1
|
Debaere SF, Weideli OC, Daly R, Milanesi EMC, Trujillo JE, Bouyoucos IA, Mourier J, Chin A, Planes S, De Boeck G, Rummer JL. The costs and healing rates of minor injuries in neonatal reef sharks. JOURNAL OF FISH BIOLOGY 2025. [PMID: 39891473 DOI: 10.1111/jfb.16059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
Elasmobranch fishes (i.e., sharks, skates, and rays) exhibit remarkable wound-healing capabilities and consistently maintain a high capacity for tissue regeneration throughout their lives. This high capacity for wound healing may be particularly important for neonatal elasmobranchs that are still developing their immune system. However, little is known about the costs associated with wound healing and the potential influence of environmental variables or life history. In this study, we explore (1) the impact of minor, external injuries on the growth and body condition of neonatal blacktip reef (Carcharhinus melanopterus) and sicklefin lemon (Negaprion acutidens) sharks using a long-term fisheries-independent dataset from Moorea, French Polynesia, (2) the influence of ambient temperature on healing rates in neonatal blacktip reef sharks at two experimental temperatures (25°C and 29°C), and (3) variations in umbilical wound-healing rates between blacktip reef and sicklefin lemon sharks using an additional long-term dataset from St. Joseph Atoll, Seychelles. We found no impact of minor, external injuries on growth and body condition in neonatal blacktip reef and sicklefin lemon sharks, accelerated umbilical wound healing in neonatal blacktip reef sharks exposed to elevated ambient temperatures, and distinct umbilical wound-healing rates between neonatal blacktip reef and sicklefin lemon sharks. Enhancing our understanding of sharks' healing capabilities and the influence of environmental factors on this process is crucial for informing handling practices aimed at improving post-release survival rates of captured sharks under current and future oceanic conditions.
Collapse
Affiliation(s)
- Shamil F Debaere
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Ornella C Weideli
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, PSL Research University, Université de Perpignan, Perpignan Cedex, France
- SOSF-D'Arros Research Centre (SOSF-DRC), Save Our Seas Foundation (SOSF), Geneva, Switzerland
| | - Ryan Daly
- South African Institute for Aquatic Biodiversity, Grahamstown, South Africa
- Oceanographic Research Institute, Durban, South Africa
| | - Elena M C Milanesi
- Department of Earth and Environmental Sciences (DISAT), University of Milano - Bicocca, Milan, Italy
| | - José E Trujillo
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Ian A Bouyoucos
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, PSL Research University, Université de Perpignan, Perpignan Cedex, France
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Johann Mourier
- MARBEC, Univ Montpellier, CNRS Ifremer, IRD, Sète, France
| | - Andrew Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, PSL Research University, Université de Perpignan, Perpignan Cedex, France
- Laboratoire d'Excellence 'CORAIL', EPHE, PSL Research University, UPVD, USR 3278 CRIOBE, Moorea, French Polynesia
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jodie L Rummer
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Giesy KC, Jerome J, Wester J, D’Alessandro E, McDonald MD, Macdonald C. The physiological stress response of juvenile nurse sharks (Ginglymostoma cirratum) to catch-and-release recreational angling. PLoS One 2025; 20:e0316838. [PMID: 39752541 PMCID: PMC11698477 DOI: 10.1371/journal.pone.0316838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Nurse sharks (Ginglymostoma cirratum), especially juveniles, are often encountered by near-shore and shore-based recreational anglers and are suggested to exhibit minimal behavioral and physiological responses to capture, largely based on studies of adults using commercial or scientific fishing methods. To quantify the sub-lethal effects of recreational angling on juvenile nurse sharks, 27 individuals (across 31 angling events) were caught using hook-and-line fishing methods. Over a 30-min period, 4 blood samples were taken with variable time intervals between sampling (i.e., randomized ordering of an interval of 5, 10, and 15 min between each sampling event). Lactate increased by 611% (6.7 ± 2.17 mmol/L) on average over the 30-min fight, and significant relationships were identified between lactate and blood draw number, fight time, and temperature, with large effect sizes. Significant relationships were also detected between blood draw number, glucose, and hematocrit, while osmolality was only affected by fishing site. These results suggest juvenile nurse sharks may exhibit a greater physiological stress response when exposed to recreational angling than adults captured with other fishing methods.
Collapse
Affiliation(s)
- Katherine C. Giesy
- University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, United States of America
- Field School, Coconut Grove, Florida, United States of America
| | - Jacob Jerome
- University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, United States of America
- Field School, Coconut Grove, Florida, United States of America
| | - Julia Wester
- University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, United States of America
- Field School, Coconut Grove, Florida, United States of America
| | - Evan D’Alessandro
- University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, United States of America
| | - M. Danielle McDonald
- University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, United States of America
| | - Catherine Macdonald
- University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science, Miami, Florida, United States of America
- Field School, Coconut Grove, Florida, United States of America
| |
Collapse
|
3
|
Cole G, Lavender E, Naylor A, Girling S, Aleynik D, Oppel S, Dodd J, Thorburn J. Physiological responses to capture, handling and tagging in the critically endangered flapper skate ( Dipturus intermedius). CONSERVATION PHYSIOLOGY 2024; 12:coae077. [PMID: 39610408 PMCID: PMC11604123 DOI: 10.1093/conphys/coae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Catch-and-release angling is a popular recreational pastime and an essential component of many fish research programmes. Marked physiological disturbances have been documented in elasmobranchs in response to angling and handling, but skates and rays remain understudied. Here, we describe for the first time the physiological responses of the critically endangered flapper skate (Dipturus intermedius) to angling, handling and tagging in Scotland. Sixty-one skate were captured by angling as part of a tagging research programme. We assessed individual health, measured blood parameters at two time points (post-capture and prior to release) and recorded heart and respiratory rates during handling and the surgical insertion of acoustic tags. Injuries or infections were identified in 10% of individuals and attributed to prior angling in two cases. Skate generally experienced a mild metabolic acidosis characterized by decreases in blood pH and bicarbonate and increases in lactate and glucose. Respiratory acidosis characterized by limited increases in PCO2 was also observed. The degree of acidosis was greater with warmer sea temperatures and longer fight times, and worsened during the time that skate were handled on deck. Heart rates during handling were negatively associated with body size, positively associated with temperature and also linked to time on the line. Taken together, our results suggest that elevated fight times and temperatures increase the physiological stress experienced by rod and reel-caught flapper skate. Efforts to reduce fight times and minimize heat exposure (including shading, irrigation and reduced handling time) should be beneficial for skate.
