1
|
Zhuang S, Fu J, Wu L, Xu X, Guo C. Role of USF1 in activating CYBA transcription and influencing NADPH-ROS-mediated oxidative stress and lipid accumulation in non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159581. [PMID: 39577491 DOI: 10.1016/j.bbalip.2024.159581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) progression is relevant to oxidative stress, while NADPH oxidase can produce ROS. This study explored how the upstream stimulatory factor 1 (USF1) regulates cytochrome b-245 alpha chain (CYBA) expression through the NADPH-ROS pathway and its impact on oxidative stress and lipid accumulation in NAFLD. Bioinformatics analysis identified CYBA as a gene with altered expression in NAFLD. Mouse and cell models of NAFLD were established through high-fat diet (HFD) and palmitic acid (PA) treatment respectively. CYBA and USF1 expression was modulated using RNA interference, and their effects on NAFLD progression were then examined. ChIP and dual-luciferase reporter assays were performed to confirm the transcriptional regulation of CYBA by USF1. Elevated CYBA expression was observed in NAFLD. Reduced NADPH oxidase activity, oxidative stress, lipid accumulation, and inflammation were observed in NAFLD models after knocking down CYBA. USF1 was found to bind to the CYBA promoter and activate its transcription. Similar effects as CYBA knockdown on NAFLD were achieved by knocking down USF1. The protective impacts of USF1 silencing on NAFLD were reversed by overexpressing CYBA. In summary, this study demonstrates that USF1 mediates the transcriptional activation of CYBA, increasing NADPH-ROS-derived oxidative stress and lipid accumulation in NAFLD.
Collapse
Affiliation(s)
- Shaohua Zhuang
- Department of Gastroenterology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou 213000, Jiangsu, PR China; Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, PR China
| | - Jinjin Fu
- Department of Gastroenterology, The Third Affiliated Hospital of Nanjing Medical University (Changzhou Second People's Hospital), Changzhou 213000, Jiangsu, PR China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Xuanfu Xu
- Department of Gastroenterology, Shanghai Shidong Hospital, Shanghai 200433, PR China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, PR China; Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China.
| |
Collapse
|
2
|
Dollinger E, Hernandez-Davies J, Felgner J, Jain A, Hwang M, Strahsburger E, Nakajima R, Jasinskas A, Nie Q, Pone EJ, Othy S, Davies DH. Combination adjuvant improves influenza virus immunity by downregulation of immune homeostasis genes in lymphocytes. Immunohorizons 2025; 9:vlae007. [PMID: 39849993 PMCID: PMC11841980 DOI: 10.1093/immhor/vlae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/30/2025] Open
Abstract
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling. Mice immunized and boosted with recombinant H5 in AddaVax, CpG+MPLA, or AddaVax plus CpG+MPLA (IVAX-1) produced comparable levels of neutralizing antibodies and were equally well protected against the H5N1 challenge. However, after challenge with H5N1 virus, H5/IVAX-1-immunized mice had 100- to 300-fold lower virus lung titers than mice receiving H5 in AddaVax or CpG+MPLA separately. Consistent with enhanced viral clearance, unsupervised expression analysis of draining lymph node cells revealed the combination adjuvant IVAX-1 significantly downregulated immune homeostasis genes, and induced higher numbers of antibody-producing plasmablasts than either AddaVax or CpG+MPLA. IVAX-1 was also more effective after single-dose administration than either AddaVax or CpG+MPLA. These data reveal a novel molecular framework for understanding the mechanisms of combination adjuvants, such as IVAX-1, and highlight their potential for the development of more effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- Emmanuel Dollinger
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Jenny Hernandez-Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Jiin Felgner
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Aarti Jain
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Michael Hwang
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Erwin Strahsburger
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Rie Nakajima
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Algimantas Jasinskas
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, United States
| | - Egest James Pone
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - Shivashankar Othy
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| | - David Huw Davies
- Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|
3
|
Avecilla V, Doke M, Das M, Alcazar O, Appunni S, Rech Tondin A, Watts B, Ramamoorthy V, Rubens M, Das JK. Integrative Bioinformatics-Gene Network Approach Reveals Linkage between Estrogenic Endocrine Disruptors and Vascular Remodeling in Peripheral Arterial Disease. Int J Mol Sci 2024; 25:4502. [PMID: 38674087 PMCID: PMC11049860 DOI: 10.3390/ijms25084502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Vascular diseases, including peripheral arterial disease (PAD), pulmonary arterial hypertension, and atherosclerosis, significantly impact global health due to their intricate relationship with vascular remodeling. This process, characterized by structural alterations in resistance vessels, is a hallmark of heightened vascular resistance seen in these disorders. The influence of environmental estrogenic endocrine disruptors (EEDs) on the vasculature suggests a potential exacerbation of these alterations. Our study employs an integrative approach, combining data mining with bioinformatics, to unravel the interactions between EEDs and vascular remodeling genes in the context of PAD. We explore the molecular dynamics by which EED exposure may alter vascular function in PAD patients. The investigation highlights the profound effect of EEDs on pivotal genes such as ID3, LY6E, FOS, PTP4A1, NAMPT, GADD45A, PDGF-BB, and NFKB, all of which play significant roles in PAD pathophysiology. The insights gained from our study enhance the understanding of genomic alterations induced by EEDs in vascular remodeling processes. Such knowledge is invaluable for developing strategies to prevent and manage vascular diseases, potentially mitigating the impact of harmful environmental pollutants like EEDs on conditions such as PAD.
