AIDS Society-USA major nucleoside reverse transcriptase inhibitor, non-nucleoside reverse transcriptase inhibitor, protease inhibitor, and integrase strand transfer inhibitor resistance-associated mutations (RAMs) were observed in 42 (7%), 90 (14%), 42 (7%), and 11 (2%) participants, respectively, across both groups; 469 (74%) had no major RAMs at baseline. M184V/I (1%), K65N/R (<1%), and thymidine analogue mutations (2%) were infrequent. Through week 144, >99% of participants on DTG/3TC and 99% on TBR were virologically suppressed (last on-treatment VL <50 copies/mL) regardless of the presence of major RAMs. Results from the sensitivity analysis by Snapshot were consistent with the last available on-treatment VL. In TANGO, archived, pre-existing major RAMs did not impact virologic outcomes through week 144.
Collapse
Affiliation(s)
- Ruolan Wang
- ViiV Healthcare, 406 Blackwell Street, Suite 300, Durham, NC 27701, USA
| | | | | | - Mounir Ait-Khaled
- ViiV Healthcare, 980 Great West Road, Brentford TW8 9GS, Middlesex, UK
| | - Riya Moodley
- ViiV Healthcare, 980 Great West Road, Brentford TW8 9GS, Middlesex, UK
| | - Chris M Parry
- ViiV Healthcare, 980 Great West Road, Brentford TW8 9GS, Middlesex, UK
| | - Thomas Lutz
- Infektiologikum, Stresemannallee 3, 60596 Frankfurt am Main, Germany
| | - Daniel Podzamczer
- Hospital Universitari de Bellvitge, Carrer de la Feixa Llarga, s/n, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Richard Moore
- Northside Clinic, 370 St Georges Rd, Fitzroy North, VIC 3068, Australia
| | | | - Clifford Kinder
- AIDS Healthcare Foundation-The Kinder Medical Group, 3661 S Miami Ave Suite 806, Miami, FL 33133, USA
| | - Brian Wynne
- ViiV Healthcare, 406 Blackwell Street, Suite 300, Durham, NC 27701, USA
| | - Jean van Wyk
- ViiV Healthcare, 980 Great West Road, Brentford TW8 9GS, Middlesex, UK
| | - Mark Underwood
- ViiV Healthcare, 406 Blackwell Street, Suite 300, Durham, NC 27701, USA
| |
Collapse
|
23
|
Yan J, Zhang W, Luo H, Wang X, Ruan L. Development and validation of a scoring system for the prediction of HIV drug resistance in Hubei province, China. Front Cell Infect Microbiol 2023; 13:1147477. [PMID: 37234779 PMCID: PMC10208424 DOI: 10.3389/fcimb.2023.1147477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Objective The present study aimed to build and validate a new nomogram-based scoring system for the prediction of HIV drug resistance (HIVDR). Design and methods Totally 618 patients with HIV/AIDS were included. The predictive model was created using a retrospective set (N = 427) and internally validated with the remaining cases (N = 191). Multivariable logistic regression analysis was carried out to fit a model using candidate variables selected by Least absolute shrinkage and selection operator (LASSO) regression. The predictive model was first presented as a nomogram, then transformed into a simple and convenient scoring system and tested in the internal validation set. Results The developed scoring system consisted of age (2 points), duration of ART (5 points), treatment adherence (4 points), CD4 T cells (1 point) and HIV viral load (1 point). With a cutoff value of 7.5 points, the AUC, sensitivity, specificity, PLR and NLR values were 0.812, 82.13%, 64.55%, 2.32 and 0.28, respectively, in the training set. The novel scoring system exhibited a favorable diagnostic performance in both the training and validation sets. Conclusion The novel scoring system can be used for individualized prediction of HIVDR patients. It has satisfactory accuracy and good calibration, which is beneficial for clinical practice.
Collapse
Affiliation(s)
- Jisong Yan
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wenyuan Zhang
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hong Luo
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xianguang Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
24
|
Shchemelev AN, Ostankova YV, Valutite DE, Serikova EN, Zueva EB, Semenov AV, Totolian AA. RISK ASSESSMENT OF FIRST-LINE TREATMENT FAILURE IN UNTREATED HIV PATIENTS IN NORTHWESTERN FEDERAL DISTRICT OF THE RUSSIAN FEDERATION. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-rao-2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The HIV infection epidemic in Russia continues to evolve, and HIV infection cases have been registered in all territorial entities of the Russian Federation. 2021 Treatment coverage was 82.2% and 56.4% individuals under dispensary observation and living with diagnosed HIV infection. 79.9% receiving ART subjects were shown to achieve undetectable viral load.
Highly active antiretroviral therapy (HAART) currently represents a combination of three (less frequently four) antiretroviral drugs targeting pathways involved in various stages of HIV replication in vivo. Treatment failure is a problem facing doctors and patients using HAART. The most common cause of therapeutic failure is the development of HIV drug resistance. The emergence of resistance is associated with processes involving mutation occurring in the viral genome influenced by evolutionary factors.
Therefore, it is important clinically and programmatically to learn more about the rate of first-line treatment failure, the rate of switching to a second-line ART regimen, and to identify patients at risk to develop strategies for preventing development of further failure cases.
The study was aimed at analyzing ineffectiveness of first-line ART therapy in patients in Northwestern Federal District of the Russian Federation.
Materials and methods
Sequencing reactions were performed using the AmpliSens HIV Resist-Seq. Assembly of consensus sequences from fragments obtained during sequencing was carried out using Unipro UGENE software. Isolate genotyping was performed using the MEGA-X software with the Neighbor-joining algorithm.
Results
The HIV pol genes in 239 patients with first-line ART failure and 100 nave patients were sequenced; all sequences genotyped as HIV-1 sub-subtype A6. According to analysis, 82% of patients had at least one significant mutation associated with drug resistance for the corresponding viral subtype. In total, we encountered 87 different drug resistance mutations.
Conclusion
We have shown increased proportion of patients with first-line ART failure among all patients with treatment failure. The main cause for such changes is probably related to the prevalence of primary drug resistance, estimated here at 8%. Specific differences were found between drug resistance mutation profiles in patients without suppressed viral load and patients with virological breakthrough. The overall results of the study indicate a need to diagnose and characterize HIV drug resistance prior to initiation of therapy in order to avoid ineffective first-line antiretroviral treatment.
Collapse
|
25
|
Balakrishna S, Loosli T, Zaheri M, Frischknecht P, Huber M, Kusejko K, Yerly S, Leuzinger K, Perreau M, Ramette A, Wymant C, Fraser C, Kellam P, Gall A, Hirsch HH, Stoeckle M, Rauch A, Cavassini M, Bernasconi E, Notter J, Calmy A, Günthard HF, Metzner KJ, Kouyos RD. Frequency matters: comparison of drug resistance mutation detection by Sanger and next-generation sequencing in HIV-1. J Antimicrob Chemother 2023; 78:656-664. [PMID: 36738248 DOI: 10.1093/jac/dkac430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is gradually replacing Sanger sequencing (SS) as the primary method for HIV genotypic resistance testing. However, there are limited systematic data on comparability of these methods in a clinical setting for the presence of low-abundance drug resistance mutations (DRMs) and their dependency on the variant-calling thresholds. METHODS To compare the HIV-DRMs detected by SS and NGS, we included participants enrolled in the Swiss HIV Cohort Study (SHCS) with SS and NGS sequences available with sample collection dates ≤7 days apart. We tested for the presence of HIV-DRMs and compared the agreement between SS and NGS at different variant-calling thresholds. RESULTS We included 594 pairs of SS and NGS from 527 SHCS participants. Males accounted for 80.5% of the participants, 76.3% were ART naive at sample collection and 78.1% of the sequences were subtype B. Overall, we observed a good agreement (Cohen's kappa >0.80) for HIV-DRMs for variant-calling thresholds ≥5%. We observed an increase in low-abundance HIV-DRMs detected at lower thresholds [28/417 (6.7%) at 10%-25% to 293/812 (36.1%) at 1%-2% threshold]. However, such low-abundance HIV-DRMs were overrepresented in ART-naive participants and were in most cases not detected in previously sampled sequences suggesting high sequencing error for thresholds <3%. CONCLUSIONS We found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.