Collapse
Affiliation(s)
- Georgina Cole
- Conservation Department, Royal Zoological Society of Scotland, 134 Corstorphine Road, Edinburgh, Scotland, EH12 6TS, UK
| | - Edward Lavender
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, The Observatory, Buchanan Gardens, St. Andrews, Scotland, KY16 9LZ, UK
- Scottish Oceans Institute, University of St Andrews, Gatty Marine Laboratory, Institiud Chuantan na h-Alba, East Sands, St Andrews, Scotland, KY16 8LB, UK
- Department of Systems Analysis, Integrated Assessment and Modelling, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf CH-8600, Switzerland
| | - Adam Naylor
- Conservation Department, Royal Zoological Society of Scotland, 134 Corstorphine Road, Edinburgh, Scotland, EH12 6TS, UK
- New Zealand Centre for Conservation Medicine, Auckland Zoo, 91 Motions Road, Western Springs, Auckland 1022, New Zealand
| | - Simon Girling
- Conservation Department, Royal Zoological Society of Scotland, 134 Corstorphine Road, Edinburgh, Scotland, EH12 6TS, UK
| | - Dmitry Aleynik
- Scottish Association for Marine Science, Dunbeg, Oban, Argyll, Scotland, PA37 1QA, UK
| | - Steffen Oppel
- Swiss Ornithological Institute, Seerise 1, 6204 Sempach, Switzerland
| | - Jane Dodd
- Nature Scot, Cameron House, Albany Street, Oban, Scotland, PA34 4AE, UK
| | - James Thorburn
- Scottish Oceans Institute, University of St Andrews, Gatty Marine Laboratory, Institiud Chuantan na h-Alba, East Sands, St Andrews, Scotland, KY16 8LB, UK
- School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh, Scotland, EH11 4BN, UK
- Centre for Conservation and Restoration Science, Edinburgh Napier University, 9 Sighthill Court, Edinburgh, Scotland, EH11 4BN, UK
| |
Collapse
|
4
|
Finotto L, Walker TI, Reina RD. The effect of fishing-capture stress on the oxygen uptake rate and swimming activity of the holocephalan Callorhinchus milii. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:203-214. [PMID: 38158379 DOI: 10.1002/jez.2775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Overfishing, capture mortality, and consequences following the release of surviving animals represent severe threats to chondrichthyans. Although holocephalans are common bycaught and discarded species, other than postrelease mortality, little is known of fishing capture stress impacts. The stress response elicited after capture, essential to increase survival chances, is energetically demanding and affects the amount of energy available for other biological activities, with potential long-term impairments. We measured the effect of 30-min simulated gillnet capture on oxygen uptake rate (ṀO2 ), a proxy for metabolic rate and energy use, on recovery pattern, and on swimming activity of elephant fish (Callorhinchus milii). Immediately after simulated capture, Active and Inactive ṀO2 , measured during swimming and resting periods, respectively, were 27.5% and 43.1% lower than precapture values. This metabolic decline is likely an adaptation for reducing the energy allocated to non-essential activities, thus preserving it to sustain the stress response and processes essential for immediate survival. Supporting this, after gillnet capture, animals decreased their swimming time by 26.6%, probably due to a reduction in the energy allocated to movement. After 7 days, swimming activity and both Inactive ṀO2 and Active ṀO2 returned to precapture values. Although metabolic decline may enhance survival chances, the associated decreased swimming activity might increase predation risk and slow the physiological recovery after a fishing event. Moreover, some of the activities involved in Inactive ṀO2 are fundamental for life maintenance and therefore its depression after a capture event might have long-term repercussions for life sustenance and health.
Collapse
Affiliation(s)
- Licia Finotto
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Terence I Walker
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Cameron LWJ, Roche WK, Beckett K, Payne NL. A review of elasmobranch catch-and-release science: synthesis of current knowledge, implications for best practice and future research directions. CONSERVATION PHYSIOLOGY 2023; 11:coad100. [PMID: 38161598 PMCID: PMC10756054 DOI: 10.1093/conphys/coad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Until relatively recently commercial fisheries have been considered the main driving factor for elasmobranch population declines. However, this belief has begun to shift with the realization that recreational elasmobranch catches may equal or exceed commercial catches in some regions. Many recreational angling fisheries for elasmobranchs involve high participation in catch-and-release angling practices. However, high release rates may not necessarily equate to high survival rates. Therefore, to assist accurate assessment of the potential impact of recreational angling on elasmobranchs, we attempted to summarize and integrate currently available information on specific risk factors associated with recreational angling, alongside associated mortality rates, as well as information on angler behaviour as it relates to identified risk factors. We categorized the major angling-related effects into two groups: injury-induced effects; and biochemical disruption-induced effects; providing a summary of each group and outlining the main lethal and sub-lethal outcomes stemming from these. These outcomes include immediate and delayed post-release mortality, behavioural recovery periods (which may in-turn confer increased predation risks), chronic health impacts and capture-induced parturition and abortion. Additionally, we detailed a range of angling practices and equipment, including hook-type, hook removal and emersion (i.e. air exposure), as well as inter- and intra-specific factors, including aerobic scope, respiratory mode, body size and species-specific behaviours, which are likely to influence injury and/or mortality rates and should therefore be considered when assessing angling-related impacts. We then utilized these data to provide a range of actionable recommendations for both anglers and policymakers which would serve to reduce the population-level impact of recreational angling on these enigmatic animals.
Collapse
Affiliation(s)
- Luke W J Cameron
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin 2, Ireland
| | - William K Roche
- Inland Fisheries Ireland, 3044 Lake Drive, Citywest Business Campus, Dublin D24 CK66, Ireland
| | - Katy Beckett
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin 2, Ireland
| | - Nicholas L Payne
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Martin L, Negrete B, Esbaugh AJ. The effects of size on exhaustive exercise and recovery in a marine sportfish, the red drum (Sciaenops ocellatus). Comp Biochem Physiol B Biochem Mol Biol 2023; 266:110844. [PMID: 36828190 DOI: 10.1016/j.cbpb.2023.110844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Recreational angling is an economically important activity in many communities around the world. One conservation strategy adopted to offset the population-level consequences of recreational angling is "catch-and-release" (CAR), which is the act of returning fish to the environment following an angling event. While an expansive literature has helped to generalize CAR best practices, species-specific validation of recovery profiles remains a crucial component of species-specific angling guidance. This study sought to define the injury and recovery profiles in the plasma and white muscle following exhaustive exercise in two size classes of a common Gulf of Mexico sportfish, the red drum (Sciaenops ocellatus). The two sizes included a "small" (20-30 cm) and "slot" size (51-74 cm), the latter of which is a common angling target. Both size classes showed a characteristic injury profile that consisted of significantly elevated muscle and plasma lactate, plasma osmolality and haematocrit, as well as decreased muscle ATP and phosphocreatine, and lowered plasma and muscle pH. In small fish, muscle metabolites returned to control values by 1 h post-exercise and plasma metabolites returned to control between 3 and 6 h post-exercise. In contrast, slot sized fish had recovery periods of ≥3 h for all metabolites. The maximum injury effect size was also greater in the slot size class. These data suggest that while red drum conform to typical patterns of post-exercise recovery, larger trophy-sized fish may be more at risk to the ancillary effects of exhaustive exercise owing to greater exercise injury and slower recovery rates.
Collapse
Affiliation(s)
- Leighann Martin
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA.
| |
Collapse
|
7
|
Variable post-release mortality in common shark species captured in Texas shore-based recreational fisheries. PLoS One 2023; 18:e0281441. [PMID: 36780489 PMCID: PMC9925081 DOI: 10.1371/journal.pone.0281441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The practice of catch and release fishing is common among anglers but has been shown to cause unintended mortalities in some species. Current post-release mortality estimates used in coastal shark stock assessments are typically derived from boat-based shark fisheries, which differ from shore-based operations that expose sharks to potentially more stressful environmental and handling conditions. Recreational post-release mortality rates in shore-based fisheries must be quantified to improve stock assessment models and to create guidelines that protect species from overexploitation. Here, we partnered with experienced anglers acting as citizen scientists to deploy pop-up satellite archival transmitting tags (PSAT, n = 22) and acceleration data loggers (ADLs, n = 22). on four commonly caught sharks including the blacktip shark (Carcharhinus limbatus, n = 11), bull shark (Carcharhinus leucas, n = 14), tiger shark (Galeocerdo cuvier, n = 6), and great hammerheads (Sphyrna mokarran, n = 2). Mortality occurred within minutes to hours post-release. If evidence of mortality occurred after normal diving behavior had been re-established for 10 days, then the mortality was considered natural and not related to the catch-and-release process. Post-release mortality estimates ranged from 0% for bull and tiger sharks to 45.5% for blacktip sharks. Of the two great hammerheads, one died within 30 minutes post-release while the other exhibited mortality characteristics 14 days after release. Moribund blacktip sharks experienced on average 3.4-4.9°C warmer water compared with survivors. Recovery periods were estimated for survivors of each species and were highly variable, differing based on duration of tag deployment. High variability in responses to capture and release between species demonstrates the need for species-specific assessments of post-release mortality in shore-based recreational fisheries.
