1
|
Chen L, Qiu Q, Zhu Q, Li J, Xie X, Shao X, Liang J, Zhang W, Zheng H, Li B, Xu L, Zeng H, Sun L. Serological investigation on the prevalence of poliovirus in Guangdong province: A cross-sectional study. Hum Vaccin Immunother 2024; 20:2300156. [PMID: 38189143 PMCID: PMC10793669 DOI: 10.1080/21645515.2023.2300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024] Open
Abstract
In 2019, we conducted a cross-sectional study for polio virus seroprevalence in Guangdong province, China. We assessed the positivity rates of poliomyelitis NA and GMT in serum across various demographic groups, and the current findings were compared with pre-switch data from 2014. Using multistage random sampling method, four counties/districts were randomly selected per city, and within each, one general hospital and two township hospitals were chosen. Healthy individuals coming for medical checkups or vaccination were invited. A total of 1318 individual samples were collected and tested. In non-newborn population, age-dependent positivity rates ranged from 77.8% to 100% for PV1 NA and 70.3% to 98.9% for PV3 NA (p < .01). The lowest GMT values for both types (17.03 and 8.46) occurred in the 20 to <30 years age group, while peak GMTs for PV1 and PV3 were observed in 1 to <2 (340.14) and 0 to <1-year (168.90) age groups, respectively. GMTs for PV1 (P = .002) and PV3 (P = .007) in Eastern Guangdong were lower than those in the other three regions. Male participants showed higher GMTs than females (P = .016 and .033, respectively). In newborn population, both males and females showed higher PV1 NA positivity rates and GMTs compared to PV3 (p < .05). Post-switch PV3 NA positivity rates were higher than pre-switch rates (p = .016). GMTs of both PV1 and PV3 were significantly higher post-switch (p < .001). The positivity rates of NAs and GMTs remain high level, which play an important role in resisting poliomyelitis infection. Effect of the converted immunization program was more pronounced than that before.
Collapse
Affiliation(s)
- Linxiang Chen
- Department of Immunization Planning, Luohu District Center for Disease Control and Prevention, Shenzhen, China
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Quan Qiu
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qi Zhu
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jialing Li
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xin Xie
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xiaoping Shao
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jian Liang
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Wei Zhang
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Institute of Pathogenic Microbiology, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, China
| | - Huanying Zheng
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Institute of Pathogenic Microbiology, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, China
| | - Baisheng Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Institute of Pathogenic Microbiology, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, China
| | - Lin Xu
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hanri Zeng
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Institute of Pathogenic Microbiology, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, China
| | - Limei Sun
- Institute of Immunization Programme, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Devaux CA, Pontarotti P, Levasseur A, Colson P, Raoult D. Is it time to switch to a formulation other than the live attenuated poliovirus vaccine to prevent poliomyelitis? Front Public Health 2024; 11:1284337. [PMID: 38259741 PMCID: PMC10801389 DOI: 10.3389/fpubh.2023.1284337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
The polioviruses (PVs) are mainly transmitted by direct contact with an infected person through the fecal-oral route and respiratory secretions (or more rarely via contaminated water or food) and have a primary tropism for the gut. After their replication in the gut, in rare cases (far less than 1% of the infected individuals), PVs can spread to the central nervous system leading to flaccid paralysis, which can result in respiratory paralysis and death. By the middle of the 20th century, every year the wild polioviruses (WPVs) are supposed to have killed or paralyzed over half a million people. The introduction of the oral poliovirus vaccines (OPVs) through mass vaccination campaigns (combined with better application of hygiene measures), was a success story which enabled the World Health Organization (WHO) to set the global eradication of poliomyelitis as an objective. However this strategy of viral eradication has its limits as the majority of poliomyelitis cases today arise in individuals infected with circulating vaccine-derived polioviruses (cVDPVs) which regain pathogenicity following reversion or recombination. In recent years (between January 2018 and May 2023), the WHO recorded 8.8 times more cases of polio which were linked to the attenuated OPV vaccines (3,442 polio cases after reversion or recombination events) than cases linked to a WPV (390 cases). Recent knowledge of the evolution of RNA viruses and the exchange of genetic material among biological entities of the intestinal microbiota, call for a reassessment of the polio eradication vaccine strategies.
