1
|
Ji YW, Wen XY, Tang HP, Su WT, Xia ZY, Lei SQ. Necroptosis: a significant and promising target for intervention of cardiovascular disease. Biochem Pharmacol 2025; 237:116951. [PMID: 40268251 DOI: 10.1016/j.bcp.2025.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Due to changes in dietary structures, population aging, and the exacerbation of metabolic risk factors, the incidence of cardiovascular disease continues to rise annually, posing a significant health burden worldwide. Cell death plays a crucial role in the onset and progression of cardiovascular diseases. As a regulated endpoint encountered by cells under adverse stress conditions, the execution of necroptosis is regulated by classicalpathways, the calmodulin-dependent protein kinases (CaMK) pathway, and mitochondria-dependent pathways, and implicated in various cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial ischemia-reperfusion injury (IRI), heart failure, diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, chemotherapy drug-induced cardiomyopathy, and abdominal aortic aneurysm (AAA). To further investigate potential therapeutic targets for cardiovascular diseases, we also analyzed the main molecules and their inhibitors involved in necroptosis in an effort to uncover insights for treatment.
Collapse
Affiliation(s)
- Yan-Wei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin-Yu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - He-Peng Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wa-Ting Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Chattergoon NN, Bose K, Louey S, Jonker SS. Lipid exposure leads to metabolic dysfunction in fetal sheep cardiomyocytes. Physiol Rep 2025; 13:e70386. [PMID: 40420618 PMCID: PMC12106950 DOI: 10.14814/phy2.70386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
Fetal circulating lipids are low but rise precipitously following birth. It is unknown how prematurely elevated lipids affect the fetal heart, which primarily uses carbohydrates for energy. Fetal sheep were surgically instrumented and received Intralipid 20® or Lactated Ringer's Solution intravenously. After 8 days, myocardial biopsies were taken, and cardiomyocytes were dispersed. Lipid uptake was assessed by labeled saturated long-chain fatty acids (LCFA) and very long-chain fatty acids (VLCFA) incorporation. Maximal oxygen consumption rates (OCR) were measured. Gene and protein expression levels were measured by quantitative PCR and Western blotting. Intralipid treatment increased LCFA (p < 0.001) and VLCFA (p < 0.001) lipid droplet number, and LCFA (males p = 0.002) and VLCFA (p = 0.018) droplet size. Fetal Intralipid treatment reduced maximal OCR in basal media (p = 0.005). Palmitic acid decreased maximal OCR regardless of fetal treatment or length of in vitro exposure (p = 0.006). Fetal Intralipid upregulated genes included CD36 (p = 0.001), CPT1A (p < 0.001), CPT1B (p < 0.001), VLCAD (p < 0.001), and PDK4 (p < 0.001), with no differences in protein expression. There were no effects on ER stress, apoptosis, or autophagy markers. Extended elevated lipid levels in the fetus increased lipid uptake and may have shifted substrate preference towards lipids, but all lipid exposure depressed fetal cardiac metabolism. Prematurely elevated lipids mature but suppress oxidative metabolism.
Collapse
Affiliation(s)
- Natasha N. Chattergoon
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Karthikeyan Bose
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| | - Sonnet S. Jonker
- Center for Developmental Health, Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
3
|
Rostami A, Palomer X, Pizarro-Delgado J, Peña L, Zamora M, Montori-Grau M, Barroso E, Valenzuela-Alcaraz B, Crispi F, Salvador JM, García R, Hurlé MA, Nistal F, Vázquez-Carrera M. GADD45A suppression contributes to cardiac remodeling by promoting inflammation, fibrosis and hypertrophy. Cell Mol Life Sci 2025; 82:189. [PMID: 40301189 PMCID: PMC12040809 DOI: 10.1007/s00018-025-05704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
The growth arrest and DNA damage inducible 45A (GADD45A) is a multifaceted protein associated with stress signaling and cellular injury. Aside its well-established tumor suppressor activity, recent studies point to additional roles for GADD45A, including the regulation of catabolic and anabolic pathways, or the prevention of inflammation, fibrosis, and oxidative stress in some tissues and organs. However, little is known about its function in cardiac disease. In this study, we aimed to evaluate the role of GADD45A in the heart by using mice with constitutive and systemic deletion of Gadd45a, and cardiac cells of human origin. Gadd45a suppression in knockout mice triggered cardiac fibrosis, inflammation, and apoptosis, and these changes correlated with an hyperactivation of the pro-inflammatory and pro-fibrotic transcription factors activator protein-1 (AP-1), nuclear factor-κB (NF-κB), and signal transducer and activator of transcription 3 (STAT3). Deletion of Gadd45a also resulted in substantial cardiac hypertrophy, which negatively impacted cardiac morphology and function in knockout mice. Consistent with this, GADD45A overexpression in human AC16 cardiomyocytes partially prevented the inflammatory and fibrotic responses induced by tumor necrosis factor-α (TNF-α). Overall, data presented in this study highlight an important role for GADD45A in the heart, since it may prevent inflammation, fibrosis, and apoptosis, and, by this means, preserve cardiac function and performance. Since fibrosis and inflammation are crucial in the progression of cardiac hypertrophy and subsequent heart failure, these results suggest that promoting the activity of this protein might be a promising therapeutic strategy to slow down the progression of these deleterious diseases.
Collapse
Affiliation(s)
- Adel Rostami
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Lucía Peña
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Mònica Zamora
- BCNatal - Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, 08028, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, 08036, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain
| | - Brenda Valenzuela-Alcaraz
- BCNatal - Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, 08028, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, 08036, Spain
| | - Fàtima Crispi
- BCNatal - Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, 08028, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, 08036, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Jesús M Salvador
- Department of Immunology and Oncology, National Center for Biotechnology/CSIC, Madrid, 28049, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - María A Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Francisco Nistal
- Servicio de Cirugía Cardiovascular, Departamento de Ciencias Médicas y Quirúrgicas, Facultad de Medicina, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Universidad de Cantabria, Santander, Spain
- Spanish Biomedical Research Center in Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Santander, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, España.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, 08028, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Pediatric Research Institute, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950, Spain.
