1
|
Wu D, Liu J, Guo Z, Wang L, Yao Z, Wu Q, Lu Y, Lv W. Natural bioactive compounds reprogram bile acid metabolism in MAFLD: Multi-target mechanisms and therapeutic implications. Int Immunopharmacol 2025; 157:114708. [PMID: 40306110 DOI: 10.1016/j.intimp.2025.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Metabolic-associated fatty liver disease (MAFLD) has become an increasingly prevalent liver disorder worldwide, being closely associated with obesity, metabolic syndrome, and insulin resistance. Bile acids (BAs), beyond their traditional role in lipid digestion, play a pivotal part in regulating lipid and glucose metabolism as well as inflammatory responses. Recent investigations have recognized BAs as key factors in the onset and progression of MAFLD, mainly via their interactions with nuclear receptors such as the farnesoid X receptor (FXR) and the G protein-coupled bile acid receptor (TGR5). Additionally, active compounds derived from traditional Chinese medicine (TCM) have shown promising potential in the treatment of MAFLD. This study systematically reviews and analyzes the molecular mechanisms and recent progress in the application of TCM active ingredients for MAFLD treatment, with a focus on their regulation of BAs. These active ingredients, including saponins, flavonoids, polysaccharides, and sterols, exert therapeutic effects through diverse mechanisms, such as modulating BA synthesis and mediating receptor-signaling pathways, and are expected to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dongjie Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jing Liu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ziwei Guo
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Liang Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Ziang Yao
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Qingjuan Wu
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yanping Lu
- Department of Hepatology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen 518100, China.
| | - Wenliang Lv
- Department of Infection, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Amodeo G, Galimberti G, Ceruti S, Riboldi B, Franchi S, Sacerdote P. Physical exercise ameliorates pain, mood alterations and neuroinflammation in a murine model of osteoarthritis. Life Sci 2025; 374:123710. [PMID: 40360087 DOI: 10.1016/j.lfs.2025.123710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
Osteoarthritis (OA) is largely associated with chronic pain, and it is a social and economic problem worldwide. OA pain can lead to psychiatric symptom onset, such as anxiety and depression. Emerging evidence suggest neuroinflammation as a common denominator between OA pain and mood disorders. OA pain pharmacological strategies are often ineffective or cause side effects, therefore, identifying novel non-pharmacological therapeutic approaches, like diet and exercise, could be important. Here, using 8-month-old male C57BL/6 J mice, we evaluated the effect of regular physical exercise on OA pain and related comorbidities. OA was induced by monoiodoacetate-(MIA) administration in knee joint in mice that had undergone physical exercise-(PE) or a sedentary lifestyle-(SL) for two months. After OA induction, mice continued the exercise/not-exercise protocol for another month and subsequently all animals were sacrificed. An in-depth biochemical evaluation (RT-qPCR) was performed at the level of the knee joint, sciatic nerve, dorsal root ganglia, spinal cord and brain areas (brainstem, hypothalamus and hippocampus) and myenteric plexus to evaluate the effect of both OA and exercise on (neuro)inflammation in regions involved in pain and mood regulation. Throughout the experimental protocol, pain-like behavior and motor performance were evaluated, and before sacrifice, mood alterations and metabolic changes were also assessed. Our results showed that OA_SL mice exhibit painful symptoms and mood disturbances. These alterations were also associated with (neuro)inflammation. PE mitigates pain-like behavior and mood alterations and reduces (neuro)inflammation, suggesting that a healthy and active lifestyle may have a positive impact in preventing and/or counteracting OA onset and related comorbidities.
