1
|
Lutakome P, Heirbaut S, Girma MM, Zhang M, Jing X, Hertogs K, Geerinckx K, Stevens E, Aernouts B, Vandaele L, Asizua D, Kabi F, Fievez V. Temporal and interanimal variation in bloodspot acylcarnitine and amino acid profiles in relation to conventional metabolites and hormones in Holstein dairy cows. J Dairy Sci 2025; 108:5382-5404. [PMID: 40043763 DOI: 10.3168/jds.2024-25646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/30/2025] [Indexed: 05/03/2025]
Abstract
The transition from late gestation to early lactation in dairy cows involves dynamic metabolic adaptations orchestrated by homeorhetic mechanisms, including hepatic fatty acid and AA metabolism. To gain deeper understanding of these mechanisms, we evaluated changes in bloodspot acylcarnitines (AC) and free AA profiles, and conventional blood biomarkers of energy balance (BHB, nonesterified fatty acids [NEFA], glucose, insulin, IGF-1, and fructosamine) along with weekly milk composition and DMI in 2 sequential observational trials. Data were analyzed using correlation and cluster analysis, and linear mixed-effects models with and without repeated measures. Study 1, which involved 28 multiparous Holstein-Friesian cows sampled 7 d before calving and at 3, 6, 9 and 21 d after calving, revealed strong positive correlations between glycine-to-alanine ratio with BHB (r = 0.58) and NEFA (r = 0.59), though these correlations weakened in study 2. Four trajectory patterns in AC, AA, and metabolite ratios were identified. Group 1 (e.g., C5, C16, and C18) showed transient postpartum increase peaking by d 3 or 6, returning to prepartum levels by d 21. Group 2 (e.g., tyrosine, C0:(C16 + C18) exhibited transient postpartum decrease, normalizing by d 21. Group 3 (e.g., C4DC:C3, t[AC]:C0, and valine-to-phenylalanine ratio) displayed variable postpartum responses, whereas group 4 exhibited persistent differences at d 21, with elevated glycine-to-alanine and valine-to-leucine ratios but reduced methionine and ornithine-to-citrulline ratio compared with prepartum levels. Study 2, which examined intercow variations and comprised of 74 cows (83 lactations) sampled at 21 DIM, revealed 2 distinct clusters of clinically healthy cows based on longitudinal time serum BHB profiles: normal and high milk yield-hyperketonemia (HMY-HYK). The HMY-HYK cows had higher milk yield (41.6 ± 1.05 vs. 39.4 ± 0.767 kg/d), average serum BHB and NEFA (0.996 ± 0.086 vs. 0.754 ± 0.062 mmol/L and 0.498 ± 0.051 vs. 0.534 ± 0.071 mmol/L, respectively) and lower insulin (0.343 ± 0.030 vs. 0.368 ± 0.041ng/mL) compared with cows in the normal cluster. The higher milk yield, increased milk urea concentrations, and reduced bloodspot citrulline levels in the HMY-HYK cows suggest enhanced AA catabolism for gluconeogenesis and reduced activity in the ornithine-citrulline cycle. Elevated bloodspot malonylcarnitine, long-chain AC (LCAC) with C16 and C18 carbon chains, acetylcarnitine-to-free carnitine (C2:C0) ratio but lower free carnitine (C0) levels indicate efficient mitochondrial responses, potentially exporting acyl-CoA as C2 and LCAC to mitigate metabolic stress associated with elevated NEFA. In conclusion, bloodspot AC, AA, and metabolite ratios highlight time-dependent and interanimal shifts in adipose and muscle mobilization, as well as adaptive mitochondrial metabolism of NEFA and AA catabolism to support gluconeogenesis and thus, milk synthesis in early lactation.
Collapse
Affiliation(s)
- Pius Lutakome
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Department of Animal and Range Sciences, College of Agricultural and Environmental Science, Makerere University, PO Box 7062, Kampala, Uganda; Faculty of Agricultural and Environmental Sciences, Mountains of the Moon University, PO Box 837, Fort Portal, Uganda
| | - Stijn Heirbaut
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Muluken Mulat Girma
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mingqi Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Xiaoping Jing
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Karolien Hertogs
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Katleen Geerinckx
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; Hooibeekhoeve, 2440 Geel, Belgium
| | | | - Ben Aernouts
- KU Leuven, Department of Biosystems, Division of Animal and Human Health Engineering, Campus Geel, 2440 Geel, Belgium
| | | | - Denis Asizua
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organisation (NARO), Kampala, Uganda
| | - Fred Kabi
- Department of Animal and Range Sciences, College of Agricultural and Environmental Science, Makerere University, PO Box 7062, Kampala, Uganda
| | - Veerle Fievez
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Sharma S, McKenzie M. The Pathogenesis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. Biomolecules 2025; 15:416. [PMID: 40149952 PMCID: PMC11940467 DOI: 10.3390/biom15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Living systems require energy to maintain their existence and perform tasks such as cell division. This energy is stored in several molecular forms in nature, specifically lipids, carbohydrates, and amino acids. At a cellular level, energy is extracted from these complex molecules and transferred to adenosine triphosphate (ATP) in the cytoplasm and mitochondria. Within the mitochondria, fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are crucial metabolic processes involved in generating ATP, with defects in these pathways causing mitochondrial disease. Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a fatty acid β-oxidation disorder (FAOD) affecting 1 to 2 individuals per 100,000. Similar to other mitochondrial disorders, there is no cure for VLCADD, with symptomatic treatment comprising dietary management and supplementation with medium-chain fatty acids to bypass the enzyme deficiency. While this addresses the primary defect in VLCADD, there is growing evidence that other aspects of mitochondrial function are also affected in VLCADD, including secondary defects in OXPHOS function. Here, we review our current understanding of VLCADD with a focus on the associated biochemical and molecular defects that can disrupt multiple aspects of mitochondrial function. We describe the interactions between FAO proteins and the OXPHOS complexes and how these interactions are critical for maintaining the activity of both metabolic pathways. In particular, we describe what is now known about the protein-protein interactions between VLCAD and the OXPHOS supercomplex and how their disruption contributes to overall VLCADD pathogenesis.
Collapse
Affiliation(s)
- Shashwat Sharma
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
- Institute for Physical Activity and Nutrition, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
3
|
Mansoldo FRP, Lopes de Lima I, Pais de Carvalho C, da Silva ARJ, Eberlin MN, Vermelho AB. rIDIMS: A novel tool for processing direct-infusion mass spectrometry data. Talanta 2025; 284:127273. [PMID: 39586215 DOI: 10.1016/j.talanta.2024.127273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Metabolomics using mass spectrometry-only (MS) analysis either by continuous or intermittent direct infusion (DIMS) and ambient ionization techniques (AMS) has grown in popularity due to their rapid, high-throughput nature and the advantage of performing fast analysis with minimal or no sample pretreatments. But currently, end-users without programming knowledge do not find applications with Graphical User Interface (GUI) specialized in processing DIMS or AMS data. Specifically, there is a lack of standardized workflow for processing data from limited sample sizes and scans from different total ion chronograms (TIC).To address this gap, we present rIDIMS, a browser-based application that offers a straightforward and fast workflow focusing on high-quality scan selection, grouping of isotopologues and adducts, data alignment, binning, and filtering. We also introduce a novel function for selecting TIC scans that is reproducible and statistically reliable, which is a feature particularly useful for studies with limited sample sizes. After processing in rIDIMS, the result is exported in an HTML report document that presents publication-quality figures, statistical data and tables, ready to be customized and exported. We demonstrate rIDIMS functionality in three cases: (i) Classification of coffee bean species through the chemical profile obtained with Mass Spec Pen; (ii) Public repository DIMS data from lipid profiling in monogenic insulin resistance syndromes, and (iii) Lipids for lung cancer classification. We show that our implementation facilitates the processing of AMS and DIMS data through an easy and intuitive interface, contributing to reproducible and reliable metabolomic investigations. Indeed, rIDIMS function asa user-friendly GUI based Shiny web application for intuitive use by end-users (available at https://github.com/BioinovarLab/rIDIMS).
Collapse
Affiliation(s)
- Felipe R P Mansoldo
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil.
| | - Iasmim Lopes de Lima
- Mackenzie Presbyterian University, MackMass Laboratory for Mass Spectrometry, School of Engineering, PPGEMN & Mackenzie Institute of Research in Graphene and Nanotechnologies, São Paulo, Brazil
| | - Caroline Pais de Carvalho
- Mackenzie Presbyterian University, MackMass Laboratory for Mass Spectrometry, School of Engineering, PPGEMN & Mackenzie Institute of Research in Graphene and Nanotechnologies, São Paulo, Brazil
| | - Adriano R J da Silva
- Mackenzie Presbyterian University, MackMass Laboratory for Mass Spectrometry, School of Engineering, PPGEMN & Mackenzie Institute of Research in Graphene and Nanotechnologies, São Paulo, Brazil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University, MackMass Laboratory for Mass Spectrometry, School of Engineering, PPGEMN & Mackenzie Institute of Research in Graphene and Nanotechnologies, São Paulo, Brazil.
| | - Alane Beatriz Vermelho
- BIOINOVAR - Biotechnology Laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
4
|
Kononets V, Zharmakhanova G, Balmagambetova S, Syrlybayeva L, Berdesheva G, Zhussupova Z, Tautanova A, Kurmambayev Y. Tandem mass spectrometry in screening for inborn errors of metabolism: comprehensive bibliometric analysis. Front Pediatr 2025; 13:1463294. [PMID: 40051910 PMCID: PMC11882580 DOI: 10.3389/fped.2025.1463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Tandem mass spectrometry (MS/MS) for detection of inborn errors of metabolism (IEM) is recognized as an ethical, safe, simple, and reliable screening test. Presented bibliometric analysis aims to describe the network structure of the scientific community in the study area at the level of countries, institutions, authors, papers, keywords, and sources; scientific productivity, directions, and collaboration efforts in a considered period (1991-2024, May). Using the PRISMA method, we conducted a systematic search for articles reporting using MS/MS to screen for inherited metabolic disorders and inborn errors of metabolism collected from the Web of Science Core Collection (WoSCC). A total of 677 articles out of 826, by 3,714 authors, published in 245 journals, with 21,193 citations in 11,295 citing articles, with an average citation of 31.3 per article, and an H-index of 69 were retrieved from the WoSCC. The research status of MS/MS in IEM screening was identified. The most relevant current research directions and future areas of interest were revealed: "selective screening for IEM," "new treatments for IEM," "new disorders considered for MS/MS testing," "ethical issues associated with newborn screening," "new technologies that may be used for newborn screening," and "use of a combination of MS/MS and gene sequencing".
Collapse
Affiliation(s)
- Victoria Kononets
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulmira Zharmakhanova
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saule Balmagambetova
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Lyazzat Syrlybayeva
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulshara Berdesheva
- Department of General Hygiene, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neonatal Pathology, Aktobe Regional Tertiary Care Center, Aktobe, Kazakhstan
| | - Aidana Tautanova
- Department of Microbiology and Virology, Named After Sh.I. Sarbasova, Astana Medical University, Astana, Kazakhstan
| | - Yergen Kurmambayev
- Consultative and Diagnostic Department, Medical Center of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
5
|
Worku K, Kechero Y, Janssens GPJ. Effects of Supplementing Different Quantities of Moringa stenopetala Leaves on Plasma Metabolite and Acylcarnitine Profile, Body Condition Score and Milk Yield Performance in Zebu (Bos indicus) Cattle. J Anim Physiol Anim Nutr (Berl) 2025; 109:162-169. [PMID: 39279182 DOI: 10.1111/jpn.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
The formulation of multi-nutrient blocks based on low-cost and locally available browse feed resources can be a valid feeding strategy in Sub-Saharan Africa, where inadequate feed supply, both in quality and quantity, is a major constraint. We evaluated the four different inclusion percentages (M-0%, M-25%, M-35% and M-45%) of Moringa stenopetala leaf powder to multi-nutrient blocks on their change on blood metabolite of dairy cows under practical, ranging conditions. Multi-nutrient blocks with four inclusion rates of M. stenopetala leaves were applied as complementary feed for free ranging dairy cows. The study was performed on 24 free ranging dairy cows reared around Arba Minch town in the Southern Ethiopian Rift Valley. Blood samples were collected from the jugular vein of dairy cows both before and after supplementation. Plasma glucose, beta hydroxy butyrate (BHB), urea, creatinine, triglycerides and nonesterified fatty acids (NEFA) concentration was quantified spectrophotometrically. Dried serum spots were subject to quantitative electrospray tandem mass spectrometry to estimate changes in nutrient metabolism based on selected carnitines. Based on these measurements, the milk yield and body condition score were increased during the period of multi-nutrient block supplementation. During the supplementation period, the cows got higher plasma glucose, triglyceride and urea concentrations and lower concentrations of BHB, NEFA and creatinine. From the metabolite profiles, a more efficient nutrient use could be concluded. Although no clear dose-response relationship was observed, the highest inclusion of the M. stenopetala leaves in the multi-nutrient blocks gave the best performance. This outcome supports the idea of implementing M. stenopetala based multi-nutrient blocks on tropical smallholder farms that are not easily accessible to conventional extension services.
