1
|
Nelson JL, Lambert NC. The when, what, and where of naturally-acquired microchimerism. Semin Immunopathol 2025; 47:20. [PMID: 40067465 DOI: 10.1007/s00281-024-01029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 05/13/2025]
Abstract
Naturally acquired microchimerism (Mc) is increasingly recognized as an aspect of normal biology. Maternal-fetal bi-directional exchange during pregnancy creates a Mc legacy for the long-term in both individuals. Maternal Mc in her offspring and Mc of fetal origin in women with previous births are best studied. Other sources include from a known or vanished twin, miscarriage or pregnancy termination, older sibling, or previous maternal pregnancy loss. Mc is pleotropic and protean, present in diverse forms, and changing over time as other aspects of biology. Mc acquired from multiple sources, at different lifespan times, and taking on an array of diverse forms, creates a "forward, reverse, and horizontal inheritance" Mc landscape. Mc is found in adaptive and innate immune cells, as resident tissue-specific cells in a wide variety of human tissues, and among other forms as extracellular vesicles. HLA molecules function in a myriad of ways as key determinants for health and are of central importance in interactions between genetically disparate individuals. Studies of autoimmune disease have firmly established a primary role of HLA molecules. Studies of iatrogenic chimerism have established benefit of donor-recipient HLA-disparity against recurrent malignancy after transplantation. HLA molecules and HLA-relationships of families are therefore of particular interest in seeking to understand the role(s) of Mc at the interface of auto-immunity and healthy allo-immunity. This review will begin by providing perspective on Mc in biology followed by a primary focus on persistent Mc according to the human lifespan, in healthy individuals and with illustrative examples of autoimmune diseases.
Collapse
Affiliation(s)
- J Lee Nelson
- Department of Medicine, University of Washington, Seattle, WA, USA.
- Translational Science and Therapeutics Fred Hutchinson Cancer Center, Seattle, USA.
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites, Microchimérisme et Inflammations (ARTHEMIS), Aix Marseille Université, Marseille, France.
| |
Collapse
|
2
|
Jacobsen DP, Fjeldstad HE, Olsen MB, Sugulle M, Staff AC. Microchimerism and pregnancy complications with placental dysfunction. Semin Immunopathol 2025; 47:21. [PMID: 40067448 PMCID: PMC11897092 DOI: 10.1007/s00281-025-01045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/27/2025] [Indexed: 03/15/2025]
Abstract
Cells cross the placenta during pregnancy, resulting in proliferation of semiallogeneic cells in the mother and fetus decades later. This phenomenon, termed microchimerism, is documented across mammalian species, implying an evolutionary benefit. Still, short- and long-term effects remain uncertain. Here, we review the dynamics of microchimerism of fetal, maternal, and mother of the proband origin in relation to increasing gestational age and pregnancy complications associated with placental dysfunction including preeclampsia, fetal growth restriction, preterm labor, recurrent miscarriage, and diabetes. We use the two-stage model of preeclampsia as a framework. We recently published a series of papers independently linking increased fetal microchimerism to markers of placental dysfunction (stage 1), severe maternal hypertension (stage 2) and poor glucose control. Placental dysfunction may influence the intrinsic properties of fetal stem cells. Mesenchymal and hematopoietic stem cells isolated from cord blood during preeclampsia display reduced proliferative potential in vitro. Moreover, preeclampsia is shown to disrupt paracrine signaling in mesenchymal stem cells of the umbilical cord. Undesired properties in cells transferred to the mother could have profound negative effects on maternal health. Finally, recent studies indicate that microchimerism is involved in inducing maternal-fetal tolerance. Disruption of this process is associated with pregnancy complications. Long term, the persistence of microchimerism is necessary to sustain specific regulatory T cell populations in mice. This likely plays a role in the proband's future pregnancies and long-term maternal and offspring health. Current evidence indicates that advancements in our understanding of microchimerism could be instrumental in promoting reproductive and long-term health.
Collapse
Affiliation(s)
- Daniel Pitz Jacobsen
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway.
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo University Hospital, Kirkeveien 166, Box 4956, Oslo, Nydalen, Oslo, 0450, 0424, PO, Norway.
| | - Heidi E Fjeldstad
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Maria B Olsen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Meryam Sugulle
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Bergmann L, Afflerbach AK, Yuan T, Pantel K, Smit DJ. Lessons (to be) learned from liquid biopsies: assessment of circulating cells and cell-free DNA in cancer and pregnancy-acquired microchimerism. Semin Immunopathol 2025; 47:14. [PMID: 39893314 PMCID: PMC11787191 DOI: 10.1007/s00281-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Tumors constantly shed cancer cells that are considered the mediators of metastasis via the blood stream. Analysis of circulating cells and circulating cell-free DNA (cfDNA) in liquid biopsies, mostly taken from peripheral blood, have emerged as powerful biomarkers in oncology, as they enable the detection of genomic aberrations. Similarly, liquid biopsies taken from pregnant women serve as prenatal screening test for an abnormal number of chromosomes in the fetus, e.g., via the analysis of microchimeric fetal cells and cfDNA circulating in maternal blood. Liquid biopsies are minimally invasive and, consequently, associated with reduced risks for the patients. However, different challenges arise in oncology and pregnancy-acquired liquid biopsies with regard to the analyte concentration and biological (background) noise among other factors. In this review, we highlight the unique biological properties of circulating tumor cells (CTC), summarize the various techniques that have been developed for the enrichment, detection and analysis of CTCs as well as for analysis of genetic and epigenetic aberrations in cfDNA and highlight the range of possible clinical applications. Lastly, the potential, but also the challenges of liquid biopsies in oncology as well as their translational value for the analysis of pregnancy-acquired microchimerism are discussed.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Ann-Kristin Afflerbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Tingjie Yuan
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
4
|
Cainelli E, Vedovelli L, Bisiacchi P. The mother-child interface: A neurobiological metamorphosis. Neuroscience 2024; 561:92-106. [PMID: 39427701 DOI: 10.1016/j.neuroscience.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. After childbirth, mother and child go through a transitional phase, a sort of limbo in which both will have a peculiar functioning profile, which is adaptive for contingencies but also renders them vulnerable. The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
5
|
Hemon M, Giassi M, Ghaffar Y, Martin M, Roudier J, Auger I, Lambert NC. Microchimeric cells promote production of rheumatoid arthritis-specific autoantibodies. J Autoimmun 2024; 146:103238. [PMID: 38754239 DOI: 10.1016/j.jaut.2024.103238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Women are more likely to develop autoimmune diseases than men. Contribution from microchimerism (Mc) has been proposed, as women naturally acquire Mc from more sources than men because of pregnancy. Women with Rheumatoid Arthritis (RA) who lack RA-associated HLA alleles have been found to harbor Mc with RA-associated HLA alleles in higher amounts than healthy women in prior work. However, an immunological impact of Mc remains to be elucidated. OBJECTIVES To test the hypothesis that Mc with RA-risk associated HLA alleles can result in the production of RA-associated autoantibodies, when host genetic risk is absent. METHODS DBA/2 mice are unable to produce RA-specific anti-citrullinated autoantibodies (ACPAs) after immunization with the enzyme peptidyl arginine deiminase (PAD) in a previously developed model. DBA/2 females were mated with C57BL/6 males humanized to express HLA-DR4, which is associated with RA-risk and production of ACPAs, to evaluate DR4+ fetal Mc contribution. Next, DBA/2 females born of heterozygous DR4+/- mothers were evaluated for DR4+ Mc of maternal or littermate origin. Finally, DBA/2 females from DR4+/- mothers were crossed with DR4+ males, to evaluate the contribution of any Mc source to ACPA production. RESULTS After PAD immunization, between 20 % and 43 % of DBA/2 females (otherwise unable to produce ACPAs) had detectable ACPAs (CCP2 kit) after exposure to sources of Mc with RA-associated HLA alleles, compared to 0 % of unmated/unexposed DBA/2 females. Further the microchimeric origin of the autoantibodies was confirmed by detecting a C57BL/6-specific immunoglobulin isotype in the DBA/2 response. CONCLUSION Our study demonstrates that Mc cells can produce "autoantibodies" and points to a role of Mc in the biology of autoimmune diseases, including RA.
Collapse
Affiliation(s)
- Marie Hemon
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France; Arthritis R&D, Neuilly-sur-Seine, France
| | - Mathilde Giassi
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Yoan Ghaffar
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Marielle Martin
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Jean Roudier
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France; Rheumatology department, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille France
| | - Isabelle Auger
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France.
| |
Collapse
|
6
|
Morales-Prieto DM, Wieditz K, Götze J, Pastuschek J, Weber M, Göhner C, Groten T, Markert UR. Transplacental migration of maternal natural killer and T cells assessed by ex vivo human placenta perfusion. Placenta 2024; 146:42-49. [PMID: 38169218 DOI: 10.1016/j.placenta.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION The transplacental passage of cells between a mother and her fetus, known as microchimerism, is a less studied process during pregnancy. The frequency of maternal microchimeric cells in fetal tissues in physiological pregnancies and mechanisms responsible for transplacental cell trafficking are poorly understood. This study aimed to evaluate the placental trafficking of maternal peripheral blood mononuclear cells (PBMC) using human ex vivo placenta perfusion. METHODS Ten placentas and maternal PBMC were obtained after healthy pregnancies. Flow cytometry was used to characterize PBMC subtypes. They showed a higher percentage of CD3+ T cells compared to CD56+ NK cells. The isolated PBMC were stained with a fluorescent dye and perfused through the maternal circuit of the placenta in an ex vivo perfusion system. Subsequent immunofluorescence staining for CD3+ T cells and CD56+ NK cells was performed on placental tissue sections, and the number of detectable PBMC in different tissue areas was counted using fluorescence microscopy. RESULTS The applied method allowed discrimination of perfused autologous maternal cells from cells resident in the placenta before perfusion. Further, it allows additional immunohistochemical labelling and distinction of immune cell subsets. Perfused PBMC were detected in all analyzed placentas, mostly in contact to the syncytiotrophoblast. CD3+ T cells were identified more frequently than CD56+ NK cells and some CD3+ T cells were found inside fetoplacental tissues and vasculature. The results indicate that also other PBMCs than T or NK cells adhere to or enter villous tissue, but they have not been specified in this analysis. DISCUSSION Previous studies have detected maternal cells in the fetal circulation which we could mimick in our ex vivo placenta perfusion experiments with fluorescence labelled autologous maternal PBMC. The applied experimental settings did not allow comparison of transmigration abilities of PBMC subsets, but slight modifications of the model will permit further studies of cell transfer processes and microchimerism in pregnancy.