Collapse
Affiliation(s)
- Suraj Balakrishna
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Tom Loosli
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Swiss National Center for Retroviruses, University of Zurich, Zurich, Switzerland
| | - Paul Frischknecht
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.,Swiss National Center for Retroviruses, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Karoline Leuzinger
- Clinical Virology Division, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Chris Wymant
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christophe Fraser
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.,Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul Kellam
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Astrid Gall
- Excellence in Life Sciences (EMBO), Heidelberg, Germany
| | - Hans H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marcel Stoeckle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Cavassini
- Division of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
| | - Julia Notter
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Eileen Delaney K, Ngobeni T, Woods CK, Gordijn C, Claassen M, Parikh U, Harrigan PR, van Zyl GU. Nano-RECall provides an integrated pipeline for HIV-1 drug resistance testing from Oxford Nanopore sequence data. Trop Med Int Health 2023; 28:186-193. [PMID: 36599816 PMCID: PMC10230441 DOI: 10.1111/tmi.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Low-capital-layout sequencing options from Oxford Nanopore Technologies (ONT) could assist in expanding HIV drug resistance testing to resource-limited settings. HIV drug resistance mutations often occur as mixtures, but current ONT pipelines provide a consensus sequence only. Moreover, there is no integrated pipeline that provides a drug resistance report from an ONT sequence file without intervention from skilled bioinformaticists. We therefore investigated Nano-RECall, which provides seamless drug resistance interpretation while requiring low-read coverage ONT sequence data from affordable Flongle or MinION flow cells and which provides mutation mixtures similar to Sanger Sequencing. METHODS We compared Sanger sequencing to ONT sequencing of the same HIV-1 subtype C polymerase chain reaction (PCR) amplicons, respectively using RECall and the novel Nano-RECall bioinformatics pipelines. Amplicons were from separate assays: (a) Applied Biosystems HIV-1 Genotyping Kit (ThermoFisher) spanning protease (PR) to reverse transcriptase (RT) (PR-RT) (n = 46) and (b) homebrew integrase (IN) (n = 21). The agreement between Sanger sequences and ONT sequences was assessed at nucleotide level, and at codon level for Stanford HIV drug resistance database mutations at an optimal ONT read depth of 400 reads only. RESULTS The average sequence similarity between ONT and Sanger sequences was 99.3% (95% CI: 99.1%-99.4%) for PR-RT and 99.6% (95% CI: 99.4%-99.7%) for INT. Drug resistance mutations did not differ for 21 IN specimens; 8 mutations were detected by both ONT- and Sanger sequencing. For the 46 PR and RT specimens, 245 mutations were detected by either ONT or Sanger, of these 238 (97.1%) were detected by both. CONCLUSIONS The Nano-RECall pipeline, freely available as a downloadable application on a Windows computer, provides Sanger-equivalent HIV drug resistance interpretation. This novel pipeline combined with a simple workflow and multiplexing samples on ONT flow-cells would contribute to making HIV drug resistance sequencing feasible for resource-limited settings.
Collapse
Affiliation(s)
| | - Trevor Ngobeni
- Stellenbosch University, Division of Medical Virology, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | - Conan K. Woods
- Stellenbosch University, Division of Medical Virology, Cape Town, South Africa
| | - Carli Gordijn
- Stellenbosch University, Division of Medical Virology, Cape Town, South Africa
| | - Mathilda Claassen
- Stellenbosch University, Division of Medical Virology, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | | | | | - Gert Uves van Zyl
- Stellenbosch University, Division of Medical Virology, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| |
Collapse
|
27
|
Raymond S, Jeanne N, Nicot F, Dimeglio C, Carcenac R, Harter A, Ranger N, Martin-Blondel G, Delobel P, Izopet J. HIV-1 resistance genotyping by ultra-deep sequencing and 6-month virological response to first-line treatment. J Antimicrob Chemother 2023; 78:346-353. [PMID: 36449383 DOI: 10.1093/jac/dkac391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES To evaluate the routine use of the Sentosa ultra-deep sequencing (UDS) system for HIV-1 polymerase resistance genotyping in treatment-naïve individuals and to analyse the virological response (VR) to first-line antiretroviral treatment. METHODS HIV drug resistance was determined on 237 consecutive samples from treatment-naïve individuals using the Sentosa UDS platform with two mutation detection thresholds (3% and 20%). VR was defined as a plasma HIV-1 virus load <50 copies/mL after 6 months of treatment. RESULTS Resistance to at least one antiretroviral drug with a mutation threshold of 3% was identified in 29% and 16% of samples according to ANRS and Stanford algorithms, respectively. The ANRS algorithm also revealed reduced susceptibility to at least one protease inhibitor (PI) in 14.3% of samples, to one reverse transcriptase inhibitor in 12.7%, and to one integrase inhibitor (INSTI) in 5.1%. For a mutation threshold of 20%, resistance was identified in 24% and 13% of samples according to ANRS and Stanford algorithms, respectively. The 6 months VR was 87% and was similar in the 58% of patients given INSTI-based treatment, in the 16% given PI-based treatment and in the 9% given NNRTI-based treatment. Multivariate analysis indicated that the VR was correlated with the baseline HIV virus load and resistance to at least one PI at both 3% and 20% mutation detection thresholds (ANRS algorithm). CONCLUSIONS The Vela UDS platform is appropriate for determining antiretroviral resistance in patients on a first-line antiretroviral treatment. Further studies are needed on the use of UDS for therapeutic management.