Collapse
Affiliation(s)
- Ketema Worku
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yisehak Kechero
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Geert P J Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
6
|
Chae H, Byun JW, Ku B, Jeong O, Her M, Kim T, Kang J. Rapid and Environment-Friendly LC-MS/MS for Simultaneous Analysis of Amino Acids in Veterinary Medicine. Vet Med Sci 2025; 11:e70212. [PMID: 39854148 PMCID: PMC11758445 DOI: 10.1002/vms3.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Amino acid supplements are crucial for animal health and productivity. Traditional analysis methods face limitations like complexity, long testing times and toxic reagents. Therefore, a more efficient and reliable method is needed. OBJECTIVES This study aimed to develop and validate an efficient method for the simultaneous analysis of eight amino acids commonly used in veterinary medicine: alanine, arginine, glutathione, lysine, ornithine, methionine, threonine and tryptophan. METHODS We analysed eight veterinary amino acid preparations. From 100 registered products, we selected 35. After confirming ingredients, we diluted them to 1 mg/L with 50% acetonitrile (ACN) and filtered them using a 0.2 µm RC filter for liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RESULTS All analytes showed excellent linearity (r2 > 0.99) within 0-10 mg/L. The limits of detection (LOD) ranged from 0.04 to 0.83 mg/L, and the limits of quantification (LOQ) ranged from 0.12 to 2.52 mg/L. Average recovery ranged from 92.96% to 105.61%, with relative standard deviations (RSD) from 0.27% to 3.50%, meeting CD 2002/657/EC standards. Six out of the 35 products (17.14%) did not meet regulations. CONCLUSIONS The method developed in this study offers an efficient and reliable approach for the simultaneous analysis of essential amino acids in veterinary medicine. Implementing this method can improve the quality control of amino acid products, enhancing animal health and productivity. This study also highlights the need for stringent domestic management and continuous monitoring. By overcoming traditional technique limitations, this validated method ensures the quality and efficacy of amino acid supplements in the veterinary industry.
Collapse
Affiliation(s)
- HyunYoung Chae
- Animal Disease Diagnosis DivisionAnimal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural AffairsGimcheon‐siRepublic of Korea
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Jae Won Byun
- Animal Disease Diagnosis DivisionAnimal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural AffairsGimcheon‐siRepublic of Korea
| | - Bok‐Kyung Ku
- Animal Disease Diagnosis DivisionAnimal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural AffairsGimcheon‐siRepublic of Korea
| | - Ok‐Mi Jeong
- Veterinary drugs & Biologics DivisionAnimal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural AffairsGimcheon‐siRepublic of Korea
| | - Moon Her
- Veterinary drugs & Biologics DivisionAnimal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural AffairsGimcheon‐siRepublic of Korea
| | - TaeWan Kim
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - JeongWoo Kang
- Animal Disease Diagnosis DivisionAnimal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural AffairsGimcheon‐siRepublic of Korea
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| |
Collapse
|
7
|
Kwon GE, Son HH, Moon JY, Lee A, Jung MK, Rhie S, Park MJ, Garg A, Yoo EG, Choi MH. Dried blood spot-based free sterol signatures in sitosterolemia diagnostics. Clin Chim Acta 2024; 562:119886. [PMID: 39053727 DOI: 10.1016/j.cca.2024.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Sitosterolemia is a rare inherited lipid metabolic disorder characterized by increased levels of plant sterols and accelerated atherosclerosis. Although early detection is beneficial for the prevention of disease progression, it is largely underdiagnosed by routine screening based on conventional lipid profiles. MATERIALS AND METHODS A gas chromatography-mass spectrometry (GC-MS)-based profiling has been developed and validated to measure the levels of biologically active free sterols, including five endogenous sterols and three plant sterols (sitosterol, campesterol, and stigmasterol) in dried blood spot (DBS). RESULTS Within- and between-run precisions were 1.4-11.1 % and 2.2-14.1 %, respectively, while the accuracies were all 86.3 ∼ 121.9 % with the correlation coefficients (r2) > 0.988 for all the sterols. In the patients (four girls and two boys, 6.5 ± 2.8 years), sitosterol levels were significantly increased, with an optimal cut-off value of 2.5 µg/mL distinguishing them from ninety-three age-matched healthy children. A cut-off value of 31.9 µg/mL differentiated the patients from six ABCG5/ABCG8 heterozygous carriers. In addition, the molecular ratios of sitosterol to cholesterol, desmosterol, and 7-dehydrocholesterol provided excellent cut-off values of 26.3, 67.6, and 21.6, respectively, to distinguish patients from both healthy controls and heterozygous carriers. CONCLUSIONS The novel DBS-based GC-MS profiling of free sterols accurately identified patients with sitosterolemia, with a performance comparable to that of a serum assay. The DBS profiling could be more feasible method in clinical practice as well as population screening programs, and it can provide diagnostic cut-off values for individual plant sterols.
Collapse
MESH Headings
- Humans
- Lipid Metabolism, Inborn Errors/blood
- Lipid Metabolism, Inborn Errors/diagnosis
- Female
- Male
- Intestinal Diseases/blood
- Intestinal Diseases/diagnosis
- Gas Chromatography-Mass Spectrometry
- Child
- Phytosterols/blood
- Phytosterols/adverse effects
- Dried Blood Spot Testing/methods
- Hypercholesterolemia/blood
- Hypercholesterolemia/diagnosis
- Child, Preschool
- ATP Binding Cassette Transporter, Subfamily G, Member 5/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- Sterols/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 8/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- Lipoproteins/blood
Collapse
Affiliation(s)
- Go Eun Kwon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyun-Hwa Son
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju-Yeon Moon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ayoung Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mo Kyung Jung
- Department of Pediatrics, CHA Bundang Medical Center, Gyeonggi-do 13496, Republic of Korea
| | - Seonkyeong Rhie
- Department of Pediatrics, CHA Bundang Medical Center, Gyeonggi-do 13496, Republic of Korea
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul 01757, Republic of Korea
| | - Abhimanyu Garg
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eun-Gyong Yoo
- Department of Pediatrics, CHA Bundang Medical Center, Gyeonggi-do 13496, Republic of Korea.
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
8
|
Li L, Tang Y, Zhao J, Gong L, Yang N, Wang S, Yang H, Kong Y. Four novel variants identified in the ACADVL gene causing very-long-chain acyl-coenzyme A dehydrogenase deficiency in four unrelated Chinese families. Front Genet 2024; 15:1433160. [PMID: 39188284 PMCID: PMC11345273 DOI: 10.3389/fgene.2024.1433160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Background: The biochemical and genetic characteristics of four very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD) patients, clarifying their pathogenic genetic factors and evaluating the application value of genetic diagnosis in the early diagnosis of VLCADD, are reported and discussed in this article. Methods: Patients underwent blood tandem mass spectrometry (MS/MS), urine gas chromatography (GC/MS), and high-throughput sequencing technology. New variants were analyzed for pathogenicity using bioinformatics software. Swiss-PdbViewer software was used to predict the effect of variants on the structure of the very-long-chain acyl-CoA dehydrogenase (VLCAD) protein. Result: A total of four VLCADD patients were diagnosed. They revealed elevated levels of C14, C14:1, C14:2, C14:1/C2, C14:1/C10, and C14:1/C12:1. Two patients were early-onset neonatal cases and died during infancy and the neonatal period, respectively. Seven kinds of variants were detected, including four novel variants. Bioinformatics software revealed that the variants were harmful, and the Swiss-PdbViewer results suggest that variation affects protein conformation. Conclusion: This study identified four novel ACADVL gene variants. These findings contribute to the understanding of the genetic basis and pathogenesis of VLCADD. Meanwhile, the study enriches the genetic mutation spectrum and the correlation between genotypes and phenotypes of VLCADD, indicating that genetic diagnosis plays an essential role in the early diagnosis and treatment of VLCADD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuanyuan Kong
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| |
Collapse
|
9
|
Ashenden AJ, Chowdhury A, Anastasi LT, Lam K, Rozek T, Ranieri E, Siu CWK, King J, Mas E, Kassahn KS. The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges. Int J Neonatal Screen 2024; 10:42. [PMID: 39051398 PMCID: PMC11270328 DOI: 10.3390/ijns10030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Newborn screening programs have seen significant evolution since their initial implementation more than 60 years ago, with the primary goal of detecting treatable conditions within the earliest possible timeframe to ensure the optimal treatment and outcomes for the newborn. New technologies have driven the expansion of screening programs to cover additional conditions. In the current era, the breadth of screened conditions could be further expanded by integrating omic technologies such as untargeted metabolomics and genomics. Genomic screening could offer opportunities for lifelong care beyond the newborn period. For genomic newborn screening to be effective and ready for routine adoption, it must overcome barriers such as implementation cost, public acceptability, and scalability. Metabolomics approaches, on the other hand, can offer insight into disease phenotypes and could be used to identify known and novel biomarkers of disease. Given recent advances in metabolomic technologies, alongside advances in genomics including whole-genome sequencing, the combination of complementary multi-omic approaches may provide an exciting opportunity to leverage the best of both approaches and overcome their respective limitations. These techniques are described, along with the current outlook on multi-omic-based NBS research.
Collapse
Affiliation(s)
- Alex J. Ashenden
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Ayesha Chowdhury
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Lucy T. Anastasi
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
| | - Khoa Lam
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Tomas Rozek
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Enzo Ranieri
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
| | - Carol Wai-Kwan Siu
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Jovanka King
- Immunology Directorate, SA Pathology, Adelaide, SA 5000, Australia
- Department of Allergy and Clinical Immunology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Discipline of Paediatrics, Women’s and Children’s Hospital, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Emilie Mas
- Department of Biochemical Genetics, SA Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia (T.R.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Karin S. Kassahn
- Department of Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia; (A.C.); (L.T.A.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
10
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
11
|
Zhang X, Ji W, Wang Y, Zhou Z, Guo J, Tian G. Comparative analysis of inherited metabolic diseases in normal newborns and high-risk children: Insights from a 10-year study in Shanghai. Clin Chim Acta 2024; 558:117893. [PMID: 38582244 DOI: 10.1016/j.cca.2024.117893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Compare the differences between normal newborns and high-risk children with inherited metabolic diseases. The disease profile includes amino acidemias, fatty acid oxidation disorders, and organic acidemias. METHODS Data was collected on newborns and children from high-risk populations in Shanghai from December 2010 to December 2020. RESULTS 232,561 newborns were screened for disorders of organic, amino acid, and fatty acid metabolism. The initial positive rate was 0.66 % (1,526/232,561) and the positive recall rate was 77.85 %. The positive predictive value is 4.71 %. Among them, 56 cases were diagnosed as metabolic abnormalities. The total incidence rate is 1:4153. Hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase are the most common diseases in newborns. In addition, in 56 children, 39 (69.42 %) were diagnosed by genetic sequencing. Some hotspot mutations in 14 IEMs have been observed, including PAH gene c.728G > A, c.611A > G, and ACADS gene c. 1031A > G, c.164C > T. A total of 49,860 symptomatic patients were screened, of which 185 were diagnosed with IEM, with a detection rate of 0.37 %. The most commonly diagnosed diseases in high-risk infants aremethylmalonic acidemia and hyperphenylalaninemia. CONCLUSION There are more clinical cases of congenital metabolic errors diagnosed by tandem mass spectrometry than newborn screening. The spectrum of diseases, prevalence, and genetic characteristics of normal newborns and high-risk children are quite different.
Collapse
Affiliation(s)
- Xiaofen Zhang
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Wei Ji
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Yanmin Wang
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhuo Zhou
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Jing Guo
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Guoli Tian
- Department of Newborn Screening Center, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China.
| |
Collapse
|
12
|
Su H, Zhang H, Wu J, Huang L, Zhang M, Xu W, Cao J, Liu W, Liu N, Jiang H, Gu X, Qian K. Fast Label-Free Metabolic Profile Recognition Identifies Phenylketonuria and Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305701. [PMID: 38348590 PMCID: PMC11022714 DOI: 10.1002/advs.202305701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Indexed: 04/18/2024]
Abstract
Phenylketonuria (PKU) is the most common inherited metabolic disease in humans. Clinical screening of newborn heel blood samples for PKU is costly and time-consuming because it requires multiple procedures, like isotope labeling and derivatization, and PKU subtype identification requires an additional urine sample. Delayed diagnosis of PKU, or subtype identification can result in mental disability. Here, plasmonic silver nanoshells are used for laser desorption/ionization mass spectrometry (MS) detection of PKU with label-free assay by recognizing metabolic profile in dried blood spot (DBS) samples. A total of 1100 subjects are recruited and each DBS sample can be processed in seconds. This platform achieves PKU screening with a sensitivity of 0.985 and specificity of 0.995, which is comparable to existing clinical liquid chromatography MS (LC-MS) methods. This method can process 360 samples per hour, compared with the LC-MS method which processes only 30 samples per hour. Moreover, this assay enables precise identification of PKU subtypes without the need for a urine sample. It is demonstrated that this platform enables high-performance and fast, low-cost PKU screening and subtype identification. This approach might be suitable for the detection of other clinically relevant biomarkers in blood or other clinical samples.