Collapse
Affiliation(s)
- Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Kathrin Wieditz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Juliane Götze
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jana Pastuschek
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Maja Weber
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Claudia Göhner
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Tanja Groten
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
7
|
Úbeda F, Wild G. Microchimerism as a source of information on future pregnancies. Proc Biol Sci 2023; 290:20231142. [PMID: 37608718 PMCID: PMC10445024 DOI: 10.1098/rspb.2023.1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Small numbers of fetal cells cross the placenta during pregnancy turning mothers into microchimeras. Fetal cells from all previous pregnancies accumulate forming the mother's fetal microchiome. What is significant about microchimeric cells is that they have been linked to health problems including reproductive and autoimmune diseases. Three decades after the discovery of fetal microchimerism, the function of these cells remains a mystery. Here, we contend that the role of microchimeric cells is to inform the fetus about the likelihood that its genes are present in future pregnancies. We argue that, when genes are more likely than average to be in future maternal siblings, fetuses will send a fixed number of cells that will not elicit a maternal immune response against them. However, when genes are less likely to be in future maternal siblings, fetuses will send an ever-increasing number of cells that will elicit an ever-stronger maternal immune response. Our work can explain the observed clinical association between microchimeric cells and pre-eclampsia. However, our work predicts that this association should be stronger in women with a genetically diverse microchiome. If supported by medical tests, our work would allow establishing the likelihood of pregnancy or autoimmune problems advising medical interventions.
Collapse
Affiliation(s)
- Francisco Úbeda
- Department of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Geoff Wild
- Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
8
|
Giassi M, Hemon MF, Martin M, Roudier J, Auger I, Lambert NC. In utero position matters for littermate cell transfer in mice: an additional and confounding source with maternal microchimerism. Front Immunol 2023; 14:1200920. [PMID: 37575249 PMCID: PMC10422045 DOI: 10.3389/fimmu.2023.1200920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Feto-maternal cell transfer during pregnancy is called microchimerism (Mc). Its persistence in respective hosts is increasingly studied as to its potential role in immune tolerance, autoimmunity, cancer, and degenerative diseases. Murine models with transgenic reporter genes, heterozygously carried by the mother, allow maternal Mc tracking in wild-type (WT) offspring. However, as gestation in mice is multi-embryonic, an exchange of cells between fetuses carrying the same reporter gene as their mother and negative WT littermate, named littermate Mc (LMc), can occur and be confounded with the maternal source. We propose here to evaluate LMc contribution in mice. Methods To avoid the maternal confounding source of Mc, transgenic males, heterozygous for a reporter gene, here, the human leukocyte antigen DRB1*04 (DR4+/-), were crossed with WT females (DR4-/-). DR4+/- LMc was specifically quantified by HLA-DR4 quantitative PCR, i) in utero in main organs from 15 DR4-/- fetuses from three litters of 11, nine, and five; and ii) after birth in two litters of eight pups: in two DR4-/- stillborns and four DR4-/- adult mice. Results At embryonic stages, DR4-/- fetuses having one or two nearby DR4+/- littermates in the same uterine horn were almost seven times more frequently positive for DR4- microchimerism in their organs (p = 0.01) and had quantitatively more LMc (p = 0.009) than those without nearby DR4+/- littermates. Furthermore, LMc persists at birth and into adulthood with interindividual heterogeneity. Conclusions This study identifies heterogeneity for LMc acquisition according to in utero position and different interpretation of previously published results on maternal Mc in mice.
Collapse
Affiliation(s)
- Mathilde Giassi
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Marie F. Hemon
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
- Arthritis R&D, Neuilly-sur-Seine, France
| | - Marielle Martin
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Jean Roudier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
- Rheumatology Department, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Isabelle Auger
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Nathalie C. Lambert
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMRs) 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| |
Collapse
|
9
|
Murrieta-Coxca JM, Fuentes-Zacarias P, Ospina-Prieto S, Markert UR, Morales-Prieto DM. Synergies of Extracellular Vesicles and Microchimerism in Promoting Immunotolerance During Pregnancy. Front Immunol 2022; 13:837281. [PMID: 35844513 PMCID: PMC9285877 DOI: 10.3389/fimmu.2022.837281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of biological identity has been traditionally a central issue in immunology. The assumption that entities foreign to a specific organism should be rejected by its immune system, while self-entities do not trigger an immune response is challenged by the expanded immunotolerance observed in pregnancy. To explain this "immunological paradox", as it was first called by Sir Peter Medawar, several mechanisms have been described in the last decades. Among them, the intentional transfer and retention of small amounts of cells between a mother and her child have gained back attention. These microchimeric cells contribute to expanding allotolerance in both organisms and enhancing genetic fitness, but they could also provoke aberrant alloimmune activation. Understanding the mechanisms used by microchimeric cells to exert their function in pregnancy has proven to be challenging as per definition they are extremely rare. Profiting from studies in the field of transplantation and cancer research, a synergistic effect of microchimerism and cellular communication based on the secretion of extracellular vesicles (EVs) has begun to be unveiled. EVs are already known to play a pivotal role in feto-maternal tolerance by transferring cargo from fetal to maternal immune cells to reshape their function. A further aspect of EVs is their function in antigen presentation either directly or on the surface of recipient cells. Here, we review the current understanding of microchimerism in the feto-maternal tolerance during human pregnancy and the potential role of EVs in mediating the allorecognition and tropism of microchimeric cells.
Collapse
Affiliation(s)
| | | | | | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
10
|
Sedov E, McCarthy J, Koren E, Fuchs Y. Fetomaternal microchimerism in tissue repair and tumor development. Dev Cell 2022; 57:1442-1452. [PMID: 35700729 DOI: 10.1016/j.devcel.2022.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022]
Abstract
In various placental mammals, the bidirectional exchange of cells during pregnancy can lead to the acquisition of genetically unique cells that can persist in both mother and child for decades. Over the years, it has become increasingly clear that this phenomenon, termed fetomaternal microchimerism may play key roles in a number of biological processes. In this perspective, we explore the concept of fetomaternal microchimerism and outline how fetal microchimeric cells are detected and immunologically tolerated within the maternal setting. Moreover, we discuss undertakings in the field that hint at the significant plasticity of fetal microchimeric cells and their potential roles in promoting maternal wound healing. Finally, we explore the multifaceted roles of fetal microchimeric cells in cancer development and progression. A deeper understanding of fetomaternal chimerism in healthy and diseased states will be key toward developing more efficient anti-cancer treatments and regenerative therapies.
Collapse
Affiliation(s)
- Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Jordan McCarthy
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200003, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa 3200003, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
11
|
Influence of Fetomaternal Microchimerism on Maternal NK Cell Reactivity against the Child’s Leukemic Blasts. Biomedicines 2022; 10:biomedicines10030603. [PMID: 35327405 PMCID: PMC8945103 DOI: 10.3390/biomedicines10030603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Persistence of fetal cells in the circulation of the mother (fetal microchimerism, FM) is associated with increased survival and reduced relapse of children with leukemia receiving a haploidentical hematopoietic stem cell transplantation (hHSCT). NK cells play an important role in maternal tolerance towards the unborn child. In this study, 70 mother–child pairs were prospectively analyzed for the occurrence of FM, KIR genotype and HLA-C type. We found that occurrence and level of FM were influenced by three maternal genetic factors: presence of an HLA-C1 allele, absence of KIR2DL3 and presence of a cen-B/B motif. Furthermore, an HLA-C match between mother and child favored persistence of FM. NK cells from FM+ mothers showed a 40% higher specific degranulation against their filial leukemic blasts than NK cells from FM− mothers, suggesting the presence of educated maternal NK cells. Nevertheless, cytotoxicity of parental NK cells against filial leukemic blasts was independent of KIR genetics (haplotype, B content score, centromeric and telomeric KIR gene regions) and independent of FM, indicating that additional immune effector mechanisms contribute to the beneficial effect of persisting FM in hHSCT.
Collapse
|
12
|
Engels G, Döhler B, Tönshoff B, Oh J, Kruchen A, Müller I, Süsal C. Maternal versus paternal living kidney transplant donation is associated with lower rejection in young pediatric recipients: A Collaborative Transplant Study report. Pediatr Transplant 2022; 26:e14154. [PMID: 34612565 DOI: 10.1111/petr.14154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Approximately 1700 children per year with end-stage kidney disease undergo kidney transplantation in Europe and the United States of America; 30%-50% are living donor kidney transplantations. There may be immunological differences between paternal and maternal donors due to transplacental exchange of cells between the mother and fetus during pregnancy leading to microchimerism. We investigated whether the outcome of living-related kidney transplantation in young children is different after maternal compared with paternal organ donation. METHODS Using the international Collaborative Transplant Study (CTS) database, we analyzed epidemiological data of 7247 children and adolescents aged <18 years who had received a kidney transplant from either mother or father. Risk of treated rejection episodes and death-censored graft failure were computed using the Kaplan-Meier method and multivariable Cox regression. RESULTS In the recipient age group 1-4 years, the rate of treated rejection episodes in recipients of kidneys from maternal donors (N = 195) during the first 2 years post-transplant was significantly lower (hazard ratio HR = 0.47, p = .004) than in patients receiving kidneys from paternal donors (N = 179). This association between donor sex and risk of treated rejections was not observed in children aged 5-9 years. The 5-year death-censored graft survival in children aged 1-4 years with a maternal or paternal donor was comparable. CONCLUSIONS Maternal kidney donation in young pediatric renal transplant recipients is associated with an approximately 50% lower rate of treated rejection than paternal kidney donation. Whether this phenomenon is due to maternal microchimerism-induced donor-specific hyporesponsiveness must be evaluated in prospective mechanistic studies.
Collapse
Affiliation(s)
- Geraldine Engels
- Department of Pediatrics, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pediatrics, University of Würzburg, Würzburg, Germany
| | - Bernd Döhler
- Institute of Immunology, Transplantation Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Jun Oh
- Department of Pediatrics, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Kruchen
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Caner Süsal
- Institute of Immunology, Transplantation Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Cómitre-Mariano B, Martínez-García M, García-Gálvez B, Paternina-Die M, Desco M, Carmona S, Gómez-Gaviro MV. Feto-maternal microchimerism: Memories from pregnancy. iScience 2022; 25:103664. [PMID: 35072002 PMCID: PMC8762399 DOI: 10.1016/j.isci.2021.103664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There is a bidirectional transplacental cell trafficking between mother and fetus during pregnancy in placental mammals. The presence and persistence of fetal cells in maternal tissues are known as fetal microchimerism (FMc). FMc has high multilineage potential with a great ability to differentiate and functionally integrate into maternal tissue. FMc has been found in various maternal tissues in animal models and humans. Its permanence in the maternal body up to decades after delivery suggests it might play an essential role in maternal pathophysiology. Studying the presence, localization, and characteristics of FMc in maternal tissues is key to understanding its impact on the woman's body. Here we comprehensively review the existence of FMc in different species and organs and tissues, aiming to better characterize their possible role in human health and disease. We also highlight several methodological considerations that would optimize the detection, quantification, and functional determination of FMc.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain
| | - Magdalena Martínez-García
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain
| | - Bárbara García-Gálvez
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain
| | - María Paternina-Die
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avenida de la Universidad, 30, 28911 Leganés, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, C/ Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Susanna Carmona
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain
| | - María Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón. (IiSGM), C/Doctor Esquerdo 46, 28007 Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Monforte de Lemos 3-5, Instituto de Salud Carlos III, Pabellón 11, planta baja, 28029 Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Avenida de la Universidad, 30, 28911 Leganés, Spain
| |
Collapse
|
14
|
Abstract
BACKGROUND During pregnancy a feto-maternal exchange of cells through the placenta conducts to maternal microchimerism (Mc) in the child and fetal Mc in the mother. Because of this bidirectional traffic of cells, pregnant women have also acquired maternal cells in utero from their mother and could transfer grandmaternal (GdM) cells to their child through the maternal bloodstream during pregnancy. Thus, cord blood (CB) samples could theoretically carry GdMMc. Nevertheless this has never been demonstrated. METHODS Using Human Leukocyte Antigen (HLA)-specific quantitative PCR assays on three-generation families, we were able to test 28 CB samples from healthy primigravid women for GdMMc in whole blood (WB) and isolated cells (PBMC, T, B, granulocytes, stem cells). FINDINGS Five CB samples (18%) had GdMMc which could not be confounded with maternal source, with quantities 100 fold lower than maternal Mc in WB and PBMC. Risk of aneuploidies and/or related invasive prenatal procedures significantly correlated with the presence of GdMMc in CB (p=0.024). Significantly decreased HLA compatibility was observed in three-generation families from CB samples carrying GdMMc (p=0.019). INTERPRETATION Transgenerational transfer of cells could have implications in immunology and evolution. Further analyses will be necessary to evaluate whether GdMMc in CB is a passive or immunologically active transfer and whether invasive prenatal procedures could trigger GdMMc. FUNDING Provence-Alpes-Côte d'Azur APEX grant # 2012_06549E, 2012_11786F and 2014_03978) and the Foundation for Medical Research (FRM Grant #ING20140129045).
