1
|
Adams DR, Gifford ME. Intraspecific interactions and thermal refuge availability interactively influence ectotherm thermoregulation but not energy dynamics. J Therm Biol 2025; 127:104052. [PMID: 39913961 DOI: 10.1016/j.jtherbio.2025.104052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/02/2024] [Accepted: 12/30/2024] [Indexed: 02/24/2025]
Abstract
As climate change poses increasing challenges to ectotherm fitness through changes in the availability of suitable thermal habitats, understanding the interplay between behavioral thermoregulation and microhabitat availability is crucial. We employed a spatially explicit, individual-based model to investigate the effects of refuge density and social interactions on ectotherm thermoregulation using the Eastern Collared Lizard (Crotaphytus collaris) as a model. Both limited refuge availability and territoriality substantially impaired thermoregulation, especially for smaller, subordinate individuals that experienced temperature-induced mortality at high frequencies. Size-dependent mortality from exposure to lethal temperatures may have important consequences for population demography or social structure. Metabolic costs were primarily associated with high body temperatures rather than costs of locomotion. However, net energy assimilation was invariant to competition or refuge density. These findings emphasize the need for ecological models to incorporate complexities of natural environments, including social interactions, to accurately predict responses of ectotherm populations to environmental change.
Collapse
Affiliation(s)
- David R Adams
- Department of Biology, University of Central Arkansas, 201 Donaghey Ave., Conway, AR, 72035, USA.
| | - Matthew E Gifford
- Department of Biology, University of Central Arkansas, 201 Donaghey Ave., Conway, AR, 72035, USA.
| |
Collapse
|
2
|
Benson DM, DeNardo DF. Effects of thermophily-relevant temperature variation and sex on digestive performance in pythons. Comp Biochem Physiol A Mol Integr Physiol 2024; 293:111636. [PMID: 38574988 DOI: 10.1016/j.cbpa.2024.111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Different physiological performances are often optimized at slightly varying temperatures, which can lead to ectotherms selecting higher body temperatures during certain physiological efforts (e.g., digestion, reproduction). Such thermophilic responses can lead to temperature-based tradeoffs between two physiological activities with differing optimal temperatures or between optimizing a physiological activity and water balance, as water loss is elevated at higher temperatures. For example, ectotherms will often select a higher body temperature after consuming a meal, but the extent to which body temperature is elevated after eating is affected by its hydric state. Despite this known hydration state-based suppression of thermophily associated with digestion, the impact of this reduced body temperature on digestion performance is unknown. Accordingly, we determined whether small, thermophily-relevant changes in body temperature impact digestive efficiency or passage time and whether sex influenced the extent of the effect. Eighteen (9 female and 9 male) Children's pythons (Antaresia childreni) each consumed a meal at three temperatures (29 °C, 30 °C, and 31 °C), and gut passage time and digestive efficiency were determined. We found that neither metric was affected by temperature over the range tested. However, digestive efficiency was significantly impacted by the interaction between sex and temperature with males having significantly lower digestive efficiency than females at 31 °C, but not 29 °C or 30 °C. Our results provide insight into the effects of temperature on digestive physiology across narrow temperature ranges as well as demonstrate a sex-based difference in digestive physiology.