Collapse
Affiliation(s)
- Haiyang Su
- Henan Key Laboratory of Rare DiseasesEndocrinology and Metabolism CenterThe First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003P. R. China
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Huiwen Zhang
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Jiao Wu
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Lin Huang
- Country Department of Clinical Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Mengji Zhang
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Wei Xu
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jing Cao
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Wanshan Liu
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Ning Liu
- School of Electronics Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Hongwei Jiang
- Henan Key Laboratory of Rare DiseasesEndocrinology and Metabolism CenterThe First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003P. R. China
| | - Xuefan Gu
- Xinhua HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200092P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for CancerSchool of Biomedical EngineeringInstitute of Medical Robotics and Shanghai Academy of Experimental MedicineShanghai Jiao Tong UniversityShanghai200030P. R. China
| |
Collapse
|
13
|
Millington DS. How mass spectrometry revolutionized newborn screening. J Mass Spectrom Adv Clin Lab 2024; 32:1-10. [PMID: 38333514 PMCID: PMC10847993 DOI: 10.1016/j.jmsacl.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
This article offers a personal account of a remarkable journey spanning over 30 years of applied mass spectrometry in a clinical setting. It begins with the author's inspiration from a clinician's story of rescuing a child from near death with a revolutionary therapeutic intervention. Motivated by this experience, the author delved into the field of chemistry and mass spectrometry to solve an analytical challenge. The breakthrough came with the development of the first front-line diagnostic test performed by MS/MS, which focused on analyzing acylcarnitines to detect and diagnose inherited disorders related to fatty acid and branched-chain amino acid catabolism. Building upon this success, the author expanded the application of the method to dried blood spots, incorporating additional analytical components such as essential amino acids. The result was a groundbreaking multiplex assay capable of screening newborns for more than 30 inherited metabolic conditions with just one test. This novel approach laid the foundation for a targeted metabolomics platform that facilitated the identification of new animal models of metabolic disease through screening the offspring of genetically modified adults. The development and utilization of MS/MS with UPLC has led to the creation of new assays for biomarkers of metabolic disease, benefiting both the diagnosis and therapeutic monitoring of these conditions. The article provides compelling examples from the author's laboratory, highlighting the value and vast applications of these methods in the field of metabolic disease research.
Collapse
Affiliation(s)
- David S Millington
- Duke University Medical Center, Department of Pediatrics, Durham, NC, USA
| |
Collapse
|
14
|
Chen S, Heendeniya SN, Le BT, Rahimizadeh K, Rabiee N, Zahra QUA, Veedu RN. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases. BioDrugs 2024; 38:177-203. [PMID: 38252341 PMCID: PMC10912209 DOI: 10.1007/s40259-024-00644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Saumya Nishanga Heendeniya
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia.
| |
Collapse
|
15
|
Hao L, Liang L, Gao X, Zhan X, Ji W, Chen T, Xu F, Qiu W, Zhang H, Gu X, Han L. Screening of 1.17 million newborns for inborn errors of metabolism using tandem mass spectrometry in Shanghai, China: A 19-year report. Mol Genet Metab 2024; 141:108098. [PMID: 38061323 DOI: 10.1016/j.ymgme.2023.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Inborn errors of metabolism (IEMs) frequently result in progressive and irreversible clinical consequences if not be diagnosed or treated timely. The tandem mass spectrometry (MS/MS)-based newborn screening (NBS) facilitates early diagnosis and treatment of IEMs. The aim of this study was to determine the characteristics of IEMs and the successful deployment and application of MS/MS screening over a 19-year time period in Shanghai, China, to inform national NBS policy. METHODS The amino acids and acylcarnitines in dried blood spots from 1,176,073 newborns were assessed for IEMs by MS/MS. The diagnosis of IEMs was made through a comprehensive consideration of clinical features, biochemical performance and genetic testing results. The levels of MS/MS testing parameters were compared between various IEM subtypes and genotypes. RESULTS A total of 392 newborns were diagnosed with IEMs from January 2003 to June 2022. There were 196 newborns with amino acid disorders (50.00%, 1: 5910), 115 newborns with organic acid disorders (29.59%, 1: 10,139), and 81 newborns with fatty acid oxidation disorders (20.41%; 1:14,701). Phenylalanine hydroxylase deficiency, methylmalonic acidemia and primary carnitine deficiency were the three most common disorders. Some hotspot variations in eight IEM genes (PAH, SLC22A5, MMACHC, MMUT, MAT1A, MCCC2, ACADM, ACAD8), 35 novel variants and some genotype-biochemical phenotype associations were identified. CONCLUSIONS A total of 28 types of IEMs were identified, with an overall incidence of 1: 3000 in Shanghai, China. Our study offered clinical guidance for the implementation of MS/MS-based NBS and genetic counseling for IEMs in this city.
Collapse
Affiliation(s)
- Lili Hao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaolan Gao
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
16
|
Maekawa M. Analysis of Metabolic Changes in Endogenous Metabolites and Diagnostic Biomarkers for Various Diseases Using Liquid Chromatography and Mass Spectrometry. Biol Pharm Bull 2024; 47:1087-1105. [PMID: 38825462 DOI: 10.1248/bpb.b24-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Analysis of endogenous metabolites in various diseases is useful for searching diagnostic biomarkers and elucidating the molecular mechanisms of pathophysiology. The author and collaborators have developed some LC/tandem mass spectrometry (LC/MS/MS) methods for metabolites and applied them to disease-related samples. First, we identified urinary conjugated cholesterol metabolites and serum N-palmitoyl-O-phosphocholine serine as useful biomarkers for Niemann-Pick disease type C (NPC). For the purpose of intraoperative diagnosis of glioma patients, we developed the LC/MS/MS analysis methods for 2-hydroxyglutaric acid or cystine and found that they could be good differential biomarkers. For renal cell carcinoma, we searched for various biomarkers for early diagnosis, malignancy evaluation and recurrence prediction by global metabolome analysis and targeted LC/MS/MS analysis. In pathological analysis, we developed a simultaneous LC/MS/MS analysis method for 13 steroid hormones and applied it to NPC cells, we found 6 types of reductions in NPC model cells. For non-alcoholic steatohepatitis (NASH), model mice were prepared with special diet and plasma bile acids were measured, and as a result, hydrophilic bile acids were significantly increased. In addition, we developed an LC/MS/MS method for 17 sterols and analyzed liver cholesterol metabolites and found a decrease in phytosterols and cholesterol synthetic markers and an increase in non-enzymatic oxidative sterols in the pre-onset stage of NASH. We will continue to challenge themselves to add value to clinical practice based on cutting-edge analytical chemistry methodology.
Collapse
|
17
|
Baydakova GV, Tsygankova PG, Pechatnikova NL, Bazhanova OA, Nazarenko YD, Zakharova EY. New Acylcarnitine Ratio as a Reliable Indicator of Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency. Int J Neonatal Screen 2023; 9:48. [PMID: 37754774 PMCID: PMC10531771 DOI: 10.3390/ijns9030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare fatal disorders of fatty acid β-oxidation with no apparent genotype-phenotype correlation. The measurement of acylcarnitines by MS/MS is a current diagnostic workup in these disorders. Nevertheless, false-positive and false-negative results have been reported, highlighting a necessity for more sensitive and specific biomarkers. This study included 54 patients with LCHAD/MTP deficiency that has been confirmed by biochemical and molecular methods. The analysis of acylcarnitines in dried blood spots was performed using ESI-MS/MS. The established "HADHA ratio" = (C16OH + C18OH + C18:1OH)/C0 was significantly elevated in all 54 affected individuals in comparison to the control group. Apart from 54 LCHAD deficiency patients, the "HADHA ratio" was calculated in 19 patients with very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. As VLCAD-deficient patients did not show increased "HADHA ratio", the results emphasized the high specificity of this new ratio. Therefore, the "HADHA ratio" was shown to be instrumental in improving the overall performance of MS/MS-based analysis of acylcarnitine levels in the diagnostics of LCHAD/MTP deficiencies. The ratio was demonstrated to increase the sensitivity and specificity of this method and reduce the chances of false-negative results.
Collapse
Affiliation(s)
- Galina V. Baydakova
- Research Centre for Medical Genetics, Moskvorechye Str., 1, 115522 Moscow, Russia
| | - Polina G. Tsygankova
- Research Centre for Medical Genetics, Moskvorechye Str., 1, 115522 Moscow, Russia
| | | | - Olga A. Bazhanova
- Research Centre for Medical Genetics, Moskvorechye Str., 1, 115522 Moscow, Russia
| | - Yana D. Nazarenko
- Research Centre for Medical Genetics, Moskvorechye Str., 1, 115522 Moscow, Russia
| | | |
Collapse
|
18
|
Sasenick J, Miller M, Rastogi D, Morrissey M, Rastogi S. Carnitine supplementation increases serum concentrations of free carnitine and total acylcarnitine in preterm neonates: A retrospective cohort study. JPEN J Parenter Enteral Nutr 2023; 47:746-753. [PMID: 37345267 DOI: 10.1002/jpen.2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE Our goal was to determine the efficacy of the American Society for Parenteral and Enteral Nutrition's recommended carnitine dosage of 5 mg/kg/day in maintaining normal serum free carnitine and total acylcarnitine levels in preterm neonates receiving parenteral nutrition (PN). STUDY DESIGN A retrospective cohort study was conducted on neonates born <30 weeks gestation and weighing <1250 g, comparing those who received carnitine supplementation to those without supplementation. Free carnitine and total acylcarnitine data were collected from routine newborn screens in the first days of life and on full enetral feeds. Univariate analysis was performed, and those factors that were significantly different between the two groups were adjusted for using mixed effects analysis. RESULTS There were 108 supplemented and 45 unsupplemented neonates in the study. At baseline, free carnitine (19.8 ± 3.3 vs 18.9 ± 3.7 µmol/L, P = 0.53) and total acylcarnitine (26.6 ± 5.1 vs 22.5 ± 7.1 µmol/L, P = 0.11) were similar between the two groups. At full enteral feeds, compared with unsupplemented group, supplemented infants had significantly higher free carnitine (27.1 ± 16.4 vs 17.1 ± 8.5 µmol/L, P < 0.001) and total acylcarnitine (30.3 ± 11.5 vs 20.2 ± 10.1 µmol/L, P < 0.001). None of the supplemented neonates developed biochemical carnitine deficiency as compared with 18% in the unsupplemented group (P < 0.001). No difference was observed in time to reach full lipid provision, and there were no differences in the change in the triglyceride levels from baseline to the time on full PN lipid provision (P = 0.39). CONCLUSION Preterm neonates routinely supplemented with parenteral carnitine at 5 mg/kg/day demonstrated higher free carnitine and total acylcarnitine levels at full feeds, with none developing biochemical carnitine deficiency.
Collapse
Affiliation(s)
- Jonathan Sasenick
- Division of Neonatal-Perinatal Medicine, Northwell Health and Zucker School of Medicine at Hofstra/Northwell, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Malki Miller
- Department of Nutrition, Maimonides Medical Center, Brooklyn, New York, USA
| | - Deepa Rastogi
- Children's National Hospital, GWU School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Mark Morrissey
- Wadsworth Laboratories, New York State Department of Health, Albany, New York, USA
| | - Shantanu Rastogi
- George Washington University Hospital, Children's National Hospital, GWU School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
19
|
la Marca G, Carling RS, Moat SJ, Yahyaoui R, Ranieri E, Bonham JR, Schielen PCJI. Current State and Innovations in Newborn Screening: Continuing to Do Good and Avoid Harm. Int J Neonatal Screen 2023; 9:ijns9010015. [PMID: 36975853 PMCID: PMC10057559 DOI: 10.3390/ijns9010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
In 1963, Robert Guthrie's pioneering work developing a bacterial inhibition assay to measure phenylalanine in dried blood spots, provided the means for whole-population screening to detect phenylketonuria in the USA. In the following decades, NBS became firmly established as a part of public health in developed countries. Technological advances allowed for the addition of new disorders into routine programmes and thereby resulted in a paradigm shift. Today, technological advances in immunological methods, tandem mass spectrometry, PCR techniques, DNA sequencing for mutational variant analysis, ultra-high performance liquid chromatography (UPLC), iso-electric focusing, and digital microfluidics are employed in the NBS laboratory to detect more than 60 disorders. In this review, we will provide the current state of methodological advances that have been introduced into NBS. Particularly, 'second-tier' methods have significantly improved both the specificity and sensitivity of testing. We will also present how proteomic and metabolomic techniques can potentially improve screening strategies to reduce the number of false-positive results and improve the prediction of pathogenicity. Additionally, we discuss the application of complex, multiparameter statistical procedures that use large datasets and statistical algorithms to improve the predictive outcomes of tests. Future developments, utilizing genomic techniques, are also likely to play an increasingly important role, possibly combined with artificial intelligence (AI)-driven software. We will consider the balance required to harness the potential of these new advances whilst maintaining the benefits and reducing the risks for harm associated with all screening.