Collapse
|
15
|
Murrieta-Coxca JM, Aengenheister L, Schmidt A, Markert UR, Buerki-Thurnherr T, Morales-Prieto DM. Addressing microchimerism in pregnancy by ex vivo human placenta perfusion. Placenta 2021; 117:78-86. [PMID: 34773744 DOI: 10.1016/j.placenta.2021.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
The physical connection of mother and offspring during pregnancy allows the bi-directional exchange of a small number of cells through the placenta. These cells, which can persist long-term in the recipient individual are genetically foreign to it and therefore fulfill the principle of microchimerism. Over the last years, pioneer research on microchimeric cells revealed their role in immune adaptation during pregnancy and priming of tolerogenic responses in the progeny. However, the mechanisms involved in cell transfer across the placenta barrier remain poorly investigated. In this review, we summarize the evidence of fetomaternal microchimerism, propose a mechanism for cell trafficking through the placenta and discuss the different models and techniques available for its analysis. Likewise, we aim to generate interest in the use of ex vivo placenta perfusion to investigate microchimerism in physiological and pathological settings.
Collapse
Affiliation(s)
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany.
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | |
Collapse
|
16
|
Liu Z, Chen W, Zhang Z, Wang J, Yang YK, Hai L, Wei Y, Qiao J, Sun Y. Whole-Genome Methylation Analysis Revealed ART-Specific DNA Methylation Pattern of Neuro- and Immune-System Pathways in Chinese Human Neonates. Front Genet 2021; 12:696840. [PMID: 34589113 PMCID: PMC8473827 DOI: 10.3389/fgene.2021.696840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
The DNA methylation of human offspring can change due to the use of assisted reproductive technology (ART). In order to find the differentially methylated regions (DMRs) in ART newborns, cord blood maternal cell contamination and parent DNA methylation background, which will add noise to the real difference, must be removed. We analyzed newborns’ heel blood from six families to identify the DMRs between ART and natural pregnancy newborns, and the genetic model of methylation was explored, meanwhile we analyzed 32 samples of umbilical cord blood of infants born with ART and those of normal pregnancy to confirm which differences are consistent with cord blood data. The DNA methylation level was lower in ART-assisted offspring at the whole genome-wide level. Differentially methylated sites, DMRs, and cord blood differentially expressed genes were enriched in the important pathways of the immune system and nervous system, the genetic patterns of DNA methylation could be changed in the ART group. A total of three imprinted genes and 28 housekeeping genes which were involved in the nervous and immune systems were significant different between the two groups, six of them were detected both in heel blood and cord blood. We concluded that there is an ART-specific DNA methylation pattern involved in neuro- and immune-system pathways of human ART neonates, providing an epigenetic basis for the potential long-term health risks in ART-conceived neonates.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Wei Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zilong Zhang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China.,Tianjin Novogene Bioinformatic Technology Co., Ltd.,, Tianjin, China
| | - Junyun Wang
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| | - Yi-Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Luo Hai
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuan Wei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, China
| |
Collapse
|
17
|
Coffin CS, Mulrooney-Cousins PM, Michalak TI. Hepadnaviral Lymphotropism and Its Relevance to HBV Persistence and Pathogenesis. Front Microbiol 2021; 12:695384. [PMID: 34421849 PMCID: PMC8377760 DOI: 10.3389/fmicb.2021.695384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of hepatitis B virus (HBV) over five decades ago, there have been many independent studies showing presence of HBV genomes in cells of the immune system. However, the nature of HBV lymphotropism and its significance with respect to HBV biology, persistence and the pathogenesis of liver and extrahepatic disorders remains underappreciated. This is in contrast to studies of other viral pathogens in which the capability to infect immune cells is an area of active investigation. Indeed, in some viral infections, lymphotropism may be essential, and even a primary mechanism of viral persistence, and a major contributor to disease pathogenesis. Nevertheless, there are advances in understanding of HBV lymphotropism in recent years due to cumulative evidence showing that: (i) lymphoid cells are a reservoir of replicating HBV, (ii) are a site of HBV-host DNA integration and (iii) virus genomic diversification leading to pathogenic variants, and (iv) they play a role in HBV resistance to antiviral therapy and (v) likely contribute to reactivation of hepatitis B. Further support for HBV lymphotropic nature is provided by studies in a model infection with the closely related woodchuck hepatitis virus (WHV) naturally infecting susceptible marmots. This animal model faithfully reproduces many aspects of HBV biology, including its replication scheme, tissue tropism, and induction of both symptomatic and silent infections, immunological processes accompanying infection, and progressing liver disease culminating in hepatocellular carcinoma. The most robust evidence came from the ability of WHV to establish persistent infection of the immune system that may not engage the liver when small quantities of virus are experimentally administered or naturally transmitted into virus-naïve animals. Although the concept of HBV lymphotropism is not new, it remains controversial and not accepted by conventional HBV researchers. This review summarizes research advances on HBV and hepadnaviral lymphotropism including the role of immune cells infection in viral persistence and the pathogenesis of HBV-induced liver and extrahepatic diseases. Finally, we discuss the role of immune cells in HBV diagnosis and assessment of antiviral therapy efficacy.
Collapse
Affiliation(s)
- Carla S Coffin
- Liver Unit, Department of Gastroenterology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia M Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of Basic Medical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of Basic Medical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
18
|
Rosner M, Kolbe T, Hengstschläger M. Fetomaternal microchimerism and genetic diagnosis: On the origins of fetal cells and cell-free fetal DNA in the pregnant woman. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108399. [PMID: 34893150 DOI: 10.1016/j.mrrev.2021.108399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
During pregnancy several types of fetal cells and fetal stem cells, including pregnancy-associated progenitor cells (PAPCs), traffic into the maternal circulation. Whereas they also migrate to various maternal organs and adopt the phenotype of the target tissues to contribute to regenerative processes, fetal cells also play a role in the pathogenesis of maternal diseases. In addition, cell-free fetal DNA (cffDNA) is detectable in the plasma of pregnant women. Together they constitute the well-known phenomenon of fetomaternal microchimerism, which inspired the concept of non-invasive prenatal testing (NIPT) using maternal blood. An in-depth knowledge concerning the origins of these fetal cells and cffDNA allows a more comprehensive understanding of the biological relevance of fetomaternal microchimerism and has implications for the ongoing expansion of resultant clinical applications.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria; Department IFA Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Brown JA, Niland ES, Pierce NL, Taylor JB. Validation of fetal microchimerism after pregnancy in the ovine using qPCR. Transl Anim Sci 2021; 5:txab100. [PMID: 34386714 DOI: 10.1093/tas/txab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/01/2021] [Indexed: 01/12/2023] Open
Abstract
Fetal microchimerism has been detected in maternal tissues of humans and rodents during and after pregnancy. Studies focusing on fetal DNA transfer to maternal tissues in domestic animals are limited, especially in sheep. Fetal ram DNA was observed in the maternal circulation during pregnancy, but it is not known if this chimerism persists in soft tissues after parturition. The objectives of this exploratory study were to: 1) determine if male fetal DNA is detectable in soft tissues of mature ewes after parturition and if so, determine if detection repeatability differed with lifetime offspring sex ratio and 2) determine if male fetal DNA was present in soft tissues of yearling (primiparous) ewes shortly after parturition. Eight mature (open, non-lactating) and 8 yearling (primiparous, periparturient) Rambouillet ewes were used. Mature ewes (5- to 7-yr old) had given birth to primarily 82% males (n = 4) or 71% female (n = 4) over a lifetime. Yearling ewes had birthed either a singleton male (n = 4) or female (n = 4) lambs. DNA was extracted from 10 and 11 different soft tissues from the mature and yearling ewes, respectively. Real-time PCR (qPCR) was used to identify the presence of the SRY gene in each tissue sample. Male DNA was detected in the brain and liver from one mature open ewe that had given birth to two males and six females during her lifetime. In younger ewes that gave birth to a ram lamb, male DNA was observed in the thyroid of one ewe and the pancreas and brain of a second ewe. Male DNA was detected in the ovary of one ewe that had given birth to a female lamb. Based on these data, we suggest fetal microchimerism in soft maternal tissues is possible in sheep and may remain after pregnancy has ended. The detection repeatability of male fetal DNA was not associated with sex ratio of lifetime offspring. Male DNA was observed in maternal soft tissues collected shortly after parturition. The greater detection of fetal male DNA found in younger ewes shortly after parturition may be due to not having enough time for fetal DNA clearance to occur. Future studies are warranted to further study XY chimerism in maternal tissues of the ewe and its potential role in ovine physiology.