| |
Collapse
|
4
|
Sivakumar B, Kurian GA. Temporal dynamics of PM 2.5 induced cell death: Emphasizing inflammation as key mediator in the late stages of prolonged myocardial toxicity. Exp Cell Res 2025; 445:114423. [PMID: 39818407 DOI: 10.1016/j.yexcr.2025.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM2.5 induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model. Female rats were exposed to 250 μg/m³ of PM2.5 for 3 h daily over periods of 1, 7, 14, and 21 days. Gene expression analysis revealed that apoptotic markers (caspases 3, 7, and 9) were upregulated after 7 days of exposure, with continued elevation through 21 days. Ferroptotic markers, such as Ferritin and GPX4, declined significantly starting from day 14, while necroptosis (RIPK1) and pyroptosis (GSDMD) were prominent only after 21 days of exposure. In parallel, inflammatory markers, including IL-1β and TNF-α, showed substantial upregulation, particularly in the later stages, suggesting that inflammation plays a key role in amplifying myocardial damage in the prolonged exposure phase. These processes coincided with a progressive decrease in mitochondrial mass, elevated oxidative stress, and compromised bioenergetic function, all contributing to worsened cardiac function and remodeling by day 21.In conclusion, PM2.5 exposure initiates myocardial damage primarily through apoptosis and ferroptosis in the early stages. However, prolonged exposure exacerbates cell death via necroptosis and pyroptosis, with inflammation emerging as a critical factor driving late-stage myocardial toxicity. This study highlights the temporal dynamics of distinct cell death pathways, offering crucial insights into the mechanisms of PM2.5 induced cardiotoxicity and identifying potential therapeutic targets to mitigate its impact.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio, 45267, USA
| | - Gino A Kurian
- Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio, 45267, USA; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
5
|
Fan Z, Yuan X, Yuan Y. Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). Int J Mol Med 2025; 55:11. [PMID: 39513584 PMCID: PMC11573316 DOI: 10.3892/ijmm.2024.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Coronary heart disease (CHD) remains a leading cause of morbidity and mortality worldwide, posing a substantial public health burden. Despite advancements in treatment, the complex etiology of CHD necessitates ongoing exploration of novel diagnostic markers and therapeutic targets. Circular RNAs (circRNAs), a distinct class of non‑coding RNAs with a covalently closed loop structure, have emerged as significant regulators in various diseases, including CHD. Their high stability, tissue‑specific expression and evolutionary conservation underscore their potential as biomarkers and therapeutic agents in CHD. This review discusses the current knowledge on circRNAs in the context of CHD and explores the molecular mechanisms by which circRNAs influence the pathophysiology of CHD, including cardiomyocyte death, endothelial injury, vascular dysfunction and inflammation. It also summarizes the emerging evidence highlighting the differential expression of circRNAs in patients with CHD and their potential utilities as non‑invasive diagnostic and prognostic biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zengguang Fan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China
| | - Ye Yuan
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
6
|
Jia Y, Yuan X, Feng L, Xu Q, Fang X, Xiao D, Li Q, Wang Y, Ye L, Wang P, Ao X, Wang J. m 6A-modified circCacna1c regulates necroptosis and ischemic myocardial injury by inhibiting Hnrnpf entry into the nucleus. Cell Mol Biol Lett 2024; 29:140. [PMID: 39533214 PMCID: PMC11558890 DOI: 10.1186/s11658-024-00649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are differentially expressed in various cardiovascular diseases, including myocardial infarction (MI) injury. However, their functional role in necroptosis-induced loss of cardiomyocytes remains unclear. We identified a cardiac necroptosis-associated circRNA transcribed from the Cacna1c gene (circCacna1c) to investigate the involvement of circRNAs in cardiomyocyte necroptosis. METHODS To investigate the role of circCacna1c during oxidative stress, H9c2 cells and neonatal rat cardiomyocytes were treated with hydrogen peroxide (H2O2) to induce reactive oxygen species (ROS)-induced cardiomyocyte death. The N6-methyladenosine (m6A) modification level of circCacna1c was determined by methylated RNA immunoprecipitation quantitative polymerase chain reaction (MeRIP-qPCR) analysis. Additionally, an RNA pull-down assay was performed to identify interacting proteins of circCacna1c in cardiomyocytes, and the regulatory role of circCacna1c in target protein expression was tested using a western blotting assay. Furthermore, the MI mouse model was constructed to analyze the effect of circCacna1c on heart function and cardiomyocyte necroptosis. RESULTS The expression of circCacna1c was found to be reduced in cardiomyocytes exposed to oxidative stress and in mouse hearts injured by MI. Overexpression of circCacna1c inhibited necroptosis of cardiomyocytes induced by hydrogen peroxide and MI injury, resulting in a significant reduction in myocardial infarction size and improved cardiac function. Mechanistically, circCacna1c directly interacts with heterogeneous nuclear ribonucleoprotein F (Hnrnpf) in the cytoplasm, preventing its nuclear translocation and leading to reduced Hnrnpf levels within the nucleus. This subsequently suppresses Hnrnpf-dependent receptor-interacting protein kinase 1 (RIPK1) expression. Furthermore, fat mass and obesity-associated protein (FTO) mediates demethylation of m6A modification on circCacna1c during necrosis and facilitates degradation of circCacna1c. CONCLUSION Our study demonstrates that circCacna1c can improve cardiac function following MI-induced heart injury by inhibiting the Hnrnpf/RIPK1-mediated cardiomyocyte necroptosis. Therefore, the FTO/circCacna1c/Hnrnpf/RIPK1 axis holds great potential as an effective target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.
Collapse
Affiliation(s)
- Yi Jia
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaosu Yuan
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Luxin Feng
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
| | - Qingling Xu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xinyu Fang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Dandan Xiao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- School of Nursing, Qingdao University, Qingdao, 266071, China
| | - Yu Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lin Ye
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peiyan Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiang Ao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Akinterinwa OE, Singh M, Vemuri S, Tyagi SC. A Need to Preserve Ejection Fraction during Heart Failure. Int J Mol Sci 2024; 25:8780. [PMID: 39201469 PMCID: PMC11354382 DOI: 10.3390/ijms25168780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Heart failure (HF) is a significant global healthcare burden with increasing prevalence and high morbidity and mortality rates. The diagnosis and management of HF are closely tied to ejection fraction (EF), a crucial parameter for evaluating disease severity and determining treatment plans. This paper emphasizes the urgent need to maintain EF during heart failure, highlighting the distinct phenotypes of HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). It discusses the complexities of HFrEF pathophysiology and its negative impact on patient outcomes, stressing the importance of ongoing research and the development of effective therapeutic interventions to slow down the progression from preserved to reduced ejection fraction. Additionally, it explores the potential role of renal denervation in preserving ejection fraction and its implications for HFrEF management. This comprehensive review aims to offer valuable insights into the critical role of EF preservation in enhancing outcomes for patients with heart failure.
Collapse
Affiliation(s)
- Oluwaseun E. Akinterinwa
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine (CPM) for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| | - Sreevatsa Vemuri
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Wu YT, Zhang GY, Li L, Liu B, Wang RY, Song RQ, Hua Y, Bi YM, Han X, Zhang F, Wang D, Xie LP, Zhou YC. Salvia miltiorrhiza suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118214. [PMID: 38641076 DOI: 10.1016/j.jep.2024.118214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ferroptosis, a recently identified non-apoptotic form of cell death reliant on iron, is distinguished by an escalation in lipid reactive oxygen species (ROS) that are iron-dependent. This phenomenon has a strong correlation with irregularities in iron metabolism and lipid peroxidation. Salvia miltiorrhiza Bunge (DS), a medicinal herb frequently utilized in China, is highly esteemed for its therapeutic effectiveness in enhancing blood circulation and ameliorating blood stasis, particularly during the treatment of cardiovascular diseases (CVDs). Numerous pharmacological studies have identified that DS manifests antioxidative stress effects as well as inhibits lipid peroxidation. However, ambiguity persists regarding the potential of DS to impede ferroptosis in cardiomyocytes and subsequently improve myocardial damage post-myocardial infarction (MI). AIM OF THE STUDY The present work focused on investigating whether DS could be used to prevent the ferroptosis of cardiomyocytes and improve post-MI myocardial damage. MATERIALS AND METHODS In vivo experiments: Through ligation of the left anterior descending coronary artery, we constructed both a wild-type (WT) and NF-E2 p45-related factor 2 knockout (Nrf2-/-) mouse model of MI. Effects of DS and ferrostatin-1 (Fer-1) on post-MI cardiomyocyte ferroptosis were examined through detecting ferroptosis and myocardial damage-related indicators as well as Nrf2 signaling-associated protein levels. In vitro experiments: Erastin was used for stimulating H9C2 cardiomyocytes to construct an in vitro ferroptosis cardiomyocyte model. Effects of DS and Fer-1 on cardiomyocyte ferroptosis were determined based on ferroptosis-related indicators and Nrf2 signaling-associated protein levels. Additionally, inhibitor and activator of Nrf2 were used for confirming the impact of Nrf2 signaling on DS's effect on cardiomyocyte ferroptosis. RESULTS In vivo: In comparison to the model group, DS suppressed ferroptosis in cardiomyocytes post-MI and ameliorated myocardial damage by inducing Nrf2 signaling-related proteins (Nrf2, xCT, GPX4), diminishing tissue ferrous iron and malondialdehyde (MDA) content. Additionally, it enhanced glutathione (GSH) levels and total superoxide dismutase (SOD) activity, effects that are aligned with those of Fer-1. Moreover, the effect of DS on alleviating cardiomyocyte ferroptosis after MI could be partly inhibited through Nrf2 knockdown. In vitro: Compared with the erastin group, DS inhibited cardiomyocyte ferroptosis by promoting the expression of Nrf2 signaling-related proteins, reducing ferrous iron, ROS, and MDA levels, but increasing GSH content and SOD activity, consistent with the effect of Fer-1. Additionally, Nrf2 inhibition increased erastin-mediated ferroptosis of cardiomyocytes through decreasing Nrf2 signaling-related protein expressions. Co-treatment with DS and Nrf2 activator failed to further enhance the anti-ferroptosis effect of DS. CONCLUSION MI is accompanied by cardiomyocyte ferroptosis, whose underlying mechanism is probably associated with Nrf2 signaling inhibition. DS possibly suppresses ferroptosis of cardiomyocytes and improves myocardial damage after MI through activating Nrf2 signaling.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Guo-Yong Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Lei Li