Collapse
Affiliation(s)
- Giancarlo la Marca
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, IRCCS Meyer Children's University Hospital, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Rachel S Carling
- Biochemical Sciences, Viapath, Guys & St Thomas' NHSFT, London SE1 7EH, UK
- GKT School of Medical Education, Kings College London, London SE1 1UL, UK
| | - Stuart J Moat
- Department of Medical Biochemistry, Immunology & Toxicology, University Hospital Wales, Cardiff CF14 4XW, UK
- School of Medicine, Cardiff University, University Hospital Wales, Cardiff CF14 4XW, UK
| | - Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Avenida Arroyo de los Angeles s/n, 29011 Malaga, Spain
| | - Enzo Ranieri
- Biochemical Genetics, Genetics and Molecular Pathology, SA Pathology, Women's & Children's Hospital, Adelaide 5043, Australia
| | - James R Bonham
- Sheffield Children's NHS Foundation Trust, Western Bank, Sheffield S10 2TH, UK
| | - Peter C J I Schielen
- International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Stichtse Vecht, The Netherlands
| |
Collapse
|
20
|
He X, Kuang J, Lai J, Huang J, Wang Y, Lan G, Xie Y, Shi X. A retrospective analysis of MS/MS screening for IEM in high-risk areas. BMC Med Genomics 2023; 16:57. [PMID: 36927542 PMCID: PMC10021976 DOI: 10.1186/s12920-023-01483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Inborn errors of metabolism (IEM) can lead to severe motor and neurological developmental disorders and even disability and death in children due to untimely treatment. In this study, we used tandem mass spectrometry (MS/MS) for primary screening and recall of those with positive primary screening for rescreening. Further diagnosis was based on biochemical tests, imaging and clinical presentation as well as accurate genetic testing using multi-gene panel with high-throughput sequencing of 130 IEM-related genes. The screening population was 16,207 newborns born between July 1, 2019, and December 31, 2021. Based on the results, 8 newborns were diagnosed with IEM, constituting a detection rate of 1:2,026. Phenylketonuria was the most common form of IEM. In addition, seven genes associated with IEM were detected in these eight patients. All eight patients received standardized treatment starting in the neonatal period, and the follow-up results showed good growth and development. Therefore, our study suggests that MS/MS rescreening for IEM pathogenic variants in high-risk areas, combined with a sequencing validation strategy, can be highly effective in the early detection of affected children. This strategy, combined with early intervention, can be effective in preventing neonatal morbidity and improving population quality.
Collapse
Affiliation(s)
- Xiao He
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Juan Kuang
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Jiahong Lai
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Jingxiong Huang
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Yijin Wang
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Guofeng Lan
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Xuekai Shi
- Department of Pediatrics, The Second Nanning People's Hospital, Nanning, 530031, Guangxi, China.
| |
Collapse
|
21
|
Meiouet F, El Kabbaj S, Abilkassem R, Boemer F. Moroccan Experience of Targeted Screening for Inborn Errors of Metabolism by Tandem Mass Spectrometry. Pediatr Rep 2023; 15:227-236. [PMID: 36976725 PMCID: PMC10058188 DOI: 10.3390/pediatric15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Expanded newborn screening using tandem mass spectrometry (MS/MS) for inborn errors of metabolism (IEM), such as organic acidemias (OAs), fatty acid oxidation disorders (FAODs), and amino acid disorders (AAs), is increasingly popular but has not yet been introduced in Africa. With this study, we aim to establish the disease spectrum and frequency of inborn errors of OAs, FAODs, and AAs in Morocco. METHODS Selective screening was performed among infants and children suspected to be affected with IEM between 2016 and 2021. Amino acids and acylcarnitines spotted on filter paper were analyzed using MS/MS. RESULTS Out of 1178 patients with a clinical suspicion, 137 (11.62%) were diagnosed with IEM, of which 121 (88.3%) patients suffered from amino acids disorders, 11 (8%) were affected by FAOD, and 5 (3.7%) by an OA. CONCLUSIONS This study shows that various types of IEM are also present in Morocco. Furthermore, MS/MS is an indispensable tool for early diagnosis and management of this group of disorders.
Collapse
Affiliation(s)
- Faïza Meiouet
- Laboratoire de Recherche et d'Analyses Médicales de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat 10100, Morocco
| | - Sâad El Kabbaj
- Laboratoire de Recherche et d'Analyses Médicales de la Gendarmerie Royale, Avenue Ibn Sina, Agdal, Rabat 10100, Morocco
| | - Rachid Abilkassem
- Service de Pédiatrie, Hôpital Militaire d'Instruction Mohamed V, Rabat 10100, Morocco
| | - François Boemer
- Laboratoire de Biochimie Génétique, Centre de Maladies Métaboliques, CHU Sart-Tilman, CHU Liège, 4000 Liege, Belgium
| |
Collapse
|
22
|
Lomash RM, Shchelochkov O, Chandler RJ, Venditti CP, Pariser AR, Ottinger EA. Successfully Navigating Food and Drug Administration Orphan Drug and Rare Pediatric Disease Designations for AAV9-hPCCA Gene Therapy: The National Institutes of Health Platform Vector Gene Therapy Experience. Hum Gene Ther 2023; 34:217-227. [PMID: 36694456 PMCID: PMC10031144 DOI: 10.1089/hum.2022.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Orphan drug designation (ODD) is an important program intended to facilitate the development of orphan drugs in the United States. An orphan drug benefiting pediatric patients can qualify as a drug for a Rare Pediatric Disease Designation (RPDD) as well. The ODD and RPDD programs provide financial incentives for development of diagnostic drugs, preventive measures, and treatment of diseases affecting small patient populations (adult and pediatric) for which commercial development would otherwise be very challenging. In 2019, a multidisciplinary group of collaborators at National Institutes of Health (NIH) embarked upon a gene therapy platform program called Platform Vector Gene Therapy (PaVe-GT) intended to develop gene therapies for four such rare disorders. An important part of PaVe-GT is to publicly share scientific and regulatory experience gained at different stages during the implementation of the PaVe-GT platform utilizing illustrative examples. The PaVe-GT team recently obtained ODD and RPDD for an adeno-associated virus gene therapy to treat propionic acidemia. Given an increasing interest in obtaining ODD for gene therapy, especially by small companies, research investigators, and patient groups, we overview the submission process and subsequently provide examples of our ODD and RPDD applications. Our ODD and RPDD applications and templates can also be found on the PaVe-GT website. Shared reference documents will have great utility to assist parties who may have limited experience with the preparation of similar applications for their orphan product.
Collapse
Affiliation(s)
- Richa Madan Lomash
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland, USA
| | - Oleg Shchelochkov
- Organic Acid Research Section, Molecular Medicine Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Randy J Chandler
- Organic Acid Research Section, Molecular Medicine Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Charles P Venditti
- Organic Acid Research Section, Molecular Medicine Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Anne R Pariser
- Division of Rare Diseases Research Innovation, NCATS, NIH, Rockville, Maryland, USA
| | - Elizabeth A Ottinger
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, Maryland, USA
| | | |
Collapse
|
23
|
Lee JH, Song J. Non-derivatizing Tandem Mass Spectrometry Assay for Expanded Newborn Screening and Cutoffs for Preterm Neonates. Ann Lab Med 2023; 43:133-134. [PMID: 36281505 PMCID: PMC9618909 DOI: 10.3343/alm.2023.43.2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Joon Hee Lee
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea,Corresponding author: Junghan Song, M.D., Ph.D. Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173 beon-gil, Bundang-du, Seongnam 13620, Korea Tel: +82-31-787-7691, Fax: +82-31-787-4015, E-mail:
| |
Collapse
|
24
|
Kühn S, Williams ME, Dercksen M, Sass JO, van der Sluis R. The glycine N-acyltransferases, GLYAT and GLYATL1, contribute to the detoxification of isovaleryl-CoA - an in-silico and in vitro validation. Comput Struct Biotechnol J 2023; 21:1236-1248. [PMID: 36817957 PMCID: PMC9932296 DOI: 10.1016/j.csbj.2023.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Isovaleric acidemia (IVA), due to isovaleryl-CoA dehydrogenase (IVD) deficiency, results in the accumulation of isovaleryl-CoA, isovaleric acid and secondary metabolites. The increase in these metabolites decreases mitochondrial energy production and increases oxidative stress. This contributes to the neuropathological features of IVA. A general assumption in the literature exists that glycine N-acyltransferase (GLYAT) plays a role in alleviating the symptoms experienced by IVA patients through the formation of N-isovalerylglycine. GLYAT forms part of the phase II glycine conjugation pathway in the liver and detoxifies excess acyl-CoA's namely benzoyl-CoA. However, very few studies support GLYAT as the enzyme that conjugates isovaleryl-CoA to glycine. Furthermore, GLYATL1, a paralogue of GLYAT, conjugates phenylacetyl-CoA to glutamine. Therefore, GLYATL1 might also be a candidate for the formation of N-isovalerylglycine. Based on the findings from the literature review, we proposed that GLYAT or GLYATL1 can form N-isovalerylglycine in IVA patients. To test this hypothesis, we performed an in-silico analysis to determine which enzyme is more likely to conjugate isovaleryl-CoA with glycine using AutoDock Vina. Thereafter, we performed in vitro validation using purified enzyme preparations. The in-silico and in vitro findings suggested that both enzymes could form N-isovaleryglycine albeit at lower affinities than their preferred substrates. Furthermore, an increase in glycine concentration does not result in an increase in N-isovalerylglycine formation. The results from the critical literature appraisal, in-silico, and in vitro validation, suggest the importance of further investigating the reaction kinetics and binding behaviors between these substrates and enzymes in understanding the pathophysiology of IVA.
Collapse
Affiliation(s)
- Stefan Kühn
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Monray E. Williams
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Marli Dercksen
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jörn Oliver Sass
- Research Group Inborn Errors of Metabolism, Institute for Functional Gene Analytics, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa,Corresponding author.
| |
Collapse
|
25
|
Haga M, Isobe M, Kawabata K, Shimizu M, Mochizuki H. The Acylcarnitine Profile in Dried Blood Spots is Affected by Hematocrit: A Study of Newborn Screening Samples in Very-Low-Birth-Weight Infants. Am J Perinatol 2022; 39:1236-1240. [PMID: 33374020 DOI: 10.1055/s-0040-1721849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The acylcarnitine profile is analyzed in dried blood spots (DBS) to screen for inborn errors of metabolism. Hematocrit (Ht) is known to affect the result of quantitative analyses of DBS samples; however, the effects of Ht on the acylcarnitine profiles in DBS have not been studied in actual samples from newborns. STUDY DESIGN The acylcarnitine profiles in DBS for newborn screening tests and Ht levels of very-low-birth-weight infants were obtained from medical records. We investigated the relationship between Ht and each acylcarnitine using Pearson's correlation coefficient (r). RESULTS We examined 77 newborns in this study. There was a significantly positive correlation between Ht and C0, C2, C12, C16, C18, C18:1, and C18:1-OH, respectively (p < 0.0025). The correlation was the greatest on C2 (r = 0.59). CONCLUSION This study clarifies that Ht and C0, C2, C12, C16, C18, C18:1, and C18:1-OH are significantly correlated in DBS, which is consistent with previous studies. Hence, the effect of Ht should be considered when interpreting the results of acylcarnitine profiles in DBS. KEY POINTS · Acylcarnitine profile in dried blood spots (DBS) is affected by the hematocrit (Ht) of the sample.. · There are positive correlations between Ht and C0, C2, C12, C16, C18, and C18:1-OH in DBS.. · We should be aware of the effects of Ht on acylcarnitine profiles in DBS..