Collapse
Affiliation(s)
- Stéphanie Raymond
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Nicolas Jeanne
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Florence Nicot
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Chloé Dimeglio
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Romain Carcenac
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Agnès Harter
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Noémie Ranger
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| | - Guillaume Martin-Blondel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, F-31300France
| | - Pierre Delobel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, F-31300France
| | - Jacques Izopet
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR 1291 - CNRS UMR 5051, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, F-31300France
| |
Collapse
|
28
|
Tunc H, Dogan B, Darendeli Kiraz BN, Sari M, Durdagi S, Kotil S. Prediction of HIV-1 protease resistance using genotypic, phenotypic, and molecular information with artificial neural networks. PeerJ 2023; 11:e14987. [PMID: 36967989 PMCID: PMC10038082 DOI: 10.7717/peerj.14987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/12/2023] [Indexed: 03/29/2023] Open
Abstract
Drug resistance is a primary barrier to effective treatments of HIV/AIDS. Calculating quantitative relations between genotype and phenotype observations for each inhibitor with cell-based assays requires time and money-consuming experiments. Machine learning models are good options for tackling these problems by generalizing the available data with suitable linear or nonlinear mappings. The main aim of this study is to construct drug isolate fold (DIF) change-based artificial neural network (ANN) models for estimating the resistance potential of molecules inhibiting the HIV-1 protease (PR) enzyme. Throughout the study, seven of eight protease inhibitors (PIs) have been included in the training set and the remaining ones in the test set. We have obtained 11,803 genotype-phenotype data points for eight PIs from Stanford HIV drug resistance database. Using the leave-one-out (LVO) procedure, eight ANN models have been produced to measure the learning capacity of models from the descriptors of the inhibitors. Mean R2 value of eight ANN models for unseen inhibitors is 0.716, and the 95% confidence interval (CI) is [0.592-0.840]. Predicting the fold change resistance for hundreds of isolates allowed a robust comparison of drug pairs. These eight models have predicted the drug resistance tendencies of each inhibitor pair with the mean 2D correlation coefficient of 0.933 and 95% CI [0.930-0.938]. A classification problem has been created to predict the ordered relationship of the PIs, and the mean accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC) values are calculated as 0.954, 0.791, 0.791, and 0.688, respectively. Furthermore, we have created an external test dataset consisting of 51 unique known HIV-1 PR inhibitors and 87 genotype-phenotype relations. Our developed ANN model has accuracy and area under the curve (AUC) values of 0.749 and 0.818 to predict the ordered relationships of molecules on the same strain for the external dataset. The currently derived ANN models can accurately predict the drug resistance tendencies of PI pairs. This observation could help test new inhibitors with various isolates.
Collapse
Affiliation(s)
- Huseyin Tunc
- Department of Biostatistics and Medical Informatics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Berna Dogan
- Department of Medicinal Biochemistry, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Büşra Nur Darendeli Kiraz
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Murat Sari
- Department of Mathematics Engineering, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Pharmaceutical Chemistry, School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| | - Seyfullah Kotil
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey
| |
Collapse
|
29
|
Taiwo BO, Romdhani H, Lafeuille MH, Bhojwani R, Milbers K, Donga P. Treatment and comorbidity burden among people living with HIV: a review of systematic literature reviews. J Drug Assess 2022; 12:1-11. [PMID: 36582675 PMCID: PMC9793945 DOI: 10.1080/21556660.2022.2149963] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background As the human immunodeficiency virus (HIV) treatment landscape continues to evolve, the prolonged life expectancy and long-term exposure to antiretroviral drugs have modified the burden associated with living with HIV. Objective To better understand the current treatment and comorbidity burden in people living with HIV (PLWH). Methods Peer-reviewed systematic literature reviews (SLRs) between 2017 and 2020 that included US studies and examined drug adherence/pill burden, resistance burden, or comorbidities in PLWH were identified. Methods and findings were extracted for the overall studies and examined in the subset of US studies. Results Among 665 publications identified, 47 met the inclusion criteria (drug adherence/pill burden: 5; resistance: 3; comorbidities: 40). While antiretroviral drug adherence levels varied across SLRs, single-tablet regimens (STR) were associated with higher adherence versus multiple-tablet regimens. STRs were also associated with lower risk of treatment discontinuation, higher cost-effectiveness, and lower risk of hospitalization. Longer survival resulted in a high comorbidity burden, with non-AIDS causes accounting for 47% of deaths among PLWH in the US. HIV doubled the risk of cardiovascular disease and was associated with other health problems, including bone and muscle diseases, depression, and cancers. Several antiretroviral regimens were associated with chronic diseases, including cardiometabolic conditions. Lifetime HIV costs are substantially increasing, driven by antiretroviral, adverse event, and comorbidity treatment costs cumulated due to longer survival times. Conclusions There is a considerable burden associated with HIV and antiretroviral treatment, highlighting the benefits of less complex and safer regimens, and the unmet need for effective preventative interventions.
Collapse
Affiliation(s)
- Babafemi O. Taiwo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Marie-Hélène Lafeuille
- Analysis Group, Inc, Montréal, QC, Canada,CONTACT Marie-Hélène Lafeuille Analysis Group, Inc, 1190 avenue des Canadiens-de-Montréal, Montréal, QCH3B 0G7, Canada
| | | | | | - Prina Donga
- Janssen Scientific Affairs, LLC, Titusville, NJ, USA
| |
Collapse
|
30
|
Bareng OT, Choga WT, Maphorisa ST, Seselamarumo S, Seatla KK, Mokgethi PT, Maruapula D, Mogwele ML, Ditshwanelo D, Moraka NO, Gobe I, Motswaledi MS, Makhema JM, Musonda R, Shapiro R, Essex M, Novitsky V, Moyo S, Gaseitsiwe S. HIV-1C in-House RNA-Based Genotyping Assay for Detection of Drug Resistance Mutations in Samples with Low-Level Viral Loads. Infect Drug Resist 2022; 15:7565-7576. [PMID: 36582452 PMCID: PMC9792565 DOI: 10.2147/idr.s388816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Monitoring HIV-1 drug resistance mutations (DRM) in treated patients on combination antiretroviral therapy (cART) with a detectable HIV-1 viral load (VL) is important for the selection of appropriate cART. Currently, there is limited data on HIV DRM at low-level viremia (LLV) (VL 401-999 copies/mL) due to the use of a threshold of VL ≥1000 copies/mL for HIV DRM testing. We here assess the performance of an in-house HIV drug resistance genotyping assay using plasma for the detection of DRM at LLV. Methods We used a total of 96 HIV plasma samples from the population-based Botswana Combination Prevention Project (BCPP). The samples were stratified by VL groups: 50 samples had LLV, defined as 401-999 copies/mL, and 46 had ≥1000 copies/mL. HIV pol (PR and RT) region was amplified and sequenced using an in-house genotyping assay with BigDye sequencing chemistry. Known HIV DRMs were identified using the Stanford HIV Drug Resistance Database. Genotyping success rate between the two groups was estimated and compared using the comparison of proportions test. Results The overall genotyping success rate was 79% (76/96). For VL groups, the genotyping success was 72% (36/50) at LLV and 87% (40/46) at VL ≥1000 copies/mL. Among generated sequences, the overall prevalence of individuals with at least 1 major or intermediate-associated DRM was 24% (18/76). The proportions of NNRTI-, NRTI- and PI-associated resistance mutations were 28%, 24%, and 0%, respectively. The most predominant mutations detected were K103N (18%) and M184V (12%) in NNRTI- and NRTI-associated mutations, respectively. The prevalence of DRM was 17% (6/36) at LLV and 30% (12/40) at VL ≥1000 copies/mL. Conclusion The in-house HIV genotyping assay successfully genotyped 72% of LLV samples and was able to detect 17% of DRM amongst them. Our results highlight the possibility and clinical significance of genotyping HIV among individuals with LLV.