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ru-Yu Wang
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | | | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Ming Bi
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xin Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China
| | - Feng Zhang
- Binzhou Medical University Hospital, Binzhou, 256603, China
| | - Dong Wang
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Ling-Peng Xie
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
England E, Morris JW, Bussy C, Hancox JC, Shiels HA. The key characteristics of cardiotoxicity for the pervasive pollutant phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133853. [PMID: 38503207 DOI: 10.1016/j.jhazmat.2024.133853] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
The key characteristic (KCs) framework has been used previously to assess the carcinogenicity and cardiotoxicity of various chemical and pharmacological agents. Here, the 12 KCs of cardiotoxicity are used to evaluate the previously reported cardiotoxicity of phenanthrene (Phe), a tricyclic polycyclic aromatic hydrocarbon (PAH), and major component of fossil fuel-derived air pollution. Phe is a semi-volatile pollutant existing in both the gas phase and particle phase through adsorption onto or into particulate matter (PM). Phe can translocate across the airways and gastrointestinal tract into the systemic circulation, enabling body-wide effects. Our evaluation based on a comprehensive literature review, indicates Phe exhibits 11 of the 12 KCs for cardiotoxicity. These include adverse effects on cardiac electromechanical performance, the vasculature and endothelium, immunomodulation and oxidative stress, and neuronal and endocrine control. Environmental agents that have similarly damaging effects on the cardiovascular system are heavily regulated and monitored, yet globally there is no air quality regulation specific for PAHs like Phe. Environmental monitoring of Phe is not the international standard with benzo[a]pyrene being frequently used as a proxy despite the two PAH species exhibiting significant differences in sources, concentration variations and toxic effects. The evidence summarised in this evaluation highlights the need to move away from proxied PAH measurements and develop a monitoring network capable of measuring Phe concentration. It also stresses the need to raise awareness amongst the medical community of the potential cardiovascular impact of PAH exposure. This will allow the production of mitigation strategies and possibly the development of new policies for the protection of the societal groups most vulnerable to cardiovascular disease.
Collapse
Affiliation(s)
- E England
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - J W Morris
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - C Bussy
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - J C Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - H A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Eid RA. Acylated ghrelin protection inhibits apoptosis in the remote myocardium post-myocardial infarction by inhibiting calcineurin and activating ARC. Arch Physiol Biochem 2024; 130:215-229. [PMID: 34965150 DOI: 10.1080/13813455.2021.2017463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
This study investigated if acylated ghrelin (AG) could inhibit myocardial infarction (MI)-induced apoptosis in the left ventricles (LV) of male rats and tested if this protection involves modulating ARC anti-apoptotic protein. Rats (n = 12/group) were assigned as a sham-operated, a sham + AG (100 µg/kg, 2x/d, S.C.), MI, and MI + AG. With no antioxidant activity or expression of FAS, AG inhibited caspase-3, 8, and 9 and decreased cytosolic/mitochondrial levels of cytochrome-c, Bax, Bad, and Bad-BCL-2 complex in the LVs of the sham-operated and MI-treated rats. Concomitantly, AG preserved the mitochondria structure, decreased mtPTP, and enhanced state-3 respiration in the LVs of both treated groups. These effects were associated with increased mitochondrial levels of ARC and a reduction in the activity of calcineurin. Overall, AG suppresses MI-induced ventricular apoptosis by inhibition of calcineurin, activation of ARC, and preserving mitochondria integrity.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Plawecki M, Gayrard N, Jeanson L, Chauvin A, Lajoix AD, Cristol JP, Jover B, Raynaud F. Cardiac remodeling associated with chronic kidney disease is enhanced in a rat model of metabolic syndrome: Preparation of mesenchymal transition. Mol Cell Biochem 2024; 479:29-39. [PMID: 36976428 DOI: 10.1007/s11010-023-04710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Cardiac alteration due to chronic kidney disease is described by tissue fibrosis. This remodeling involves myofibroblasts of various origins, including epithelial or endothelial to mesenchymal transitions. In addition, obesity and insulin resistance together or separately seem to exacerbate cardiovascular risk in chronic kidney disease (CKD). The main objective of this study was to assess if pre-existing metabolic disease exacerbates CKD-induced cardiac alterations. In addition, we hypothesised that endothelial to mesenchymal transition participates in this enhancement of cardiac fibrosis. Rats fed cafeteria type diet for 6 months underwent a subtotal nephrectomy at 4 months. Cardiac fibrosis was evaluated by histology and qRT-PCR. Collagens and macrophages were quantified by immunohistochemistry. Endothelial to mesenchymal transitions were assessed by qRT-PCR (CD31, VE-cadherin, α-SMA, nestin) and also by CD31 immunofluorescence staining. Rats fed with cafeteria type regimen were obese, hypertensive and insulin resistant. Cardiac fibrosis was predominant in CKD rats and was highly majored by cafeteria regimen. Collagen-1 and nestin expressions were higher in CKD rats, independently of regimen. Interestingly, in rats with CKD and cafeteria diet we found an increase of CD31 and α-SMA co-staining with suggest an implication of endothelial to mesenchymal transition during heart fibrosis. We showed that rats already obese and insulin resistant had an enhanced cardiac alteration to a subsequent renal injury. Cardiac fibrosis process could be supported by a involvement of the endothelial to mesenchymal transition phenomenon.
Collapse
Affiliation(s)
- Maëlle Plawecki
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Laboratoire de Biochimie et d'hormonologie, CHU Lapeyronie, Montpellier, France
| | | | - Laura Jeanson
- BC2M, Université de Montpellier, Montpellier, France
| | - Anthony Chauvin
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Jean-Paul Cristol
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
- Laboratoire de Biochimie et d'hormonologie, CHU Lapeyronie, Montpellier, France
| | - Bernard Jover
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Fabrice Raynaud
- PHYMEDEXP, Université de Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
12
|
Zhang Y, Chen S, Luo L, Greenly S, Shi H, Xu JJ, Yan C. Role of cAMP in Cardiomyocyte Viability: Beneficial or Detrimental? Circ Res 2023; 133:902-923. [PMID: 37850368 PMCID: PMC10807647 DOI: 10.1161/circresaha.123.322652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND 3', 5'-cyclic AMP (cAMP) regulates numerous cardiac functions. Various hormones and neurotransmitters elevate intracellular cAMP (i[cAMP]) in cardiomyocytes through activating GsPCRs (stimulatory-G-protein-coupled-receptors) and membrane-bound ACs (adenylyl cyclases). Increasing evidence has indicated that stimulating different GsPCRs and ACs exhibits distinct, even opposite effects, on cardiomyocyte viability. However, the underlying mechanisms are not fully understood. METHODS We used molecular and pharmacological approaches to investigate how different GsPCR/cAMP signaling differentially regulate cardiomyocyte viability with in vitro, ex vivo, and in vivo models. RESULTS For prodeath GsPCRs, we explored β1AR (beta1-adrenergic receptor) and H2R (histamine-H2-receptor). We found that their prodeath effects were similarly dependent on AC5 activation, ATP release to the extracellular space via PANX1 (pannexin-1) channel, and extracellular ATP (e[ATP])-mediated signaling involving in P2X7R (P2X purinoceptor 7) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). PANX1 phosphorylation at Serine 206 by cAMP-dependent-PKA (protein-kinase-A) promoted PANX1 activation, which was critical in β1AR- or H2R-induced cardiomyocyte death in vitro and in vivo. β1AR or H2R was localized proximately to PANX1, which permits ATP release. For prosurvival GsPCRs, we explored adenosine-A2-receptor (A2R), CGRPR (calcitonin-gene-related-peptide-receptor), and RXFP1 (relaxin-family peptide-receptor 1). Their prosurvival effects were dependent on AC6 activation, cAMP efflux via MRP4 (multidrug resistance protein 4), extracellular cAMP metabolism to adenosine (e[cAMP]-to-e[ADO]), and e[ADO]-mediated signaling. A2R, CGRPR, or RXFP1 was localized proximately to MRP4, which enables cAMP efflux. Interestingly, exogenously increasing e[cAMP] levels by membrane-impermeable cAMP protected against cardiomyocyte death in vitro and in ex vivo and in vivo mouse hearts with ischemia-reperfusion injuries. CONCLUSIONS Our findings indicate that the functional diversity of different GsPCRs in cardiomyocyte viability could be achieved by their ability to form unique signaling complexes (signalosomes) that determine the fate of cAMP: either stimulate ATP release by activating PKA or directly efflux to be e[cAMP].