Collapse
Affiliation(s)
- Vincent Avecilla
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA;
| | - Mayur Doke
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA; (M.D.); (O.A.); (A.R.T.); (B.W.)
| | - Madhumita Das
- Department of Biology, Miami Dade College, Miami, FL 33132, USA;
| | - Oscar Alcazar
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA; (M.D.); (O.A.); (A.R.T.); (B.W.)
| | - Sandeep Appunni
- Department of Biochemistry, Government Medical College, Kozhikode 673008, Kerala, India;
| | - Arthur Rech Tondin
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA; (M.D.); (O.A.); (A.R.T.); (B.W.)
| | - Brandon Watts
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA; (M.D.); (O.A.); (A.R.T.); (B.W.)
| | | | - Muni Rubens
- Baptist Health South Florida, Miami Gardens, FL 33176, USA; (V.R.); (M.R.)
| | - Jayanta Kumar Das
- Department of Health and Natural Sciences, Florida Memorial University, Miami Gardens, FL 33054, USA
| |
Collapse
|
4
|
Guo B, Liu J, Han X, Li Y, Tian X, Jin X, Wei Z, Liu S. Value of DUSP6 in peripheral blood mononuclear cells in predicting adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:359-366. [PMID: 38970509 PMCID: PMC11208400 DOI: 10.11817/j.issn.1672-7347.2024.230496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Adverse cardiovascular events are the leading cause of death in peritoneal dialysis patients. Identifying indicators that can predict adverse cardiovascular events in these patients is crucial for prognosis. This study aims to assess the value of dual-specificity phosphatase 6 (DUSP6) in peripheral blood mononuclear cells as a predictor of adverse cardiovascular events after peritoneal dialysis in diabetic nephropathy patients. METHODS A total of 124 diabetic nephropathy patients underwent peritoneal dialysis treatment at the Department of Nephrology of the First Affiliated Hospital of Hebei North University from June to September 2022 were selected as study subjects. The levels of DUSP6 in peripheral blood mononuclear cells were determined using Western blotting. Patients were categorized into high-level and low-level DUSP6 groups based on the median DUSP6 level. Differences in body mass index, serum albumin, high-sensitivity C-reactive protein, and dialysis duration were compared between the 2 groups. Pearson, Spearman, and multiple linear regression analyses were performed to examine factors related to DUSP6. Patients were followed up to monitor the occurrence of adverse cardiovascular events, and risk factors for adverse cardiovascular events after peritoneal dialysis were analyzed using Kaplan-Meier and Cox regression. RESULTS By the end of the follow-up, 33 (26.61%) patients had experienced at least one adverse cardiovascular event. The high-level DUSP6 group had higher body mass index, longer dialysis duration, and higher high-sensitivity C-reactive protein, but lower serum albumin levels compared to the low-level DUSP6 group (all P<0.05). DUSP6 was negatively correlated with serum albumin levels (r=-0.271, P=0.002) and positively correlated with dialysis duration (rs=0.406, P<0.001) and high-sensitivity C-reactive protein (rs=0.367, P<0.001). Multiple linear regression analysis revealed that dialysis duration and high-sensitivity C-reactive protein were independently correlated with DUSP6 levels (both P<0.05). The cumulative incidence of adverse cardiovascular events was higher in the high-level DUSP6 group than in the low-level DUSP6 group (46.67% vs 7.81%, P<0.001). Cox regression analysis indicated that low serum albumin levels (HR=0.836, 95% CI 0.778 to 0.899), high high-sensitivity C-reactive protein (HR=1.409, 95% CI 1.208 to 1.644), and high DUSP6 (HR=6.631, 95% CI 2.352 to 18.693) were independent risk factors for adverse cardiovascular events in peritoneal dialysis patients. CONCLUSIONS Dialysis duration and high-sensitivity C-reactive protein are independently associated with DUSP6 levels in peripheral blood mononuclear cells of diabetic nephropathy patients undergoing peritoneal dialysis. High DUSP6 levels indicate a higher risk of adverse cardiovascular events.