Collapse
|
3
|
Alujević K, Bakewell L, Clifton IT, Cox CL, Frishkoff LO, Gangloff EJ, Garcia-Costoya G, Gifford ME, Glenwinkel M, Gulati SAK, Head A, Miles M, Pettit C, Watson CM, Wuthrich KL, Logan ML. 3D printed models are an accurate, cost-effective, and reproducible tool for quantifying terrestrial thermal environments. J Therm Biol 2024; 119:103762. [PMID: 38071898 DOI: 10.1016/j.jtherbio.2023.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 02/25/2024]
Abstract
Predicting ecological responses to rapid environmental change has become one of the greatest challenges of modern biology. One of the major hurdles in forecasting these responses is accurately quantifying the thermal environments that organisms experience. The distribution of temperatures available within an organism's habitat is typically measured using data loggers called operative temperature models (OTMs) that are designed to mimic certain properties of heat exchange in the focal organism. The gold standard for OTM construction in studies of terrestrial ectotherms has been the use of copper electroforming which creates anatomically accurate models that equilibrate quickly to ambient thermal conditions. However, electroformed models require the use of caustic chemicals, are often brittle, and their production is expensive and time intensive. This has resulted in many researchers resorting to the use of simplified OTMs that can yield substantial measurement errors. 3D printing offers the prospect of robust, easily replicated, morphologically accurate, and cost-effective OTMs that capture the benefits but alleviate the problems associated with electroforming. Here, we validate the use of OTMs that were 3D printed using several materials across eight lizard species of different body sizes and living in habitats ranging from deserts to tropical forests. We show that 3D printed OTMs have low thermal inertia and predict the live animal's equilibration temperature with high accuracy across a wide range of body sizes and microhabitats. Finally, we developed a free online repository and database of 3D scans (https://www.3dotm.org/) to increase the accessibility of this tool to researchers around the world and facilitate ease of production of 3D printed models. 3D printing of OTMs is generalizable to taxa beyond lizards. If widely adopted, this approach promises greater accuracy and reproducibility in studies of terrestrial thermal ecology and should lead to improved forecasts of the biological impacts of climate change.
Collapse
Affiliation(s)
- Karla Alujević
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Leah Bakewell
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Ian T Clifton
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA; Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Christian L Cox
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Luke O Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Guillermo Garcia-Costoya
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Matthew E Gifford
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Madison Glenwinkel
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Samir A K Gulati
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Alyssa Head
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Monica Miles
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Ciara Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Charles M Watson
- Department of Life Sciences, Texas A&M University San Antonio, San Antonio, TX, 78249, USA
| | - Kelly L Wuthrich
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Michael L Logan
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
4
|
Wehrle BA, German DP. Reptilian digestive efficiency: Past, present, and future. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111369. [PMID: 36646309 DOI: 10.1016/j.cbpa.2023.111369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Digestion and assimilation of nutrients and energy is central to survival. At its most basic level, investigations of digestion in animals must examine digestive efficiency, or how much of a given meal (i.e., energy) or a specific nutrient an organism can acquire from its food. There are many studies examining this in reptiles, but there is large variation in methodology, and thus, in the conclusions drawn from the gathered data. The majority rely on ratio-based analyses that can jeopardize the reliability of their findings. Therefore, we reviewed the literature to identify common themes in the digestive efficiency data on reptiles. Due to the sheer number of available studies, we largely focused on lizards, but included data on all reptilian groups. As an example of what the current data can reveal, we performed a meta-analysis of digestive efficiency in lizards as a function of temperature using regression analyses. We detected a weak positive trend of soluble carbohydrate digestibility as a function of temperature, but no similar trend in broad-scale digestive efficiency, and propose that these patterns be reevaluated with non-ratio data. We conclude with calls to end conducting analyses on ratios and instead employ covariate methods, for more studies of reptilian digestive efficiency and related processes using consistent methodology, more representation of each population (e.g., many studies focus on males only), and more detailed studies examining the effects of temperature on digestion (since the current data are inconclusive).
Collapse
Affiliation(s)
- Beck A Wehrle
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA; Department of Biology, Bryn Mawr College, 101 N. Merion Ave, Bryn Mawr, PA 19010, USA.