Collapse
Affiliation(s)
- Ontlametse T Bareng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Wonderful T Choga
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | | | - Kaelo K Seatla
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Patrick T Mokgethi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | | | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Science and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | | | - Irene Gobe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Modisa S Motswaledi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Joseph M Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vlad Novitsky
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
31
|
Chu C, Armenia D, Walworth C, Santoro MM, Shafer RW. Genotypic Resistance Testing of HIV-1 DNA in Peripheral Blood Mononuclear Cells. Clin Microbiol Rev 2022; 35:e0005222. [PMID: 36102816 PMCID: PMC9769561 DOI: 10.1128/cmr.00052-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-1 DNA exists in nonintegrated linear and circular episomal forms and as integrated proviruses. In patients with plasma viremia, most peripheral blood mononuclear cell (PBMC) HIV-1 DNA consists of recently produced nonintegrated virus DNA while in patients with prolonged virological suppression (VS) on antiretroviral therapy (ART), most PBMC HIV-1 DNA consists of proviral DNA produced months to years earlier. Drug-resistance mutations (DRMs) in PBMCs are more likely to coexist with ancestral wild-type virus populations than they are in plasma, explaining why next-generation sequencing is particularly useful for the detection of PBMC-associated DRMs. In patients with ongoing high levels of active virus replication, the DRMs detected in PBMCs and in plasma are usually highly concordant. However, in patients with lower levels of virus replication, it may take several months for plasma virus DRMs to reach detectable levels in PBMCs. This time lag explains why, in patients with VS, PBMC genotypic resistance testing (GRT) is less sensitive than historical plasma virus GRT, if previous episodes of virological failure and emergent DRMs were either not prolonged or not associated with high levels of plasma viremia. Despite the increasing use of PBMC GRT in patients with VS, few studies have examined the predictive value of DRMs on the response to a simplified ART regimen. In this review, we summarize what is known about PBMC HIV-1 DNA dynamics, particularly in patients with suppressed plasma viremia, the methods used for PBMC HIV-1 GRT, and the scenarios in which PBMC GRT has been used clinically.
Collapse
Affiliation(s)
- Carolyn Chu
- Department of Family and Community Medicine, University of California San Francisco, San Francisco, California, USA
| | - Daniele Armenia
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Charles Walworth
- LabCorp-Monogram Biosciences, South San Francisco, California, USA
| | - Maria M. Santoro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Wensing AM, Calvez V, Ceccherini-Silberstein F, Charpentier C, Günthard HF, Paredes R, Shafer RW, Richman DD. 2022 update of the drug resistance mutations in HIV-1. TOPICS IN ANTIVIRAL MEDICINE 2022; 30:559-574. [PMID: 36375130 PMCID: PMC9681141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The 2022 edition of the IAS-USA drug resistance mutations list updates the Figure last published in September 2019. The mutations listed are those that have been identified by specific criteria for evidence and drugs described. The Figure is designed to assist practitioners to identify key mutations associated with resistance to antiretroviral drugs, and therefore, in making clinical decisions regarding antiretroviral therapy.
Collapse
Affiliation(s)
- Annemarie M Wensing
- University Medical Center Utrecht, The Netherlands and Ezintsha, University of the Witwatersrand, Johannesburg, South Africa
| | - Vincent Calvez
- Pierre et Marie Curie University and Pitié-Salpêtrière Hospital, Paris, France
| | | | | | - Huldrych F Günthard
- University Hospital Zurich and Institute of Medical Virology, University of Zurich, Switzerland
| | - Roger Paredes
- HIV Unit and IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | | |
Collapse
|
33
|
Same‐day
and rapid initiation of antiretroviral therapy in people living with
HIV
in Asia. How far have we come? HIV Med 2022; 23 Suppl 4:3-14. [DOI: 10.1111/hiv.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
|
34
|
Abstract
PURPOSE OF REVIEW HIV-1 drug resistance (HIV DR) testing is routinely performed by genotyping plasma viruses using Sanger population sequencing. Next-generation sequencing (NGS) is increasingly replacing standardized Sanger sequencing. This opens up new opportunities, but also brings challenges. RECENT FINDINGS The number of NGS applications and protocols for HIV DR testing is increasing. All of them are noninferior to Sanger sequencing when comparing NGS-derived consensus sequences to Sanger sequencing-derived sequences. In addition, NGS enables high-throughput sequencing of near full-length HIV-1 genomes and detection of low-abundance drug-resistant HIV-1 variants, although their clinical implications need further investigation. Several groups have defined remaining challenges in implementing NGS protocols for HIV-1 resistance testing. Some of them are already being addressed. One of the most important needs is quality management and consequently, if possible, standardization. SUMMARY The use of NGS technologies on HIV DR testing will allow unprecedented insights into genomic structures of virus populations that may be of immediate relevance to both clinical and research areas such as personalized antiretroviral treatment. Efforts continue to tackle the remaining challenges in NGS-based HIV DR testing.
Collapse
|
35
|
HIV drug resistance in various body compartments. Curr Opin HIV AIDS 2022; 17:205-212. [PMID: 35762375 DOI: 10.1097/coh.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW HIV drug resistance testing using blood plasma or dried blood spots forms part of international guidelines. However, as the clinical utility of assessing drug resistance in other body compartments is less well established, we review this for blood cells and samples from other body compartments. RECENT EVIDENCE Although clinical benefit is not clear, drug resistance testing in blood cells is often performed when patients with suppressed plasma viral loads require a treatment substitution. In patients with HIV neurocognitive disease, cerebral spinal fluid (CSF) drug resistance is rarely discordant with plasma but has nevertheless been used to guide antiretroviral drug substitutions. Cases with HIV drug resistance in genital fluids have been documented but this does not appear to indicate transmission risk when blood plasma viral loads are suppressed. SUMMARY Drug-resistant variants, which may be selected in tissues under conditions of variable adherence and drug penetration, appear to disseminate quickly, and become detectable in blood. This may explain why drug resistance discordance between plasma and these compartments is rarely found. Partial compartmentalization of HIV populations is well established for the CSF and the genital tract but other than blood plasma, evidence is lacking to support drug resistance testing in body compartments.
Collapse
|
36
|
Rao S, Mahmoudi T. DEAD-ly Affairs: The Roles of DEAD-Box Proteins on HIV-1 Viral RNA Metabolism. Front Cell Dev Biol 2022; 10:917599. [PMID: 35769258 PMCID: PMC9234453 DOI: 10.3389/fcell.2022.917599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In order to ensure viral gene expression, Human Immunodeficiency virus type-1 (HIV-1) recruits numerous host proteins that promote optimal RNA metabolism of the HIV-1 viral RNAs (vRNAs), such as the proteins of the DEAD-box family. The DEAD-box family of RNA helicases regulates multiple steps of RNA metabolism and processing, including transcription, splicing, nucleocytoplasmic export, trafficking, translation and turnover, mediated by their ATP-dependent RNA unwinding ability. In this review, we provide an overview of the functions and role of all DEAD-box family protein members thus far described to influence various aspects of HIV-1 vRNA metabolism. We describe the molecular mechanisms by which HIV-1 hijacks these host proteins to promote its gene expression and we discuss the implications of these interactions during viral infection, their possible roles in the maintenance of viral latency and in inducing cell death. We also speculate on the emerging potential of pharmacological inhibitors of DEAD-box proteins as novel therapeutics to control the HIV-1 pandemic.