Collapse
Affiliation(s)
- J Alison Brown
- Department of Biology, Wingate University, Wingate, NC 28174, USA
| | - Erika S Niland
- Department of Biology, Wingate University, Wingate, NC 28174, USA
| | - Natalie L Pierce
- USDA, Agriculture Research Service, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID 83423, USA
| | - J Bret Taylor
- USDA, Agriculture Research Service, Range Sheep Production Efficiency Research Unit, U.S. Sheep Experiment Station, Dubois, ID 83423, USA
| |
Collapse
|
20
|
Haddad ME, Karlmark KR, Donato XC, Martin GV, Bretelle F, Lesavre N, Cocallemen JF, Martin M, Picard C, Roudier J, Desbriere R, Lambert NC. Factors Predicting the Presence of Maternal Cells in Cord Blood and Associated Changes in Immune Cell Composition. Front Immunol 2021; 12:651399. [PMID: 33968049 PMCID: PMC8100674 DOI: 10.3389/fimmu.2021.651399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Background Cord blood (CB) samples are increasingly used as a source of hematopoietic stem cells in transplantation settings. Maternal cells have been detected in CB samples and their presence is associated with a better graft outcome. However, we still do not know what influences the presence of maternal microchimerism (MMc) in CB samples and whether their presence influences CB hematopoietic cell composition. Patients and Methods Here we test whether genetic, biological, anthropometric and/or obstetrical parameters influence the frequency and/or quantity of maternal Mc in CB samples from 55 healthy primigravid women. Mc was evaluated by targeting non-shared, non-inherited Human Leukocyte Antigen (HLA)-specific real-time quantitative PCR in whole blood and four cell subsets (T, B lymphocytes, granulocytes and/or hematopoietic progenitor cells). Furthermore CB samples were analyzed for their cell composition by flow cytometry and categorized according to their microchimeric status. Results MMc was present in 55% of CB samples in at least one cell subset or whole blood, with levels reaching up to 0.3% of hematopoietic progenitor cells. Two factors were predictive of the presence of MMc in CB samples: high concentrations of maternal serological Pregnancy-Associated-Protein-A at first trimester of pregnancy (p=0.018) and feto-maternal HLA-A and/or –DR compatibility (p=0.009 and p=0.01 respectively). Finally, CB samples positive for MMc were significantly enriched in CD56+ cells compared to CB negative for MMc. Conclusions We have identified two factors, measurable at early pregnancy, predicting the presence of maternal cells in CB samples at delivery. We have shown that MMc in CB samples could have an influence on the hematopoietic composition of fetal cells. CD56 is the phenotypic marker of natural killer cells (NK) and NK cells are known to be the main effector for graft versus leukemia reactions early after hematopoietic stem cell transplantation. These results emphasize the importance of MMc investigation for CB banking strategies.
Collapse
Affiliation(s)
- Marina El Haddad
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Karlin R Karlmark
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Xavier-Côme Donato
- Department of Obstetrics and Gynecology, St Joseph Hospital, Marseille, France
| | - Gabriel V Martin
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Florence Bretelle
- Department of Gynaecology and Obstetrics, Pôle Femme Enfant, AP-HM, Assistance Publique-Hôpitaux de Marseille, AMU, Aix-Marseille Université, Marseille, France
| | | | - Jean-François Cocallemen
- Department of Gynaecology and Obstetrics, Pôle Femme Enfant, AP-HM, Assistance Publique-Hôpitaux de Marseille, AMU, Aix-Marseille Université, Marseille, France
| | - Marielle Martin
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| | - Christophe Picard
- Centre National de la Recherche Scientifique (CNRS) UMR7268 (ADES), "Biologie des Groupes Sanguins", Marseille, France.,Etablissement Français du Sang PACA Corse, Immunogenetics Laboratory, Marseille, France
| | - Jean Roudier
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France.,Service de Rhumatologie, Hôpital Sainte Marguerite, AP-HM, Marseille, France
| | - Raoul Desbriere
- Department of Obstetrics and Gynecology, St Joseph Hospital, Marseille, France
| | - Nathalie C Lambert
- INSERM UMRs 1097 Arthrites Autoimmunes, Aix Marseille Université, Marseille, France
| |
Collapse
|
21
|
Golden TN, Simmons RA. Immune dysfunction in developmental programming of type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:235-245. [PMID: 33526907 PMCID: PMC7969450 DOI: 10.1038/s41574-020-00464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 01/30/2023]
Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy and increases the risk of the offspring developing type 2 diabetes mellitus (T2DM) later in life. Alterations in the immune system are implicated in the pathogenesis of IUGR-induced T2DM. The development of the fetal immune system is a delicate balance as it must remain tolerant of maternal antigens whilst also preparing for the post-birth environment. In addition, the fetal immune system is susceptible to an altered intrauterine milieu caused by maternal and placental inflammatory mediators or secondary to nutrient and oxygen deprivation. Pancreatic-resident macrophages populate the pancreas during fetal development, and their phenotype is dynamic through the neonatal period. Furthermore, macrophages in the islets are instrumental in islet development as they influence β-cell proliferation and islet neogenesis. In addition, cytokines, derived from β-cells and macrophages, are important to islet homeostasis in the fetus and adult and, when perturbed, can cause islet dysfunction. Several activated immune pathways have been identified in the islets of people who experienced IUGR, with alternations in the levels of IL-1β and IL-4 as well as changes in TGFβ signalling. Leptin levels are also altered. Immunomodulation has shown therapeutic benefit in T2DM and might be particularly useful in IUGR-induced T2DM.
Collapse
Affiliation(s)
- Thea N Golden
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA.
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Iske J, Elkhal A, Tullius SG. The Fetal-Maternal Immune Interface in Uterus Transplantation. Trends Immunol 2021; 41:213-224. [PMID: 32109373 DOI: 10.1016/j.it.2020.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/16/2022]
Abstract
Uterus transplants (UTxs) have been performed worldwide. Overall frequencies have been low, but globally initiated UTx programs are expected to increase clinical implementation. The uterus constitutes a unique immunological environment with specific features of tissue renewal and a receptive endometrium. Decidual immune cells facilitate embryo implantation and placenta development. Although UTx adds to the complexity of immunity during pregnancy and transplantation, the procedure provides a unique clinical and experimental model. We posit that understanding the distinct immunological properties at the interface of the transplanted uterus, the fetus and maternal circulation might provide valuable novel insights while improving outcomes for UTx. Here, we discuss immunological challenges and opportunities of UTx affecting mother, pregnancy and healthy livebirths.
Collapse
Affiliation(s)
- Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Bezemer RE, Schoots MH, Timmer A, Scherjon SA, Erwich JJHM, van Goor H, Gordijn SJ, Prins JR. Altered Levels of Decidual Immune Cell Subsets in Fetal Growth Restriction, Stillbirth, and Placental Pathology. Front Immunol 2020; 11:1898. [PMID: 32973787 PMCID: PMC7468421 DOI: 10.3389/fimmu.2020.01898] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Immune cells are critically involved in placental development and functioning, and inadequate regulation of the maternal immune system is associated with placental pathology and pregnancy complications. This study aimed to explore numbers of decidual immune cells in pregnancies complicated with fetal growth restriction (FGR) and stillbirth (SB), and in placentas with histopathological lesions: maternal vascular malperfusion (MVM), fetal vascular malperfusion (FVM), delayed villous maturation (DVM), chorioamnionitis (CA), and villitis of unknown etiology (VUE). Placental tissue from FGR (n = 250), SB (n = 64), and healthy pregnancies (n = 42) was included. Histopathological lesions were classified according to criteria developed by the Amsterdam Placental Workshop Group. Tissue slides were stained for CD68 (macrophages), CD206 (M2-like macrophages), CD3 (T cells), FOXP3 [regulatory T (Treg) cells], and CD56 [natural killer (NK) cells]. Cell numbers were analyzed in the decidua basalis using computerized morphometry. The Mann-Whitney U-test and Kruskal Wallis test with the Dunn's as post-hoc test were used for statistical analysis. Numbers of CD68+ macrophages were higher in FGR compared to healthy pregnancies (p < 0.001), accompanied by lower CD206+/CD68+ ratios (p < 0.01). In addition, in FGR higher numbers of FOXP3+ Treg cells were seen (p < 0.01) with elevated FOXP3+/CD3+ ratios (p < 0.01). Similarly, in SB elevated FOXP3+ Treg cells were found (p < 0.05) with a higher FOXP3+/CD3+ ratio (p < 0.01). Furthermore, a trend toward higher numbers of CD68+ macrophages was found (p < 0.1) in SB. Numbers of CD3+ and FOXP3+ cells were higher in placentas with VUE compared to placentas without lesions (p < 0.01 and p < 0.001), accompanied by higher FOXP3+/CD3+ ratios (p < 0.01). Elevated numbers of macrophages with a lower M2/total macrophage ratio in FGR suggest a role for a macrophage surplus in its pathogenesis and could specifically indicate involvement of inflammatory macrophages. Higher numbers of FOXP3+ Treg cells with higher Treg/total T cell ratios in VUE may be associated with impaired maternal-fetal tolerance and a compensatory response of Treg cells. The abundant presence of placental lesions in the FGR and SB cohorts might explain the increase of Treg/total T cell ratios in these groups. More functionality studies of the observed altered immune cell subsets are needed.
Collapse
Affiliation(s)
- Romy E Bezemer
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mirthe H Schoots
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Albertus Timmer
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan Jaap H M Erwich
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Division of Pathology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sanne J Gordijn
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Abstract
The disease course of autoimmune diseases such as rheumatoid arthritis is altered during pregnancy, and a similar modulatory role of pregnancy on inflammatory bowel disease (IBD) has been proposed. Hormonal, immunological, and microbial changes occurring during normal pregnancy may interact with the pathophysiology of IBD. IBD consists of Crohn's disease and ulcerative colitis, and because of genetic, immunological, and microbial differences between these disease entities, they may react differently during pregnancy and should be described separately. This review will address the pregnancy-induced physiological changes and their potential effect on the disease course of ulcerative colitis and Crohn's disease, with emphasis on the modulation of epithelial barrier function and immune profiles by pregnancy hormones, microbial changes, and microchimerism.
Collapse
|
25
|
Cell-Free Fetal DNA Increases Prior to Labor at Term and in a Subset of Preterm Births. Reprod Sci 2020; 27:218-232. [PMID: 32046392 DOI: 10.1007/s43032-019-00023-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023]
Abstract
Cell-free fetal DNA in the maternal circulation has been associated with the onset of labor at term. Moreover, clinical studies have suggested that cell-free fetal DNA has value to predict pregnancy complications such as spontaneous preterm labor leading to preterm birth. However, a mechanistic link between cell-free fetal DNA and preterm labor and birth has not been established. Herein, using an allogeneic mouse model in which a paternal green fluorescent protein (GFP) can be tracked in the fetuses, we established that cell-free fetal DNA (Egfp) concentrations were higher in late gestation compared to mid-pregnancy and were maintained at increased levels during the onset of labor at term, followed by a rapid decrease after birth. A positive correlation between cell-free fetal DNA concentrations and the number of GFP-positive pups was also observed. The increase in cell-free fetal DNA concentrations prior to labor at term was not linked to a surge in any specific cytokine/chemokine; yet, specific chemokines (i.e., CCL2, CCL7, and CXCL2) increased as gestation progressed and maintained elevated levels in the postpartum period. In addition, cell-free fetal DNA concentrations increased prior to systemic inflammation-induced preterm birth, which was associated with a strong cytokine response in the maternal circulation. However, cell-free fetal DNA concentrations were not increased prior to intra-amniotic inflammation-induced preterm birth, but in this model, a mild inflammatory response was observed in the maternal circulation. Collectively, these findings suggest that an elevation in cell-free fetal DNA concentrations in the maternal circulation precedes the physiological process of labor at term and the pathological process of preterm labor linked with systemic inflammation, but not that associated with intra-amniotic inflammation.