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA. https://twitter.com/dgermanuci
| |
Collapse
|
5
|
Brewster CL, Gifford M, Ortega J, Beaupre SJ. Analyzing Time-Energy Constraints to Understand the Links between Environmental Change and Local Extinctions in Terrestrial Ectotherms. Am Nat 2021; 198:719-733. [PMID: 34762575 DOI: 10.1086/716725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAccelerated extinction rates have prompted an increased focus on the interplay between environmental change and species response. The effects of environmental change on thermal opportunity are typically considered through a climate change context. However, habitat alteration can also have strong effects on the thermal environment. Additionally, habitat alteration is considered a leading factor of species extinction, yet few studies address the influence of habitat alteration on thermal opportunity and time-energy budgets in at-risk species. Here, we show the strong effects that habitat degradation can have on thermal opportunity, time-energy budgets, and life history demographics of local populations. In the Ozark Mountains of northern Arkansas, woody vegetation encroachment has resulted in a shift in life history traits that appears to play an important role in recent extirpations of eastern collared lizards (Crotaphytus collaris). Populations in degraded habitats experienced a decline in thermal opportunity and less time at body temperatures (time at Tb) suitable for digestion compared with those in intact habitats. We used our data to model the effect of reduced time at Tb on the net assimilated energy available for growth and reproduction. Our model predicts an ∼46% decline in the annual fecundity of individuals, which is similar to empirical observations of reproduction of C. collaris populations in degraded habitats (~49%). We conclude that C. collaris in degraded habitats experienced reduced growth and reproduction primarily as a result of constrained thermal opportunity leading to a decline in digestive processing rates. Our study applies an underappreciated approach to identify the biophysical and time-energy effects of habitat alteration.
Collapse
|
6
|
Ghilardi M, Schiettekatte NMD, Casey JM, Brandl SJ, Degregori S, Mercière A, Morat F, Letourneur Y, Bejarano S, Parravicini V. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol Evol 2021; 11:13218-13231. [PMID: 34646464 PMCID: PMC8495780 DOI: 10.1002/ece3.8045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/24/2023] Open
Abstract
Trait-based approaches are increasingly used to study species assemblages and understand ecosystem functioning. The strength of these approaches lies in the appropriate choice of functional traits that relate to the functions of interest. However, trait-function relationships are often supported by weak empirical evidence.Processes related to digestion and nutrient assimilation are particularly challenging to integrate into trait-based approaches. In fishes, intestinal length is commonly used to describe these functions. Although there is broad consensus concerning the relationship between fish intestinal length and diet, evolutionary and environmental forces have shaped a diversity of intestinal morphologies that is not captured by length alone.Focusing on coral reef fishes, we investigate how evolutionary history and ecology shape intestinal morphology. Using a large dataset encompassing 142 species across 31 families collected in French Polynesia, we test how phylogeny, body morphology, and diet relate to three intestinal morphological traits: intestinal length, diameter, and surface area.We demonstrate that phylogeny, body morphology, and trophic level explain most of the interspecific variability in fish intestinal morphology. Despite the high degree of phylogenetic conservatism, taxonomically unrelated herbivorous fishes exhibit similar intestinal morphology due to adaptive convergent evolution. Furthermore, we show that stomachless, durophagous species have the widest intestines to compensate for the lack of a stomach and allow passage of relatively large undigested food particles.Rather than traditionally applied metrics of intestinal length, intestinal surface area may be the most appropriate trait to characterize intestinal morphology in functional studies.
Collapse
Affiliation(s)
- Mattia Ghilardi
- Reef Systems Research GroupDepartment of EcologyLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
- Department of Marine EcologyFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Nina M. D. Schiettekatte
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Jordan M. Casey
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Department of Marine ScienceMarine Science InstituteUniversity of Texas at AustinPort AransasTXUSA
| | - Simon J. Brandl
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Department of Marine ScienceMarine Science InstituteUniversity of Texas at AustinPort AransasTXUSA
- CESABCentre for the Synthesis and Analysis of BiodiversityInstitut Bouisson BertrandMontpellierFrance
| | - Samuel Degregori
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Alexandre Mercière
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Fabien Morat
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Yves Letourneur
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- UMR ENTROPIE (UR‐IRD‐CNRS‐IFREMER‐UNC)Université de la Nouvelle‐CalédonieNouméa CedexNew Caledonia
| | - Sonia Bejarano
- Reef Systems Research GroupDepartment of EcologyLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Valeriano Parravicini
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|