Collapse
Affiliation(s)
- Shringar Rao
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Urology, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
37
|
Linheiro R, Sabatino S, Lobo D, Archer J. CView: A network based tool for enhanced alignment visualization. PLoS One 2022; 17:e0259726. [PMID: 35696379 PMCID: PMC9191720 DOI: 10.1371/journal.pone.0259726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
To date basic visualization of sequence alignments have largely focused on displaying per-site columns of nucleotide, or amino acid, residues along with associated frequency summarizations. The persistence of this tendency to the recent tools designed for viewing mapped read data indicates that such a perspective not only provides a reliable visualization of per-site alterations, but also offers implicit reassurance to the end-user in relation to data accessibility. However, the initial insight gained is limited, something that is especially true when viewing alignments consisting of many sequences representing differing factors such as location, date and subtype. A basic alignment viewer can have potential to increase initial insight through visual enhancement, whilst not delving into the realms of complex sequence analysis. We present CView, a visualizer that expands on the per-site representation of residues through the incorporation of a dynamic network that is based on the summarization of diversity present across different regions of the alignment. Within the network, nodes are based on the clustering of sequence fragments that span windows placed consecutively along the alignment. Edges are placed between nodes of neighbouring windows where they share sequence identification(s), i.e. different regions of the same sequence(s). Thus, if a node is selected on the network, then the relationship that sequences passing through that node have to other regions of diversity within the alignment can be observed through path tracing. In addition to augmenting visual insight, CView provides export features including variant summarization, per-site residue and kmer frequencies, consensus sequence, alignment dissection as well as clustering; each useful across a range of research areas. The software has been designed to be user friendly, intuitive and interactive. It is open source and an executable jar, source code, quick start, usage tutorial and test data are available (under the GNU General Public License) from https://sourceforge.net/projects/cview/.
Collapse
Affiliation(s)
- Raquel Linheiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
| | - Stephen Sabatino
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Diana Lobo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- * E-mail:
| |
Collapse
|
38
|
Climaco-Arvizu S, Flores-López V, González-Torres C, Gaytán-Cervantes FJ, Hernández-García MC, Zárate-Segura PB, Chávez-Torres M, Tesoro-Cruz E, Pinto-Cardoso SM, Bekker-Méndez VC. Protease and gag diversity and drug resistance mutations among treatment-naive Mexican people living with HIV. BMC Infect Dis 2022; 22:447. [PMID: 35538426 PMCID: PMC9088029 DOI: 10.1186/s12879-022-07446-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/29/2022] [Indexed: 09/17/2024] Open
Abstract
Introduction In Mexico, HIV genotyping is performed in people living with HIV (PLWH) failing their first-line antiretroviral (ARV) regimen; it is not routinely done for all treatment-naive PLWH before ARV initiation. The first nationally representative survey published in 2016 reported that the prevalence of pretreatment drug mutations in treatment-naive Mexican PLWH was 15.5% to any antiretroviral drug and 10.6% to non-nucleoside reverse transcriptase inhibitors (NNRTIs) using conventional Sanger sequencing. Most reports in Mexico focus on HIV pol gene and nucleoside and non-nucleoside reverse transcriptase inhibitor (NRTI and NNRTI) drug resistance mutations (DRMs) prevalence, using Sanger sequencing, next-generation sequencing (NGS) or both. To our knowledge, NGS has not be used to detect pretreatment drug resistance mutations (DRMs) in the HIV protease (PR) gene and its substrate the Gag polyprotein. Methods Treatment-naive adult Mexican PLWH were recruited between 2016 and 2019. HIV Gag and protease sequences were obtained by NGS and DRMs were identified using the WHO surveillance drug resistance mutation (SDRM) list. Results One hundred PLWH attending a public national reference hospital were included. The median age was 28 years-old, and most were male. The median HIV viral load was 4.99 [4.39–5.40] log copies/mL and median CD4 cell count was 150 [68.0–355.78] cells/mm3. As expected, most sequences clustered with HIV-1 subtype B (97.9%). Major PI resistance mutations were detected: 8 (8.3%) of 96 patients at a detection threshold of 1% and 3 (3.1%) at a detection threshold of 20%. A total of 1184 mutations in Gag were detected, of which 51 have been associated with resistance to PI, most of them were detected at a threshold of 20%. Follow-up clinical data was available for 79 PLWH at 6 months post-ART initiation, seven PLWH failed their first ART regimen; however no major PI mutations were identified in these individuals at baseline. Conclusions The frequency of DRM in the HIV protease was 7.3% at a detection threshold of 1% and 3.1% at a detection threshold of 20%. NGS-based HIV drug resistance genotyping provide improved detection of DRMs. Viral load was used to monitor ARV response and treatment failure was 8.9%. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07446-8.
Collapse
Affiliation(s)
- Samantha Climaco-Arvizu
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, C.P. 02990, México.,Laboratorio de Medicina Traslacional, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Carolina González-Torres
- División de Desarrollo de La Investigación, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - María Concepción Hernández-García
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional (CMN), La Raza", Ciudad de México, México
| | | | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, C.P. 14080, México
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, C.P. 02990, México
| | - Sandra María Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, C.P. 14080, México.
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, C.P. 02990, México.
| |
Collapse
|
39
|
Miranda MNS, Pingarilho M, Pimentel V, Martins MDRO, Kaiser R, Seguin-Devaux C, Paredes R, Zazzi M, Incardona F, Abecasis AB. Trends of Transmitted and Acquired Drug Resistance in Europe From 1981 to 2019: A Comparison Between the Populations of Late Presenters and Non-late Presenters. Front Microbiol 2022; 13:846943. [PMID: 35495657 PMCID: PMC9044068 DOI: 10.3389/fmicb.2022.846943] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The increased use of antiretroviral therapy (ART) has decreased mortality and morbidity of HIV-1 infected people but increasing levels of HIV drug resistance threatens the success of ART regimens. Conversely, late presentation can impact treatment outcomes, health costs, and potential transmission of HIV. Objective To describe the patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) in HIV-1 infected patients followed in Europe, to compare its patterns in late presenters (LP) vs non-late presenters (NLP), and to analyze the most prevalent drug resistance mutations among HIV-1 subtypes. Methods Our study included clinical, socio-demographic, and genotypic information from 26,973 HIV-1 infected patients from the EuResist Integrated Database (EIDB) between 1981 and 2019. Results Among the 26,973 HIV-1 infected patients in the analysis, 11,581 (42.9%) were ART-naïve patients and 15,392 (57.1%) were ART-experienced. The median age was 37 (IQR: 27.0-45.0) years old and 72.6% were males. The main transmission route was through heterosexual contact (34.9%) and 81.7% of patients originated from Western Europe. 71.9% of patients were infected by subtype B and 54.8% of patients were classified as LP. The overall prevalence of TDR was 12.8% and presented an overall decreasing trend (p for trend < 0.001), the ADR prevalence was 68.5% also with a decreasing trend (p for trend < 0.001). For LP and NLP, the TDR prevalence was 12.3 and 12.6%, respectively, while for ADR, 69.9 and 68.2%, respectively. The most prevalent TDR drug resistance mutations, in both LP and NLP, were K103N/S, T215rev, T215FY, M184I/V, M41I/L, M46I/L, and L90M. Conclusion Our study showed that the overall TDR (12.8%) and ADR (68.5%) presented decreasing trends during the study time period. For LP, the overall TDR was slightly lower than for NLP (12.3 vs 12.6%, respectively); while this pattern was opposite for ADR (LP slightly higher than NLP). We suggest that these differences, in the case of TDR, can be related to the dynamics of fixation of drug resistance mutations; and in the case of ADR with the more frequent therapeutic failure in LPs.