Collapse
Affiliation(s)
- Mitsuhiro Haga
- Department of Neonatology, Saitama Children's Medical Center, Saitama, Japan.,Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Mitsuhisa Isobe
- Division of Health Science, Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Ken Kawabata
- Department of Neonatology, Saitama Children's Medical Center, Saitama, Japan
| | - Masaki Shimizu
- Department of Neonatology, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroshi Mochizuki
- Department of Metabolism and Endocrinology, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
26
|
Watson MS, Lloyd-Puryear MA, Howell RR. The Progress and Future of US Newborn Screening. Int J Neonatal Screen 2022; 8:41. [PMID: 35892471 PMCID: PMC9326622 DOI: 10.3390/ijns8030041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/12/2023] Open
Abstract
Progress in newborn screening (NBS) has been driven for 60 years by developments in science and technology, growing consumer advocacy, the actions of providers involved in the care of rare disease patients, and by federal and State government funding and policies. With the current explosion of clinical trials of treatments for rare diseases, the pressure for expansion has grown, and concerns about the capacity for improvement and growth are being expressed. Genome and exome sequencing (GS/ES) have now opened more opportunities for early identification and disease prevention at all points in the lifespan. The greatest challenge facing NBS stems from the conditions most amenable to screening, and new treatment development is that we are screening for rare genetic diseases. In addition, understanding the spectrum of severity requires vast amounts of population and genomic data. We propose recommendations on improving the NBS system and addressing specific demands to grow its capacity by: better defining the criteria by which screening targets are established; financing the NBS system's responsiveness to opportunities for expansion, including engagement and funding from stakeholders; creating a national quality assurance, data, IT, and communications infrastructure; and improving intra-governmental communications. While our recommendations may be specific to the United States, the underlying issues should be considered when working to improve NBS programs globally.
Collapse
Affiliation(s)
| | | | - R. Rodney Howell
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
27
|
Chen M, Yin Y, Liu H, Peng Y, Ye L, Luo Q, Miao J. Screening for newborn fatty acid oxidation disorders in Chongqing and the follow-up of confirmed children. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:290-297. [PMID: 36207828 PMCID: PMC9511477 DOI: 10.3724/zdxbyxb-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the incidence, clinical characteristics, gene mutations and prognosis of fatty acid oxidation disorders (FAOD) in newborns in Chongqing. METHODS Blood samples were collected from 35 374 newborns for screening of FAOD in the Neonatal Screening Center of Women and Children's Hospital of Chongqing Medical University from July 2020 to February 2022. The acylcarnitine spectrum was detected by tandem mass spectrometry, the positive children in primary screening were recalled within 2 weeks, and the diagnosis of FAOD was confirmed by urine organic acid measurement, blood biochemistry testing and genetic analysis. The confirmed children were given early intervention, treatment and followed-up. RESULTS Among 35 374 newborns, there were 267 positive children in primary screening, with a positive rate of 0.75%. Five children with FAOD were diagnosed by gene detection, with an incidence rate of 1/7075. Among them, there were 3 cases of primary carnitine deficiency (PCD, 1/11 791), 1 case of short-chain acyl-CoA dehydrogenase deficiency (SCADD, 1/35 374) and 1 case of very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, 1/35 374). The c.1400C>G and c.338G>A were the common mutations of SLC22A5 gene in 3 children with PCD, while c.621G>T was a novel mutation. There were no clinical manifestations during the follow-up period in 2 children with supplementation of L-carnitine. Another child with PCD did not follow the doctor's advice of L-carnitine treatment, and had acute attack at the age of 6 months. The child recovered after treatment, and developed normally during the follow-up. The detected ACADS gene mutations were c.417G>C and c.1054G>A in child with SCADD, who showed normal intelligence and physical development without any clinical symptoms. The mutations of ACADVL gene were c.1349G>A and c.1843C>T in child with VLCADD, who showed acute attack in the neonatal period and recovered after treatment; the child was fed with milk powder rich in medium-chain fatty acids and had normal development during the follow-up. CONCLUSIONS The incidence of FAOD in Chongqing area is relatively high. PCD is the most common type, and the clinical phenotype of VLCADD is serious. After early diagnosis through neonatal screening, standardized treatment and management is followed, most of FAOD children can have good prognosis.
Collapse
|
28
|
He F, Yang R, Huang X, Tian Y, Pei X, Bohn MK, Zou L, Wang Y, Li H, Wang T, Gu M, Jiang T, Chen X, Zou H, Wei H, Tian W, Tang T, Adeli K, Wang Z. Reference Standards for Newborn Screening of Metabolic Disorders by Tandem Mass Spectrometry: A Nationwide Study on Millions of Chinese Neonatal Populations. Front Mol Biosci 2022; 8:719866. [PMID: 34977148 PMCID: PMC8716770 DOI: 10.3389/fmolb.2021.719866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The major clinical problem presently confronting the Chinese newborn screening (NBS) programs by tandem mass spectrometry (MS/MS) is the lack of comprehensive reference intervals (RIs) for disease biomarkers. To close this gap, the Chinese National Center for Clinical Laboratories (NCCL) launched a nationwide study to investigate the dynamic pattern of 35 MS/MS NBS biomarkers and establish accurate and robust RIs. Methods: Blood spot samples from 4,714,089 Chinese neonates were tested in participating centers/laboratories and used for study analysis. MS/MS NBS biomarker trends were visually assessed by their concentrations over age. Specific partitions were determined arbitrarily by each day and sex or by the statistical method of Harris and Boyd. RIs, corresponding to the 2.5th and 97.5th percentiles, as well as the 1th, 25th, 75th and 99th percentiles were calculated for each reference partition using a non-parametric rank approach. Results: Most MS/MS NBS biomarkers fluctuated during the first week of life, followed by a relatively stable concentration. Age and sex-specific RIs were established and presented an improved specificity over the RIs used in participating centers/laboratories. Females demonstrated higher 2.5th and 97.5th percentiles in all amino acids except arginine and ornithine than males, whereas males showed higher 2.5th and 97.5th percentiles in most acylcarnitines. Conclusion: The present study determined the dynamic trends of 35 MS/MS biomarkers and established age and sex-specific RIs, valuably contributing to the current literature and timely evaluation of neonatal health and disease.
Collapse
Affiliation(s)
- Falin He
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yaping Tian
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, China
| | - Xiaofang Pei
- Department of Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mary Kathryn Bohn
- Department of Pediatric Laboratory Medicine, CALIPER Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lin Zou
- The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing, China
| | - Haibo Li
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Ting Wang
- Suzhou Municipal Hospital, Suzhou, China
| | - Maosheng Gu
- The Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| | - Tao Jiang
- Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xigui Chen
- Jining Maternal and Child Health Family Planning Service Center, Jining, China
| | - Hui Zou
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongwei Wei
- Linyi Maternity and Child Health Care Hospital, Linyi, China
| | - Weibing Tian
- W. F. Maternal and Child Health Hospital, Weifang, China
| | - Tian Tang
- Department of Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Khosrow Adeli
- Department of Pediatric Laboratory Medicine, CALIPER Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhiguo Wang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Qatomah A, Bukhari M, Cupler E, Alardati H, Mawardi M. Acute reversible rhabdomyolysis during direct-acting antiviral hepatitis C virus treatment: a case report. J Med Case Rep 2021; 15:627. [PMID: 34924025 PMCID: PMC8686586 DOI: 10.1186/s13256-021-03138-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Treatment of hepatitis C infection has evolved dramatically since 2011. Previous conventional therapy with interferon and ribavirin used to have a low sustained virological response rate of less than 40%. In the new direct-acting antiviral therapy era, a sustained virological response can be achieved in more than 90% of cases. CASE PRESENTATION We report a rare case of severe reversible acute rhabdomyolysis in a 31-year-old Saudi male patient with very long-chain acyl-coenzyme A dehydrogenase deficiency and chronic hepatitis C infection. The patient was clinically asymptomatic with no signs of decompensated liver disease. The patient received new direct-acting antiviral agents: sofosbuvir and daclatasvir. Fourteen days after initiation of direct-acting antiviral agents, the patient was found to have asymptomatic rhabdomyolysis. His creatine kinase peaked at 2572 IU/l, and he was treated conservatively; the direct-acting antiviral agents were discontinued and within 7 days, the patient's creatine kinase levels normalized. CONCLUSION This case highlights possible direct-acting antiviral agent-induced rhabdomyolysis in a patient with very-long-chain acyl-CoA dehydrogenase deficiency, presumably through alteration of mitochondrial membrane potential. Further studies are required to assess the possible impact and associations.
Collapse
Affiliation(s)
- Abdulrahman Qatomah
- Department of Internal Medicine, Royal Victoria Hospital, McGill University, 1001 Decarie Blv , Montréal , H4A 3J1, Canada.
| | - Majidah Bukhari
- Department of Internal Medicine, Royal Victoria Hospital, McGill University, 1001 Decarie Blv , Montréal , H4A 3J1, Canada
| | - Edward Cupler
- Department of Neurology, King Faisal Specialist Hospital and Research Center, Prince Sultan Street, Ar Rawdah, Jeddah, 23433, Saudi Arabia
| | - Hosam Alardati
- Department of Histopathology, King Faisal Specialist Hospital and Research Center, Prince Sultan Street, Ar Rawdah, Jeddah, 23433, Saudi Arabia
| | - Mohammad Mawardi
- Department of Internal Medicine, Royal Victoria Hospital, McGill University, 1001 Decarie Blv , Montréal , H4A 3J1, Canada
| |
Collapse
|
30
|
Jin L, Han X, He F, Zhang C. Prevalence of methylmalonic acidemia among newborns and the clinical-suspected population: a meta-analyse. J Matern Fetal Neonatal Med 2021; 35:8952-8967. [PMID: 34847798 DOI: 10.1080/14767058.2021.2008351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
IMPORTANCE Knowing the scale of rare inborn errors is important for screening and resource allocation. Evidence on the prevalence of methylmalonic acidemia (MMA) among newborns and the clinical-suspected population from large-scale screening programs needs to be systematically synthesized. OBJECTIVE To estimate the worldwide prevalence of MMA for newborns and the clinical-suspected population and explore the differences in different regions, periods, and diagnostic technologies. DATA SOURCES MEDLINE, Embase, CRD, Cochrane Library, Scopus, CINAHL, and PROSPERO. Study Selection: All studies reporting the epidemiology characteristics of MMA were selected. DATA EXTRACTION AND SYNTHESIS Characteristics of study, subjects, and epidemiology were extracted, random-effect models were used for meta-analyses. MAIN OUTCOME AND MEASURE Pooled prevalence of MMA. RESULTS This study included 111 studies. The pooled prevalence of MMA worldwide was 1.14 per 100,000 newborns (1516/190,229,777 newborns, 95% CI: 0.99-1.29) and 652.11 per 100,000 clinical-suspected patients (1360/4,805,665 clinical-suspected individuals, CI: 544.14-760.07). Asia and Africa got a higher pooled prevalence of MMA. The prevalence of MMA in newborns increased through the years, while that in the clinical-suspected population decreased. Collecting blood ≥ 72 h after birth had a higher pooled prevalence of MMA than collecting during 24 h-72 h after birth. The combining-use of MS/MS and GC/MS had a higher pooled prevalence than the single-use of MS/MS or GC/MS. Prevalence of cbl C, mut, cbl B, cbl A, isolated MMA, combined MMA and homocystinuria, vitamin B12-responsive MMA was synthesized. CONCLUSIONS AND RELEVANCE Prevalence of MMA among newborns was extremely low, but considerably high in the clinical-suspected population, indicating the need for more efficient newborn screening strategies and closer monitoring of the high-risk population for the early signs of MMA. Asia and Africa should attach importance to the high prevalence of MMA. Further diagnostic tests were recommended for the combining-use vs single-use of MS/MS and GC/MS and for collecting blood after 72 h vs during 24-72 h after birth.
Collapse
Affiliation(s)
- Lizi Jin
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xueyan Han
- Department of Medical Statistics, Peking University First Hospital, Beijing, P. R. China
| | - Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P. R. China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
31
|
Arginine, as a Key Indicator for Real-Time Stability Monitoring of Quality Control in the Newborn Screening Test Using Dried Blood Spot. SEPARATIONS 2021. [DOI: 10.3390/separations8110201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dried blood spots (DBS) have advantages such as minimizing blood collection volume and the distress to neonate. DBS have been used for tandem mass spectrometry (MS/MS)-based newborn screening tests (NST) of amino acid (AA) and acylcarnitine. The Newborn Screening Quality Assurance Program (NSQAP) have been provided quality control (QC) materials for MS/MS, as DBS cards. The NSQAP is generally provided within 14 months of the shelf life and the recommended storage condition is at −10 °C to −30 °C. Previously, several accelerated degradation studies had been performed to determine the transportation stability and short-term stability of AAs and acylcarnitines in DBS. However, the experimental condition is markedly different to the storage condition. We performed long-term monitoring for the real-time stability of seven AAs and 14 acylcarnitines from three levels of 2012 NSQAP QC materials across a time period of 788 days. Arginine suddenly yielded a catastrophic degeneration pattern, which started around D300. When comparing this with previous accelerated degradation studies, methionine, tyrosine, citrulline, and acetylcarnitine did not show a remarkable measurand drift for the real-time stability, except for arginine. Our study showed that arginine would require intensive QC monitoring in routine practice, and should be used for the assessment of the stability in long-term storage of DBS samples for biobanking.