Collapse
Affiliation(s)
- Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Department of Medicine
- Department of Biochemistry and Biophysics
| | - Sarah Greenly
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Hangchuan Shi
- Department of Clinical and Translational Research
- Department of Public Health Sciences; University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine
| |
Collapse
|
13
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
14
|
Abubakar M, Rasool HF, Javed I, Raza S, Abang L, Hashim MMA, Saleem Z, Abdullah RM, Faraz MA, Hassan KM, Bhat RR. Comparative Roles of IL-1, IL-6, IL-10, IL-17, IL-18, 1L-22, IL-33, and IL-37 in Various Cardiovascular Diseases With Potential Insights for Targeted Immunotherapy. Cureus 2023; 15:e42494. [PMID: 37637634 PMCID: PMC10455045 DOI: 10.7759/cureus.42494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
In recent years, the study of interleukins (ILs), crucial cytokines involved in immune response and inflammation, has garnered significant attention within the sphere of cardiovascular diseases (CVDs). The research has provided insights into the involvement of ILs in diverse CVDs, including arrhythmias, myocardial infarction, atherosclerosis, and heart failure (HF). ILs have emerged as promising therapeutic targets for drug interventions through their involvement in disease development and progression. This comprehensive review provides a detailed overview of ILs, elucidating their functions within the immune system and offering insights into their specific contributions to various CVDs. Moreover, the article delves into the examination of current and potential drug therapies that selectively target ILs in the management of CVDs, presenting a comprehensive analysis of the advantages and disadvantages associated with these therapeutic approaches. A comprehensive literature review was conducted to investigate the involvement of ILs in CVDs. The relevant articles were searched on PubMed, PubMed Central, Medline, Cochrane, Google Scholar, and ScienceDirect databases. The search encompassed articles published from these databases' inception until July 12, 2023. We first examine generalized aspects of ILs, particularly CVDs. Then, we shift focus towards examining the direct impact of ILs on cardiac cells and tissue; on the immune system and inflammation; endothelial cells and vascular function; and finally, their interactions with other signaling pathways and molecules. Then, we discuss the molecular mechanisms of various ILs. Sequentially, we delve into a comprehensive analysis of the individualized role of each distinct IL in diverse CVDs, examining their specific contributions. Finally, we explore the potential for targeted drug therapy to modulate IL activity, aiming to enhance outcomes for patients burdened with CVD. The objective is the identification of gaps in current knowledge and highlight areas that require further investigation within the context of cardiovascular medicine. Through deepening our comprehension of the intricate involvement of ILs in CVDs and harnessing their potential for targeted drug therapy, novel treatment strategies can be devised, leading to improved patient outcomes in cardiovascular medicine.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
- Department of Internal Medicine, Siddique Sadiq Memorial Trust Hospital, Gujranwala, PAK
| | - Hafiz Fahad Rasool
- Department of Public Health, Nanjing Medical University School of Public Health, Nanjing, CHN
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Saud Raza
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Lucy Abang
- Department of Biochemistry, All Saints University School of Medicine, Roseau, DMA
| | | | - Zartasha Saleem
- Department of Emergency Medicine, The University of Lahore Teaching Hospital, Lahore, PAK
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Post Graduate Medical Institute, Lahore General Hospital, Lahore, PAK
| | - Khawaja Mushammar Hassan
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Department of Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Department of Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| |
Collapse
|
15
|
Petersen M, Schmiedel N, Dierck F, Hille S, Remes A, Senger F, Schmidt I, Lüllmann-Rauch R, Müller OJ, Frank D, Rangrez AY, Frey N, Kuhn C. Fibin regulates cardiomyocyte hypertrophy and causes protein-aggregate-associated cardiomyopathy in vivo. Front Mol Biosci 2023; 10:1169658. [PMID: 37342207 PMCID: PMC10278231 DOI: 10.3389/fmolb.2023.1169658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Despite the identification of numerous molecular pathways modulating cardiac hypertrophy its pathogenesis is not completely understood. In this study we define an unexpected role for Fibin ("fin bud initiation factor homolog") in cardiomyocyte hypertrophy. Via gene expression profiling in hypertrophic murine hearts after transverse aortic constriction we found a significant induction of Fibin. Moreover, Fibin was upregulated in another mouse model of cardiac hypertrophy (calcineurin-transgenics) as well as in patients with dilated cardiomyopathy. Immunoflourescence microscopy revealed subcellular localization of Fibin at the sarcomeric z-disc. Overexpression of Fibin in neonatal rat ventricular cardiomyocytes revealed a strong anti-hypertrophic effect through inhibiting both, NFAT- and SRF-dependent signalling. In contrast, transgenic mice with cardiac-restricted overexpression of Fibin developed dilated cardiomyopathy, accompanied by induction of hypertrophy-associated genes. Moreover, Fibin overexpression accelerated the progression to heart failure in the presence of prohypertrophic stimuli such as pressure overload and calcineurin overexpression. Histological and ultrastructural analyses surprisingly showed large protein aggregates containing Fibin. On the molecular level, aggregate formation was accompanied by an induction of the unfolded protein response subsequent UPR-mediated apoptosis and autophagy. Taken together, we identified Fibin as a novel potent negative regulator of cardiomyocyte hypertrophy in vitro. Yet, heart-specific Fibin overexpression in vivo causes development of a protein-aggregate-associated cardiomyopathy. Because of close similarities to myofibrillar myopathies, Fibin represents a candidate gene for cardiomyopathy and Fibin transgenic mice may provide additional mechanistic insight into aggregate formation in these diseases.
Collapse
Affiliation(s)
- Matthias Petersen
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Nesrin Schmiedel
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Franziska Dierck
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Anca Remes
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Frauke Senger
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Inga Schmidt
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | - Oliver J. Müller
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Ashraf Y. Rangrez
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christian Kuhn
- Department of Internal Medicine III, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
16
|
Plotnikov MB, Chernysheva GA, Smol’yakova VI, Aliev OI, Fomina TI, Sandrikina LA, Sukhodolo IV, Ivanova VV, Osipenko AN, Anfinogenova ND, Khlebnikov AI, Atochin DN, Schepetkin IA, Quinn MT. Cardioprotective Effects of a Selective c-Jun N-terminal Kinase Inhibitor in a Rat Model of Myocardial Infarction. Biomedicines 2023; 11:714. [PMID: 36979693 PMCID: PMC10044897 DOI: 10.3390/biomedicines11030714] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Activation of c-Jun N-terminal kinases (JNKs) is involved in myocardial injury, left ventricular remodeling (LV), and heart failure (HF) after myocardial infarction (MI). The aim of this research was to evaluate the effects of a selective JNK inhibitor, 11H-indeno [1,2-b]quinoxalin-11-one oxime (IQ-1), on myocardial injury and acute myocardial ischemia/reperfusion (I/R) in adult male Wistar rats. Intraperitoneal administration of IQ-1 (25 mg/kg daily for 5 days) resulted in a significant decrease in myocardial infarct size on day 5 after MI. On day 60 after MI, a significant (2.6-fold) decrease in LV scar size, a 2.2-fold decrease in the size of the LV cavity, a 2.9-fold decrease in the area of mature connective tissue, and a 1.7-fold decrease in connective tissue in the interventricular septum were observed compared with the control group. The improved contractile function of the heart resulted in a significant (33%) increase in stroke size, a 40% increase in cardiac output, a 12% increase in LV systolic pressure, a 28% increase in the LV maximum rate of pressure rise, a 45% increase in the LV maximum rate of pressure drop, a 29% increase in the contractility index, a 14% increase in aortic pressure, a 2.7-fold decrease in LV end-diastolic pressure, and a 4.2-fold decrease in LV minimum pressure. We conclude that IQ-1 has cardioprotective activity and reduces the severity of HF after MI.