Collapse
Affiliation(s)
- G Amodeo
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Pain Therapy and Neuroimmunology, Università degli Studi di Milano, Milan, Italy.
| | - G Galimberti
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Pain Therapy and Neuroimmunology, Università degli Studi di Milano, Milan, Italy
| | - S Ceruti
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Pain Therapy and Neuroimmunology, Università degli Studi di Milano, Milan, Italy
| | - B Riboldi
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Pain Therapy and Neuroimmunology, Università degli Studi di Milano, Milan, Italy
| | - S Franchi
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Pain Therapy and Neuroimmunology, Università degli Studi di Milano, Milan, Italy
| | - P Sacerdote
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Pain Therapy and Neuroimmunology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Han R, Wang Z, Li Y, Ke L, Li X, Li C, Tian Z, Liu X. Gut microbiota Lactobacillus johnsonii alleviates hyperuricemia by modulating intestinal urate and gut microbiota-derived butyrate. Chin Med J (Engl) 2025:00029330-990000000-01534. [PMID: 40304365 DOI: 10.1097/cm9.0000000000003603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Gut microbiota are important for uric acid (UA) metabolism within hyperuricemia (HUA); however, the underlying mechanisms of how the gut microbiota regulate intestinal UA metabolism remain unclear. This study aimed to explore the function of the intestine in HUA and to further reveal the possible mechanism. METHODS We conducted gut microbiota depletion to validate the role of gut microbiota in UA metabolism. A mouse model of HUA was established, and the gut microbiota and microbiome-derived metabolites were analyzed via 16S RNA gene sequencing and metabolomics analysis. The mechanism of the gut microbiota in HUA was elucidated by in vivo and in vitro experiments. RESULTS Antibiotic treatment elevated serum UA, disturbed purine metabolism, and decreased the relative abundance of Lactobacillus. HUA mice had a lower relative abundance of Lactobacillus johnsonii (L. johnsonii) and decreased gut butyrate concentration. Supplementation of L. johnsonii significantly reduces serum UA in hyperuricemia mice by preventing UA synthesis and promoting the excretion of gut purine metabolites. In addition, L. johnsonii enhanced intestinal UA excretion by heightening the urate transporter ABCG2 (adenosine triphosphate-binding cassette transporter, subfamily G, member 2) expression, and increasing the levels of butyrate, which upregulated ABCG2 expression via the Wnt5a/b/β-catenin signaling pathway. CONCLUSION Our results suggest that gut microbiota and microbiota-derived metabolites directly regulate gut UA metabolism, highlighting potential applications in the treatment of diet-induced HUA by targeting gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Rongshuang Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Zan Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yukun Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Leyong Ke
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, China
| | - Xiang Li
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, China
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266003, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xin Liu
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, China
| |
Collapse
|
4
|
Chiang CH, Hsu PS, Lin SP, Chen CY. High-fat diet restriction to adult male mice maintains normal body weight but leads to liver impairment by disrupting mitochondrial oxidative phosphorylation. J Nutr Biochem 2025:109941. [PMID: 40316032 DOI: 10.1016/j.jnutbio.2025.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Dietary restriction (DR) delays aging and supports health primarily through its effects on mitochondrial function. Conversely, a high-fat diet (HFD) with excess calories promotes obesity and health risks via mitochondrial dysfunction. However, the role of an HFD in the benefits of DR remains unclear. This study investigated whether sustainable and intermittent DR with an HFD positively affects liver and heart health. Mice were assigned to four groups: chow diet ad libitum (CTR), HFD ad libitum (H), 60% HFD intake (HDR), and intermittent HFD restriction with weight cycling (WC). The results showed that the mice in the HDR and WC groups had reduced body weight, while animals in neither group had lower blood glucose levels compared to the H group. Hepatic steatosis, fibrosis, and NAFLD activity scores were similar in H, HDR, and WC mice but were higher than in CTR mice. The livers of mice in the HDR and WC groups also showed reduced ATP content and altered protein expressions related to mitochondrial dynamics. Liver in animals from the H group exhibited reduced LC3I expression and an increased LC3II to LC3I ratio compared with liver CTR. In contrast, livers of animals in the HDR and WC groups showed lower levels of p62, LC3I, and LC3II expression. Fibrosis was observed in the hearts of mice in the CTR and H groups, and DR did not reverse this damage. In conclusion, although HFD restriction maintained body weight, it adversely affected liver health by disrupting mitochondrial function. These findings emphasize the critical role of dietary fat in liver health when adopting calorie-restricted therapy.