Collapse
|
8
|
Harding L, Gallagher A, Jackson A, Bortoluzzi J, Dolton HR, Shea B, Harman L, Edwards D, Payne N. Capture heats up sharks. CONSERVATION PHYSIOLOGY 2022; 10:coac065. [PMID: 36186915 PMCID: PMC9517936 DOI: 10.1093/conphys/coac065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Catch-and-release fishing is an important component of ecotourism industries and scientific research worldwide, but its total impact on animal physiology, health and survival is understudied for many species of fishes, particularly sharks. We combined biologging and blood chemistry to explore how this fisheries interaction influenced the physiology of two widely distributed, highly migratory shark species: the blue shark (Prionace glauca) and the tiger shark (Galeocerdo cuvier). Nineteen sharks were caught by drum line or rod-and-reel angling; subcutaneous body temperature measurements were taken immediately upon capture, with six individuals also providing subsequent subcutaneous body temperature measurements via biologging as they swam freely for several hours post-release. We found that short-term capture caused shark body temperature to increase significantly and rapidly, with increases of 0.6°C-2.7°C for blue sharks (mean, 1.2 ± 0.6°C) and 0.5°C-0.9°C for tiger sharks (mean, 0.7 ± 0.2°C) and with capture-induced heating rates of blue sharks averaging 0.3°C min-1 but as high as 0.8°C min-1. Blue shark body temperature was even higher deeper into the white muscle. These heating rates were three to eight times faster than maximum rates encountered by our biologging sharks swimming through thermally stratified waters and faster than most acute heating experiments conducted with ectotherms in laboratory experiments. Biologging data showed that body temperatures underwent gradual decline after release, returning to match water temperatures 10-40 mins post-release. Blood biochemistry showed variable lactate/glucose levels following capture; however, these concentrations were not correlated with the magnitude of body temperature increase, nor with body size or hooking time. These perturbations of the natural state could have immediate and longer-term effects on the welfare and ecology of sharks caught in catch-and-release fisheries and we encourage further study of the broader implications of this reported phenomenon.
Collapse
Affiliation(s)
- Lucy Harding
- Corresponding author: Lucy Harding, Department of Zoology, Trinity College Dublin, Ireland. E-mail:
| | | | - Andrew Jackson
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| | - Jenny Bortoluzzi
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| | - Haley R Dolton
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| | - Brendan Shea
- Beneath the Waves, PO BOX 126, Herndon, VA 20172, USA
| | - Luke Harman
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, T23 N73K, Ireland
| | - David Edwards
- West Cork Charters, Shannonvale, Clonakilty, Co. Cork, , P85 FV00, Ireland
| | - Nicholas Payne
- Department of Zoology, Trinity College Dublin,
D02 PN40, Ireland
| |
Collapse
|
9
|
Saltzman J, Graham J, Wester J, White ER, Macdonald CC. #Sawfish: Social media to assess public perceptions, behaviors, and attitudes towards a critically endangered species. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.987909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monitoring population size and dynamics of threatened or low-density species is often both logistically difficult and costly. Recently, social media has emerged as a new tool for species monitoring. In this study, we expand on the use of social media posts as a tool to monitor the spatial and temporal distribution and public perceptions toward the smalltooth sawfish Pristis pectinata. We recorded 442 encounters with smalltooth sawfish from 2018 to 2021 in the form of Instagram posts. We identified locations of encounters within the following regions: Florida Keys, Everglades, South Florida (Miami/Fort Lauderdale), Caloosahatchee River, Bahamas, Upper Charlotte Harbor, Port St. Lucie, Ten Thousand Islands, Tampa, Naples, and Cape Canaveral. We found the greatest number of encounters occurred in the Florida Keys. In addition to spatiotemporal analysis, we used the captions of the posts to assess public attitudes and behaviors toward this charismatic species. This revealed individuals who encounter sawfish feel in general positive about their experience (over half described their encounter using positive language). We also found that sawfish were frequently caught as bycatch when other species (e.g., shark, tarpon, bonefish) were being targeted. Notably, in 12.6% of cases where sawfish were caught, they were being directly targeted. We also identified specific problematic or illegal handling behaviors from image and caption analysis. In addition to captured sawfish, we found sawfish are also frequently observed by beachgoers, boaters, and divers— however, in many cases these encounters may not be reported.
Collapse
|
10
|
Whitney NM, Lear KO, Morris JJ, Hueter RE, Carlson JK, Marshall HM. Connecting post-release mortality to the physiological stress response of large coastal sharks in a commercial longline fishery. PLoS One 2021; 16:e0255673. [PMID: 34525094 PMCID: PMC8443047 DOI: 10.1371/journal.pone.0255673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/21/2021] [Indexed: 01/20/2023] Open
Abstract
Bycatch mortality is a major factor contributing to shark population declines. Post-release mortality (PRM) is particularly difficult to quantify, limiting the accuracy of stock assessments. We paired blood-stress physiology with animal-borne accelerometers to quantify PRM rates of sharks caught in a commercial bottom longline fishery. Blood was sampled from the same individuals that were tagged, providing direct correlation between stress physiology and animal fate for sandbar (Carcharhinus plumbeus, N = 130), blacktip (C. limbatus, N = 105), tiger (Galeocerdo cuvier, N = 52), spinner (C. brevipinna, N = 14), and bull sharks (C. leucas, N = 14). PRM rates ranged from 2% and 3% PRM in tiger and sandbar sharks to 42% and 71% PRM in blacktip and spinner sharks, respectively. Decision trees based on blood values predicted mortality with >67% accuracy in blacktip and spinner sharks, and >99% accuracy in sandbar sharks. Ninety percent of PRM occurred within 5 h after release and 59% within 2 h. Blood physiology indicated that PRM was primarily associated with acidosis and increases in plasma potassium levels. Total fishing mortality reached 62% for blacktip and 89% for spinner sharks, which may be under-estimates given that some soak times were shortened to focus on PRM. Our findings suggest that no-take regulations may be beneficial for sandbar, tiger, and bull sharks, but less effective for more susceptible species such as blacktip and spinner sharks.