Collapse
Affiliation(s)
- Christian Albert Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Pierre Pontarotti
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), Marseille, France
| | - Anthony Levasseur
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM, Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Sharma AK, Verma H, Estivariz CF, Bajracharaya L, Rai G, Shah G, Sherchand J, Jones KAV, Mainou BA, Chavan S, Jeyaseelan V, Sutter RW, Shrestha LP. Persistence of immunity following a single dose of inactivated poliovirus vaccine: a phase 4, open label, non-randomised clinical trial. THE LANCET MICROBE 2023; 4:e923-e930. [DOI: org/10.1016/s2666-5247(23)00215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023] Open
|
4
|
Sharma AK, Verma H, Estivariz CF, Bajracharaya L, Rai G, Shah G, Sherchand J, Jones KAV, Mainou BA, Chavan S, Jeyaseelan V, Sutter RW, Shrestha LP. Persistence of immunity following a single dose of inactivated poliovirus vaccine: a phase 4, open label, non-randomised clinical trial. THE LANCET. MICROBE 2023; 4:e923-e930. [PMID: 37774729 DOI: 10.1016/s2666-5247(23)00215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND The polio eradication endgame required the withdrawal of Sabin type 2 from the oral poliovirus vaccine and introduction of one or more dose of inactivated poliovirus vaccine (IPV) into routine immunisation schedules. However, the duration of single-dose IPV immunity is unknown. We aimed to address this deficiency. METHODS In this phase 4, open-label, non-randomised clinical trial, we assessed single-dose IPV immunity. Two groups of infants or children were screened: the first group had previously received IPV at 14 weeks of age or older (previous IPV group; age >2 years); the second had not previously received IPV (no previous IPV group; age 7-12 months). At enrolment, all participants received an IPV dose. Children in the no previous IPV group received a second IPV dose at day 30. Blood was collected three times in each group: on days 0, 7, and 30 in the previous IPV group and on days 0, 30, and 37 in the no previous IPV group. Poliovirus antibody was measured by microneutralisation assay. Immunity was defined as the presence of a detectable antibody or a rapid anamnestic response (ie, priming). We used the χ2 to compare proportions and the Mann-Whitney U test to assess continuous variables. To assess safety, vaccinees were observed for 30 min, caregivers for each participating child reported adverse events after each follow-up visit and were questioned during each follow-up visit regarding any adverse events during the intervening period. Adverse events were recorded and graded according to the severity of clinical symptoms. The study is registered with ClinicalTrials.gov, NCT03723837. FINDINGS From Nov 18, 2018, to July 31, 2019, 502 participants enrolled in the study, 458 (255 [65%] boys and 203 [44%] girls) were included in the per protocol analysis: 234 (93%) in the previous IPV group and 224 (90%) in the no previous IPV group. In the previous IPV group, 28 months after one IPV dose 233 (>99%) of 234 children had persistence of poliovirus type 2 immunity (100 [43%] of 234 children were seropositive; 133 [99%] of 134 were seronegative and primed). In the no previous IPV group, 30 days after one IPV dose all 224 (100%) children who were type 2 poliovirus naive had seroconverted (223 [>99%] children) or were primed (one [<1%]). No adverse events were deemed attributable to study interventions. INTERPRETATION A single IPV dose administered at 14 weeks of age or older is highly immunogenic and induces nearly universal type 2 immunity (seroconversion and priming), with immunity persisting for at least 28 months. The polio eradication initiative should prioritise first IPV dose administration to mitigate the paralytic burden caused by poliovirus type 2. FUNDING WHO and Rotary International.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Luna Bajracharaya
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Ganesh Rai
- Department of Pediatric Medicine, Kanti Children's Hospital, Kathmandu, Nepal
| | - Ganesh Shah
- Department of Pediatrics, Patan Hospital, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Jeevan Sherchand
- Department of Microbiology, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | | | | | - Smita Chavan
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Laxman P Shrestha