Collapse
Affiliation(s)
- Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Maria do Rosário O Martins
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Carole Seguin-Devaux
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Roger Paredes
- Infectious Diseases Department and IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), Lisbon, Portugal
| |
Collapse
|
40
|
Ma Y, He T, Tan Y, Jiang X. Seq-BEL: Sequence-Based Ensemble Learning for Predicting Virus-Human Protein-Protein Interaction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1322-1333. [PMID: 32750886 DOI: 10.1109/tcbb.2020.3008157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infectious diseases are currently the most important and widespread health problem, and identifying viral infection mechanisms is critical for controlling diseases caused by highly infectious viruses. Because of the lack of non-interactive protein pairs and serious imbalance between positive and negative sample ratios, the supervised learning algorithm is not suitable for prediction. At the same time, due to the lack of information on viral proteins and significant dissimilarity in sequence, some ensemble learning models have poor generalization ability. In this paper, we propose a Sequence-Based Ensemble Learning (Seq-BEL) method to predict the potential virus-human PPIs. Specifically, based on the amino acid sequence of proteins and the currently known virus-human PPI network, Seq-BEL calculates various features and similarities of human proteins and viral proteins, and then combines these similarities and features to score the potential of virus-human PPIs. The computational results show that Seq-BEL achieves success in predicting potential virus-human PPIs and outperforms other state-of-the-art methods. More importantly, Seq-BEL also has good predictive performance for new human proteins and new viral proteins. In addition, the model has the advantages of strong robustness and good generalization ability, and can be used as an effective tool for virus-human PPI prediction.
Collapse
|
41
|
Bareng OT, Moyo S, Zahralban-Steele M, Maruapula D, Ditlhako T, Mokaleng B, Mokgethi P, Choga WT, Moraka NO, Pretorius-Holme M, Mine MO, Raizes E, Molebatsi K, Motswaledi MS, Gobe I, Mohammed T, Gaolathe T, Shapiro R, Mmalane M, Makhema JM, Lockman S, Essex M, Novitsky V, Gaseitsiwe S. HIV-1 drug resistance mutations among individuals with low-level viraemia while taking combination ART in Botswana. J Antimicrob Chemother 2022; 77:1385-1395. [PMID: 35229102 PMCID: PMC9633723 DOI: 10.1093/jac/dkac056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/03/2022] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES To assess whether a single instance of low-level viraemia (LLV) is associated with the presence of drug resistance mutations (DRMs) and predicts subsequent virological failure (VF) in adults receiving ART in 30 communities participating in the Botswana Combination Prevention Project. METHODS A total of 6078 HIV-1 C pol sequences were generated and analysed using the Stanford HIV drug resistance database. LLV was defined as plasma VL = 51-999 copies/mL and VF was defined as plasma VL ≥ 1000 copies/mL. RESULTS Among 6078 people with HIV (PWH), 4443 (73%) were on ART for at least 6 months. Of the 332 persons on ART with VL > 50 copies/mL, 175 (4%) had VL ≥ 1000 copies/mL and 157 (4%) had LLV at baseline. The prevalence of any DRM was 57 (36%) and 78 (45%) in persons with LLV and VL ≥ 1000 copies/mL, respectively. Major DRMs were found in 31 (20%) with LLV and 53 (30%) with VL ≥ 1000 copies/mL (P = 0.04). Among the 135 PWH with at least one DRM, 17% had NRTI-, 35% NNRTI-, 6% PI- and 3% INSTI-associated mutations. Among the 3596 participants who were followed up, 1709 (48%) were on ART for ≥6 months at entry and had at least one subsequent VL measurement (median 29 months), 43 (3%) of whom had LLV. The OR of experiencing VF in persons with LLV at entry was 36-fold higher than in the virally suppressed group. CONCLUSIONS A single LLV measurement while on ART strongly predicted the risk of future VF, suggesting the use of VL > 50 copies/mL as an indication for more intensive adherence support with more frequent VL monitoring.
Collapse
Affiliation(s)
- Ontlametse T Bareng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Melissa Zahralban-Steele
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | | | - Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Wonderful T Choga
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Natasha O Moraka
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Medical Virology, Stellenbosch University, Cape Town, South Africa
| | - Molly Pretorius-Holme
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Madisa O Mine
- Botswana Ministry of Health and Wellness, Gaborone, Botswana
| | - Elliot Raizes
- U.S. Centers for Disease Control and Prevention, Atlanta, USA
| | - Kesaobaka Molebatsi
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Statistics, University of Botswana, Gaborone, Botswana
| | - Modisa S Motswaledi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Irene Gobe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | | | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mompati Mmalane
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Joseph M Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Vlad Novitsky
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
42
|
Mortier V, Debaisieux L, Dessilly G, Stoffels K, Vaira D, Vancutsem E, Van Laethem K, Vanroye F, Verhofstede C. Prevalence and evolution of transmitted HIV drug resistance in Belgium between 2013 and 2019. Open Forum Infect Dis 2022; 9:ofac195. [PMID: 35794938 PMCID: PMC9251670 DOI: 10.1093/ofid/ofac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/08/2022] [Indexed: 11/27/2022] Open
Abstract
Background To assess the prevalence and evolution of transmitted drug resistance (TDR) in Belgium, a total of 3708 baseline human immunodeficiency virus (HIV)-1 polymerase sequences from patients diagnosed between 2013 and 2019 were analyzed. Methods Protease and reverse-transcriptase HIV-1 sequences were collected from the 7 national Aids Reference Laboratories. Subtype determination and drug resistance scoring were performed using the Stanford HIV Drug Resistance Database. Trends over time were assessed using linear regression, and the maximum likelihood approach was used for phylogenetic analysis. Results A total of 17.9% of the patients showed evidence of TDR resulting in at least low-level resistance to 1 drug (Stanford score ≥15). If only the high-level mutations (Stanford score ≥60) were considered, TDR prevalence dropped to 6.3%. The majority of observed resistance mutations impacted the sensitivity for nonnucleoside reverse-transcriptase inhibitors (NNRTIs) (11.4%), followed by nucleoside reverse-transcriptase inhibitors (6.2%) and protease inhibitors (2.4%). Multiclass resistance was observed in 2.4%. Clustered onward transmission was evidenced for 257 of 635 patients (40.5%), spread over 25 phylogenetic clusters. Conclusions The TDR prevalence remained stable between 2013 and 2019 and is comparable to the prevalence in other Western European countries. The high frequency of NNRTI mutations requires special attention and follow-up. Phylogenetic analysis provided evidence for local clustered onward transmission of some frequently detected mutations.