Collapse
Affiliation(s)
- Nicholas M. Whitney
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, United States of America
- * E-mail:
| | - Karissa O. Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - John J. Morris
- Center for Shark Research, Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Robert E. Hueter
- Center for Shark Research, Mote Marine Laboratory, Sarasota, Florida, United States of America
- OCEARCH, Park City, Utah, United States of America
| | - John K. Carlson
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration, Panama City, Florida, United States of America
| | - Heather M. Marshall
- Center for Shark Research, Mote Marine Laboratory, Sarasota, Florida, United States of America
- State College of Florida, Bradenton, Florida, United States of America
| |
Collapse
|
11
|
Schoen AN, Bouyoucos IA, Anderson WG, Wheaton CJ, Planes S, Mylniczenko ND, Rummer JL. Simulated heatwave and fishing stressors alter corticosteroid and energy balance in neonate blacktip reef sharks, Carcharhinus melanopterus. CONSERVATION PHYSIOLOGY 2021; 9:coab067. [PMID: 34457309 PMCID: PMC8395585 DOI: 10.1093/conphys/coab067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The increasing frequency and duration of marine heatwaves attributed to climate change threatens coastal elasmobranchs and may exacerbate existing anthropogenic stressors. While the elasmobranch stress response has been well studied, the role of the unique corticosteroid-1α-hydroxycorticosterone (1α-OHB)-in energy balance is not understood. Therefore, 1α-OHB's utility as a stress biomarker in elasmobranch conservation physiology is equivocal. Here, we analyse the roles of corticosteroids, 1α-OHB and corticosterone, and metabolites, glucose and 3-hydroxybutyrate (3-HB), in response to stress in a protected tropical shark species, the blacktip reef shark (Carcharhinus melanopterus). Wild-caught neonates were exposed to ambient (27°C) or heatwave conditions (29°C) and subsequently a simulated fishing stressor (1 min air exposure). Blood samples were taken prior to temperature exposure, prior to air exposure, and 30 min, 1 h, 24 h, and 48 h post-air exposure at treatment temperatures. Plasma 1α-OHB was elevated for 48 h in 27°C-exposed sharks but declined over time in 29°C-exposed sharks. Plasma 1α-OHB was not correlated with either metabolite. Plasma glucose was higher and plasma 3-HB was lower in 29°C-exposed sharks. In a separate experiment, blood samples were collected from both neonate and adult sharks immediately following capture and again 5 min later, and analysed for corticosteroids and metabolites. Plasma 1α-OHB increased in neonates within 5 min, but neonates displayed lower plasma 1α-OHB and higher glucose concentrations than adults. We conclude that 1α-OHB does not serve as a classic glucocorticoid role in C. melanopterus under these stressors. Furthermore, we show for the first time, ontogenetic differences in plasma 1α-OHB. Ultimately, our findings provide insights into hormonal control of energy mobilization during stress in C. melanopterus, particularly during simulated heatwave conditions, which seem to alter both endocrine and energy mobilization. Further work is needed to determine the utility of 1α-OHB as a biomarker for the mobilization of energy during a stress event in elasmobranchs.
Collapse
Affiliation(s)
- Alexandra N Schoen
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Catharine J Wheaton
- Disney Animals, Science and Environment, Disney’s Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista, FL 32830, USA
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- Laboratoire d’Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Natalie D Mylniczenko
- Disney Animals, Science and Environment, Disney’s Animal Kingdom® and the Seas with Nemo and Friends®, Lake Buena Vista, FL 32830, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
12
|
Scarponi V, Gennari E, Hughes W. Physiological response to capture stress in endemic Southern African catsharks (family Scyliorhinidae). JOURNAL OF FISH BIOLOGY 2021; 99:186-196. [PMID: 33625732 DOI: 10.1111/jfb.14710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Fishing is the major threat to marine fish populations, particularly to higher trophic-level predators such as sharks. Many sharks, and other fish, are caught as commercial by-catch or for recreational purposes and then released; therefore, it is important to understand the effects of capture stress on their physiology and subsequent survival. Nonetheless, although important data have been collected for some sharks, there can be substantial interspecific differences, and the consequences of capture stress are still poorly understood for most species. In this study, the authors quantified the physiological effect of capture on four catshark species endemic to Southern Africa, which are regularly discarded as by-catch and targeted by recreational fisheries. Fifteen pyjama sharks, nine leopard sharks and nine shysharks were captured, and a blood sample was collected to measure their physiological response to capture stress. Stressed blood biochemistry was compared to samples obtained after the sharks recovered for 24 h in an underwater pen. Levels of pH and K+ were significantly lower, and lactate levels were significantly higher, in sharks immediately after capture stress compared to after the 24 h recovery period. Although the species showed a similar response to capture stress, they differed significantly in pH, K+ and lactate levels, and there was some evidence of size affecting the strength of the response to capture stress. The substantial physiological response elicited by even the relatively quick capture event in this study suggests that common fishing practices will have a stronger impact on catshark homeostasis because of longer hooking times and more disruptive fishing gear. Although the relationship between survival and physiological changes elicited by capture needs further investigation, the results provide further evidence that minimizing stress would be beneficial to maximize the survival of sharks and other fish following capture-and-release fishing practices.
Collapse
Affiliation(s)
| | | | - William Hughes
- School of Life Science, University of Sussex, Brighton, UK
| |
Collapse
|
13
|
The effects of elevated potassium, acidosis, reduced oxygen levels, and temperature on the functional properties of isolated myocardium from three elasmobranch fishes: clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus). J Comp Physiol B 2021; 191:127-141. [PMID: 33394123 DOI: 10.1007/s00360-020-01328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Elevated plasma potassium levels (hyperkalemia), reduced plasma pH (acidosis), reduced blood oxygen content, and elevated temperatures are associated with species-specific rates of at-vessel and post-release mortality in elasmobranch fishes. The mechanism linking these physiological disturbances to mortality remains undetermined however, and we hypothesize that the proximate cause is reduced myocardial function. We measured changes in the functional properties of isolated ventricular myocardial strips from clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus) when subjected to the following stressors (both in isolation and in combination): hyperkalemia (7.4 mM K+), acidosis (from 7.9 to 7.1), and reduced oxygen (to 31% O2 saturation) applied at temperatures 5 °C above and below holding temperatures. We selected these species based on phylogenetic distance, diverse routine activity levels, and their tolerance to capture and transport. Stressors had a few significant species-specific detrimental impacts on myocardial function (e.g., a 33-45% decrease in net force under acidosis + low O2). Net force production of myocardial strips from clearnose skate and smooth dogfish approximately doubled following exposure to isoproterenol, demonstrating that these species possess beta-adrenergic receptors and that their stimulation could provide a mechanism for preservation of cardiac function during stress. Our results suggest that disruption of physiological homeostasis associated with capture may fatally impair cardiac function in some elasmobranch species, although research with more severe stressors is needed.
Collapse
|
14
|
Womersley F, Hancock J, Perry CT, Rowat D. Wound-healing capabilities of whale sharks ( Rhincodon typus) and implications for conservation management. CONSERVATION PHYSIOLOGY 2021; 9:coaa120. [PMID: 33569175 PMCID: PMC7859907 DOI: 10.1093/conphys/coaa120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 05/03/2023]
Abstract
Wound healing is important for marine taxa such as elasmobranchs, which can incur a range of natural and anthropogenic wounds throughout their life history. There is evidence that this group shows a high capacity for external wound healing. However, anthropogenic wounds may become more frequent due to increasing commercial and recreational marine activities. Whale sharks are particularly at risk of attaining injuries given their use of surface waters and wildlife tourism interest. There is limited understanding as to how whale sharks recover from injuries, and often insights are confined to singular opportunistic observations. The present study makes use of a unique and valuable photographic data source from two whale shark aggregation sites in the Indian Ocean. Successional injury-healing progression cases were reviewed to investigate the characteristics of injuries and quantify a coarse healing timeframe. Wounds were measured over time using an image standardization method. This work shows that by Day 25 major injury surface area decreased by an average of 56% and the most rapid healing case showed a surface area reduction of 50% in 4 days. All wounds reached a point of 90% surface area closure by Day 35. There were differences in healing rate based on wound type, with lacerations and abrasions taking 50 and 22 days to reach 90% healing, respectively. This study provides baseline information for wound healing in whale sharks and the methods proposed could act as a foundation for future research. Use of a detailed classification system, as presented here, may also assist in ocean scale injury comparisons between research groups and aid reliable descriptive data. Such findings can contribute to discussions regarding appropriate management in aggregation areas with an aim to reduce the likelihood of injuries, such as those resulting from vessel collisions, in these regions or during movements between coastal waters.