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
5
|
Capeding MR, Gomez-Go GD, Oberdorfer P, Borja-Tabora C, Bravo L, Carlos J, Tangsathapornpong A, Uppala R, Laoprasopwattana K, Yang Y, Han S, Wittawatmongkol O. Safety and Immunogenicity of a New Inactivated Polio Vaccine Made From Sabin Strains: A Randomized, Double-Blind, Active-Controlled, Phase 2/3 Seamless Study. J Infect Dis 2022; 226:308-318. [PMID: 33351072 PMCID: PMC9400411 DOI: 10.1093/infdis/jiaa770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A new inactivated polio vaccine made from Sabin strains (sIPV) was developed as part of the global polio eradication initiative. METHODS This randomized, double-blind, active-controlled, phase 2/3 seamless study was conducted in 2 stages. Healthy infants aged 6 weeks were randomly assigned to receive 3 doses of 1 of 4 study vaccines at 6, 10, and 14 weeks of age (336 received low-, middle-, or high-dose sIPV, or conventional IPV [cIPV] in stage I, and 1086 received lot A, B, or C of the selected sIPV dose, or cIPV in stage II). The primary outcome was the seroconversion rate 4 weeks after the third vaccination. RESULTS In stage I, low-dose sIPV was selected as the optimal dose. In stage II, consistency among the 3 manufacturing lots of sIPV was demonstrated. The seroconversion rates for Sabin and wild strains of the 3 serotypes after the 3-dose primary series were 95.8% to 99.2% in the lot-combined sIPV group and 94.8% to 100% in the cIPV group, proving the noninferiority of sIPV compared to cIPV. No notable safety risks associated with sIPV were observed. CONCLUSIONS Low-dose sIPV administered as a 3-dose vaccination was safe and immunogenic compared to cIPV. CLINICAL TRIALS REGISTRATION NCT03169725.
Collapse
Affiliation(s)
- Maria Rosario Capeding
- Department of Microbiology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | | | - Peninnah Oberdorfer
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Charissa Borja-Tabora
- Clinical Research Division, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | - Lulu Bravo
- Department of Pediatrics, University of the Philippines Manila, Manila, Philippines
| | - Josefina Carlos
- Department of Pediatrics, College of Medicine, University of the East-Ramon Magsaysay Memorial Medical Center, Quezon City, Philippines
| | | | - Rattapon Uppala
- Department of Pediatrics, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | | | - Yunjeong Yang
- Life Sciences, LG Chem, Ltd, Seoul, Republic of Korea
| | - Song Han
- Life Sciences, LG Chem, Ltd, Seoul, Republic of Korea
| | - Orasri Wittawatmongkol
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Van Tilbeurgh M, Lemdani K, Beignon AS, Chapon C, Tchitchek N, Cheraitia L, Marcos Lopez E, Pascal Q, Le Grand R, Maisonnasse P, Manet C. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines (Basel) 2021; 9:579. [PMID: 34205932 PMCID: PMC8226531 DOI: 10.3390/vaccines9060579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Vaccines represent one of the major advances of modern medicine. Despite the many successes of vaccination, continuous efforts to design new vaccines are needed to fight "old" pandemics, such as tuberculosis and malaria, as well as emerging pathogens, such as Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination aims at reaching sterilizing immunity, however assessing vaccine efficacy is still challenging and underscores the need for a better understanding of immune protective responses. Identifying reliable predictive markers of immunogenicity can help to select and develop promising vaccine candidates during early preclinical studies and can lead to improved, personalized, vaccination strategies. A systems biology approach is increasingly being adopted to address these major challenges using multiple high-dimensional technologies combined with in silico models. Although the goal is to develop predictive models of vaccine efficacy in humans, applying this approach to animal models empowers basic and translational vaccine research. In this review, we provide an overview of vaccine immune signatures in preclinical models, as well as in target human populations. We also discuss high-throughput technologies used to probe vaccine-induced responses, along with data analysis and computational methodologies applied to the predictive modeling of vaccine efficacy.