Collapse
Affiliation(s)
- Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Faculty of Radiophysics, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Vera I. Smol’yakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Tatyana I. Fomina
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Lyubov A. Sandrikina
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
| | - Irina V. Sukhodolo
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Vera V. Ivanova
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Nina D. Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | | | - Dmitriy N. Atochin
- Kizhner Research Center, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02115, USA
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
17
|
Wang J, Chen M, Wang S, Chu X, Ji H. Identification of Phytogenic Compounds with Antioxidant Action That Protect Porcine Intestinal Epithelial Cells from Hydrogen Peroxide Induced Oxidative Damage. Antioxidants (Basel) 2022; 11:2134. [PMID: 36358507 PMCID: PMC9687067 DOI: 10.3390/antiox11112134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2024] Open
Abstract
Oxidative stress contributes to intestinal dysfunction. Plant extracts can have antioxidant action; however, the specific phytogenic active ingredients and their potential mechanisms are not well known. We screened 845 phytogenic compounds using a porcine epithelial cell (IPEC-J2) oxidative stress model to identify oxidative-stress-alleviating compounds. Calycosin and deoxyshikonin were evaluated for their ability to alleviate H2O2-induced oxidative stress by measuring their effects on malondialdehyde (MDA) accumulation, reactive oxygen species (ROS) generation, apoptosis, mitochondrial membrane potential (MMP), and antioxidant defense. Nrf2 pathway activation and the effect of Nrf2 knockdown on the antioxidative effects of hit compounds were investigated. Calycosin protected IPEC-J2 cells against H2O2-induced oxidative damage, likely by improving the cellular redox state and upregulating antioxidant defense via the Nrf2-Keap1 pathway. Deoxyshikonin alleviated the H2O2-induced decrease in cell viability, ROS production, and MMP reduction, but had no significant effect on MDA accumulation and apoptosis. Nrf2 knockdown did not weaken the effect of deoxyshikonin in improving cell viability, but it weakened its effect in suppressing ROS production. These results indicate that the mechanisms of action of natural compounds differ. The newly identified phytogenic compounds can be developed as novel antioxidant agents to alleviate intestinal oxidative stress in animals.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xu Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
18
|
Abstract
Cardiac remodelling is characterized by abnormal changes in the function and morphological properties such as diameter, mass, normal diameter of cavities, heart shape, fibrosis, thickening of vessels and heart layers, cardiomyopathy, infiltration of inflammatory cells, and some others. These damages are associated with damage to systolic and diastolic abnormalities, damage to ventricular function, and vascular remodelling, which may lead to heart failure and death. Exposure of the heart to radiation or anti-cancer drugs including chemotherapy drugs such as doxorubicin, receptor tyrosine kinase inhibitors (RTKIs) such as imatinib, and immune checkpoint inhibitors (ICIs) can induce several abnormal changes in the heart structure and function through the induction of inflammation and fibrosis, vascular remodelling, hypertrophy, and some others. This review aims to explain the basic mechanisms behind cardiac remodelling following cancer therapy by different anti-cancer modalities.
Collapse
|
19
|
Corporan D, Saadeh M, Yoldas A, Mudigonda J, Lane BA, Padala M. Passive mechanical properties of the left ventricular myocardium and extracellular matrix in hearts with chronic volume overload from mitral regurgitation. Physiol Rep 2022; 10:e15305. [PMID: 35871778 PMCID: PMC9309441 DOI: 10.14814/phy2.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Cardiac volume overload from mitral regurgitation (MR) is a trigger for left ventricular dilatation, remodeling, and ultimate failure. While the functional and structural adaptations to this overload are known, the adaptation of myocardial mechanical properties remains unknown. Using a rodent model of MR, in this study, we discern changes in the passive material properties of the intact and decellularized myocardium. Eighty Sprague-Dawley rats (350-400 g) were assigned to two groups: (1) MR (n = 40) and (2) control (n = 40). MR was induced in the beating heart by perforating the mitral leaflet with a 23G needle, and rats were terminated at 2, 10, 20, or 40 weeks (n = 10/time-point). Echocardiography was performed at baseline and termination, and explanted hearts were used for equibiaxial mechanical testing of the intact myocardium and after decellularization. Two weeks after inducing severe MR, the myocardium was more extensible compared to control, however, stiffness and extensibility of the extracellular matrix did not differ from control at this timepoint. By 20 weeks, the myocardium was stiffer with a higher elastic modulus of 1920 ± 246 kPa, and a parallel rise in extracellular matrix stiffness. Despite some matrix stiffening, it only contributed to 31% and 36% of the elastic modulus of the intact tissue in the circumferential and longitudinal directions. At 40 weeks, similar trends of increasing stiffness were observed, but the contribution of extracellular matrix remained relatively low. Chronic MR induces ventricular myocardial stiffening, which seems to be driven by the myocyte compartment of the muscle, and not the extracellular matrix.
Collapse
Affiliation(s)
- Daniella Corporan
- Structural Heart Research and Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGeorgiaUSA
- Division of Cardiothoracic SurgeryDepartment of SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Maher Saadeh
- Structural Heart Research and Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGeorgiaUSA
| | - Alessandra Yoldas
- Structural Heart Research and Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGeorgiaUSA
| | - Jahnavi Mudigonda
- Structural Heart Research and Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGeorgiaUSA
- Division of Cardiothoracic SurgeryDepartment of SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Brooks Alexander Lane
- Structural Heart Research and Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGeorgiaUSA
- Division of Cardiothoracic SurgeryDepartment of SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Muralidhar Padala
- Structural Heart Research and Innovation LaboratoryCarlyle Fraser Heart CenterEmory University Hospital MidtownAtlantaGeorgiaUSA
- Division of Cardiothoracic SurgeryDepartment of SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
20
|
Correale M, Mazzeo P, Tricarico L, Croella F, Fortunato M, Magnesa M, Amatruda M, Alfieri S, Ferrara S, Ceci V, Dattilo G, Mele M, Iacoviello M, Brunetti ND. Pharmacological Anti-Remodelling Effects of Disease-Modifying Drugs in Heart Failure with Reduced Ejection Fraction. Clin Drug Investig 2022; 42:567-579. [PMID: 35726047 DOI: 10.1007/s40261-022-01166-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
Abstract
Cardiac remodelling is an adverse phenomenon linked to heart failure progression and an important contributor to heart failure severity. Cardiac remodelling could represent the real therapeutic goal in the treatment of patients with heart failure with reduced ejection fraction, being potentially reversed through different pharmacotherapies. Currently, there are well-established drugs such as angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers and β-blockers with anti-remodelling effects; recently, angiotensin receptor neprilysin inhibitor effects on inhibiting cardiac remodelling (improving N-terminal pro-B-type natriuretic peptide levels, echocardiographic parameters of reverse cardiac remodelling and right ventricular function in patients with heart failure with reduced ejection fraction) were demonstrated. More recently, hemodynamic consequences of gliflozins, reduced cardiac hydrostatic pressure as a possible cause of ventricular remodelling and hypertrophy were proposed to explain potential anti-remodelling effects of gliflozins. Gliflozins exert their cardioprotective effects by attenuating myofibroblast activity and collagen-mediated remodelling. Another postulated mechanism is represented by the reduction in sympathetic activity, through the reduction in renal afferent nervous activity and the suppression of central reflex mechanisms. Benefits of gliflozins on left ventricular hypertrophy, dilation, and systolic and diastolic function were also described. In this review, we aimed to provide a wide overview on cardiac remodelling with a particular focus on possible anti-remodelling effects of angiotensin receptor neprilysin inhibitors and gliflozins.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Policlinico Riuniti University Hospital, Viale Pinto 1, 71100, Foggia, Italy.