Collapse
Affiliation(s)
- Virginie Mortier
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Laurent Debaisieux
- Aids Reference Laboratory, Université Libre de Bruxelles, CUB Hôpital Erasme, 1070 Brussels, Belgium
| | - Géraldine Dessilly
- Aids Reference Laboratory, Medical Microbiology Unit, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Karolien Stoffels
- Aids Reference Laboratory, Centre Hospitalier Universitaire St. Pierre, 1000 Brussels, Belgium
| | - Dolores Vaira
- Aids Reference Laboratory, Centre Hospitalier Universitaire de Liège, 4000 Liège, Belgium
| | - Ellen Vancutsem
- Aids Reference Laboratory, Vrije Universiteit Brussel VUB, 1090 Brussels, Belgium
| | - Kristel Van Laethem
- Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 3000 Leuven, Belgium Aids Reference Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Fien Vanroye
- Aids Reference Laboratory, Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
43
|
D'Antoni ML, Andreatta K, Acosta R, Martin H, Chang S, Martin R, White KL. Brief Report: Bictegravir/Emtricitabine/Tenofovir Alafenamide Efficacy in Participants With Preexisting Primary Integrase Inhibitor Resistance Through 48 Weeks of Phase 3 Clinical Trials. J Acquir Immune Defic Syndr 2022; 89:433-440. [PMID: 34897227 PMCID: PMC8860220 DOI: 10.1097/qai.0000000000002888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Preexisting drug resistance limits the utility of HIV antiretroviral therapy. Studies have demonstrated safety and efficacy of bictegravir/emtricitabine/tenofovir alafenamide (B/F/TAF), including in patients with M184V/I substitutions. SETTING We investigated virologic outcomes through 48 weeks of B/F/TAF treatment in individuals with preexisting primary integrase strand transfer inhibitor resistance (INSTI-R). METHODS Preexisting INSTI-R was retrospectively evaluated from 7 B/F/TAF studies. INSTI-R was assessed by historical genotypes and/or baseline RNA or DNA sequencing. Viral loads were measured at all visits. RESULTS Preexisting primary INSTI-R substitutions were detected in 20 of the 1907 participants (1.0%). The 20 participants were predominantly male (75%), were Black (65%), had HIV-1 subtype B (85%), and had baseline median CD4 counts of 594 cells/mm3 and median age of 52 years. Most of the participants (n = 19) were virologically suppressed at baseline and had one primary INSTI-R substitution, E92G, Y143C/H, S147G, Q148H/K/R, N155S, or R263K, +/-secondary substitutions. All suppressed participants maintained virologic suppression throughout 48 weeks without any viral blips. One treatment-naive participant had virus with Q148H+G140S that was fully sensitive to bictegravir but only partially to dolutegravir (phenotype <2.5-fold change and >4-fold change, respectively). With a baseline viral load of 30,000 copies/mL, this participant was virologically suppressed by week 4 and maintained <50 copies/mL through week 48. CONCLUSIONS This small cohort with primary INSTI-R achieved and/or maintained virologic suppression through 48 weeks of B/F/TAF treatment. Consistent with the potent in vitro activity of bictegravir against most INSTI-R patterns, B/F/TAF may be a potential treatment option for patients with select preexisting INSTI-R, if confirmed by further studies.
Collapse
|
44
|
Najafi S, Tan SC, Aghamiri S, Raee P, Ebrahimi Z, Jahromi ZK, Rahmati Y, Sadri Nahand J, Piroozmand A, Jajarmi V, Mirzaei H. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother 2022; 148:112743. [PMID: 35228065 PMCID: PMC8872819 DOI: 10.1016/j.biopha.2022.112743] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viral infections are a common cause of morbidity worldwide. The emergence of Coronavirus Disease 2019 (COVID-19) has led to more attention to viral infections and finding novel therapeutics. The CRISPR-Cas9 system has been recently proposed as a potential therapeutic tool for the treatment of viral diseases. Here, we review the research progress in the use of CRISPR-Cas technology for treating viral infections, as well as the strategies for improving the delivery of this gene-editing tool in vivo. Key challenges that hinder the widespread clinical application of CRISPR-Cas9 technology are also discussed, and several possible directions for future research are proposed.
Collapse
Affiliation(s)
- Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahimi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Kargar Jahromi
- Central Research Laboratory, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Piroozmand
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Correspondence to: Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4818, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author at: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
Mótyán JA, Mahdi M, Hoffka G, Tőzsér J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int J Mol Sci 2022; 23:3507. [PMID: 35408866 PMCID: PMC8998604 DOI: 10.3390/ijms23073507] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| |
Collapse
|
46
|
Ilgova E, Galkin S, Khrenova M, Serebryakova M, Gottikh M, Anisenko A. Complex of HIV-1 Integrase with Cellular Ku Protein: Interaction Interface and Search for Inhibitors. Int J Mol Sci 2022; 23:ijms23062908. [PMID: 35328329 PMCID: PMC8951179 DOI: 10.3390/ijms23062908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
The interaction of HIV-1 integrase and the cellular Ku70 protein is necessary for HIV replication due to its positive effect on post-integration DNA repair. We have previously described in detail the Ku70 binding site within integrase. However, the integrase binding site in Ku70 remained poorly characterized. Here, using a peptide fishing assay and site-directed mutagenesis, we have identified residues I72, S73, and I76 of Ku70 as key for integrase binding. The molecular dynamics studies have revealed a possible way for IN to bind to Ku70, which is consistent with experimental data. According to this model, residues I72 and I76 of Ku70 form a "leucine zipper" with integrase residues, and, therefore, their concealment by low-molecular-weight compounds should impede the Ku70 interaction with integrase. We have identified such compounds by molecular docking and have confirmed their capacity to inhibit the formation of the integrase complex with Ku70. Our data demonstrate that the site of IN binding within Ku70 identified in the present work may be used for further search for inhibitors of the integrase binding to Ku70.
Collapse
Affiliation(s)
- Ekaterina Ilgova
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
| | - Simon Galkin
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Maria Khrenova
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Marina Gottikh
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (E.I.); (S.G.); (M.K.); (M.G.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence:
| |
Collapse
|
47
|
Canetti D, Muccini C, Spagnuolo V, Galli L, Poli A, Gianotti N, Feasi M, Castagna A. Achieving virological control in pan-resistant HIV-1 infection: A case series. EBioMedicine 2022; 77:103906. [PMID: 35255457 PMCID: PMC8897623 DOI: 10.1016/j.ebiom.2022.103906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND HIV-1 pan-resistance refers to a reduced susceptibility to nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and integrase strand tranfer inhibitors. Although still anecdotal, its management remains a concern both for affected people living with HIV (PLWH) and for public health. METHODS We described genotypic resistance testing (GRT) of three PLWH with a documented poor virological response to previous antiretroviral therapies, who started ibalizumab, an anti-CD4 monoclonal antibody, combined with an optimized background therapy. Both historical and most recent GRT on plasma RNA and peripheral blood mononuclear cell DNA were interpreted according to the Stanford HIVDb version 9.0 (last updated on 22 February, 2021). After the switch to a regimen including the monoclonal antibody, HIV-1 RNA has been quantified biweekly (PCR Cobas® HIV-1 test 6800 Systems, Roche Diagnostics). Follow-up was censored at data freezing (16 January, 2021). FINDINGS We report findings from heavily treatment-experienced PLWH with a pan-resistant HIV-1 infection, who achieved virological control once introduced injections of ibalizumab, that is free from cross-resistance with all the antiretroviral drugs available and ensures patient adherence due to a close monitoring attributable to the route of administration, combined with recycled enfuvirtide and an optimized background regimen, selected on the basis of an accurate evaluation of resistance mutations. INTERPRETATION In these cases, this new approach has revealed to be a turning point in achieving virological control. FUNDING None, this research was supported by internal funding.