Collapse
|
32
|
Heininen J, Julku U, Myöhänen T, Kotiaho T, Kostiainen R. Multiplexed analysis of amino acids in mice brain microdialysis samples using isobaric labeling and liquid chromatography-high resolution tandem mass spectrometry. J Chromatogr A 2021; 1656:462537. [PMID: 34537659 DOI: 10.1016/j.chroma.2021.462537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
We developed a new multiplexed reversed phase liquid chromatography-high resolution tandem mass spectrometric (LC-MS/MS) method. The method is based on isobaric labeling with a tandem mass tag (TMT10-plex) and stable isotope-labeled internal standards, and was used to analyze amino acids in mouse brain microdialysis samples. The TMT10-plex labeling of amino acids allowed analysis of ten samples in one LC-MS/MS run, significantly increasing the sample throughput. The method provides good chromatographic performance (peak half-width between 0.04-0.12 min), allowing separation of all TMT-labeled amino acids with acceptable resolution and high sensitivity (limits of detection typically around 10 nM). The use of stable isotope-labeled internal standards, together with TMT10-plex labeling, ensured good repeatability (relative standard deviation ≤ 12.1 %) and linearity (correlation coefficient > 0.994), indicating good quantitative performance of the multiplexed method. The method was applied to study the effect of d-amphetamine microdialysis perfusion on amino acid concentrations in the mouse brain. All amino acids were reliably detected and quantified, indicating that the method is sensitive enough to detect low concentrations of amino acids in brain microdialysis samples.
Collapse
Affiliation(s)
- Juho Heininen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Ulrika Julku
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Timo Myöhänen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland; Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box. 55, FIN-00014, Finland
| | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Finland.
| |
Collapse
|
33
|
Nikam V, Mohammad NS. Tissue-specific DNase I footprint analysis confirms the association of GATAD2B Q470* variant with intellectual disability. J Genet 2021. [DOI: 10.1007/s12041-021-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Bayissa TN, Geerardyn M, Vanhauteghem D, Wakjira M, Janssens GPJ. Nutrient-related metabolite profiles explain differences in body composition and size in Nile tilapia (Oreochromis niloticus) from different lakes. Sci Rep 2021; 11:16824. [PMID: 34413370 PMCID: PMC8376951 DOI: 10.1038/s41598-021-96326-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
This study investigated how metabolite analysis can explain differences in tissue composition and size in fish from different habitats. We, therefore, studied Nile tilapia (Oreochromis niloticus) from three Ethiopian lakes (Gilgel Gibe, Ziway, and Langano) using dried bloodspot (DBS) analysis of carnitine esters and free amino acids. A total of sixty (N = 60) Nile tilapia samples were collected comprising twenty (n = 20) fish from each lake. The proximate composition of the targeted tissues (muscle, skin, gill, gut, and liver) were analyzed. The DBS samples were analyzed for acylcarnitine and free amino acid profiles using quantitative electrospray tandem mass spectrometry. Metabolite ratios were calculated from relevant biochemical pathways that could identify relative changes in nutrient metabolism. The mean weight of Nile tilapia sampled from each lake showed weight variation among the lakes, fish from Lake Ziway were largest (178 g), followed by Gilgel Gibe reservoir (134 g) and Lake Langano (118 g). Fish from Gilgel Gibe showed significantly higher fat composition in all tissues (P < 0.05) except the liver in which no significant variation was observed. The source of fish affected the tissue fat composition. Marked differences were observed in Nile tilapia metabolic activity between the lakes. For instance, the lower body weight and condition of the fish in Lake Langano coincided with several metabolite ratios pointing to a low flow of glucogenic substrate to the citric acid cycle. The low propionyl to acetylcarnitine ratio (C3:C2) in Gilgel Gibe fish is indicating that more of the available acetyl CoA is not led into the citric acid cycle, but instead will be used for fat synthesis. The metabolic markers for lipogenesis and metabolic rate could explain the high-fat concentration in several parts of the body composition of fish from Gilgel Gibe. Our results show that nutrition-related blood metabolite ratios are useful to understand the underlying metabolic events leading to the habitat-dependent differences in the growth of Nile tilapia, and by extension, other species.
Collapse
Affiliation(s)
- Tokuma Negisho Bayissa
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia.
| | - Michelle Geerardyn
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Donna Vanhauteghem
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Mulugeta Wakjira
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma, Ethiopia
| | - Geert Paul Jules Janssens
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| |
Collapse
|
35
|
Tan J, Chen D, Chang R, Pan L, Yang J, Yuan D, Huang L, Yan T, Ning H, Wei J, Cai R. Tandem Mass Spectrometry Screening for Inborn Errors of Metabolism in Newborns and High-Risk Infants in Southern China: Disease Spectrum and Genetic Characteristics in a Chinese Population. Front Genet 2021; 12:631688. [PMID: 34394177 PMCID: PMC8355895 DOI: 10.3389/fgene.2021.631688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of metabolism (IEMs) often causing progressive and irreversible neurological damage, physical and intellectual development lag or even death, and serious harm to the family and society. The screening of neonatal IEMs by tandem mass spectrometry (MS/MS) is an effective method for early diagnosis and presymptomatic treatment to prevent severe permanent sequelae and death. A total of 111,986 healthy newborns and 7,461 hospitalized high-risk infants were screened for IEMs using MS/MS to understand the characteristics of IEMs and related gene mutations in newborns and high-risk infants in Liuzhou. Positive samples were analyzed by Sanger sequencing or next-generation sequencing. The results showed that the incidence of IEMs in newborns in the Liuzhou area was 1/3,733, and the incidence of IEMs in high-risk infants was 1/393. Primary carnitine deficiency (1/9,332), phenylketonuria (1/18,664), and isovaleric acidemia (1/37,329) ranked the highest in neonates, while citrullinemia type II ranked the highest in high-risk infants (1/1,865). Further, 56 mutations of 17 IEMs-related genes were found in 49 diagnosed children. Among these, HPD c.941T > C, CBS c.1465C > T, ACADS c.337G > A, c.1195C > T, ETFA c.737G > T, MMACHC 1076bp deletion, PCCB c.132-134delGACinsAT, IVD c.548C > T, c.757A > G, GCDH c.1060G > T, and HMGCL c.501C > G were all unreported variants. Some related hotspot mutations were found, including SLC22A5 c.51C > G, PAH c.1223G > A, IVD c.1208A > G, ACADS c.625G > A, and GCDH c.532G > A. These results show that the overall incidence of IEMs in the Liuzhou area is high. Hence, the scope of IEMs screening and publicity and education should be expanded for a clear diagnosis in the early stage of the disease.
Collapse
Affiliation(s)
- Jianqiang Tan
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Dayu Chen
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Rongni Chang
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Lizhen Pan
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Jinling Yang
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Dejian Yuan
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Lihua Huang
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Tizhen Yan
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Haiping Ning
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Jiangyan Wei
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Ren Cai
- Key Laboratory of Prevention and Control of Birth Defects, Department of Medical Genetics, Newborn Screening Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou Institute for Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
36
|
Foreman PK, Margulis AV, Alexander K, Shediac R, Calingaert B, Harding A, Pladevall-Vila M, Landis S. Birth prevalence of phenylalanine hydroxylase deficiency: a systematic literature review and meta-analysis. Orphanet J Rare Dis 2021; 16:253. [PMID: 34082800 PMCID: PMC8173927 DOI: 10.1186/s13023-021-01874-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Phenylalanine hydroxylase (PAH) deficiency is an autosomal recessive disorder that results in elevated concentrations of phenylalanine (Phe) in the blood. If left untreated, the accumulation of Phe can result in profound neurocognitive disability. The objective of this systematic literature review and meta-analysis was to estimate the global birth prevalence of PAH deficiency from newborn screening studies and to estimate regional differences, overall and for various clinically relevant Phe cutoff values used in confirmatory testing. METHODS The protocol for this literature review was registered with PROSPERO (International prospective register of systematic reviews). Pubmed and Embase database searches were used to identify studies that reported the birth prevalence of PAH deficiency. Only studies including numeric birth prevalence reports of confirmed PAH deficiency were included. RESULTS From the 85 publications included in the review, 238 birth prevalence estimates were extracted. After excluding prevalence estimates that did not meet quality assessment criteria or because of temporal and regional overlap, estimates from 45 publications were included in the meta-analysis. The global birth prevalence of PAH deficiency, estimated by weighting regional birth prevalences relative to their share of the population of all regions included in the study, was 0.64 (95% confidence interval [CI] 0.53-0.75) per 10,000 births and ranged from 0.03 (95% CI 0.02-0.05) per 10,000 births in Southeast Asia to 1.18 (95% CI 0.64-1.87) per 10,000 births in the Middle East/North Africa. Regionally weighted global birth prevalences per 10,000 births by confirmatory test Phe cutoff values were 0.96 (95% CI 0.50-1.42) for the Phe cutoff value of 360 ± 100 µmol/L; 0.50 (95% CI 0.37-0.64) for the Phe cutoff value of 600 ± 100 µmol/L; and 0.30 (95% CI 0.20-0.40) for the Phe cutoff value of 1200 ± 200 µmol/L. CONCLUSIONS Substantial regional variation in the birth prevalence of PAH deficiency was observed in this systematic literature review and meta-analysis of published evidence from newborn screening. The precision of the prevalence estimates is limited by relatively small sample sizes, despite widespread and longstanding newborn screening in much of the world.
Collapse
Affiliation(s)
- Pamela K Foreman
- BioMarin Pharmaceutical Inc, 770 Lindaro Street, San Rafael, CA, 94901, USA
| | - Andrea V Margulis
- RTI Health Solutions, Barcelona, Av. Diagonal 605, 9-4, 08028, Barcelona, Spain
| | - Kimberly Alexander
- BioMarin Pharmaceutical Inc, 770 Lindaro Street, San Rafael, CA, 94901, USA
| | - Renee Shediac
- BioMarin Pharmaceutical Inc, 770 Lindaro Street, San Rafael, CA, 94901, USA
| | - Brian Calingaert
- RTI Health Solutions, North Carolina, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709-2194, USA
| | - Abenah Harding
- RTI Health Solutions, North Carolina, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709-2194, USA
| | | | - Sarah Landis
- BioMarin (U.K.) Limited, 10 Bloomsbury Way, London, WC1A 2SL, UK.
| |
Collapse
|
37
|
Massachusetts' Findings from Statewide Newborn Screening for Spinal Muscular Atrophy. Int J Neonatal Screen 2021; 7:ijns7020026. [PMID: 34071063 PMCID: PMC8162354 DOI: 10.3390/ijns7020026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Massachusetts began newborn screening (NBS) for Spinal Muscular Atrophy (SMA) following the availability of new treatment options. The New England Newborn Screening Program developed, validated, and implemented a screening algorithm for the detection of SMA-affected infants who show absent SMN1 Exon 7 by Real-Time™ quantitative PCR (qPCR). We screened 179,467 neonates and identified 9 SMA-affected infants, all of whom were referred to a specialist by day of life 6 (average and median 4 days of life). Another ten SMN1 hybrids were observed but never referred. The nine referred infants who were confirmed to have SMA were entered into treatment protocols. Early data show that some SMA-affected children have remained asymptomatic and are meeting developmental milestones and some have mild to moderate delays. The Massachusetts experience demonstrates that SMA NBS is feasible, can be implemented on a population basis, and helps engage infants for early treatment to maximize benefit.