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Croella
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Michele Magnesa
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Marco Amatruda
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Simona Alfieri
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Salvatore Ferrara
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Ceci
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Dattilo
- Cardiology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marco Mele
- Cardiothoracic Department, Policlinico Riuniti University Hospital, Viale Pinto 1, 71100, Foggia, Italy
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
21
|
Circ_0050908 up-regulates TRAF3 by sponging miR-324-5p to aggravate myocardial ischemia-reperfusion injury. Int Immunopharmacol 2022; 108:108740. [DOI: 10.1016/j.intimp.2022.108740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/21/2022]
|
22
|
Zhang M, Qi J, He Q, Ma D, Li J, Chu X, Zuo S, Zhang Y, Li L, Chu L. Liquiritigenin protects against myocardial ischemic by inhibiting oxidative stress, apoptosis, and L-type Ca 2+ channels. Phytother Res 2022; 36:3619-3631. [PMID: 35747908 DOI: 10.1002/ptr.7528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 12/07/2022]
Abstract
Liquiritigenin (Lq) offers cytoprotective effects against various cardiac injuries, but its beneficial effects on myocardial ischemic (MI) injury and the related mechanisms remain unclear. In the in vivo study, an animal model of MI was induced by intraperitoneal injection of isoproterenol (Iso, 85 mg/kg). ECG, heart rate, serum levels of CK and CK-MB, histopathological changes, and reactive oxygen species (ROS) levels were all measured. In vitro, H9c2 cells were divided into four groups and treated for 24 hr with liquiritigenin (30 μmol/L and 100 μmol/L) followed with CoCl2 (800 μmol/L) for another 24 hr. Cell viability, apoptosis, mitochondrial membrane potential, and intracellular Ca2+ concentration ([Ca2+ ]i ) were then assessed. The L-type Ca2+ current (ICa-L ) was detected using a patch clamp technique on isolated rat ventricular myocytes. The myocyte contraction and Ca2+ transients were measured using an IonOptix detection system. The remarkable cardiac injury and generation of intracellular ROS induced by Iso were alleviated via treatment with Lq. CoCl2 administration induced cell apoptosis, mitochondrial dysfunction, and Ca2+ overload in H9c2; Lq reduces these deleterious effects of CoCl2 . Meanwhile, Lq blocked ICa-L in a dose-dependent manner. The half-maximal inhibitory concentration of Lq was 110.87 μmol/L. Lq reversibly reduced the amplitude of cell contraction as well as the Ca2+ transients. The results show that Lq protects against MI injury by antioxidation, antiapoptosis, counteraction mitochondrial dysfunction, and inhibition of ICa-L , thus damping intracellular Ca2+ .
Collapse
Affiliation(s)
- Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jiaying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qianqian He
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Chu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Saijie Zuo
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yixin Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.,International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Li Chu
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
23
|
Wang X, Wan TC, Lauth A, Purdy AL, Kulik KR, Patterson M, Lough JW, Auchampach JA. Conditional depletion of the acetyltransferase Tip60 protects against the damaging effects of myocardial infarction. J Mol Cell Cardiol 2022; 163:9-19. [PMID: 34610340 PMCID: PMC8816866 DOI: 10.1016/j.yjmcc.2021.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023]
Abstract
Injury from myocardial infarction (MI) and consequent post-MI remodeling is accompanied by massive loss of cardiomyocytes (CM), a cell type critical for contractile function that is for all practical purposes non-regenerable due to its profound state of proliferative senescence. Identification of factors that limit CM survival and/or constrain CM renewal provides potential therapeutic targets. Tip60, a pan-acetyltransferase encoded by the Kat5 gene, has been reported to activate apoptosis as well as multiple anti-proliferative pathways in non-cardiac cells; however, its role in CMs, wherein it is abundantly expressed, remains unknown. Here, using mice containing floxed Kat5 alleles and a tamoxifen-activated Myh6-MerCreMer recombinase transgene, we report that conditional depletion of Tip60 in CMs three days after MI induced by permanent coronary artery ligation greatly improves functional recovery for up to 28 days. This is accompanied by diminished scarring, activation of cell-cycle transit markers in CMs within the infarct border and remote zones, reduced expression of cell-cycle inhibitors pAtm and p27, and reduced apoptosis in the remote regions. These findings implicate Tip60 as a novel, multifactorial target for limiting the damaging effects of ischemic heart disease.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Tina C. Wan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Amelia Lauth
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Alexandra L. Purdy
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Katherine R. Kulik
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Michaela Patterson
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John W. Lough
- Department of Cell Biology Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - John A. Auchampach
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
24
|
Pathophysiology of heart failure and an overview of therapies. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Wen ZJ, Xin H, Wang YC, Liu HW, Gao YY, Zhang YF. Emerging roles of circRNAs in the pathological process of myocardial infarction. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:828-848. [PMID: 34729251 PMCID: PMC8536508 DOI: 10.1016/j.omtn.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is defined as cardiomyocyte death in a clinical context consistent with ischemic insult. MI remains one of the leading causes of morbidity and mortality worldwide. Although there are a number of effective clinical methods for the diagnosis and treatment of MI, further investigation of novel biomarkers and molecular therapeutic targets is required. Circular RNAs (circRNAs), novel non-coding RNAs, have been reported to function mainly by acting as microRNA (miRNA) sponges or binding to RNA-binding proteins (RBPs). The circRNA-miRNA-mRNA (protein) regulatory pathway regulates gene expression and affects the pathological mechanisms of various diseases. Undoubtedly, a more comprehensive understanding of the relationship between MI and circRNA will lay the foundation for the development of circRNA-based diagnostic and therapeutic strategies for MI. Therefore, this review summarizes the pathophysiological process of MI and various approaches to measure circRNA levels in MI patients, tissues, and cells; highlights the significance of circRNAs in the regulation MI pathogenesis and development; and provides potential clinical insight for the diagnosis, prognosis, and treatment of MI.
Collapse
Affiliation(s)
- Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong-Chen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hao-Wen Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan-Yan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
26
|
Yang R, Tan C, Najafi M. Cardiac inflammation and fibrosis following chemo/radiation therapy: mechanisms and therapeutic agents. Inflammopharmacology 2021; 30:73-89. [PMID: 34813027 DOI: 10.1007/s10787-021-00894-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The incidence of cardiovascular disorders is one of the most concerns among people who underwent cancer therapy. The heart side effects of cancer therapy may occur during treatment to some years after the end of treatment. Some epidemiological studies confirm that heart diseases are one of the most common reasons for mortality among patients that were received treatment for cancer. Experimental studies and also clinical investigations indicate that inflammatory changes such as pericarditis, myocarditis, and also fibrosis are key mechanisms of cardiac diseases following chemotherapy/radiotherapy. It seems that chronic oxidative stress, massive cell death, and chronic overproduction of pro-inflammatory and pro-fibrosis cytokines are the key mechanisms of cardiovascular diseases following cancer therapy. Furthermore, infiltration of inflammatory cells and upregulation of some enzymes such as NADPH Oxidases are a hallmark of heart diseases after cancer therapy. In the current review, we aim to explain how radiation or chemotherapy can induce inflammatory and fibrosis-related diseases in the heart. We will explain the cellular and molecular mechanisms of cardiac inflammation and fibrosis following chemo/radiation therapy, and then review some adjuvants to reduce the risk of inflammation and fibrosis in the heart.