Collapse
Affiliation(s)
- Chun-Hsien Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Pu-Sheng Hsu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Li X, Chen W, Jia Z, Xiao Y, Shi A, Ma X. Mitochondrial Dysfunction as a Pathogenesis and Therapeutic Strategy for Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:4256. [PMID: 40362504 PMCID: PMC12072025 DOI: 10.3390/ijms26094256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) has emerged as a significant public health concern, attributed to its increasing prevalence and correlation with metabolic disorders, including obesity and type 2 diabetes. Recent research has highlighted that mitochondrial dysfunction can result in the accumulation of lipids in non-adipose tissues, as well as increased oxidative stress and inflammation. These factors are crucial in advancing the progression of MASLD. Despite advances in the understanding of MASLD pathophysiology, challenges remain in identifying effective therapeutic strategies targeting mitochondrial dysfunction. This review aims to consolidate current knowledge on how mitochondrial imbalance affects the development and progression of MASLD, while addressing existing research gaps and potential avenues for future research. This review was conducted after a systematic search of comprehensive academic databases such as PubMed, Embase, and Web of Science to gather information on mitochondrial dysfunction as well as mitochondrial-based treatments for MASLD.
Collapse
Affiliation(s)
- Xiangqiong Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Wenling Chen
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Yahui Xiao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Anhua Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Xuan Ma
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
6
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
7
|
Wen L, Yang K, Wang J, Zhou H, Ding W. Gut microbiota-mitochondrial crosstalk in obesity: novel mechanistic insights and therapeutic strategies with traditional Chinese medicine. Front Pharmacol 2025; 16:1574887. [PMID: 40331200 PMCID: PMC12052897 DOI: 10.3389/fphar.2025.1574887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Obesity rates are rising globally and have become a major public health issue. Recent research emphasizes the bidirectional communication between gut microbiota and mitochondrial function in obesity development. Gut microbiota regulates energy metabolism through metabolites that impact mitochondrial processes, such as oxidative phosphorylation, biogenesis, and autophagy. In turn, alterations in mitochondrial function impact microbiota homeostasis. Traditional Chinese medicine (TCM), which encompasses TCM formulas and the metabolites of botanical drugs, employs a holistic and integrative approach that shows promise in regulating gut microbiota-mitochondrial crosstalk. This review systematically explores the intricate interactions between gut microbiota and mitochondrial function, underscoring their crosstalk as a critical mechanistic axis in obesity pathogenesis. Furthermore, it highlights the potential of TCM in developing innovative, targeted interventions, paving the way for personalized approaches in obesity treatment through the precise modulation of gut microbiota-mitochondrial interactions, offering more effective and individualized therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Liu Y, Dai L, Zhang F, Liu Y, Li X, Ma W. Efficacy of In Vitro Addition of Low-Dose Arachidonic Acid in Improving the Sperm Motility of Obese Infertile Men With Asthenozoospermia. J Biochem Mol Toxicol 2025; 39:e70165. [PMID: 39987515 DOI: 10.1002/jbt.70165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025]
Abstract
This study aimed to investigate the impact of in vitro low-dose arachidonic acid (AA) addition on enhancing sperm motility in obese infertile men with asthenozoospermia. Semen samples were collected from 115 infertile men, categorized into two BMI groups: 18.5-23.9 kg/m2 and ≥ 28 kg/m2, with all subjects demonstrating a sperm concentration of ≥ 15 × 106/mL. These were further divided into four cohorts based on the percentage of sperm progressive motility (PR): control-normal, control-asthenozoospermia, obese-normal, and obese-asthenozoospermia. Normal PR was classified as ≥ 32%, while asthenozoospermia was characterized by PR < 32%. Metabolomic analysis was employed to quantify seminal plasma metabolites, with differential metabolites identified through statistical evaluation. Additionally, semen samples from 10 infertile men-5 with a body mass index (BMI) of 18.5-23.9 kg/m2 and 5 with a BMI of ≥ 28 kg/m2-underwent further scrutiny. Post-initial semen analysis, 1 mL of semen stock was extracted, treated with 100 pg of AA, incubated at 37°C