Collapse
Affiliation(s)
- Matthieu Van Tilbeurgh
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Katia Lemdani
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Anne-Sophie Beignon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Nicolas Tchitchek
- Unité de Recherche i3, Inserm UMR-S 959, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France;
| | - Lina Cheraitia
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Ernesto Marcos Lopez
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Quentin Pascal
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Pauline Maisonnasse
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| | - Caroline Manet
- Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, Institut de Biologie François-Jacob (IBJF), University Paris-Sud—INSERM U1184, CEA, 92265 Fontenay-Aux-Roses, France; (M.V.T.); (K.L.); (A.-S.B.); (C.C.); (L.C.); (E.M.L.); (Q.P.); (R.L.G.); (P.M.)
| |
Collapse
|
7
|
Saleem AF, Mach O, Yousafzai MT, Kazi Z, Baig A, Sajid M, Jeyaseelan V, Sutter RW, Zaidi AKM. One-Year Decline of Poliovirus Antibodies Following Fractional-Dose Inactivated Poliovirus Vaccine. J Infect Dis 2021; 223:1214-1221. [PMID: 32798224 PMCID: PMC8030725 DOI: 10.1093/infdis/jiaa504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fractional dose (one-fifth of full intramuscular dose) of inactivated poliovirus vaccine (fIPV) administered intradermally is used as IPV dose-sparing strategy. We compared the rate of decline of poliovirus antibodies (PVA) in recipients of 2 doses of fIPV or IPV. METHODS A community-based randomized controlled trial was conducted in Karachi, Pakistan. Children aged 14 weeks were randomized into fIPV or full IPV (study arms A, B) and received 1 vaccine dose at age 14 weeks and 1 at age 9 months. PVAs were measured at age 14, 18 weeks and 10, 21 months. RESULTS Seroprevalence of poliovirus type 2 antibodies in 170/250 (68%) children after 2 IPV or fIPV doses at age 10 months in A and B reached 100% vs 99% (P = .339), and at 21 months, 86% vs 67% (P = .004). Between age 10 and 21 months antibody log2 titers dropped from ≥ 10.5 to 6.8 in A and from 9.2 to 3.7 in B. CONCLUSIONS There was a significant decline in antibody titers 12 months following the second IPV dose. The slope of decline was similar for full IPV and fIPV recipients. The results provide further evidence that fIPV is a viable option for IPV dose-sparing. CLINICAL TRIALS REGISTRATION NCT03286803.
Collapse
Affiliation(s)
| | - Ondrej Mach
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | | | | | | | | | - Vishali Jeyaseelan
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | - Roland W Sutter
- Polio Eradication Department, World Health Organization, Geneva, Switzerland
| | - Anita K M Zaidi
- Aga Khan University, Karachi, Pakistan
- Bill and Melinda Gates Foundation, Seattle, USA
| |
Collapse
|
8
|
Kanduc D, Shoenfeld Y. Medical, Genomic, and Evolutionary Aspects of the Peptide Sharing between Pathogens, Primates, and Humans. Glob Med Genet 2020; 7:64-67. [PMID: 32939517 PMCID: PMC7490124 DOI: 10.1055/s-0040-1716334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comparing mammalian proteomes for molecular mimicry with infectious pathogens highlights the highest levels of heptapeptide sharing between pathogens and human, murine, and rat proteomes, while the peptide sharing level is minimal (or absent) with proteomes from nonhuman primates such as gorilla, chimpanzee, and rhesus macaque. From the medical point of view, the data might be useful to clinicians and vaccinologists to develop and evaluate immunomodulatory and immunotherapeutic approaches. As a matter of fact, primates seem to be unreliable animal models for revealing potential autoimmune events in preclinical testing of immunotherapies. In terms of genomics, the scarce or absent peptide sharing between pathogens and primates versus the massive peptide sharing existing between pathogens and humans lets foresee mechanisms of pathogen sequence insertion/deletion/alteration that have differently operated in mammals over evolutionary timescales. Why and how the human genome has been colonized by pathogen sequences and why and how primates escaped such a colonization appears to be the new scientific challenge in our efforts to understand not only the origin of Homo sapiens but also his autoimmune diseasome.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, University School of Medicine, Tel-Aviv University, Tel-Hashomer, Israel
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
9
|
Zaman K, Anand A. Complex task to estimate immune responses to various poliovirus vaccines and vaccination schedules. THE LANCET. INFECTIOUS DISEASES 2019; 19:1043-1045. [PMID: 31350191 PMCID: PMC10846467 DOI: 10.1016/s1473-3099(19)30322-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Khalequ Zaman
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh.
| | - Abhijeet Anand
- US Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|