Collapse
|
26
|
Fjeldstad HE, Johnsen GM, Staff AC. Fetal microchimerism and implications for maternal health. Obstet Med 2019; 13:112-119. [PMID: 33093862 DOI: 10.1177/1753495x19884484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022] Open
Abstract
This review paper outlines the definition, pathophysiology, and potential maternal health consequences of cellular fetal microchimerism, the maternal acquisition of intact cells of fetal origin during pregnancy. Increased rates and amounts of cellular fetal microchimerism are associated with several placental syndromes, including preeclampsia and fetal growth restriction. The discovery of cellular fetal microchimerism and methods of detection are briefly outlined, and we present the mechanisms hypothesized to govern pregnancy-related and long-term maternal health effects of cellular fetal microchimerism. Specifically, we discuss the potential implications of cellular fetal microchimerism in wound healing, autoimmunity, cancer, and possibly cardiovascular disease. Cellular fetal microchimerism represents a novel area of research on maternal and transgenerational health and disease, providing exciting opportunities for developing new disease biomarkers and precision medicine with targeted prophylaxis against long-term maternal disease.
Collapse
Affiliation(s)
- Heidi Es Fjeldstad
- Division of Obstetrics and Gyneacology, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guro M Johnsen
- Division of Obstetrics and Gyneacology, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Cathrine Staff
- Division of Obstetrics and Gyneacology, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Seshasubramanian V, Venugopal M, D S Kannan A, Naganathan C, Manisekar NK, Kumar YN, Narayan S, Periathiruvadi S. Application of high-throughput next-generation sequencing for HLA typing of DNA extracted from postprocessing cord blood units. HLA 2019; 94:141-146. [PMID: 31056847 DOI: 10.1111/tan.13565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/05/2023]
Abstract
Cord blood has become an acceptable source of hematopoietic stem cells for transplantation. HLA plays a major role in hematopoietic stem cell transplantation (HSCT). Typing of cord blood samples for HLA alleles has been performed based on the serological and molecular methods. However, with the advent of next-generation sequencing technology, HLA typing becomes more accurate and unambiguous (upto intron level). Contamination of cord blood cells with erythropoietic cells poses a challenge in DNA extraction and downstream application. In the present study, DNA extracted from buffy coat of cord blood samples was typed for HLA-A, -B, -C, DRB1, and DQB1 alleles by Illumina miniseq and the sequences were aligned, phased, and mapped by MIA FORA software algorithms. Most frequent alleles found were HLA A*01:01:01 (17%), A*24:02:01 (15.1%), A*11:01:01 (13.6%), B*40:06:01 (10.7%), C*06:02:01 (17.7%), C*04:01:01 (14.2%), C*15:02:01 (11.4%), C*07:02:01 (10.7%), DRB1*07:01:01 (15.9%), DRB1*10:01:01 (10.2%), DQB1*06:01:01 (17.4%), DQB1*05:01:01 (12.4%), and DQB1*05:03:01 (10.4%). One null allele (A*24:11N), two novel alleles in B loci and three rare alleles (B*40:06:04, B*51:01:05, and C*01:44) were also identified in the present study. This study shows that high-throughput, unambiguous (third-field resolution) HLA typing can be performed on cord blood samples. In order to preserve the precious sample for future use, minimal amount of cord blood samples (postprocessing) could be used for HLA typing purpose.
Collapse
|
28
|
Hahn S, Hasler P, Vokalova L, van Breda SV, Than NG, Hoesli IM, Lapaire O, Rossi SW. Feto-Maternal Microchimerism: The Pre-eclampsia Conundrum. Front Immunol 2019; 10:659. [PMID: 31001268 PMCID: PMC6455070 DOI: 10.3389/fimmu.2019.00659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Feto-maternal microchimerism (FMM) involves bidirectional cross-placental trafficking during pregnancy, leading to a micro-chimeric state that can persist for decades. In this manner a pregnant woman will harbor cells from her mother, as well as, cells from her child. Historically, eclampsia, a severe disorder of pregnancy provided the basis for FMM following the detection of trophoblast cells in the lungs of deceased women. Bi-directional cell trafficking between mother and fetus is also altered in pre-eclampsia and has been suggested to contribute to the underlying etiology. FMM has been implicated in tolerance promotion, remission of auto-inflammatory disorders during pregnancy, or the development of autoimmune conditions post-partum. The underlying mechanism whereby the host immune system is modulated is unclear but appears to involve HLA class II molecules, in that incompatibility between mother and fetus promotes remission of rheumatoid arthritis, whereas feto-maternal HLA compatibility may assist in the post-partum initiation of scleroderma. Couples having a high degree of HLA class II compatibility have an increased risk for pre-eclampsia, while the occurrence of scleroderma and rheumatoid arthritis is greater in pre-eclamptic cases than in women with normal pregnancies, suggesting a long term autoimmune predisposition. Since pregnant women with pre-eclampsia exhibit significantly lower levels of maternally-derived micro-chimerism, the question arises whether pre-eclampsia and post-partum development of autoimmune conditions occur due to the failure of the grandmothers cells to adequately regulate an inappropriate micro-chimeric constellation.
Collapse
Affiliation(s)
- Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Paul Hasler
- Division of Rheumatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Lenka Vokalova
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Shane Vontelin van Breda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.,Division of Rheumatology, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Olav Lapaire
- Department of Obstetrics, University Women's Hospital Basel, Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
29
|
Opstelten R, Slot MC, Lardy NM, Lankester AC, Mulder A, Claas FHJ, van Rood JJ, Amsen D. Determining the extent of maternal-foetal chimerism in cord blood. Sci Rep 2019; 9:5247. [PMID: 30918307 PMCID: PMC6437214 DOI: 10.1038/s41598-019-41733-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
During pregnancy, maternal T cells can enter the foetus, leading to maternal-foetal chimerism. This phenomenon may affect how leukaemia patients respond to transplantation therapy using stem cells from cord blood (CB). It has been proposed that maternal T cells, primed to inherited paternal HLAs, are present in CB transplants and help to suppress leukaemic relapse. Several studies have reported evidence for the presence of maternal T cells in most CBs at sufficiently high numbers to lend credence to this idea. We here aimed to functionally characterise maternal T cells from CB. To our surprise, we could not isolate viable maternal cells from CB even after using state-of-the-art enrichment techniques that allow detection of viable cells in heterologous populations at frequencies that were several orders of magnitude lower than reported frequencies of maternal T cells in CB. In support of these results, we could only detect maternal DNA in a minority of samples and at insufficient amounts for reliable quantification through a sensitive PCR-based assay to measure In/Del polymorphisms. We conclude that maternal microchimerism is far less prominent than reported, at least in our cohort of CBs, and discuss possible explanations and implications.
Collapse
Affiliation(s)
- Rianne Opstelten
- Sanquin Research, Dept of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon C Slot
- Sanquin Research, Dept of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Neubury M Lardy
- Sanquin Diagnostics BV, Department of Immunogenetics, Amsterdam, The Netherlands
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jon J van Rood
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Derk Amsen
- Sanquin Research, Dept of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Gokhale S, Gokhale S. Transfusing maternal blood to her newborn baby-irrespective of ABO mismatch. J Matern Fetal Neonatal Med 2019; 33:1593-1606. [PMID: 30686061 DOI: 10.1080/14767058.2018.1525355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Though blood transfusions are the common procedures in pediatric patients, transfusion reactions are rare in children. Though in adults, uncross-matched ABO group-specific blood is used in emergencies, there are no such reports in neonates and children. There are stray case reports about transfusing maternal blood for her baby and maternal blood is de facto compatible regardless of an ABO mismatchObjective: Confirming our previous hypothesis that maternal blood is compatible with her baby's blood; and maternal blood can be used for transfusion in her newborn baby irrespective of ABO match/ mismatch.Design: Prospective interventional study.Setting and Participants: Fifty-one mother-baby pairs were recruited attending Pediatric Unit of our Community Hospital from 15 July 2013 to 13 July 2015. After obtaining consent from the parents, all the required lab tests were done. Since all lab reports were favourable; these babies qualified for transfusion of maternal blood.Interventions: Fifty-one sick newborns were transfused fresh whole maternal blood as a part of treatment; irrespective of mother-baby ABO match or mismatch.Results: All babies tolerated maternal blood well and showed significant and rapid improvement. Minimum period of observation was from a minimum of 32 to a maximum of 56 months. All the babies showed good growth and development.Conclusion: By observing a particular protocol and procedural techniques, mother's blood may be used for transfusion in her own baby in neonatal period, irrespective of ABO mismatch.Significance: This is probably the largest series in world literature of 51 newborns being transfused maternal blood either ABO match or mismatch.
Collapse
Affiliation(s)
- Sanjay Gokhale
- Department of Pediatrics, Rajhans Hospital, Mumbai, India
| | - Sankalp Gokhale
- Department of Neurology [Medicine], Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Shree R, Harrington WE, Kanaan SB, Forsyth A, Cousin E, Lopez A, Nelson JL, Gammill HS. Fetal microchimerism by mode of delivery: a prospective cohort study. BJOG 2019; 126:24-31. [PMID: 30102819 PMCID: PMC6294652 DOI: 10.1111/1471-0528.15432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To compare fetal microchimerism (FMc) in pregnancies with uncomplicated vaginal delivery (VD) versus caesarean delivery (CD). DESIGN Prospective cohort study. SETTING University of Washington and Fred Hutchinson Cancer Research Center, USA. POPULATION Women delivering singleton pregnancies without pertinent antenatal complications with uncomplicated deliveries (n = 36). METHODS We collected maternal predelivery, postdelivery and umbilical cord blood for each mother-baby pair. Following maternal and fetal genotyping, FMc was measured with quantitative polymerase chain reaction assays targeting fetus-specific polymorphisms. Quantification of FMc is expressed as genome equivalents (gEq) of fetal DNA/100 000 total gEq tested. FMc detection was evaluated by logistic regression while controlling for total number of cell equivalents tested and clinically relevant covariates. FMc concentrations were compared using negative binomial regression while controlling for the same covariates and predelivery FMc positivity. MAIN OUTCOME MEASURE Detection and concentration of FMc by mode of delivery. RESULTS Twenty-four mother-baby pairs had a VD and 12 had a CD. Postdelivery FMc detection was higher following CD than after VD (58.3% versus 16.7%, P = 0.02). After controlling for covariates, the likelihood of postdelivery FMc detection was almost nine-fold higher after CD than VD (odds ratio 8.8, 95% CI 1.6-47.6; P = 0.01). With respect to postdelivery FMc concentration, the detection rate ratio for CD versus VD in the adjusted negative binomial regression model was 14.7 (95% CI 3.2-66.8; P = 0.001). CONCLUSION Postdelivery peripheral FMc detection and concentration are significantly higher after CD than after VD. As FMc is associated with long-term maternal health, our findings suggest that the mode of delivery may impact this risk. TWEETABLE ABSTRACT Greater fetal microchimerism found in maternal blood following caesarean delivery compared with vaginal delivery.