for 1 h, and reanalyzed to determine the impact on sperm motility. Additionally, 16 Sprague Dawley (SD) rats were split into two groups: control and obese. The control group received a standard diet, while the obese group was subjected to a 45% high-fat diet. After 3 months, the rats were euthanized via cervical dislocation, and their prostate and seminal vesicles were collected for metabolite analysis. A comprehensive analysis of 4635 metabolites in seminal plasma revealed that bile acid secretion emerged as the most significant pathway within the organic systems category, accounting for 0.6% of the total metabolites. Meanwhile, metabolic pathways overwhelmingly dominated the metabolism category, with AA metabolism contributing 4.62%. Notably, 29 metabolites were associated with bile acid secretion, yet no significant differences were observed between the PR ≥ 32% and < 32% groups. In contrast, 214 metabolites were linked to AA metabolism, exhibiting a predominantly downregulated trend, with no upregulated metabolites identified. Within the seminal plasma AA metabolic network, indicators showed a positive association with the induced acrosome reaction, seminal plasma Ca2+ levels, PR, and the proportion of grade A sperm (rapid forward motion, speed ≥ 25 μm/s). Additionally, secretory phospholipase A2 (sPLA2), AA, and cyclooxygenase-1 (COX1) levels demonstrated a negative correlation with anthropometric measurement parameters in the Control-SP group, though this correlation did not reach statistical significance, while a positive correlation was evident in the Obesity-SP group. The concentrations of sPLA2, AA, and COX1 within the AA metabolic network exhibited the following trend: Control-SP-N > Obesity-SP-N > Control-SP-A > Obesity-SP-A. In vitro addition of 100 pg AA significantly enhanced the proportion of grade B sperm (slow-moving, speed < 25 μm/s) while reducing grade C sperm (non-forward-moving) in individuals with a BMI of 18.5-23.9 kg/m2 (p < 0.05). In contrast, for those with a BMI ≥ 28 kg/m2, a marked increase in grade A and grade B sperm and a corresponding reduction in grade C sperm was noted (p < 0.05). Human seminal plasma levels of sPLA2, AA, and COX1 were significantly elevated in the Control-SP group compared to the Obesity-SP group (p < 0.05). However, sPLA2, AA, and COX1 levels in the prostate and seminal vesicle of SD rats did not differ significantly between the Control and Obesity groups (p > 0.05). Distinct metabolic profiles in seminal plasma of infertile men, stratified by BMI, exhibit significant impacts on sperm quality. Low-dose AA, under physiological conditions, maintains sperm integrity and augments fertilization potential. In vitro administration of low-dose AA demonstrates superior effectiveness in enhancing sperm parameters, particularly in obese individuals with asthenozoospermia.
Collapse
Affiliation(s)
- Yongjie Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Reproductive Medical Center, Yinchuan Maternity and Child Health Care Hospital, Ningxia Medical University, Yinchuan, China
| | - Liang Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Reproductive Medical Center, Yinchuan Maternity and Child Health Care Hospital, Ningxia Medical University, Yinchuan, China
| | - Fan Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Reproductive Medical Center, Yinchuan Maternity and Child Health Care Hospital, Ningxia Medical University, Yinchuan, China
| | - Yang Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Reproductive Medical Center, Yinchuan Maternity and Child Health Care Hospital, Ningxia Medical University, Yinchuan, China
| | - Xu Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Reproductive Medical Center, Yinchuan Maternity and Child Health Care Hospital, Ningxia Medical University, Yinchuan, China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Reproductive Medical Center, Yinchuan Maternity and Child Health Care Hospital, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Svecla M, Moregola A, Dalt LD, Nour J, Baragetti A, Uboldi P, Idini A, Wuhrer M, Beretta G, Falck D, Bonacina F, Norata GD. ASGR1 deficiency improves atherosclerosis but alters liver metabolism in ApoE -/- mice. Cardiovasc Diabetol 2024; 23:428. [PMID: 39616371 PMCID: PMC11608471 DOI: 10.1186/s12933-024-02507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/07/2024] [Indexed: 01/30/2025] Open
Abstract