Collapse
Affiliation(s)
- Freya Womersley
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, SO17 1BJ, UK
- Marine Conservation Society Seychelles, Mahé, PO Box 384, Seychelles
- Corresponding author: Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
| | - James Hancock
- Maldives Whale Shark Research Programme, Popeshead Court Offices, Peter Lane, York, Yorkshire, Y01 8SU, UK
| | - Cameron T Perry
- Maldives Whale Shark Research Programme, Popeshead Court Offices, Peter Lane, York, Yorkshire, Y01 8SU, UK
| | - David Rowat
- Marine Conservation Society Seychelles, Mahé, PO Box 384, Seychelles
| |
Collapse
|
15
|
Gallagher AJ, Meyer L, Pethybridge HR, Huveneers C, Butcher PA. Effects of short-term capture on the physiology of white sharks Carcharodon carcharias: amino acids and fatty acids. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Weideli OC, Papastamatiou YP, Planes S. Size frequency, dispersal distances and variable growth rates of young sharks in a multi-species aggregation. JOURNAL OF FISH BIOLOGY 2019; 94:789-797. [PMID: 30883741 DOI: 10.1111/jfb.13968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
During a mark-recapture survey from November 2014 until April 2017, 333 neonatal and juvenile blacktip reef sharks Carcharhinus melanopterus and 302 neonatal and juvenile sicklefin lemon sharks Negaprion acutidens were tagged and measured at the uninhabited and isolated St. Joseph Atoll (Republic of Seychelles). Both species demonstrated seasonal reproductive synchronicity and relatively large sizes at birth. Despite the extended times at liberty > 2.5 years, the majority of recaptures were found in close proximity to the initial tagging location (< 500 m). Annual growth rates of C. melanopterus (n = 24) and N. acutidens (n = 62) ranged from 6.6 to 31.7 cm year-1 (mean ± SE; 16.2 ± 1.2 cm year-1 ) and 0.2 to 32.2 cm year-1 (11.8 ± 1 cm year-1 ), respectively and are to date the most variable ever recorded in wild juvenile sharks. High abundances of both species coupled with long-term and repeated recaptures are indicative of a habitat where juveniles can reside for their first years of life. However, large variability in annual growth rates in both species may suggest high intra and interspecific competition induced by a possibly resource limited, isolated habitat.
Collapse
Affiliation(s)
- Ornella C Weideli
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- SOSF - D'Arros Research Centre (SOSF-DRC), Geneva, Switzerland
| | - Yannis P Papastamatiou
- Department of Biological Sciences, Marine Sciences Program, Florida International University, North Miami, Florida, USA
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
- Laboratoire d'excellence 'CORAIL', EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| |
Collapse
|
17
|
Domingues RR, Garrone-Neto D, Hilsdorf AWS, Gadig OBF. Use of mucus as a non-invasive sampling method for DNA barcoding of stingrays and skates (batoid elasmobranchs). JOURNAL OF FISH BIOLOGY 2019; 94:512-516. [PMID: 30702138 DOI: 10.1111/jfb.13919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
In this study we tested the use of mucus from five species of Neotropical marine batoid elasmobranchs to extract genomic DNA for barcoding and phylogenetic analysis. The DNA from all individuals sampled was successfully amplified and sequenced for molecular barcode, allowing 99-100% accuracy to the species level. This method proved to provide reliable and good-quality DNA for barcoding and phylogenetic analysis of Neotropical elasmobranchs, through rapid handling and with low disturbance to animals.
Collapse
Affiliation(s)
- Rodrigo R Domingues
- Departamento de Ciências do Mar, UNIFESP - Universidade Federal de São Paulo, Instituto do Mar, São Paulo, Brazil
| | - Domingos Garrone-Neto
- UNESP - Universidade Estadual Paulista, Campus Experimental de Registro, São Paulo, Brazil
- UNESP - Universidade Estadual Paulista, Campus do Litoral Paulista, Instituto de Biociências, Laboratório de Pesquisa de Elasmobrânquios, São Paulo, Brazil
| | - Alexandre W S Hilsdorf
- UMC - Universidade de Mogi das Cruzes, Núcleo Integrado de Biotecnologia, São Paulo, Brazil
| | - Otto B F Gadig
- UNESP - Universidade Estadual Paulista, Campus do Litoral Paulista, Instituto de Biociências, Laboratório de Pesquisa de Elasmobrânquios, São Paulo, Brazil
| |
Collapse
|
18
|
Abramochkin DV, Haverinen J, Mitenkov YA, Vornanen M. Temperature- and external K+-dependence of electrical excitation in ventricular myocytes of cod-like fishes. J Exp Biol 2019; 222:jeb.193607. [DOI: 10.1242/jeb.193607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
Electrical excitability (EE) is vital for cardiac function and strongly modulated by temperature and external K+ concentration ([K+]o) as formulated in the hypothesis of temperature-dependent deterioration of electrical excitability (TDEE). Since little is known about EE of arctic stenothermic fishes, we tested the TDEE hypothesis on ventricular myocytes of polar cod (Boreogadus saida) and navaga cod (Eleginus navaga) of the Arctic Ocean and those of temperate freshwater burbot (Lota lota). Ventricular action potentials (APs) were elicited in current-clamp experiments at 3, 9 and 15°C, and AP characteristics and the current needed to elicit AP were examined. At 3°C, ventricular APs of polar and navaga cod were similar but differed from that of burbot in having lower rate of AP upstroke and higher rate of repolarization. EE of ventricular myocytes - defined as the ease with which all-or-none APs are triggered - was little affected by acute temperature changes between 3 and 15°C in any species. However, AP duration (APD50) was drastically reduced at higher temperatures. Elevation of [K+]o from 3 to 5.4 and further to 8 mM at 3, 9 and 15°C strongly affected EE and AP characteristics in polar and navaga cod, but less in burbot. In all species, ventricular excitation was resistant to acute temperature elevations, while small increases in [K+]o severely compromised EE, in particular in the marine stenotherms. This suggests that EE of the heart in these Gadiformes species is well equipped against acute warming, but less so against the simultaneous temperature and exercise stresses.
Collapse
Affiliation(s)
- Denis V. Abramochkin
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Yuri A. Mitenkov
- VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
19
|
Smukall MJ, Kessel ST, Franks BR, Feldheim KA, Guttridge TL, Gruber SH. No apparent negative tagging effects after 13 years at liberty for lemon shark, Negaprion brevirostris implanted with acoustic transmitter. JOURNAL OF FISH BIOLOGY 2019; 94:173-177. [PMID: 30393865 DOI: 10.1111/jfb.13856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
An intact and uncompromised internal acoustic transmitter was non-lethally recovered from a lemon shark Negaprion brevirostris, after 13 years at liberty. The shark, first tagged at an estimated age of 2 years old near South Bimini, Bahamas in 2004, was recaptured in 2017 with a total length of 264 cm. The tagged shark displayed typical growth rate, pregnancy, natal homing and pupping behaviour of other individuals in this population. This observation provides important evidence regarding the effects from long-term retention of implanted acoustic transmitters in a carcharhinid shark.