Collapse
Affiliation(s)
- R Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - W E Harrington
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - S B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A Forsyth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - E Cousin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A Lopez
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - J L Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - H S Gammill
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
32
|
Aydın MŞ, Yiğit EN, Vatandaşlar E, Erdoğan E, Öztürk G. Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups. Sci Rep 2018; 8:14289. [PMID: 30250150 PMCID: PMC6155265 DOI: 10.1038/s41598-018-32715-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/12/2018] [Indexed: 01/19/2023] Open
Abstract
Beside its unique nutritional content breast milk also contains live cells from the mother. Fate of these cells in the offspring has not been adequately described. In this study, we aimed to detect and identify maternal cells in the suckling’s blood and the brain. Green fluorescent protein expressing transgenic female mice (GFP+) were used as foster mothers to breastfeed wildtype newborn pups. One week and two months after the birth, blood samples and brains of the sucklings were analyzed to detect presence of GFP+ cells by fluorescence activated cell sorting, polymerase chain reaction and immunohistochemistry on the brain sections and optically cleared brains. The tests confirmed that maternal cells were detectable in the blood and the brain of the pups and that they differentiated into both neuronal and glial cell types in the brain. This phenomenon represents breastfeeding – induced microchimerism in the brain with functional implications remain to be understood.
Collapse
Affiliation(s)
- Mehmet Şerif Aydın
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Emre Vatandaşlar
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Ender Erdoğan
- Department of Histology and Embryology, Faculty of Medicine, Selcuk University, Konya, 42030, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Istanbul, 34810, Turkey. .,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, 34810, Turkey.
| |
Collapse
|
33
|
Glynn LM, Howland MA, Fox M. Maternal programming: Application of a developmental psychopathology perspective. Dev Psychopathol 2018; 30:905-919. [PMID: 30068423 PMCID: PMC6274636 DOI: 10.1017/s0954579418000524] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fetal phase of life has long been recognized as a sensitive period of development. Here we posit that pregnancy represents a simultaneous sensitive period for the adult female with broad and persisting consequences for her health and development, including risk for psychopathology. In this review, we examine the transition to motherhood through the lens of developmental psychopathology. Specifically, we summarize the typical and atypical changes in brain and behavior that characterize the perinatal period. We highlight how the exceptional neuroplasticity exhibited by women during this life phase may account for increased vulnerability for psychopathology. Further, we discuss several modes of signaling that are available to the fetus to affect maternal phenotypes (hormones, motor activity, and gene transfer) and also illustrate how evolutionary perspectives can help explain how and why fetal functions may contribute to maternal psychopathology. The developmental psychopathology perspective has spurred advances in understanding risk and resilience for mental health in many domains. As such, it is surprising that this major epoch in the female life span has yet to benefit fully from similar applications.
Collapse
Affiliation(s)
| | | | - Molly Fox
- University of California,Los Angeles
| |
Collapse
|
34
|
Abstract
Maternal microchimerism may arise in the offspring during pregnancy, and may be favorable or unfavorable. Additionally, maternal cells present in umbilical cord blood used for stem cell transplantation may affect the outcome after transplantation. The aim of this study was to evaluate the cellular subset and frequency of maternal cells in umbilical cord blood following vaginal deliveries and elective Cesarean sections where the umbilical cord clamping time was measured. A total of 44 healthy women with normal pregnancies were included in the study. Of these, 24 delivered vaginally and 20 by elective Cesarean sections. In the fresh umbilical cord blood, cellular subsets of CD3+ (T-cells), CD19+ (B-cells), CD33+ (myeloid cells), CD34+ (hematopoietic progenitor cells) and CD56+ (natural killer cells) cells were isolated and DNA extracted. A single-nucleotide polymorphism unique to the mother was identified and maternal microchimerism in the different cellular fractions was detected using quantitative real-time polymerase chain reaction with a sensitivity of 0.01%. Overall, 5 out of the 44 (11%) umbilical cord blood samples contained maternal microchimerism. The positive fractions were total DNA (whole blood, n = 3), CD34+ (n = 1), CD56+ (n = 1) and CD34+/CD56+ (n = 1). Overall, four of the five (80%) positive samples were from Cesarean sections and one was from a vaginal delivery. The conclusion from this study is that maternal microchimerism in umbilical cord blood is not a common phenomenon but includes both lymphoid and hematopoietic progenitor lineages.
Collapse
Affiliation(s)
- Anna Maria Jonsson Kanold
- Division of Obstetrics and Gynecology, Department of Clinical
Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Westgren
- Division of Obstetrics and Gynecology, Department of Clinical
Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Division of Obstetrics and Gynecology, Department of Clinical
Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Cecilia Götherström, Division of Obstetrics
and Gynecology, Karolinska Institutet, Department of Clinical Science,
Intervention and Technology, Alfred Nobels Allé 8, SE-141 52 Stockholm, Sweden.
| |
Collapse
|
35
|
Pregnancy and Multiple Gestations. CHIMERISM 2018. [DOI: 10.1007/978-3-319-89866-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Prenatal Genetic Testing and Screening. CHIMERISM 2018. [DOI: 10.1007/978-3-319-89866-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Buekens P, Cafferata ML, Alger J, Althabe F, Belizán JM, Bustamante N, Carlier Y, Ciganda A, Del Cid JH, Dumonteil E, Gamboa-León R, García JA, Gibbons L, Graiff O, Maldonado JG, Herrera C, Howard E, Lara LS, López B, Matute ML, Ramírez-Sierra MJ, Robles MC, Sosa-Estani S, Truyens C, Valladares C, Wesson DM, Zúniga C, For The Congenital Chagas Working Group. Congenital Transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: An Observational Prospective Study. Am J Trop Med Hyg 2017; 98:478-485. [PMID: 29210352 DOI: 10.4269/ajtmh.17-0516] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Compared with South America, there is a lack of epidemiologic studies about the risk of congenital transmission of Trypanosoma cruzi in Central America and Mexico. It has been suggested that T. cruzi genotypes might differ by region and that congenital transmission might vary according to the parasite's genotype. Our objective was to compare T. cruzi congenital transmission rates in three countries. We performed an observational prospective study in 2011-2014 enrolling women at delivery in one hospital in Argentina, two hospitals in Honduras, and two hospitals in Mexico. Congenital T. cruzi infection was defined as the presence of one or more of the following criteria: presence of parasites in cord blood (direct parasitological microscopic examination) with positive polymerase chain reaction (PCR) in cord blood, presence of parasites in infant's blood at 4-8 weeks (direct parasitological microscopic examination), and persistence of T. cruzi-specific antibodies at 10 months, as measured by at least two tests. Among 28,145 enrolled women, 347 had at least one antibody rapid test positive in cord blood and a positive enzyme-linked immunosorbent assay in maternal blood. PCR in maternal blood was positive in 73.2% of the cases, and genotyping identified a majority of non-TcI in the three countries. We found no (0.0%; 95% confidence interval [CI]: 0.0, 2.0) confirmed congenital case in Honduras. Congenital transmission was 6.6% (95% CI: 3.1, 12.2) in Argentina and 6.3% (95% CI: 0.8, 20.8) in Mexico. Trypanosoma cruzi non-TcI predominated and risks of congenital transmission were similar in Argentina and Mexico.
Collapse
Affiliation(s)
- Pierre Buekens
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - María Luisa Cafferata
- Unidad de Investigación Clínica y Epidemiológica Montevideo (UNICEM), Montevideo, Uruguay
| | - Jackeline Alger
- Hospital Escuela Universitario, Facultad de Ciencias Médicas, UNAH, Tegucigalpa, Honduras
| | - Fernando Althabe
- Instituto de Efectividad Clínica y Sanitaria (IECS), Buenos Aires, Argentina
| | - José M Belizán
- Instituto de Efectividad Clínica y Sanitaria (IECS), Buenos Aires, Argentina
| | | | - Yves Carlier
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Alvaro Ciganda
- Unidad de Investigación Clínica y Epidemiológica Montevideo (UNICEM), Montevideo, Uruguay
| | | | - Eric Dumonteil
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | | | - Jorge A García
- Hospital Escuela Universitario, Facultad de Ciencias Médicas, UNAH, Tegucigalpa, Honduras
| | - Luz Gibbons
- Instituto de Efectividad Clínica y Sanitaria (IECS), Buenos Aires, Argentina
| | - Olga Graiff
- Instituto de Maternidad y Ginecología Nuestra Señora de las Mercedes, San Miguel de Tucumán, Argentina
| | - Jesús Gurubel Maldonado
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, México
| | - Claudia Herrera
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Elizabeth Howard
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Laura Susana Lara
- Instituto de Maternidad y Ginecología Nuestra Señora de las Mercedes, San Miguel de Tucumán, Argentina
| | | | - María Luisa Matute
- Laboratorio Nacional de Vigilancia de la Salud, Secretaría de Salud de Honduras, Tegucigalpa, Honduras
| | - María Jesús Ramírez-Sierra
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, México
| | - María Cecilia Robles
- Instituto de Maternidad y Ginecología Nuestra Señora de las Mercedes, San Miguel de Tucumán, Argentina
| | - Sergio Sosa-Estani
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben," CONICET, ANLIS, Buenos Aires, Argentina.,Instituto de Efectividad Clínica y Sanitaria (IECS), Buenos Aires, Argentina
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christian Valladares
- Laboratorio Nacional de Vigilancia de la Salud, Secretaría de Salud de Honduras, Tegucigalpa, Honduras
| | - Dawn M Wesson
- Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Concepción Zúniga
- Hospital Escuela Universitario, Facultad de Ciencias Médicas, UNAH, Tegucigalpa, Honduras
| | | |
Collapse
|
38
|
Zhong JF, Weiner LP. Role of Fetal Stem Cells in Maternal Tissue Regeneration. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microchimerism refers to the status of harboring cells from another individual at low levels. It is well known that cells traffic bidirectionally between fetus and mother during pregnancy. This situation resembles a naturally occurring long lasting fetal stem cell transplantation. The fetus acts as the donor and the mother acts as the recipient. To study the role of microchimerism in tissue regeneration, we constructed a murine microchimerism model with wild type C57BL/6J female mice carrying progenies which expressed green fluorescent proteins (GFP). Our data indicated that skin injuries in the female mice during pregnancy increased microchimerism of GFP expressing cells from the GFP transgenic progenies. The GFP positive cells also appeared at the site of spinal cord where injury occurred during pregnancy. Our study suggests that the amount of fetal cells in maternal mice significantly increased if injuries occurred during pregnancy. Fetal stem cells appear to respond to maternal injury signals and may play a role in maternal tissue regeneration during pregnancy.