Collapse
|
38
|
Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 2021; 254:430-442. [PMID: 33586140 PMCID: PMC8600955 DOI: 10.1002/path.5641] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria play essential roles in numerous metabolic pathways including the synthesis of adenosine triphosphate through oxidative phosphorylation. Clinically, mitochondrial diseases occur when there is mitochondrial dysfunction – manifesting at any age and affecting any organ system; tissues with high energy requirements, such as muscle and the brain, are often affected. The clinical heterogeneity is parallel to the degree of genetic heterogeneity associated with mitochondrial dysfunction. Around 10% of human genes are predicted to have a mitochondrial function, and defects in over 300 genes are reported to cause mitochondrial disease. Some involve the mitochondrial genome (mtDNA), but the vast majority occur within the nuclear genome. Except for a few specific genetic defects, there remains no cure for mitochondrial diseases, which means that a genetic diagnosis is imperative for genetic counselling and the provision of reproductive options for at‐risk families. Next‐generation sequencing strategies, particularly exome and whole‐genome sequencing, have revolutionised mitochondrial diagnostics such that the traditional muscle biopsy has largely been replaced with a minimally‐invasive blood sample for an unbiased approach to genetic diagnosis. Where these genomic approaches have not identified a causative defect, or where there is insufficient support for pathogenicity, additional functional investigations are required. The application of supplementary ‘omics’ technologies, including transcriptomics, proteomics, and metabolomics, has the potential to greatly improve diagnostic strategies. This review aims to demonstrate that whilst a molecular diagnosis can be achieved for many cases through next‐generation sequencing of blood DNA, the use of patient tissues and an integrated, multidisciplinary multi‐omics approach is pivotal for the diagnosis of more challenging cases. Moreover, the analysis of clinically relevant tissues from affected individuals remains crucial for understanding the molecular mechanisms underlying mitochondrial pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sarah L Stenton
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
39
|
Worku K, Kechero Y, Janssens GPJ. Measuring seasonal and agro-ecological effects on nutritional status in tropical ranging dairy cows. J Dairy Sci 2021; 104:4341-4349. [PMID: 33551156 DOI: 10.3168/jds.2020-18995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/01/2020] [Indexed: 01/12/2023]
Abstract
Despite high numbers of cattle, milk production in many tropical countries such as Ethiopia is very low. Animals are managed traditionally, meaning they mostly depend on seasonal availability of natural pasture, grass, and crop residues with no supplementary feeds. Due to the lack of pasture management, there is overgrazing and soil erosion, and the land still must deal with extremely dry periods. All this has a negative effect on dairy cow productivity. Identification of the specific nutritional deficits would enable targeted interventions to improve milk yield performance, but nutrient and energy intakes are difficult to assess in ranging conditions. The aim of this research was, therefore, to evaluate the nutritional status of ranging dairy cows through blood metabolites, milk yield, and body condition in relation to environmental factors such as agro-ecology and season. The study was performed in a tropical region that is known to be exposed to the above-mentioned situation, the Arba Minch region in the southern Ethiopian Rift Valley. Blood samples were collected from 170 ranging dairy cows in 6 different districts, along a transect extending from the lowlands to the highlands, in both seasons (dry and rainy). Body condition score and milk yield of all cows were also determined for both seasons. Serum urea, creatinine, triglyceride, and nonesterified fatty acid concentrations were quantified spectrophotometrically. Dried serum spots were subject to quantitative electrospray tandem mass spectrometry to estimate changes in nutrient metabolism based on selected free AA and carnitine esters. Based on these measurements, nutritional status varied with season and geographical region. It can also be concluded that extensive metabolite analysis such as mass spectrometry can provide detailed insights, but the simpler spectrophotometric metabolite analysis can estimate the nutritional status of ranging animals.
Collapse
Affiliation(s)
- Ketema Worku
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, PO Box 21, Arba Minch, Ethiopia 4400; Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium.
| | - Yisehak Kechero
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, PO Box 21, Arba Minch, Ethiopia 4400
| | - Geert P J Janssens
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| |
Collapse
|
40
|
Stinton C, Fraser H, Geppert J, Johnson R, Connock M, Johnson S, Clarke A, Taylor-Phillips S. Newborn Screening for Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase and Mitochondrial Trifunctional Protein Deficiencies Using Acylcarnitines Measurement in Dried Blood Spots-A Systematic Review of Test Accuracy. Front Pediatr 2021; 9:606194. [PMID: 33816395 PMCID: PMC8017228 DOI: 10.3389/fped.2021.606194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies are rare autosomal recessive fatty acid β-oxidation disorders. Their clinical presentations are variable, and premature death is common. They are included in newborn blood spot screening programs in many countries around the world. The current process of screening, through the measurement of acylcarnitines (a metabolic by-product) in dried blood spots with tandem mass spectrometry, is subject to uncertainty regarding test accuracy. Methods: We conducted a systematic review of literature published up to 19th June 2018. We included studies that investigated newborn screening for LCHAD or MTP deficiencies by tandem mass spectrometry of acylcarnitines in dried blood spots. The reference standards were urine organic acids, blood acylcarnitine profiles, enzyme analysis in cultured fibroblasts or lymphocytes, mutation analysis, or at least 10-year follow-up. The outcomes of interest were sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Assessment of titles, abstracts, and full-text papers and quality appraisal were carried out independently by two reviewers. One reviewer extracted study data. This was checked by a second reviewer. Results: Ten studies provided data on test accuracy. LCHAD or MTP deficiencies were identified in 23 babies. No cases of LCHAD/MTP deficiencies were identified in four studies. PPV ranged from 0% (zero true positives and 28 false positives from 276,565 babies screened) to 100% (13 true positives and zero false positives from 2,037,824 babies screened). Sensitivity, specificity, and NPV could not be calculated as there was no systematic follow-up of babies who screened negative. Conclusions: Test accuracy estimates of screening for LCHAD and MTP deficiencies with tandem mass spectrometry measurement of acylcarnitines in dried blood were variable in terms of PPVs. Screening methods (including markers and thresholds) varied between studies, and sensitivity, specificity, and NPVs are unknown.
Collapse
Affiliation(s)
- Chris Stinton
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Hannah Fraser
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Julia Geppert
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Johnson
- School of Nursing, Midwifery and Health, Coventry University, Coventry, United Kingdom
| | - Martin Connock
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Samantha Johnson
- Warwick Library, University of Warwick, Coventry, United Kingdom
| | - Aileen Clarke
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
41
|
Abstract
Fatty acid oxidation disorders (FAOD) are a group of rare, autosomal recessive, metabolic disorders caused by variants of the genes for the enzymes and proteins involved in the transport and metabolism of fatty acids in the mitochondria. Those affected by FAOD are unable to convert fatty acids into tricarboxylic acid cycle intermediates such as acetyl-coenzyme A, resulting in decreased adenosine triphosphate and glucose for use as energy in a variety of high-energy-requiring organ systems. Signs and symptoms may manifest in infants but often also appear in adolescents or adults during times of increased metabolic demand, such as fasting, physiologic stress, and prolonged exercise. Patients with FAOD present with a highly heterogeneous clinical spectrum. The most common clinical presentations include hypoketotic hypoglycemia, liver dysfunction, cardiomyopathy, rhabdomyolysis, and skeletal myopathy, as well as peripheral neuropathy and retinopathy in some subtypes. Despite efforts to detect FAOD through newborn screening and manage patients early, symptom onset can be sudden and serious, even resulting in death. Therefore, it is critical to identify quickly and accurately the key signs and symptoms of patients with FAOD to manage metabolic decompensations and prevent serious comorbidities.
Collapse
Affiliation(s)
| | - Erin MacLeod
- Children's National Hospital, Washington, DC, USA
| | | | - Bryan Hainline
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
42
|
Dose-Dependent Effects of Dietary Xylooligosaccharides Supplementation on Microbiota, Fermentation and Metabolism in Healthy Adult Cats. Molecules 2020; 25:molecules25215030. [PMID: 33138291 PMCID: PMC7662210 DOI: 10.3390/molecules25215030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
In order to investigate the effect and appropriate dose of prebiotics, this study evaluated the effect of two levels of xylooligosaccharides (XOS) in cats. Twenty-four healthy adult cats were divided into three groups: no-XOS control diet with 1% cellulose; low XOS supplementation (LXOS) with 0.04% XOS and 0.96% cellulose; and high XOS supplementation (HXOS) with 0.40% XOS and 0.60% cellulose. Both XOS groups increased blood 3-hydroxybutyryl carnitine levels and decreased hexadecanedioyl carnitine levels. Both XOS treatments displayed an increased bacterial abundance of Blautia, Clostridium XI, and Collinsella and a decreased abundance of Megasphaera and Bifidobacterium. LXOS groups increased fecal pH and bacterial abundance of Streptococcus and Lactobacillus, decreased blood glutaryl carnitine concentration, and Catenibacterium abundance. HXOS group showed a more distinct microbiome profile and higher species richness, and an increased bacterial abundance of Subdoligranulum, Ruminococcaceae genus (unassigned genus), Erysipelotrichaceae genus, and Lachnospiraceae. Correlations between bacterial abundances and blood and fecal parameters were also observed. In conclusion, XOS could benefit feline gut health by altering microbiota; its effects dependant on the dose. The higher-dose XOS increased bacterial populations that possibly promoted intestinal fermentation, while the lower dose altered populations of carbohydrate-metabolic microbiota and possibly modulated host metabolism. Low-dose prebiotics may become a trend in future studies.
Collapse
|
43
|
Dulz S, Atiskova Y, Engel P, Wildner J, Tsiakas K, Santer R. Retained visual function in a subset of patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Ophthalmic Genet 2020; 42:23-27. [PMID: 33107778 DOI: 10.1080/13816810.2020.1836658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: LCHADD causes retinopathy associated with low vision, visual field defects, nyctalopia and myopia. We report a retrospective long-term single-center study of 6 LCHADD patients trying to clarify if early diagnosis has an impact on the course and outcome of chorioretinal degeneration. Methods: Long-term follow-up of visual acuity and staging of chorioretinal degeneration by fundus photography, optical coherence tomography (OCT) and autofluorescence (AF) in all six patients. Three patients (2 m/1 f; age 8-14.8 years) were diagnosed by newborn screening, a single patient early within the first year of life and treated promptly while the other two (1 m/1 f; age 23-24 years) were diagnosed later after developing symptoms. All carried HADHA variants; five were homozygous for the common p.E510Q variant, in one from the symptomatically diagnosed group p.[E510Q]; [R291*] was detected. Results: All patients showed retinal alterations, but early diagnosis was associated with a milder phenotype and a longer preservation of visual function. Among symptomatic patients, only one showed mild retinal involvement at the time of diagnosis. Conclusion: Despite the small number our study suggests that early diagnosis does not prevent retinopathy but might contribute to a milder phenotype with retained good visual acuity over time. OCT and AF are reliable non-invasive diagnostic tools to estimate the progression of early-stage retinal changes in LCHADD patients.
Collapse
Affiliation(s)
- Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Peter Engel
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Jan Wildner
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Konstantinos Tsiakas
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Rene Santer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf , Hamburg, Germany.,University Children's Hospital, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
44
|
Lin Y, Zhang W, Chen D, Lin C, Zheng Z, Fu Q, Li M, Peng W. Newborn screening and genetic characteristics of patients with short- and very long-chain acyl-CoA dehydrogenase deficiencies. Clin Chim Acta 2020; 510:285-290. [PMID: 32710939 DOI: 10.1016/j.cca.2020.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS Acyl-CoA dehydrogenase deficiencies are a group of mitochondrial fatty-acid oxidation disorders rarely reported in mainland China. We assessed the biochemical and genetic characteristics of patients with short- and very-long-chain-acyl-CoA dehydrogenase deficiencies (SCADD/VLCADD) discovered through newborn screening. MATERIALS AND METHODS We investigated the effects of genetic variations on protein function using in silico prediction and structural modelling. RESULTS Of 364,545 screened newborns, four were diagnosed with SCADD and four with VLCADD. SCADD and VLCADD incidences in our population were 1:91,136. All patients exhibited elevated C4 or C14:1 levels. Three SCADD patients had increased urinary ethylmalonic acid concentrations. Six ACADS and eight ACADVL variants were identified, with no hotspot variants, and five were unreported, including four missense variants and one splice site variant. ACADVL c.1434 + 2 T > C is a splice site variant that could affect splicing, leading to exon 14 skipping. In silico tools predicted the missense variants as pathogenic. Structural modelling confirmed that the missense variants may affect quaternary structures, causing protein instability. CONCLUSIONS Our findings expanded the ACADS and ACADVL mutational spectra. The combination of in silico prediction and structural modelling can improve our understanding of the pathogenicity of unreported genetic variants, providing an explanation for variant assessment.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Weifeng Zhang
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Dongmei Chen
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China
| | - Min Li
- Hangzhou Genuine Clinical Laboratory Co. Ltd, Hangzhou, Zhejiang Province 310007, China.
| | - Weilin Peng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, Fujian Province 362000, China.
| |
Collapse
|
45
|
Václavík J, Mádrová L, Kouřil Š, de Sousa J, Brumarová R, Janečková H, Jáčová J, Friedecký D, Knapková M, Kluijtmans LAJ, Grünert SC, Vaz FM, Janzen N, Wanders RJA, Wevers RA, Adam T. A newborn screening approach to diagnose 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. JIMD Rep 2020; 54:79-86. [PMID: 32685354 PMCID: PMC7358667 DOI: 10.1002/jmd2.12118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/21/2020] [Indexed: 11/09/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is a rare autosomal recessively inherited metabolic disorder. Patients suffer from avoidable neurologically devastating metabolic decompensations and thus would benefit from newborn screening (NBS). The diagnosis is currently made by measuring dry blood spot acylcarnitines (C5OH and C6DC) followed by urinary organic acid profiling for the differential diagnosis from several other disorders. Using untargeted metabolomics (reversed-phase UHPLC coupled to an Orbitrap Elite hybrid mass spectrometer) of plasma samples from 5 HMGCLD patients and 19 age-matched controls, we found 3-methylglutaconic acid and 3-hydroxy-3-methylglutaric acid, together with 3-hydroxyisovalerylcarnitine as the most discriminating metabolites between the groups. In order to evaluate the NBS potential of these metabolites we quantified the most discriminating metabolites from untargeted metabolomics in 23 blood spots from 4 HMGCLD patients and 55 controls by UHPLC tandem mass spectrometry. The results provide a tool for expanded NBS of HMGCLD using tandem mass spectrometry. Selected reaction monitoring transition 262/85 could be used in a first-tier NBS analysis to screen for elevated 3-hydroxyisovalerylcarnitine. In a positive case, a second-tier analysis of 3-hydroxy-3-methylglutaric acid and 3-methylglutaconic acid in a dry blood spot using UHPLC tandem mass spectrometry instruments confirms the diagnosis. In conclusion, we describe the identification of new diagnostic biomarkers for HMGCLD and their application in NBS in dry blood spots. By using second-tier testing, all patients with HMGCLD were unequivocally and correctly diagnosed.