Collapse
Affiliation(s)
- Matthew J Smukall
- Department of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Bimini Biological Field Station Foundation, Bimini, Bahamas
| | - Steven T Kessel
- Bimini Biological Field Station Foundation, Bimini, Bahamas
- Daniel P. Haerther Center for Conservation and Research, Chicago, Illinois, USA
| | - Bryan R Franks
- Bimini Biological Field Station Foundation, Bimini, Bahamas
- Department of Biology and Marine Science, Marine Science Research Institute, Jacksonville University, Jacksonville, Florida, USA
| | - Kevin A Feldheim
- Bimini Biological Field Station Foundation, Bimini, Bahamas
- Pritzker Laboratory for Molecular Systematics and Evolution, The Field Museum, Chicago, Illinois, USA
| | | | - Samuel H Gruber
- Bimini Biological Field Station Foundation, Bimini, Bahamas
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida, USA
| |
Collapse
|
20
|
Bouyoucos IA, Talwar BS, Brooks EJ, Brownscombe JW, Cooke SJ, Suski CD, Mandelman JW. Exercise intensity while hooked is associated with physiological status of longline-captured sharks. CONSERVATION PHYSIOLOGY 2018; 6:coy074. [PMID: 30591841 PMCID: PMC6301290 DOI: 10.1093/conphys/coy074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 06/03/2023]
Abstract
Some shark populations face declines owing to targeted capture and by-catch in longline fisheries. Exercise intensity during longline capture and physiological status may be associated, which could inform management strategies aimed at reducing the impacts of longline capture on sharks. The purpose of this study was to characterize relationships between exercise intensity and physiological status of longline-captured nurse sharks (Ginglymostoma cirratum) and Caribbean reef sharks (Carcharhinus perezi). Exercise intensity of longline-captured sharks was quantified with digital cameras and accelerometers, which was paired with blood-based physiological metrics from samples obtained immediately post-capture. Exercise intensity was associated with physiological status following longline capture. For nurse sharks, blood pH increased with capture duration and the proportion of time exhibiting low-intensity exercise. Nurse sharks also had higher blood glucose and plasma potassium concentrations at higher sea surface temperatures. Associations between exercise intensity and physiological status for Caribbean reef sharks were equivocal; capture duration had a positive relation with blood lactate concentrations and a negative relationship with plasma chloride concentrations. Because Caribbean reef sharks did not appear able to influence blood pH through exercise intensity, this species was considered more vulnerable to physiological impairment. While both species appear quite resilient to longline capture, it remains to be determined if exercise intensity during capture is a useful tool for predicting mortality or tertiary sub-lethal consequences. Fisheries management should consider exercise during capture for sharks when developing techniques to avoid by-catch or reduce physiological stress associated with capture.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, The Bahamas
| | - Brendan S Talwar
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, The Bahamas
| | - Edward J Brooks
- Shark Research and Conservation Program, Cape Eleuthera Institute, Rock Sound, The Bahamas
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| |
Collapse
|
21
|
Weissman AM, Mandelman JW, Rudders DB, Sulikowski JA. The effect of capture and handling stress in Lophius americanus in the scallop dredge fishery. CONSERVATION PHYSIOLOGY 2018; 6:coy058. [PMID: 30397478 PMCID: PMC6202440 DOI: 10.1093/conphys/coy058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Capture and handling stress studies are considered a primary research priority, particularly for species and fisheries where discard rates are high, and/or for overfished stocks and species of concern. Lophius americanus, a commercially valuable finfish in New England, constitutes the second highest bycatch species within the sea scallop dredge fishery. Despite its commercial importance, no data exists on the capture and handling stress of monkfish for any gear type. Given these shortcomings, our goals were to evaluate the stress response of monkfish captured in scallop dredge gear by evaluating physical, behavioural and physiological responses to scallop fishing practices. While 80% of monkfish displayed little to no physical trauma, behavioural and physiological assessment indicated high levels of stress, especially as air exposure and tow duration increased. This finding suggests that the manifestation of stress in monkfish may be a cryptic response necessitating further research in addition to estimates of post-release mortality rates to appropriately advise fisheries management regarding the mortality of monkfish bycatch in the sea scallop fishery.
Collapse
Affiliation(s)
- Amelia M Weissman
- Marine Science Center, University of New England, 11 Hills Beach Rd., Biddeford, ME, USA
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA, USA
| | - David B Rudders
- Virginia Institute of Marine Science, College of William and Mary, 1375 Greate Rd., Gloucester Point, VA, USA
| | - James A Sulikowski
- Marine Science Center, University of New England, 11 Hills Beach Rd., Biddeford, ME, USA
| |
Collapse
|
22
|
Bouyoucos IA, Weideli OC, Planes S, Simpfendorfer CA, Rummer JL. Dead tired: evaluating the physiological status and survival of neonatal reef sharks under stress. CONSERVATION PHYSIOLOGY 2018; 6:coy053. [PMID: 30254751 PMCID: PMC6142904 DOI: 10.1093/conphys/coy053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 05/30/2023]
Abstract
Marine protected areas (MPAs) can protect shark populations from targeted fisheries, but resident shark populations may remain exposed to stressors like capture as bycatch and environmental change. Populations of young sharks that rely on shallow coastal habitats, e.g. as nursery areas, may be at risk of experiencing these stressors. The purpose of this study was to characterize various components of the physiological stress response of neonatal reef sharks following exposure to an exhaustive challenge under relevant environmental conditions. To accomplish this, we monitored markers of the secondary stress response and measured oxygen uptake rates ( M˙O2 ) to compare to laboratory-derived baseline values in neonatal blacktip reef (Carcharhinus melanopterus) and sicklefin lemon sharks (Negaprion acutidens). Measurements occurred over three hours following exposure to an exhaustive challenge (gill-net capture with air exposure). Blood lactate concentrations and pH deviated from baseline values at the 3-h sample, indicating that both species were still stressed 3 h after capture. Evidence of a temperature effect on physiological status of either species was equivocal over 28-31°C. However, aspects of the physiological response were species-specific; N. acutidens exhibited a larger difference in blood pH relative to baseline values than C. melanopterus, possibly owing to higher minimum M˙O2 . Neither species experienced immediate mortality during the exhaustive challenge; although, single instances of delayed mortality were documented for each species. Energetic costs and recovery times could be extrapolated for C. melanopterus via respirometry; sharks were estimated to expend 9.9 kJ kg-1 (15% of energy expended on daily swimming) for a single challenge and could require 8.4 h to recover. These data suggest that neonatal C. melanopterus and N. acutidens are resilient to brief gill-net capture durations, but this was under a narrow temperature range. Defining species' vulnerability to stressors is important for understanding the efficacy of shark conservation tools, including MPAs.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
| | - Ornella C Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex, France
- Laboratoire d’Excellence “CORAIL”, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
23
|
Badr A, Abu-Amra ES, El-Sayed MF, Vornanen M. Electrical excitability of roach (Rutilus rutilus) ventricular myocytes: effects of extracellular K+, temperature, and pacing frequency. Am J Physiol Regul Integr Comp Physiol 2018; 315:R303-R311. [DOI: 10.1152/ajpregu.00436.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Exercise, capture, and handling stress in fish can elevate extracellular K+ concentration ([K+]o) with potential impact on heart function in a temperature- and frequency-dependent manner. To this end, the effects of [K+]o on the excitability of ventricular myocytes of winter-acclimatized roach ( Rutilus rutilus) (4 ± 0.5°C) were examined at different test temperatures and varying pacing rates. Frequencies corresponding to in vivo heart rates at 4°C (0.37 Hz), 14°C (1.16 Hz), and 24°C (1.96 Hz) had no significant effect on the excitability of ventricular myocytes. Acute increase of temperature from 4 to 14°C did not affect excitability, but a further rise to 24 markedly decreased excitability: stimulus current and critical depolarization needed to elicit an action potential (AP) were ~25 and 14% higher, respectively, at 24°C than at 4°C and 14°C ( P < 0.05). This depression could be due to temperature-related mismatch between inward Na+ and outward K+ currents. In contrast, an increase of [K+]o from 3 to 5.4 or 8 mM at 24°C reduced the stimulus current needed to trigger AP. However, other aspects of excitability were strongly depressed by high [K+]o: maximum rate of AP upstroke and AP duration were drastically (89 and 50%, respectively) reduced at 8 mM [K+]o in comparison with 3 mM ( P < 0.05). As an extreme case, some myocytes completely failed to elicit all-or-none AP at 8 mM [K+]o at 24°C. Also, amplitude and overshoot of AP were reduced by elevation of [K+]o ( P < 0.05). Although high [K+]o antagonizes the negative effects of high temperature on excitation threshold, the precipitous depression of the rate of AP upstroke and complete loss of excitability in some myocytes suggest that the combination of high temperature and high [K+]o will severely impair ventricular excitability in roach.