Collapse
Affiliation(s)
- Jiang F. Zhong
- The Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, U.S.A
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, U.S.A
| | - Leslie P. Weiner
- The Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
39
|
Harrington WE, Kanaan SB, Muehlenbachs A, Morrison R, Stevenson P, Fried M, Duffy PE, Nelson JL. Maternal Microchimerism Predicts Increased Infection but Decreased Disease due to Plasmodium falciparum During Early Childhood. J Infect Dis 2017; 215:1445-1451. [PMID: 28329160 DOI: 10.1093/infdis/jix129] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Background A mother's infection with placental malaria (PM) can affect her child's susceptibility to malaria, although the mechanism remains unclear. The fetus acquires a small amount of maternal cells and DNA known as maternal microchimerism (MMc), and we hypothesized that PM increases MMc and that MMc alters risk of Plasmodium falciparum malaria during infancy. Methods In a nested cohort from Muheza, Tanzania, we evaluated the presence and level of cord blood MMc in offspring of women with and without PM. A maternal-specific polymorphism was identified for each maternal-infant pair, and MMc was assayed by quantitative polymerase chain reaction. The ability of MMc to predict malaria outcomes during early childhood was evaluated in longitudinal models. Results Inflammatory PM increased the detection rate of MMc among offspring of primigravidae and secundigravidae, and both noninflammatory and inflammatory PM increased the level of MMc. Detectable MMc predicted increased risk of positive blood smear but, interestingly, decreased risk of symptomatic malaria and malaria hospitalization. Conclusions The acquisition of MMc may result in increased malaria infection but protection from malaria disease. Future studies should be directed at the cellular component of MMc, with attention to its ability to directly or indirectly coordinate anti-malarial immune responses in the offspring.
Collapse
Affiliation(s)
- Whitney E Harrington
- Department of Pediatrics, University of Washington School of Medicine/Seattle Children's Hospital, Washington
| | - Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Atis Muehlenbachs
- Department of Pathology, University of Washington, Seattle, Washington
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Philip Stevenson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - J Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Rheumatology, University of Washington, Seattle
| |
Collapse
|
40
|
Morin AM, Gatev E, McEwen LM, MacIsaac JL, Lin DTS, Koen N, Czamara D, Räikkönen K, Zar HJ, Koenen K, Stein DJ, Kobor MS, Jones MJ. Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs. Clin Epigenetics 2017; 9:75. [PMID: 28770015 PMCID: PMC5526324 DOI: 10.1186/s13148-017-0370-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 01/10/2023] Open
Abstract
Background Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Results Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Conclusions Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0370-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander M Morin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Department of Medical Genetics, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - Evan Gatev
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Department of Medical Genetics, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - Lisa M McEwen
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Department of Medical Genetics, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Department of Medical Genetics, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Department of Medical Genetics, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| | - Nastassja Koen
- Department of Psychiatry and Mental Health, South African Medical Research Council (SAMRC) Unit on Anxiety and Stress Disorders, University of Cape Town, Groote Schuur Hospital, J2, Anzio Road, Observatory, Cape Town, South Africa
| | - Darina Czamara
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Kraepelinstraße 2-10, 80804 Munich, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014 Helsinki, Finland
| | - Heather J Zar
- Department of Paediatrics, MRC Unit on Child and Adolescent Health, University of Cape Town, Room 513 ICH Building Red Cross Children's Hospital Klipfontein Road, Cape Town, South Africa
| | - Karestan Koenen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Kresge Building, 505, Boston, MA 02115 USA
| | - Dan J Stein
- Department of Psychiatry and Mental Health, South African Medical Research Council (SAMRC) Unit on Anxiety and Stress Disorders, University of Cape Town, Groote Schuur Hospital, J2, Anzio Road, Observatory, Cape Town, South Africa
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Department of Medical Genetics, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada.,Human Early Learning Partnership, University of British Columbia, 2208 East Mall, Vancouver, BC 02115 Canada
| | - Meaghan J Jones
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, Department of Medical Genetics, University of British Columbia, 950 W 28th Ave, Vancouver, BC V5Z 4H4 Canada
| |
Collapse
|
41
|
Kanaan SB, Gammill HS, Harrington WE, De Rosa SC, Stevenson PA, Forsyth AM, Allen J, Cousin E, van Besien K, Delaney CS, Nelson JL. Maternal microchimerism is prevalent in cord blood in memory T cells and other cell subsets, and persists post-transplant. Oncoimmunology 2017. [PMID: 28638735 DOI: 10.1080/2162402x.2017.1311436] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Among reported advantages of umbilical cord blood (CB) in transplantation is lower leukemia relapse probability. Underlying cellular mechanisms of graft-vs.-leukemia (GVL) are thought to include a prominent role for T cells. Cells of the CB's mother, maternal microchimerism (MMc), were recently strongly, but indirectly, implicated in this GVL benefit. We assayed MMc directly and hypothesized benefit accrues from CB maternal T cells. MMc was quantified in 51 CBs and, within memory T, naïve T, B, NK cells, and monocytes in 27 CBs. Polymorphism-specific quantitative-PCR assays targeted maternal genotypes non-shared with CBs. Overall MMc was common and often at substantial levels. It was present in 52.9% of CB and in 33.3-55.6% of tested subsets. Remarkably, MMc quantities were greater in memory T cells than other subsets (p < 0.001). Expressed as genome equivalents (gEq) per 105 total gEq tested (gEq/105), memory T cell MMc averaged 850.2 gEq/105, while other subset mean quantities were 13.8-30.1 gEq/105. After adjustment for proportionality in CB, MMc remained 6-17 times greater in memory T, and 3-9 times greater in naïve T, vs. non-T-cell subsets. Further, CB-origin MMc was detected in vivo in a patient up to 6 mo post-transplantation, including among T cells. Overall, results revealed levels and phenotypes of CB MMc with potential relevance to CB transplantation and, more broadly, to offspring health.
Collapse
Affiliation(s)
- Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hilary S Gammill
- Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Philip A Stevenson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexandra M Forsyth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Judy Allen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emma Cousin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Koen van Besien
- Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Colleen S Delaney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - J Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
42
|
Kieffer TE, Faas MM, Scherjon SA, Prins JR. Pregnancy persistently affects memory T cell populations. J Reprod Immunol 2017; 119:1-8. [DOI: 10.1016/j.jri.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/28/2022]
|
43
|
Raz N, Daugherty AM, Sethi SK, Arshad M, Haacke EM. Age differences in arterial and venous extra-cerebral blood flow in healthy adults: contributions of vascular risk factors and genetic variants. Brain Struct Funct 2017; 222:2641-2653. [PMID: 28120105 DOI: 10.1007/s00429-016-1362-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/24/2016] [Indexed: 01/01/2023]
Abstract
Sufficient cerebral blood flow (CBF) and venous drainage are critical for normal brain function, and their alterations can affect brain aging. However, to date, most studies focused on arterial CBF (inflow) with little attention paid to the age differences in venous outflow. We measured extra-cerebral arterial and venous blood flow rates with phase-contrast MRI and assessed the influence of vascular risk factors and genetic polymorphisms (ACE insertion/deletion, COMT val158met, and APOEε4) in 73 adults (age 18-74 years). Advanced age, elevated vascular risk, ACE Deletion, and COMT met alleles were linked to lower in- and outflow, with no effects of APOE ε4 noted. Lower age-related CBF rate was unrelated to brain volume and was observed only in val homozygotes of COMTval158met. Thus, in a disease-free population, age differences in CBF may be notable only in persons with high vascular risk and carriers of genetic variants associated with vasoconstriction and lower dopamine availability. It remains to be established if treatments targeting alleviation of the mutable factors can improve the course of cerebrovascular aging in spite of the immutable genetic influence.
Collapse
Affiliation(s)
- Naftali Raz
- Institute of Gerontology, Wayne State University, 87 E Ferry St. 226 Knapp Bldg., Detroit, MI, 48202, USA. .,Department of Psychology, Wayne State University, 5057 Woodward Ave., Detroit, MI, 48202, USA.
| | - Ana M Daugherty
- Institute of Gerontology, Wayne State University, 87 E Ferry St. 226 Knapp Bldg., Detroit, MI, 48202, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 N Matthews Ave., Urbana, IL, 61801, USA
| | - Sean K Sethi
- The MRI Institute of Biomedical Research, 440 E Ferry St., Detroit, MI, 48202, USA
| | - Muzamil Arshad
- Institute of Gerontology, Wayne State University, 87 E Ferry St. 226 Knapp Bldg., Detroit, MI, 48202, USA.,Department of Psychiatry and Behavioral Sciences, Wayne State University, 3990 John R, Detroit, MI, 48201, USA
| | - E Mark Haacke
- The MRI Institute of Biomedical Research, 440 E Ferry St., Detroit, MI, 48202, USA.,Department of Radiology, Wayne State University, 3990 John R, Detroit, MI, 48201, USA
| |
Collapse
|
44
|
Bronevetsky Y, Burt TD, McCune JM. Lin28b Regulates Fetal Regulatory T Cell Differentiation through Modulation of TGF-β Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:4344-4350. [PMID: 27793996 DOI: 10.4049/jimmunol.1601070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
Immune tolerance between the fetus and mother represents an active process by which the developing fetus must not mount immune responses to noninherited Ags on chimeric maternal cells that reside in fetal tissue. This is, in part, mediated by the suppressive influence of CD4+FOXP3+CD25+ regulatory T cells (Tregs). Fetal secondary lymphoid organs have an increased frequency of Tregs and, as compared with adult T cells, fetal naive CD4+ T cells exhibit a strong predisposition to differentiate into Tregs when stimulated. This effect is mediated by the TCR and TGF-β pathways, and fetal T cells show significantly increased Treg differentiation in response to anti-CD3 and TGF-β stimulation. Naive fetal T cells also exhibit increased signaling through the TGF-β pathway, with these cells demonstrating increased expression of the signaling mediators TGF-βRI, TGF-βRIII, and SMAD2, and higher levels of SMAD2/SMAD3 phosphorylation. Increased fetal Treg differentiation is mediated by the RNA-binding protein Lin28b, which is overexpressed in fetal T cells as compared with adult cells. When Lin28b expression is decreased in naive fetal T cells, they exhibit decreased Treg differentiation that is associated with decreased TGF-β signaling and lowered expression of TGF-βRI, TGF-βRIII, and SMAD2. Lin28b regulates the maturation of let-7 microRNAs, and these TGF-β signaling mediators are let-7 targets. We hypothesize that loss of Lin28b expression in fetal T cells leads to increased mature let-7, which causes decreased expression of TGF-βRI, TGF-βRIII, and SMAD2 proteins. A reduction in TGF-β signaling leads to reduced Treg numbers.
Collapse
Affiliation(s)
- Yelena Bronevetsky
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110;
| | - Trevor D Burt
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110; and.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110
| |
Collapse
|
45
|
Abstract
During pregnancy maternal and fetal cells commute back and forth leading to fetal microchimerism in the mother and maternal microchimerism in the child that can persist for years after the birth. Chimeric fetal and maternal cells can be hematopoietic or can differentiate into somatic cells in multiple organs, potentially acting as targets for ‘autoimmunity' and so have been implicated in the pathogenesis of autoimmune diseases that resemble graft-versus-host disease after stem cell transplantation. Fetal cells have been found in women with systemic lupus erythematosus, both in the blood and a target organ, the kidney, suggesting that they may be involved in pathogenesis. Future studies will address how the host immune system normally tolerates maternal and fetal cells or how the balance may change during autoimmunity.