The asialoglycoprotein receptor 1 (ASGR1), a multivalent carbohydrate-binding receptor that primarily is responsible for recognizing and eliminating circulating glycoproteins with exposed galactose (Gal) or N-acetylgalactosamine (GalNAc) as terminal glycan residues, has been implicated in modulating the lipid metabolism and reducing cardiovascular disease burden. In this study, we investigated the impact of ASGR1 deficiency (ASGR1-/-) on atherosclerosis by evaluating its effects on plaque formation, lipid metabolism, circulating immunoinflammatory response, and circulating N-glycome under the hypercholesterolemic condition in ApoE-deficient mice. After 16 weeks of a western-type diet, ApoE-/-/ASGR1-/- mice presented lower plasma cholesterol and triglyceride levels compared to ApoE-/-. This was associated with reduced atherosclerotic plaque area and necrotic core formation. Interestingly, ApoE-/-/ASGR1-/- mice showed increased levels of circulating immune cells, increased AST/ALT ratio, and no changes in the N-glycome profile and liver morphology. The liver of ApoE-/-/ASGR1-/- mice, however, presented alterations in the metabolism of lipids, xenobiotics, and bile secretion, indicating broader alterations in liver homeostasis beyond lipids. These data suggest that improvements in circulating lipid metabolism and atherosclerosis in ASGR1 deficiency is paralleled by a deterioration of liver injury. These findings point to the need for additional evaluation before considering ASGR1 as a pharmacological target for dyslipidemia and cardiovascular disorders.
Collapse
Affiliation(s)
- Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Jasmine Nour
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Idini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Moregola A, Bonacina F, Vingiani GB, Frapolli R, Turrini R, Norata GD. Profiling the impact of anti-human CD20 monoclonal antibodies on lymphocyte B cell subsets and their precursors in the bone marrow and in lymphoid tissues in an immunocompromised mouse engrafted with human cells. Pharmacol Res 2024; 209:107442. [PMID: 39374887 DOI: 10.1016/j.phrs.2024.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Ofatumumab (OFA) and ocrelizumab (OCRE) are two anti-CD20 monoclonal antibodies approved for the treatment of relapsing forms of multiple sclerosis due to their ability to deplete B lymphocytes. The aim of this study was to investigate the impact of these anti-hCD20 antibodies on B lymphocyte subsets in the circulation and in primary and secondary lymphoid organs in an immune system humanized mouse model (immunocompromised Rag2-/-Il2rg-/-CD47-/-) engrafted with human CD34+ hematopoietic stem cells. Three months after humanization, mice, which present adaptive immune cells only of human origin, were treated with OFA (0.3 mg/Kg; day 1, 3 and 5), or OCRE (10 mg/kg; day 1) or saline. Seven days after the last injection a robust (>90 %) decrease of circulating human CD20+ B lymphocytes was observed in both OFA- and OCRE-treated mice. A partial replenishment of B lymphocytes was detectable in blood 36 days from the last injection in OFA-treated mice, while no B lymphocytes could be detected in OCRE-treated mice up to 65 days post injection. Bone marrow profiling showed that during hCD20+ B cell depletion and replenishment, OCRE-treated mice preserved only preB-I cells in the bone marrow, while the bone marrow of OFA-treated mice presented both preB-I as well as preB-II cells, with the latter subset being the one closest to differentiate into immature B cells. These data together with changes in B cell distribution in other tissues suggest that ofatumumab preserve BM niches, critical for B lymphocyte replenishment, limiting potential side effects of the treatment associated with the increased risk of infection.
Collapse
Affiliation(s)
- Annalisa Moregola
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giovanni Battista Vingiani
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Roberta Frapolli
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Giuseppe Danilo Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
11
|
Wai T. Is mitochondrial morphology important for cellular physiology? Trends Endocrinol Metab 2024; 35:854-871. [PMID: 38866638 DOI: 10.1016/j.tem.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
Mitochondria are double membrane-bound organelles the network morphology of which in cells is shaped by opposing events of fusion and fission executed by dynamin-like GTPases. Mutations in these genes can perturb the form and functions of mitochondria in cell and animal models of mitochondrial diseases. An expanding array of chemical, mechanical, and genetic stressors can converge on mitochondrial-shaping proteins and disrupt mitochondrial morphology. In recent years, studies aimed at disentangling the multiple roles of mitochondrial-shaping proteins beyond fission or fusion have provided insights into the homeostatic relevance of mitochondrial morphology. Here, I review the pleiotropy of mitochondrial fusion and fission proteins with the aim of understanding whether mitochondrial morphology is important for cell and tissue physiology.