Collapse
Affiliation(s)
- Ahmed Badr
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - El-Sabry Abu-Amra
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | | | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
24
|
Gallagher AJ, Hammerschlag N, Danylchuk AJ, Cooke SJ. Shark recreational fisheries: Status, challenges, and research needs. AMBIO 2017; 46:385-398. [PMID: 27995551 PMCID: PMC5385669 DOI: 10.1007/s13280-016-0856-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/16/2016] [Accepted: 11/23/2016] [Indexed: 05/09/2023]
Abstract
For centuries, the primary manner in which humans have interacted with sharks has been fishing. A combination of their slow-growing nature and high use-values have resulted in population declines for many species around the world, and to date the vast majority of fisheries-related work on sharks has focused on the commercial sector. Shark recreational fishing remains an overlooked area of research despite the fact that these practices are popular globally and could present challenges to their populations. Here we provide a topical overview of shark recreational fisheries, highlighting their history and current status. While recreational fishing can provide conservation benefits under certain circumstances, we focus our discourse on the relatively understudied, potentially detrimental impacts these activities may have on shark physiology, behavior, and fitness. We took this angle given the realized but potentially underestimated significance of recreational fishing for shark conservation management plans and stock assessments, in hopes of creating a dialogue around sustainability. We also present a series of broad and focused research questions and underpin areas of future research need to assist with the development of this emergent area of research.
Collapse
Affiliation(s)
- Austin J. Gallagher
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149 USA
- Beneath the Waves, Inc., Miami, FL 33133 USA
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL 33149 USA
- Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL 33146 USA
| | - Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Room 311, Amherst, MA 01003-9485 USA
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
25
|
Poscai AN, de Sousa Rangel B, da Silva Casas AL, Wosnick N, Rodrigues A, Rici REG, Kfoury Junior JR. Microscopic aspects of the nictitating membrane in Carcharhinidae and Sphyrnidae sharks: a preliminary study. ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Ellis JR, McCully Phillips SR, Poisson F. A review of capture and post-release mortality of elasmobranchs. JOURNAL OF FISH BIOLOGY 2017; 90:653-722. [PMID: 27864942 DOI: 10.1111/jfb.13197] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
There is a need to better understand the survivorship of discarded fishes, both for commercial stocks and species of conservation concern. Within European waters, the landing obligations that are currently being phased in as part of the European Union's reformed common fisheries policy means that an increasing number of fish stocks, with certain exceptions, should not be discarded unless it can be demonstrated that there is a high probability of survival. This study reviews the various approaches that have been used to examine the discard survival of elasmobranchs, both in terms of at-vessel mortality (AVM) and post-release mortality (PRM), with relevant findings summarized for both the main types of fishing gear used and by taxonomic group. Discard survival varies with a range of biological attributes (species, size, sex and mode of gill ventilation) as well as the range of factors associated with capture (e.g. gear type, soak time, catch mass and composition, handling practices and the degree of exposure to air and any associated change in ambient temperature). In general, demersal species with buccal-pump ventilation have a higher survival than obligate ram ventilators. Several studies have indicated that females may have a higher survival than males. Certain taxa (including hammerhead sharks Sphyrna spp. and thresher sharks Alopias spp.) may be particularly prone to higher rates of mortality when caught.
Collapse
Affiliation(s)
- J R Ellis
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, U.K
| | - S R McCully Phillips
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, U.K
| | - F Poisson
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Centre de Recherche Halieutique UMR MARBEC (MARine Biodiversity Exploitation and Conservation), Avenue Jean Monnet, CS 30171, 34203 Sète, France
| |
Collapse
|
27
|
Bouyoucos IA, Suski CD, Mandelman JW, Brooks EJ. The energetic, physiological, and behavioral response of lemon sharks (Negaprion brevirostris) to simulated longline capture. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:65-72. [PMID: 28238832 DOI: 10.1016/j.cbpa.2017.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/10/2017] [Accepted: 02/20/2017] [Indexed: 11/26/2022]
Abstract
Commercial fisheries bycatch is a considerable threat to elasmobranch population recovery, and techniques to mitigate sub-lethal consequences can be improved with data on the energetic, physiological, and behavioral response of individuals to capture. This study sought to estimate the effects of simulated longline capture on the behavior, energy use, and physiological stress of juvenile lemon sharks (Negaprion brevirostris). Captive sharks equipped with acceleration biologgers were subjected to 1h of simulated longline capture. Swimming behaviors were identified from acceleration data using a machine-learning algorithm, energetic costs were estimated using accelerometer-calibrated relationships and respirometry, and physiological stress was quantified with point-of-care blood analyzers. During capture, sharks exhibited nine-fold increases in the frequency of burst swimming, 98% reductions in resting, and swam as often as unrestrained sharks. Aerobic metabolic rates during capture were 8% higher than for unrestrained sharks, and accounted for a 57.7% increase in activity costs when excess post-exercise oxygen consumption was included. Lastly, sharks exhibited significant increases in blood lactate and glucose, but no change in blood pH after 1h of capture. Therefore, these results provide preliminary insight into the behavioral and energetic responses of sharks to capture, and have implications for mitigating sub-lethal consequences of capture for sharks as commercial longline bycatch.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave., Urbana, IL 61801, USA; Shark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, Bahamas.
| | - Cory D Suski
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave., Urbana, IL 61801, USA
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, Central Wharf, Boston, MA 02110, USA
| | - Edward J Brooks
- Shark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, Bahamas
| |
Collapse
|
28
|
Illing B, Rummer JL. Physiology can contribute to better understanding, management, and conservation of coral reef fishes. CONSERVATION PHYSIOLOGY 2017; 5:cox005. [PMID: 28852508 PMCID: PMC5570121 DOI: 10.1093/conphys/cox005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/27/2016] [Accepted: 01/31/2017] [Indexed: 06/01/2023]
Abstract
Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes.
Collapse
Affiliation(s)
- Björn Illing
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Hamburg D-22767, Germany
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
29
|
Forrestal FC, McDonald MD, Burress G, Die DJ. Reflex impairment and physiology as predictors of delayed mortality in recreationally caught yellowtail snapper ( Ocyurus chrysurus). CONSERVATION PHYSIOLOGY 2017; 5:cox035. [PMID: 28616239 PMCID: PMC5463058 DOI: 10.1093/conphys/cox035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/05/2017] [Accepted: 05/16/2017] [Indexed: 05/06/2023]
Abstract
Yellowtail snapper (Ocyurus chrysurus) is an important part of the reef fish assemblage in the western, tropical Atlantic and is caught by both recreational and commercial fisheries in south Florida and the Bahamas. It is estimated that 80% of snapper caught within southeastern Florida waters are discarded due to minimum size restrictions. Neglecting to include information on delayed mortality of undersized fish has the potential for fishery managers to overestimate the abundance of smaller size classes and introduce bias into stock assessments. This study examines associations between reflex impairment, traditional physiological parameters and post-release mortality of undersized yellowtail snapper. Laboratory experiments exposed yellowtail snapper to a gradient, simulating capture conditions. Blood draws were obtained from a sub-sample of fish. There was a significant relationship between delayed mortality and the proportion of reflex impairment for both individual fish and groups of fish (P < 0.001 and P = 0.03). Within the sub-sample of blood-sampled fish, base excess and pH were significantly correlated to reflex impairment. Delayed mortality was significantly correlated to pH, base excess and lactate concentration. Results suggest that discarded, undersized yellowtail with more than 29% of their reflexes impaired will not survive.