Collapse
Affiliation(s)
- A M Stevens
- Department of Pediatrics, University of Washington, Childrens Hospital and Regional Medical Center, 307 Westlake Ave N, Suite 300, Seattle, WA 98109, Washington, USA.
| |
Collapse
|
46
|
Grubic Z, Stingl Jankovic K, Kelecic J, Batinic D, Dubravcic K, Zunec R. A case of maternal-foetal chimerism identified during routine histocompatibility testing for hematopoietic stem cell transplantation. Int J Immunogenet 2015; 43:1-7. [PMID: 26663895 DOI: 10.1111/iji.12241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 11/29/2022]
Abstract
This report describes a case of maternal-foetal chimerism identified in a boy diagnosed with SCID, who underwent HLA testing in preparation for HSCT. The first analysis was carried out on DNA from peripheral blood and included HLA-A, HLA-B, HLA-DRB1 typing using PCR-SSO. The patient's HLA-B typing results were noninterpretable. All samples were re-typed for HLA-B using PCR-SSP, again resulting in noninterpretable typing of patient's HLA-B. In both cases, several weak positive probes/reactions interfered with the interpretation when using commercial software. Next round of HLA typing, using PCR-SSP and PCR-SSO methods, included the patient's bone marrow sample and HLA-C locus, but interpretation was again not possible. The PCR-STR analysis performed on both peripheral blood and bone marrow samples revealed seven STRs for which two maternal and one paternal allele were detected. Retrospective manual interpretation of HLA-B and HLA-C typing revealed that weak positive reactions were indeed owed to paternal HLA-B and HLA-C alleles and that the patient had both maternal and one paternal allele. Retyping of HLA-B and HLA-C loci and STR analysis on the patient's buccal cells sample revealed the expected one maternal/one paternal allele pattern. In summary, the combination of several different typing methods and manual interpretation were necessary to obtain the patient's HLA typing results.
Collapse
Affiliation(s)
- Z Grubic
- Tissue Typing Center, Clinical Department for Transfusion Medicine ad Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - K Stingl Jankovic
- Tissue Typing Center, Clinical Department for Transfusion Medicine ad Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - J Kelecic
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - D Batinic
- Clinical Unit for Cellular Immunodiagnostics, Clinical Department of Laboratory Diagnosis, University Hospital Centre Zagreb, Zagreb, Croatia
| | - K Dubravcic
- Clinical Unit for Cellular Immunodiagnostics, Clinical Department of Laboratory Diagnosis, University Hospital Centre Zagreb, Zagreb, Croatia
| | - R Zunec
- Tissue Typing Center, Clinical Department for Transfusion Medicine ad Transplantation Biology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
47
|
Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, Way SS. Tolerance to noninherited maternal antigens, reproductive microchimerism and regulatory T cell memory: 60 years after 'Evidence for actively acquired tolerance to Rh antigens'. CHIMERISM 2015; 6:8-20. [PMID: 26517600 PMCID: PMC5063085 DOI: 10.1080/19381956.2015.1107253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Compulsory exposure to genetically foreign maternal tissue imprints in offspring sustained tolerance to noninherited maternal antigens (NIMA). Immunological tolerance to NIMA was first described by Dr. Ray D. Owen for women genetically negative for erythrocyte rhesus (Rh) antigen with reduced sensitization from developmental Rh exposure by their mothers. Extending this analysis to HLA haplotypes has uncovered the exciting potential for therapeutically exploiting NIMA-specific tolerance naturally engrained in mammalian reproduction for improved clinical outcomes after allogeneic transplantation. Herein, we summarize emerging scientific concepts stemming from tolerance to NIMA that includes postnatal maintenance of microchimeric maternal origin cells in offspring, expanded accumulation of immune suppressive regulatory T cells with NIMA-specificity, along with teleological benefits and immunological consequences of NIMA-specific tolerance conserved across mammalian species.
Collapse
Affiliation(s)
- Jeremy M Kinder
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Tony T Jiang
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - James M Ertelt
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Lijun Xin
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| | - Beverly S Strong
- b Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital , Cincinnati , OH , USA
| | - Aimen F Shaaban
- b Center for Fetal Cellular and Molecular Therapy, Cincinnati Children's Hospital , Cincinnati , OH , USA
| | - Sing Sing Way
- a Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital, Cincinnati , OH , USA
| |
Collapse
|
48
|
González PL, Carvajal C, Cuenca J, Alcayaga-Miranda F, Figueroa FE, Bartolucci J, Salazar-Aravena L, Khoury M. Chorion Mesenchymal Stem Cells Show Superior Differentiation, Immunosuppressive, and Angiogenic Potentials in Comparison With Haploidentical Maternal Placental Cells. Stem Cells Transl Med 2015; 4:1109-21. [PMID: 26273064 PMCID: PMC4572900 DOI: 10.5966/sctm.2015-0022] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/22/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) of placental origin have become increasingly translational owing to their abundance and accessibility. MSCs of different origin share several features but also present biological differences that might point to distinct clinical properties. Hence, mixing fetal and maternal cells from the same placenta can lead to contradicting results. We analyzed the biological characteristics of haploidentical MSCs isolated from fetal sources, including the umbilical cord (UC-MSCs) and chorion (Ch-MSCs), compared with maternal decidua MSCs (Dc-MSCs). All MSCs were analyzed for general stem cell properties. In addition, immunosuppressive capacity was assessed by the inhibition of T-cell proliferation, and angiogenic potential was evaluated in a Matrigel transplantation assay. The comparison between haploidentical MSCs displayed several distinct features, including (a) marked differences in the expression of CD56, (b) a higher proliferative capacity for Dc-MSCs and UC-MSCs than for Ch-MSCs, (c) a diversity of mesodermal differentiation potential in favor of fetal MSCs, (d) a higher capacity for Ch-MSCs to inhibit T-cell proliferation, and (e) superior angiogenic potential of Ch-MSCs evidenced by a higher capability to form tubular vessel-like structures and an enhanced release of hepatocyte growth factor and vascular endothelial growth factor under hypoxic conditions. Our results suggest that assessing the prevalence of fetomaternal contamination within placental MSCs is necessary to increase robustness and limit side effects in their clinical use. Finally, our work presents evidence positioning fetoplacental cells and notably Ch-MSCs in the forefront of the quest for cell types that are superior for applications in regenerative medicine. SIGNIFICANCE This study analyzed the biological characteristics of mesenchymal stem cells (MSCs) isolated from fetal and maternal placental origins. The findings can be summarized as follows: (a) important differences were found in the expression of CD56, (b) a different mesodermal differentiation potential was found in favor of fetal MSCs, (c) a higher immunosuppressive capacity for chorion MSCs was noted, and (d) superior angiogenic potential of Ch-MSCs was observed. These results suggest that assessing the prevalence of fetomaternal contamination within placental MSCs is necessary to increase robustness and limit side effects in their clinical use. The evidence should allow clinicians to view fetoplacental cells, notably Ch-MSCs, favorably as candidates for use in regenerative medicine.
Collapse
Affiliation(s)
- Paz L González
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| | - Catalina Carvajal
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| | - Fernando E Figueroa
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| | - Jorge Bartolucci
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| | - Lorena Salazar-Aravena
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile; Cells for Cells, Santiago, Chile; Facultad de Medicina Universidad de los Andes y Clínica Universidad de Los Andes, Santiago, Chile; Consorcio Regenero, Santiago, Chile
| |
Collapse
|
49
|
Stevens AM. Maternal microchimerism in health and disease. Best Pract Res Clin Obstet Gynaecol 2015; 31:121-30. [PMID: 26612343 DOI: 10.1016/j.bpobgyn.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Abstract
Circulating maternal cells transfer to the fetus during pregnancy, where they may integrate with the fetal immune and organ systems, creating a state of maternal microchimerism (MMc). MMc can persist throughout the child's life, and it has been implicated in the triggering or perpetuation of chronic inflammatory autoimmune diseases, in the context of specific major histocompatibility genes. Correlative data in humans have now been tested in animal model systems. Results suggest that maternal-fetal tolerance may have health implications far beyond the time of pregnancy and into the child's life.
Collapse
Affiliation(s)
- Anne M Stevens
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, 1900 9th Ave N, 9S-7, Seattle, WA 98101, USA.
| |
Collapse
|
50
|
Sillence KA, Roberts LA, Hollands HJ, Thompson HP, Kiernan M, Madgett TE, Welch CR, Avent ND. Fetal Sex and RHD Genotyping with Digital PCR Demonstrates Greater Sensitivity than Real-time PCR. Clin Chem 2015; 61:1399-407. [PMID: 26354802 DOI: 10.1373/clinchem.2015.239137] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/24/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Noninvasive genotyping of fetal RHD (Rh blood group, D antigen) can prevent the unnecessary administration of prophylactic anti-D to women carrying RHD-negative fetuses. We evaluated laboratory methods for such genotyping. METHODS Blood samples were collected in EDTA tubes and Streck® Cell-Free DNA™ blood collection tubes (Streck BCTs) from RHD-negative women (n = 46). Using Y-specific and RHD-specific targets, we investigated variation in the cell-free fetal DNA (cffDNA) fraction and determined the sensitivity achieved for optimal and suboptimal samples with a novel Droplet Digital™ PCR (ddPCR) platform compared with real-time quantitative PCR (qPCR). RESULTS The cffDNA fraction was significantly larger for samples collected in Streck BCTs compared with samples collected in EDTA tubes (P < 0.001). In samples expressing optimal cffDNA fractions (≥4%), both qPCR and digital PCR (dPCR) showed 100% sensitivity for the TSPY1 (testis-specific protein, Y-linked 1) and RHD7 (RHD exon 7) assays. Although dPCR also had 100% sensitivity for RHD5 (RHD exon 5), qPCR had reduced sensitivity (83%) for this target. For samples expressing suboptimal cffDNA fractions (<2%), dPCR achieved 100% sensitivity for all assays, whereas qPCR achieved 100% sensitivity only for the TSPY1 (multicopy target) assay. CONCLUSIONS qPCR was not found to be an effective tool for RHD genotyping in suboptimal samples (<2% cffDNA). However, when testing the same suboptimal samples on the same day by dPCR, 100% sensitivity was achieved for both fetal sex determination and RHD genotyping. Use of dPCR for identification of fetal specific markers can reduce the occurrence of false-negative and inconclusive results, particularly when samples express high levels of background maternal cell-free DNA.
Collapse
Affiliation(s)
- Kelly A Sillence
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Llinos A Roberts
- Department of Fetal Medicine, Plymouth Hospitals National Health Service Trust, Plymouth, UK
| | - Heidi J Hollands
- Department of Fetal Medicine, Plymouth Hospitals National Health Service Trust, Plymouth, UK
| | - Hannah P Thompson
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Michele Kiernan
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Tracey E Madgett
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - C Ross Welch
- Department of Fetal Medicine, Plymouth Hospitals National Health Service Trust, Plymouth, UK
| | - Neil D Avent
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK;
| |
Collapse
|