Collapse
Affiliation(s)
- Run Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan, People's Republic of China
| | - Changming Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, No. 139 Renmin Road, Changsha, Hunan, People's Republic of China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Onódi Z, Ruppert M, Kucsera D, Sayour AA, Tóth VE, Koncsos G, Novák J, Brenner GB, Makkos A, Baranyai T, Giricz Z, Görbe A, Leszek P, Gyöngyösi M, Horváth IG, Schulz R, Merkely B, Ferdinandy P, Radovits T, Varga ZV. AIM2-driven inflammasome activation in heart failure. Cardiovasc Res 2021; 117:2639-2651. [PMID: 34117866 DOI: 10.1093/cvr/cvab202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 02/24/2020] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
AIMS Interleukin-1β (IL-1β) is an important pathogenic factor in cardiovascular diseases including chronic heart failure (HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 β are promising new therapeutic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to identify activation patterns of inflammasome subtypes as sources of IL-1β. METHODS AND RESULTS Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and permanent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in human Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF model in vivo. CONCLUSIONS This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational study suggests the possibility of repositioning probenecid for HF indications.
Collapse
Affiliation(s)
- Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Gábor Koncsos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Julianna Novák
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Gábor B Brenner
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński National Institute of Cardiology, Warszawa, Poland
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Iván G Horváth
- Heart Institute, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
28
|
Wang B, Xu H, Kong J, Liu D, Qin WD, Bai W. Krüppel-like factor 15 reduces ischemia-induced apoptosis involving regulation of p38/MAPK signaling. Hum Gene Ther 2021; 32:1471-1480. [PMID: 34314239 DOI: 10.1089/hum.2021.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Cardiomyocyte apoptosis is a characteristic of a variety of cardiac diseases including myocardial infarction (MI). Krüppel-like factor 15 (KLF15) is a transcription factor of Krüppel family that plays an important part in cardiovascular diseases. However, the function and the underlying mechanism of KLF15 in MI remain unknown. Methods and Results The expression of KLF15 was downregulated both in ischemic myocardium of MI mice model and hypoxia-treated neonatal rat ventricular myocytes (NRVCs). KLF15 overexpression mediated by adeno-associated virus significantly abrogated the ischemia-induced cardiac dysfunction, increased the survival rate and reduced infarct size after MI. Meanwhile, KLF15 overexpression dramatically reduced the myocardial apoptosis, regulated apoptosis-related genes such as Bcl2 and Bax, diminished the activities of caspase-9/3 and inactivated p38/MAPK signaling in the border zone. Similar results were observed in NRVCs exposed to hypoxia. Conclusions We demonstrated for the first time that KLF15 overexpression could reduce cardiomyocyte apoptosis and improve cardiac dysfunction in MI mice at least partially by inhibiting p38/MAPK signaling pathway.
Collapse
Affiliation(s)
- Bo Wang
- Shandong University Qilu Hospital, 91623, Jinan, Shandong, China;
| | - Haijia Xu
- Weihai Central Hospital, Weihai, China;
| | - Jing Kong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China, 250014. Tel. 86-5313256718345, wenhuaxi road 107, Jinan, China, 250012;
| | - Deshan Liu
- Shandong University Qilu Hospital, 91623, Jinan, Shandong, China;
| | - Wei-Dong Qin
- Shandong Univ, Wenhua xi road, No.107, Jinan, United States, 250012;
| | - Wenwu Bai
- Shandong University, 12589, Qilu Hospital, No.107 Wenhua West Road, Jinan City, Jinan, Shandong, China, 250100;
| |
Collapse
|
29
|
Hypoxia-induced miR-27 and miR-195 regulate ATP consumption, viability, and metabolism of rat cardiomyocytes by targeting PPARγ and FASN expression. Aging (Albany NY) 2021; 13:10158-10174. [PMID: 33819184 PMCID: PMC8064185 DOI: 10.18632/aging.202778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
This study examined whether hypoxia-induced microRNA (miRNA) upregulation was related to the inhibition of chondriosome aliphatic acid oxidation in myocardial cells under anoxia. We showed that anoxia induced high expression of hypoxia-inducible factor-1-alpha, muscle carnitine palmitoyltransferase I, and vascular endothelial growth factor in cardiomyocytes. Meanwhile, miR-27 and miR-195 were also upregulated in hypoxia-induced cardiomyocytes. Furthermore, hypoxia induction led to reductions in the adenosine triphosphate (ATP) consumption rate and oxidative metabolism as well as an increase in cardiomyocyte glycolysis. Metabolic reprogramming was reduced by hypoxia, as evidenced by the downregulation of sirtuin 1, forkhead box protein O1, sterol regulatory element-binding protein 1c, ATP citrate lyase, acetyl-coenzyme A carboxylase 2, adiponutrin, adipose triglyceride lipase, and glucose transporter type 4, while miR-27 and miR-195 inhibition partially recovered the expression of these transcription factors. In addition, hypoxia induction reduced cell viability and survival by triggering apoptosis; however, miR-27 and miR-195 inhibition partially increased cell viability. Moreover, miR-27 and miR-195 targeted the 3’untranslated regions of two key lipid-associated metabolic players, peroxisome proliferator-activated receptor gamma and fatty acid synthase. In conclusion, miR-27 and miR-195 are related to hypoxia-mediated ATP levels, glycolysis, oxidation, cell survival, and a cascade of transcription factors that control metabolism in cardiomyocytes.
Collapse
|
30
|
Sharifi M, Nazarinia D, Ramezani F, Azizi Y, Naderi N, Aboutaleb N. Necroptosis and RhoA/ROCK pathways: molecular targets of Nesfatin-1 in cardioprotection against myocardial ischemia/reperfusion injury in a rat model. Mol Biol Rep 2021; 48:2507-2518. [PMID: 33755849 DOI: 10.1007/s11033-021-06289-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 as a new energy-regulating peptide has been known to display a pivotal role in modulation of cardiovascular functions and protection against ischemia/reperfusion injury. However, the detailed knowledge about molecular mechanisms underlying this protection has not been completely investigated yet. This study was designed to clarify the molecular mechanisms by which nesfatin-1 exert cardioprotection effects against myocardial ischemia-reperfusion (MI/R). Left anterior descending coronary artery (LAD) was ligated for 30 min to create a MI/R model in rats. MI/R rats were treated with three concentrations of nesfatin-1 (10, 15 and 20 µg/kg) then expression of necroptosis and necrosis mediators were measured by western blotting assay. Fibrosis, morphological damages, cardiac function, myocardial injury indictors and oxidative stress factors were evaluated as well. Induction of MI/R model resulted in cardiac dysfunction, oxidative stress, increased activity of RIPK1-RIPK3-MLKL axis and RhoA/ROCK pathway, extension of fibrosis and heart tissue damage. Highest tested concentration of nesfatin-1 markedly improved cardiac function. Moreover, it reduced oxidative stress, collagen deposition, and morphological damages, through inhibiting the expression of necroptosis mediators and also, necrosis including RIPK1, RIPK3, MLKL, ROCK1, and ROCK2 proteins. The lowest and middle tested concentrations of nesfatin-1 failed to exert protective effects against MI/R. These findings have shown that nesfatin-1 can exert cardioprotection against MI/R in a dose dependent manner by suppressing necroptosis via modulation of RIPK1-RIPK3-MLKL axis and RhoA/ROCK/RIP3 signaling pathway.
Collapse
Affiliation(s)
- Masoomeh Sharifi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Coutinho e Silva RDS, Zanoni FL, Simas R, Moreira LFP. Perspectives of bilateral thoracic sympathectomy for treatment of heart failure. Clinics (Sao Paulo) 2021; 76:e3248. [PMID: 34378733 PMCID: PMC8311637 DOI: 10.6061/clinics/2021/e3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Surgical neuromodulation therapies are still considered a last resort when standard therapies have failed for patients with progressive heart failure (HF). Although a number of experimental studies have provided robust evidence of its effectiveness, the lack of strong clinical evidence discourages practitioners. Thoracic unilateral sympathectomy has been extensively studied and has failed to show significant clinical improvement in HF patients. Most recently, bilateral sympathectomy effect was associated with a high degree of success in HF models, opening the perspective to be investigated in randomized controlled clinical trials. In addition, a series of clinical trials showed that bilateral sympathectomy was associated with a decreased risk of sudden death, which is an important outcome in patients with HF. These aspects indicates that bilateral sympathectomy could be an important alternative in the treatment of HF wherein pharmacological treatment barely reaches the target dose.