Collapse
Affiliation(s)
- Francesca C. Forrestal
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Corresponding author:
| | - M. Danielle McDonald
- Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | | | - David J. Die
- Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Cape Eleuthera Institute, Rock Sound, The Bahamas
| |
Collapse
|
30
|
McLean MF, Hanson KC, Cooke SJ, Hinch SG, Patterson DA, Nettles TL, Litvak MK, Crossin GT. Physiological stress response, reflex impairment and delayed mortality of white sturgeon Acipenser transmontanus exposed to simulated fisheries stressors. CONSERVATION PHYSIOLOGY 2016; 4:cow031. [PMID: 27766153 PMCID: PMC5070429 DOI: 10.1093/conphys/cow031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 05/30/2023]
Abstract
White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North America and a species exposed to widespread fishing pressure. Despite the growing interest in recreational fishing for white sturgeon, little is known about the sublethal and lethal impacts of angling on released sturgeon. In summer (July 2014, mean water temperature 15.3°C) and winter (February 2015, mean water temperature 6.6°C), captive white sturgeon (n = 48) were exposed to a combination of exercise and air exposure as a method of simulating an angling event. After the stressor, sturgeon were assessed for a physiological stress response, and reflex impairments were quantified to determine overall fish vitality (i.e. capacity for survival). A physiological stress response occurred in all sturgeon exposed to a fishing-related stressor, with the magnitude of the response correlated with the duration of the stressor. Moreover, the stress from exercise was more pronounced in summer, leading to higher reflex impairment scores (mean ± SEM, 0.44 ± 0.07 and 0.25 ± 0.05 in summer and winter, respectively). Reflex impairment was also correlated with lactate concentrations (e.g. physiological stress measures related to exhaustive exercise; r = 0.53) and recovery time (r = 0.76). Two mortalities occurred >24 h after the cessation of treatment in the summer. Given that natural habitats for white sturgeon can reach much higher temperatures than those presented in our study, we caution the use of this mortality estimate for a summer season, because latent mortality could be much higher when temperatures exceed 16°C. This is the first experiment investigating the physiological disturbance and reflex impairment of capture and release at two temperatures on subadult/adult white sturgeon, and the results suggest that future research needs to examine the longer term and fitness consequences of extended play and air exposure times, because these are largely unknown for wild populations.
Collapse
Affiliation(s)
- Montana F. McLean
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
| | - Kyle C. Hanson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
| | - Steven J. Cooke
- US Fish and Wildlife Service, Abernathy Fish Technology Center, Longview, Washington, USA 98632
| | - Scott G. Hinch
- Department of Biology, Carleton University, Ottawa, Ontario, CanadaK1S 5B6
| | - David A. Patterson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z4
| | - Taylor L. Nettles
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, CanadaV6T 1Z4
| | - Matt K. Litvak
- Fisheries and Oceans Canada, Cooperative Resource Management Institute, School of Resource and Environmental Management, Simon Fraser University, Vancouver, British Columbia, CanadaV5A 1S6
| | - Glenn T. Crossin
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
| |
Collapse
|
31
|
Schlenker LS, Latour RJ, Brill RW, Graves JE. Physiological stress and post-release mortality of white marlin (Kajikia albida) caught in the United States recreational fishery. CONSERVATION PHYSIOLOGY 2016; 4:cov066. [PMID: 27293745 PMCID: PMC4758840 DOI: 10.1093/conphys/cov066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 05/24/2023]
Abstract
White marlin, a highly migratory pelagic marine fish, support important commercial and recreational fisheries throughout their range in the tropical and subtropical Atlantic Ocean. More than 10 000 individuals can be caught annually in the United States recreational fishery, of which the vast majority are captured on circle hooks and released alive. The probability of post-release mortality of white marlin released from circle hooks has been documented to be <0.02, but the associated physiological stress resulting from capture and handling techniques has not been characterized despite its importance for understanding the health of released fish. We examined the physiological response of 68 white marlin caught on circle hooks in the recreational fishery and followed the fate of 22 of these fish with pop-up satellite archival tags programmed to release after 30 days. Measures of plasma sodium, chloride, glucose and lactate concentrations taken from fish that were briefly and consistently (mean = 120 s, standard deviation = 40 s) removed from the water increased with angling time, but post-release mortality was inversely related to angling time. The probability of post-release mortality was predicted by elevated plasma potassium concentrations and was more than 10 times greater than has been previously reported for white marlin caught on circle hooks that were not removed from the water. This disparity in estimates of post-release mortality suggests that removal of fish from the water for physiological sampling greatly heightens stress, disrupts homeostasis and thus increases the probability of post-release mortality. Our results demonstrate that elevated concentrations of plasma potassium predict mortality in white marlin and that the probability of post-release mortality is highly dependent on post-capture handling procedures.
Collapse
Affiliation(s)
- Lela S. Schlenker
- Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA
| | - Robert J. Latour
- Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA
| | - Richard W. Brill
- National Marine Fisheries Service, Northeast Fisheries Science Center, James J. Howard Marine Sciences Laboratory, 74 Magruder Road, Sandy Hook, Highlands, NJ 07732, USA
| | - John E. Graves
- Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA
| |
Collapse
|
32
|
Chin A, Mourier J, Rummer JL. Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury. CONSERVATION PHYSIOLOGY 2015; 3:cov062. [PMID: 27293741 PMCID: PMC4778477 DOI: 10.1093/conphys/cov062] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 05/19/2023]
Abstract
Wound healing is important for sharks from the earliest life stages, for example, as the 'umbilical scar' in viviparous species heals, and throughout adulthood, when sharks can incur a range of external injuries from natural and anthropogenic sources. Despite anecdotal accounts of rapid healing in elasmobranchs, data regarding recovery and survival of individuals from different wound or injury types has not been systematically collected. The present study documented: (i) 'umbilical scar' healing in wild-caught, neonatal blacktip reef sharks while being reared for 30 days in flow-through laboratory aquaria in French Polynesia; (ii) survival and recovery of free-swimming blacktip reef sharks in Australia and French Polynesia following a range of injuries; and (iii) long-term survival following suspected shark-finning activities. Laboratory monitoring, tag-recapture records, telemetry data and photo-identification records suggest that blacktip reef sharks have a high capacity to survive and recover from small or even large and severe wounds. Healing rates, recovery and survival are important factors to consider when assessing impacts of habitat degradation and fishing stress on shark populations. The present study suggests that individual survival may depend more on handling practices and physiological stress rather than the extent of physical injury. These observations also contribute to discussions regarding the ethics of tagging practices used in elasmobranch research and provide baseline healing rates that may increase the accuracy in estimating reproductive timing inferred from mating scars and birth dates for neonatal sharks based on umbilical scar healing status.
Collapse
Affiliation(s)
- Andrew Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Johann Mourier
- Laboratoire d'Excellence 'CORAIL, USR 3278 CRIOBE CNRS-EPHE-UPVD, CRIOBE BP 1013 Moorea, 98729 Polynésie française
| | - Jodie L Rummer
- Laboratoire d'Excellence 'CORAIL, USR 3278 CRIOBE CNRS-EPHE-UPVD, CRIOBE BP 1013 Moorea, 98729 Polynésie française
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- Corresponding author: ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia. Tel: +61 7 4781 5300.
| |
Collapse
|