Collapse
Affiliation(s)
- Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Stamira D'Ancona 20, Milan 20127, Italy.
| | - Camilla Muccini
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Stamira D'Ancona 20, Milan 20127, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | - Laura Galli
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Stamira D'Ancona 20, Milan 20127, Italy
| | - Andrea Poli
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Stamira D'Ancona 20, Milan 20127, Italy
| | - Nicola Gianotti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Stamira D'Ancona 20, Milan 20127, Italy
| | | | - Antonella Castagna
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Stamira D'Ancona 20, Milan 20127, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
48
|
Yan L, Yu F, Liang J, Cheng Y, Li H, Zhao Q, Chen J, Chen M, Guo J, Zhao H, Zhang F. Drug resistance profiles and influencing factors among HIV-infected children and adolescents receiving long-term ART: a multicentre observational study in China. J Antimicrob Chemother 2022; 77:727-734. [PMID: 35195695 DOI: 10.1093/jac/dkab430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES To analyse the characteristics and determinants of drug resistance mutations (DRMs) in HIV-infected children and adolescents on long-term ART in China. METHODS An observational cohort study was conducted in five centres. All participants younger than 15 years at ART initiation were screened, and those identified as having virological failure (VF) with viral load (VL) ≥ 400 copies/mL were included for genotypic resistance testing. Logistic regression analysis was performed and the accumulation of major mutations was analysed in a subgroup of resistant individuals with complete VL results since HIV diagnosis. RESULTS Among 562 eligible participants, protease and RT regions were successfully amplified for 93 who failed treatment with a median of 10.0 years ART. Sixty-eight (73.1%) harboured ≥1 major mutations. NRTI, NNRTI and dual-class resistance accounted for 48.4%, 63.4% and 38.7%, respectively. Only 3.2% were resistant to PIs. Age at ART initiation [adjusted OR (aOR) = 0.813, 95% CI 0.690-0.957], subtype B (aOR = 4.378, 95% CI 1.414-13.560) and an initial NNRTI-based regimen (aOR = 3.331, 95% CI 1.180-9.402) were independently associated with DRMs. Among 40 resistant participants with additional VL data, 55.0% had continued VF on a suboptimal regimen and the estimated duration of VF was positively correlated with the total number of major mutations (r = 0.504, P = 0.001). CONCLUSIONS The development of DRMs was common in children and adolescents receiving long-term treatment, and continued VF was prevalent in those with resistance. Timely genotypic testing and new child-friendly formulations are therefore urgently required.
Collapse
Affiliation(s)
- Liting Yan
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China.,Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Fengting Yu
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China.,Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Jiangming Liang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, China
| | - Yuewu Cheng
- Shangcai Center for Disease Control and Prevention of Henan Province, Shangcai, China
| | - Huiqin Li
- AIDS Care Center, Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Qingxia Zhao
- The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jinfeng Chen
- Center for Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meiling Chen
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China.,Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Jing Guo
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China.,Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Hongxin Zhao
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China.,Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Fujie Zhang
- Capital Medical University Affiliated Beijing Ditan Hospital, Beijing, China.,Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| |
Collapse
|
49
|
Nelson DJ, Leelawong M, Pask ME, Wester CW, Aliyu MH, Haselton FR. Magnetic Bead Processing Enables Sensitive Ligation-Based Detection of HIV Drug Resistance Mutations. Anal Chem 2022; 94:2625-2632. [PMID: 35077642 PMCID: PMC11127743 DOI: 10.1021/acs.analchem.1c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HIV develops single nucleotide polymorphisms (SNPs), some of which lead to drug resistance mutations (DRMs) that prevent therapeutic viral suppression. Genomic sequencing enables healthcare professionals to select effective combination antiretroviral therapy (ART) to achieve and maintain viral suppression. However, sequencing technologies, which are resource-intensive, are limited in their availability. This report describes the first step toward a highly specific ligation-based SNP discrimination method with endpoint PCR detection, which is more suitable for resource-limited clinics. The approach is based on magnetic bead processing to maximize reaction product transfer and minimize the carryover of incompatible buffer for three consecutive enzymatic reactions─reverse transcription (RT), oligonucleotide ligation assay (OLA), and PCR. The method improved PCR detection following RT → OLA by 8.06 cycles (∼250-fold) compared to direct pipette processing and detected between 103 and 104 RNA copies per reaction. In studies with synthesized nucleic acids based on the well-studied HIV mutation, K103N, the assay successfully differentiated between wild-type and mutant for RNA targets with high specificity. With further development, this design provides a pathway for SNP detection with more accessible PCR instrumentation and is a step toward a self-contained processing approach that incorporates the SNP specificity of the ligation reaction for more effective clinical management of DRMs in resource-constrained settings.
Collapse
Affiliation(s)
- Dalton J Nelson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mindy Leelawong
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Megan E Pask
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - C William Wester
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Muktar H Aliyu
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Frederick R Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
50
|
Novitsky V, Steingrimsson J, Gillani FS, Howison M, Aung S, Solomon M, Won CY, Brotherton A, Shah R, Dunn C, Fulton J, Bertrand T, Civitarese A, Howe K, Marak T, Chan P, Bandy U, Alexander-Scott N, Hogan J, Kantor R. Statewide Longitudinal Trends in Transmitted HIV-1 Drug Resistance in Rhode Island, USA. Open Forum Infect Dis 2022; 9:ofab587. [PMID: 34988256 PMCID: PMC8709897 DOI: 10.1093/ofid/ofab587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/06/2021] [Indexed: 11/14/2022] Open
Abstract
Background HIV-1 transmitted drug resistance (TDR) remains a global challenge that can impact care, yet its comprehensive assessment is limited and heterogenous. We longitudinally characterized statewide TDR in Rhode Island. Methods Demographic and clinical data from treatment-naïve individuals were linked to protease, reverse transcriptase, and integrase sequences routinely obtained over 2004-2020. TDR extent, trends, impact on first-line regimens, and association with transmission networks were assessed using the Stanford Database, Mann-Kendall statistic, and phylogenetic tools. Results In 1123 individuals, TDR to any antiretroviral increased from 8% (2004) to 26% (2020), driven by non-nucleotide reverse transcriptase inhibitor (NNRTI; 5%-18%) and, to a lesser extent, nucleotide reverse transcriptase inhibitor (NRTI; 2%-8%) TDR. Dual- and triple-class TDR rates were low, and major integrase strand transfer inhibitor resistance was absent. Predicted intermediate to high resistance was in 77% of those with TDR, with differential suppression patterns. Among all individuals, 34% were in molecular clusters, some only with members with TDR who shared mutations. Among clustered individuals, people with TDR were more likely in small clusters. Conclusions In a unique (statewide) assessment over 2004-2020, TDR increased; this was primarily, but not solely, driven by NNRTIs, impacting antiretroviral regimens. Limited TDR to multiclass regimens and pre-exposure prophylaxis are encouraging; however, surveillance and its integration with molecular epidemiology should continue in order to potentially improve care and prevention interventions.
Collapse
Affiliation(s)
| | | | | | - Mark Howison
- Research Improving People's Life, Providence, Rhode Island, USA
| | - Su Aung
- Brown University, Providence, Rhode Island, USA
| | | | - Cindy Y Won
- Brown University, Providence, Rhode Island, USA
| | | | - Rajeev Shah
- Brown University, Providence, Rhode Island, USA
| | - Casey Dunn
- Yale University, New Haven, Connecticut, USA
| | - John Fulton
- Brown University, Providence, Rhode Island, USA
| | - Thomas Bertrand
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Anna Civitarese
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Katharine Howe
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Theodore Marak
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Philip Chan
- Brown University, Providence, Rhode Island, USA.,Rhode Island Department of Health, Providence, Rhode Island, USA
| | - Utpala Bandy
- Rhode Island Department of Health, Providence, Rhode Island, USA
| | | | | | - Rami Kantor
- Brown University, Providence, Rhode Island, USA
| |
Collapse
|