Collapse
Affiliation(s)
- Timothy Wai
- Institut Pasteur, Mitochondrial Biology, CNRS UMR 3691, Université Paris Cité, Paris, France.
| |
Collapse
|
12
|
Radosavljevic T, Brankovic M, Samardzic J, Djuretić J, Vukicevic D, Vucevic D, Jakovljevic V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants (Basel) 2024; 13:906. [PMID: 39199152 PMCID: PMC11351122 DOI: 10.3390/antiox13080906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), encompasses a range of liver conditions from steatosis to nonalcoholic steatohepatitis (NASH). Its prevalence, especially among patients with metabolic syndrome, highlights its growing global impact. The pathogenesis of MASLD involves metabolic dysregulation, inflammation, oxidative stress, genetic factors and, notably, mitochondrial dysfunction. Recent studies underscore the critical role of mitochondrial dysfunction in MASLD's progression. Therapeutically, enhancing mitochondrial function has gained interest, along with lifestyle changes and pharmacological interventions targeting mitochondrial processes. The FDA's approval of resmetirom for metabolic-associated steatohepatitis (MASH) with fibrosis marks a significant step. While resmetirom represents progress, further research is essential to understand MASLD-related mitochondrial dysfunction fully. Innovative strategies like gene editing and small-molecule modulators, alongside lifestyle interventions, can potentially improve MASLD treatment. Drug repurposing and new targets will advance MASLD therapy, addressing its increasing global burden. Therefore, this review aims to provide a better understanding of the role of mitochondrial dysfunction in MASLD and identify more effective preventive and treatment strategies.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Brankovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.B.); (J.S.)
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailovic”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
13
|
Svecla M, Da Dalt L, Moregola A, Nour J, Baragetti A, Uboldi P, Donetti E, Arnaboldi L, Beretta G, Bonacina F, Norata GD. ASGR1 deficiency diverts lipids toward adipose tissue but results in liver damage during obesity. Cardiovasc Diabetol 2024; 23:42. [PMID: 38281933 PMCID: PMC10823681 DOI: 10.1186/s12933-023-02099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Asialoglycoprotein receptor 1 (ASGR1), primarily expressed on hepatocytes, promotes the clearance and the degradation of glycoproteins, including lipoproteins, from the circulation. In humans, loss-of-function variants of ASGR1 are associated with a favorable metabolic profile and reduced incidence of cardiovascular diseases. The molecular mechanisms by which ASGR1 could affect the onset of metabolic syndrome and obesity are unclear. Therefore, here we investigated the contribution of ASGR1 in the development of metabolic syndrome and obesity. METHODS ASGR1 deficient mice (ASGR1-/-) were subjected to a high-fat diet (45% Kcal from fat) for 20 weeks. The systemic metabolic profile, hepatic and visceral adipose tissue were characterized for metabolic and structural alterations, as well as for immune cells infiltration. RESULTS ASGR1-/- mice present a hypertrophic adipose tissue with 41% increase in fat accumulation in visceral adipose tissue (VAT), alongside with alteration in lipid metabolic pathways. Intriguingly, ASGR1-/- mice exhibit a comparable response to an acute glucose and insulin challenge in circulation, coupled with notably decreased in circulating cholesterol levels. Although the liver of ASGR1-/- have similar lipid accumulation to the WT mice, they present elevated levels of liver inflammation and a decrease in mitochondrial function. CONCLUSION ASGR1 deficiency impacts energetic homeostasis during obesity leading to improved plasma lipid levels but increased VAT lipid accumulation and liver damage.
Collapse
Affiliation(s)
- Monika Svecla
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Jasmine Nour
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Patrizia Uboldi
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Elena Donetti
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Science "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|