Collapse
Affiliation(s)
- Jan Václavík
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| | - Lucie Mádrová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| | - Štěpán Kouřil
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| | - Julie de Sousa
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
| | - Radana Brumarová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| | - Hana Janečková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| | - Jaroslava Jáčová
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| | - David Friedecký
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| | - Mária Knapková
- Banská Bystrica Children's University HospitalBanská BystricaSlovakia
| | - Leo A. J. Kluijtmans
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreGA NijmegenNetherlands
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and NeonatologyMedical Center – University of Freiburg, Faculty of MedicineFreiburgGermany
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdamNetherlands
| | - Nils Janzen
- Screening‐Labor HannoverHannoverGermany
- Department of Clinical ChemistryHannover Medical SchoolHannoverGermany
| | - Ronald J. A. Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical ChemistryAmsterdamNetherlands
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CentreGA NijmegenNetherlands
| | - Tomáš Adam
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University OlomoucOlomoucCzech Republic
- Laboratory of Inherited Metabolic Disorders, Department of Clinical ChemistryUniversity Hospital in OlomoucOlomoucCzech Republic
| |
Collapse
|
46
|
Frey BS, Damon DE, Badu-Tawiah AK. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications. MASS SPECTROMETRY REVIEWS 2020; 39:336-370. [PMID: 31491055 PMCID: PMC7875099 DOI: 10.1002/mas.21601] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 05/20/2023]
Abstract
Recent advancements in the sensitivity of chemical instrumentation have led to increased interest in the use of microsamples for translational and biomedical research. Paper substrates are by far the most widely used media for biofluid collection, and mass spectrometry is the preferred method of analysis of the resultant dried blood spot (DBS) samples. Although there have been a variety of review papers published on DBS, there has been no attempt to unify the century old DBS methodology with modern applications utilizing modified paper and paper-based microfluidics for sampling, storage, processing, and analysis. This critical review will discuss how mass spectrometry has expanded the utility of paper substrates from sample collection and storage, to direct complex mixture analysis to on-surface reaction monitoring.
Collapse
Affiliation(s)
- Benjamin S Frey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Deidre E Damon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
47
|
Stroek K, Boelen A, Bouva MJ, De Sain‐van der Velden M, Schielen PCJI, Maase R, Engel H, Jakobs B, Kluijtmans LAJ, Mulder MF, Rubio‐Gozalbo ME, van Spronsen FJ, Visser G, de Vries MC, Williams M, Heijboer AC, Kemper EA, Bosch AM. Evaluation of 11 years of newborn screening for maple syrup urine disease in the Netherlands and a systematic review of the literature: Strategies for optimization. JIMD Rep 2020; 54:68-78. [PMID: 32685353 PMCID: PMC7358668 DOI: 10.1002/jmd2.12124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
Maple syrup urine disease (MSUD) leads to severe neurological deterioration unless diagnosed early and treated immediately. We have evaluated the effectiveness of 11 years of MSUD newborn screening (NBS) in the Netherlands (screening >72 hours, referral if both total leucine (Xle) and valine ≥400 μmol/L blood) and have explored possibilities for improvement by combining our data with a systematic literature review and data from Collaborative Laboratory Integrated Reports (CLIR). Dutch MSUD NBS characteristics and accuracy were determined. The hypothetical referral numbers in the Dutch population of additional screening markers suggested by CLIR were calculated. In a systematic review, articles reporting NBS leucine concentrations of confirmed patients were included. Our data showed that NBS of 1 963 465 newborns identified 4 MSUD patients and led to 118 false-positive referrals (PPV 3.28%; incidence 1:491 000 newborns). In literature, leucine is the preferred NBS parameter. Total leucine (Xle) concentrations (mass-spectrometry) of 53 detected and 8 false-negative patients (sampling age within 25 hours in 3 patients) reported in literature ranged from 288 to 3376 (median 900) and 42 to 325 (median 209) μmol/L blood respectively. CLIR showed increasing Xle concentrations with sampling age and early NBS sampling and milder variant MSUD phenotypes with (nearly) normal biochemical profiles are causes of false-negative NBS results. We evaluated the effect of additional screening markers and established the Xle/phenylalanine ratio as a promising additional marker ratio for increasing the PPV, while maintaining high sensitivity in the Dutch MSUD NBS.
Collapse
Affiliation(s)
- Kevin Stroek
- Endocrinology Laboratory, Department of Clinical ChemistryAmsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Anita Boelen
- Endocrinology Laboratory, Department of Clinical ChemistryAmsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Marelle J. Bouva
- Reference Laboratory Neonatal Screening, Center for Health protectionNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | | | - Peter C. J. I. Schielen
- Reference Laboratory Neonatal Screening, Center for Health protectionNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Rose Maase
- Reference Laboratory Neonatal Screening, Center for Health protectionNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Henk Engel
- Department of Clinical ChemistryIsala HospitalZwolleThe Netherlands
| | - Bernadette Jakobs
- Department of Clinical ChemistryElisabeth‐Tweesteden HospitalTilburgThe Netherlands
| | - Leo A. J. Kluijtmans
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Margot F. Mulder
- Department of Pediatrics, Division of Metabolic DisordersAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - M. E. Rubio‐Gozalbo
- Department of Pediatrics and Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Francjan J. van Spronsen
- Division of Metabolic Disorders, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Gepke Visser
- Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Maaike C. de Vries
- Department of Pediatrics, Division of Metabolic DisordersRadboud University Medical CenterNijmegenThe Netherlands
| | - Monique Williams
- Center for Lysosomal and Metabolic diseases, Department of PediatricsErasmus Medical CenterRotterdamThe Netherlands
| | - Annemieke C. Heijboer
- Endocrinology Laboratory, Department of Clinical ChemistryAmsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Endocrinology Laboratory, Department of Clinical ChemistryAmsterdam Gastroenterology & Metabolism, Amsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Evelien A. Kemper
- Department of Clinical ChemistryIJsselland HospitalCapelle aan den IJsselThe Netherlands
| | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
48
|
Sörensen L, von Döbeln U, Åhlman H, Ohlsson A, Engvall M, Naess K, Backman-Johansson C, Nordqvist Y, Wedell A, Zetterström RH. Expanded Screening of One Million Swedish Babies with R4S and CLIR for Post-Analytical Evaluation of Data. Int J Neonatal Screen 2020; 6:42. [PMID: 33073033 PMCID: PMC7423009 DOI: 10.3390/ijns6020042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 11/16/2022] Open
Abstract
Sweden has one neonatal screening laboratory, receiving 115 to 120 thousand samples per year. Among the one million babies screened by tandem mass spectrometry from November 2010 until July 2019, a total of 665 babies were recalled and 311 verified as having one of the diseases screened for with this methodology, giving a positive predictive value (PPV) of 47% and an incidence of 1:3200. The PPV was high (41%) already in the first year after start of screening, thanks to the availability of the collaborative project Region 4 Stork database. The PPV is presently 58%. This improvement was achieved by the implementation of second-tier analyses in the screening for methylmalonic aciduria, propionic aciduria, isovaleric aciduria, and homocystinuria, and the employment of various post analytical tools of the Region 4 Stork, and its successor the collaborative laboratory integrated reports.
Collapse
Affiliation(s)
- Lene Sörensen
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Ulrika von Döbeln
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Henrik Åhlman
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
| | - Annika Ohlsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Martin Engvall
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Karin Naess
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Carolina Backman-Johansson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
| | - Yvonne Nordqvist
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden; (U.v.D.); (H.Å.); (A.O.); (M.E.); (K.N.); (C.B.-J.); (Y.N.); (A.W.); (R.H.Z.)
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
49
|
Demirelce Ö, Aksungar FB, Saral NY, Kilercik M, Serteser M, Unsal I. Institutional experience of newborn screening for inborn metabolism disorders by tandem MS in the Turkish population. J Pediatr Endocrinol Metab 2020; 33:703-711. [PMID: 32469332 DOI: 10.1515/jpem-2019-0571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/07/2020] [Indexed: 12/26/2022]
Abstract
Background The tandem mass spectrometry method in the screening of congenital metabolic disorders is not included in routine national newborn screening programmes in Turkey. To evaluate the distribution of acylcarnitines and amino acid levels in normal newborns, establish acylcarnitine and amino acid cut-off levels and further preliminary results of inherited metabolic disorders inferentially in the Turkish population. Methods Newborn screening tests performed by tandem MS from 2016 to 2018 were retrospectively reviewed. The study group included 17,066 newborns born in our hospitals located in various regions of Turkey. Blood samples were obtained from infants older than 24 h of age. Among the 17,066 newborns, the metabolic screening data of 9,994 full-term newborns (>37 weeks) were employed to obtain the percentile distribution of the normal population. The study group (17,066) was screened for 26 types of inborn error of metabolism. Results Our established cut-offs, were compared with the cut-offs determined by Region for Stork Study and Centers for Disease Control. Among the 26 screened disorders, a total of 12 cases (8 amino acid metabolism disorders, 1 urea cycle defect, 2 organic acidaemias and 1 fatty acid oxidation disorder) were identified. Conclusions Because of the high rate of consanguineous marriages in Turkey, the development of a nationwide screening panel is necessary for early detection and management of potentially treatable inherited metabolic disorders.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/blood
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Consanguinity
- Early Diagnosis
- Female
- Humans
- Infant
- Infant, Newborn
- Lipid Metabolism, Inborn Errors/blood
- Lipid Metabolism, Inborn Errors/diagnosis
- Lipid Metabolism, Inborn Errors/epidemiology
- Male
- Metabolism, Inborn Errors/blood
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/epidemiology
- Neonatal Screening/methods
- Retrospective Studies
- Tandem Mass Spectrometry
- Turkey/epidemiology
Collapse
Affiliation(s)
- Özlem Demirelce
- Clinical Biochemistry Specialist, Acibadem Labmed Clinical Laboratories, Acibadem University, İçerenköy Mah. Kayışdağı Cad. N0:32-36/B, 34752, Ataşehir, İstanbul, Turkey
| | - Fehime Benli Aksungar
- Department of Metabolism, Acibadem Labmed Clinical Laboratories, İstanbul, Turkey
- Department of Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| | | | - Meltem Kilercik
- Department of Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
- Department of Biochemistry, Acibadem Universitesi, İstanbul, Turkey
| | - Mustafa Serteser
- Department of Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
- Medical Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| | - Ibrahim Unsal
- Medical Biochemistry, School of Medicine, Acibadem University, İstanbul, Turkey
| |
Collapse
|
50
|
Xu J, Zhang A, Huang F. Biallelic mutations in carbamoyl phosphate synthetase 1 induced hyperammonemia in a neonate: A case report. Exp Ther Med 2020; 20:623-629. [PMID: 32537019 DOI: 10.3892/etm.2020.8717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present report was to describe the clinical presentation, diagnosis, and treatment of a case of carbamoyl phosphate synthetase 1 (CPS1) deficiency in a neonate, specifically, a 3 day-old female who visited Hunan Provincial People's Hospital due to anorexia and lethargy for 1 day. Physical and laboratory examination, and MRI were undertaken. Whole exome sequencing (WES) was applied for molecular etiology identification. Sanger sequencing was utilized to validate the variants detected by WES. Structural modeling was conducted for pathogenic analysis. Clinical examination revealed increased intracranial pressure, hyperammonemia, reduced citrulline, and increased glutamic acid levels. WES identified compound heterozygosity of c.713G>C, p.Arg238Pro and c.2339G>A, p.Arg780His in CPS1 (NCBI reference sequence, NM_001875.4) as candidate pathogenic variants. Sanger sequencing validated these variants. Structural modeling further confirmed the pathogenesis of these mutations. In conclusion, CPS1 deficiency in neonates is a serious condition that may be misdiagnosed due to severe infection. WES can be a helpful tool in facilitating the diagnosis of this disease.
Collapse
Affiliation(s)
- Jun Xu
- Department of Neonatology, Children's Medical Center, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Aimin Zhang
- Department of Neonatology, Children's Medical Center, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Furong Huang
- Department of Neonatology, Children's Medical Center, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|