Collapse
Affiliation(s)
- Baozhu Guo
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000.
| | - Junfen Liu
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Xiaoli Han
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Yaqi Li
- Department of Chronic Disease Management, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000, China
| | - Xiaomin Tian
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Xin Jin
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| | - Zhifeng Wei
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000.
| | - Shengjun Liu
- Department of Nephrology, First Affiliated Hospital of Hebei North University, Zhangjiakou Hebei 075000
| |
Collapse
|
5
|
Xu G, Zhang W, Yang J, Sun N, Qu X. Identification of neutrophil extracellular traps and crosstalk genes linking inflammatory bowel disease and osteoporosis by integrated bioinformatics analysis and machine learning. Sci Rep 2023; 13:23054. [PMID: 38155235 PMCID: PMC10754907 DOI: 10.1038/s41598-023-50488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Musculoskeletal deficits are among the most common extra-intestinal manifestations and complications of inflammatory bowel disease (IBD). This study aimed to identify crosstalk genes between IBD and osteoporosis (OP) and potential relationships between crosstalk and neutrophil extracellular traps (NETs)-related genes. Three common hub genes from different compared groups are actually the same, namely HDAC6, IL-8, and PPIF. ROC showed that the combined diagnostic value of HDAC6, IL-8, and PPIF was higher than each of the three key hub genes. Immune infiltration results showed that HDAC6 and IL-8 key genes negatively correlated with CD65 bright natural killer cells. USF1 was the common upstream TFs between HDAC6 and PPIF, and MYC was the common upstream TFs between IL-8 and PPIF in RegNetwork. Taken together, this study shows a linked mechanism between IBD and OP via NETs and crosstalk genes. These findings may show light on better diagnosis and treatment of IBD complicated with OP.
Collapse
Affiliation(s)
- Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, China.
| | - Wanhao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jun Yang
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Na Sun
- Department of Pharmacy, The Third People's Hospital of Dalian, Dalian, Liaoning Province, China
| | - Xiaochen Qu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, Liaoning Province, China.
| |
Collapse
|
6
|
Zeng YL, Gao F, Zhang C, Ren PP, Ma L, Wang X, Wang R, Kang Y, Li K. USF1 modulates transcription and cellular functions by regulating multiple transcription factors in Huh7 cells. Oncol Lett 2023; 26:532. [PMID: 38020298 PMCID: PMC10655063 DOI: 10.3892/ol.2023.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma (HCC), is a malignant tumor that has high rates of metastasis and mortality worldwide. Upstream transcription factor 1 (USF1) is a canonical transcription factor (TF) and is associated with the pathogenesis of several cancers, but its biological functions and molecular targets in HCC remain unclear. Huh7 cells that overexpress USF1 were used with whole transcriptome profiling through RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing methods to investigate the downstream targets of USF1. Reverse transcription-quantitative PCR was then used to validate the downstream targets. The results showed that USF1 significantly regulates 350 differentially expressed genes (DEGs). The upregulated DEGs were primarily protein-coding genes enriched in immune and inflammation response pathways, while the downregulated DEGs were mainly coding long non-coding (lnc)RNAs, indicating the regulatory function of USF1. It was also demonstrated that USF1 directly binds to the promoter region of 2,492 genes, which may be involved in the viral progression and cell proliferation pathways. By integrating these two datasets, 16 overlapped genes were detected, including downregulated lncRNA-NEAT1 and upregulated TF-ETV5. The downregulated lncRNA-NEAT1 showed reverse expression pattern and prognosis result compared with that of USF1 in patients with liver cancer, while upregulated TF-ETV5 showed consistent results with USF1. Promoter region motif analysis indicated that ETV5 has more binding motifs and genes than USF1 itself for USF1-regulated DEGs, indicating that USF1 may indirectly modulate gene expression by regulating ETV5 expression in Huh7 cells. The study also validated the direct interaction between USF1 and the promoter of ETV5 using ChIP-qPCR. In summary, the results demonstrated that USF1 binds to the promoter region of thousands of genes and affects a large part of DEGs indirectly. Downstream genes, including lncRNA-NEAT1 and TF-ETV5, may also have potential functions in the regulated network by USF1 and have potential functions in the progression of HCC. The present findings suggested that USF1 and its downstream targets could be potential targets for HCC therapy in the future.
Collapse
Affiliation(s)
- Yan-Li Zeng
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Fei Gao
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Can Zhang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Pei-Pei Ren
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Li Ma
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xin Wang
- Department of Infectious Diseases, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Ruzhen Wang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yi Kang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ke Li
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|