Collapse
Affiliation(s)
- Raphael dos Santos Coutinho e Silva
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Fernando Luiz Zanoni
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Rafael Simas
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Luiz Felipe Pinho Moreira
- Laboratorio Cirurgico de Pesquisa Cardiovascular (LIM-11), Instituto do Coracao (Incor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
32
|
Zeng B, Liao X, Liu L, Zhang C, Ruan H, Yang B. Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway. Life Sci 2020; 267:118977. [PMID: 33383053 DOI: 10.1016/j.lfs.2020.118977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022]
Abstract
AIMS Severe cardiovascular diseases, such as myocardial infarction or heart failure, can alter thyroid hormone (TH) secretion and peripheral conversion, leading to low triiodothyronine (T3) syndrome. Accumulating evidence suggests that TH has protective properties against cardiovascular diseases and that treatment with TH can effectively reduce myocardial damage after myocardial infarction (MI). Our aim is to investigate the effect of T3 pretreatment on cardiac function and pathological changes in mice subjected to MI and the underlying mechanisms. MAIN METHODS Adult male C57BL/6 mice underwent surgical ligation of the left anterior descending coronary artery (LAD) (or sham operation) to establish MI model. T3, BMS-754807 (inhibitor of insulin-like growth factor-1 receptor (IGF-1R)) or vehicle was administered before surgery. KEY FINDINGS Compared with the MI group, the T3 pretreatment group exhibited significant attenuation of the myocardial infarct area, inhibition of cardiomyocyte apoptosis and fibrosis, and improved left ventricular function after MI. In addition, T3 exhibited an enhanced potency to stimulate angiogenesis and exert anti-inflammatory effects by reducing the levels of serum inflammatory cytokines after MI. However, all of these protective effects were inhibited by the IGF-1R inhibitor BMS-754807. Moreover, the protein expression of IGF-1/PI3K/AKT signaling-related proteins, such as IGF-1, IGF-1R, phosphorylated PI3K (p-PI3K) and p-AKT was significantly upregulated in MI mice that received T3 pretreatment, and BMS-754807 pretreatment blocked the upregulation of the expression of these signaling-related proteins. SIGNIFICANCE T3 pretreatment can protect the heart against dysfunction post-MI, which may be mediated by the activation of the IGF-1/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Xiaoting Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science & Technology, Wuhan 430060, PR China
| | - Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Caixia Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Huaiyu Ruan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Bo Yang
- Department of Cardiology, Xianfeng County People's Hospital, Enshi 445000, PR China
| |
Collapse
|
33
|
Yu W, Chen C, Cheng J. The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Fail 2020; 7:3497-3504. [PMID: 33089967 PMCID: PMC7755013 DOI: 10.1002/ehf2.13065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiac hypertrophy can lead to heart failure and cardiovascular events and has become a research hotspot in the field of cardiovascular disease. Despite extensive and in-depth research, the pathogenesis of cardiac hypertrophy is far from being fully understood. Increasing evidence has shown that the transcription factor forkhead box protein O 1 (FoxO1) is closely related to the occurrence and development of cardiac hypertrophy. This review summarizes the current literature on the role and molecular mechanism of FoxO1 in cardiac hypertrophy. We searched the database MEDLINE via PubMed for available evidence on the effect of FoxO1 on cardiac hypertrophy. FoxO1 has many effects on multiple diseases, including cardiovascular diseases, diabetes, cancer, aging, and stem cell activity. Recent studies have shown that FoxO1 plays a critical role in the development of cardiac hypertrophy. Evidence for this relationship includes the following. (i) FoxO1 can regulate cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy and (ii) is controlled by several upstream signalling molecules (e.g. phosphatidylinositol 3-kinase/Akt, AMP-activated protein kinase, and sirtuins) and regulates many downstream transcription proteins (e.g. ubiquitin ligases muscle RING finger 1/muscle atrophy F-box, calcineurin/nuclear factor of activated T cells, and microRNAs). In response to stress or external stimulation (e.g. low energy, oxidative stress, or growth factor signalling), FoxO1 undergoes post-translational modification and transfers from the cytoplasm to nucleus, thus regulating the expression of a series of target genes in myocardium that are involved in cardiac growth/protein synthesis, calcium homeostasis, cell apoptosis, and autophagy. (iii) Finally, targeted regulation of FoxO1 is an effective method of intervening in myocardial hypertrophy. The information reviewed here should be significant for understanding the roles of FoxO1 in cardiac hypertrophy and should contribute to the design of further studies related to FoxO1 and the hypertrophic response. It should also shed light on a potential treatment for cardiac hypertrophy.
Collapse
Affiliation(s)
- Wei Yu
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| | - Chunjuan Chen
- Department of CardiologySecond Affiliated Hospital of Shantou University Medical College69 Dong Xia North RoadShantou515041China
| | - Jidong Cheng
- Department of Internal MedicineXiang'an Hospital of Xiamen UniversityXiamen361102China
| |
Collapse
|
34
|
Afsharirad T, Tahmasvand R, Amini M, Daraei B, Salimi M. Two novel anticancer compounds with minimum cardiotoxic property. BMC Pharmacol Toxicol 2020; 21:79. [PMID: 33213519 PMCID: PMC7678303 DOI: 10.1186/s40360-020-00457-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although two novel synthesized compounds with tri-aryl structures; 3-(4-chlorophenyl)-5-(4-fluorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (A) and 3,5-bis-(4-chlorophenyl)-4-phenyl-4,5-dihydro-1,2,4-oxadiazole (B) have been previously demonstrated to possess remarkable anti-breast cancer activity, their cardiotoxicity remains a major concern due to their mechanism of action. To address this concern, we assessed the ability of these compounds to cause toxicity towards H9c2 cardiomyocytes as an in vitro model of cardiotoxicity. METHODS Cytotoxic activity of both compounds was explored in vitro on H9c2 cells using MTT assay. Annexin V/PI method, intracellular ROS determination and mitochondrial membrane potential assay were applied to elucidate the mechanism of action of the cell death. RESULTS MTT assay revealed a concentration- and time-dependent cardiotoxicity. Findings of apoptosis by double staining with annexin V and propidium iodide divulged no cell death including apoptosis and necrosis at the concentration that were effective to inhibit cancer cells proliferation (10 μM) at 24 and 48 h. Furthermore, flow cytometric measurement of membrane potential and ROS determination using DCFH-DA verified the safe concentration of the compounds against H9c2 cells with no cardiotoxic effect. However, the higher concentration of the compounds could induce cell death through ROS-mediated mitochondrial dysfunction. CONCLUSIONS Altogether, the results represented two novel chemical molecules possessing anti-breast cancer activity with minimum cardiac side effect.
Collapse
Affiliation(s)
- Tayebeh Afsharirad
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box 13164, Tehran, Iran
| | - Raheleh Tahmasvand
- Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box 13164, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Teharn, Iran
| | - Bahram Daraei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Salimi
- Physiology and Pharmacology Department, Pasteur Institute of Iran, P.O. Box 13164, Tehran, Iran.
| |
Collapse
|
35
|
Naddaf S, Ehrenberg S, Hakim R, Mahamid M, Turgeman Y, Koren O. Epinephrine soaked tampons induced transient acute dilated cardiomyopathy during FESS procedure. BMC Cardiovasc Disord 2020; 20:452. [PMID: 33066731 PMCID: PMC7566064 DOI: 10.1186/s12872-020-01706-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022] Open
Abstract
Background Epinephrine, in all modes of use, may pose a wide range of cardiotoxic events, ranging from sinus tachycardia to heart failure, life threatening arrhythmias, and even death. Because of daily and extensive use of epinephrine, these unusual and rare events tend to be forgotten by physicians. We present a case of dilated cardiomyopathy that developed following routine use of epinephrine-impregnated tampons during function endoscopic sinus (FESS) surgery. Case presentation A healthy, 24-year-old man with no family history of heart disease has undergone elective surgery under general anesthesia to repair the paranasal sinuses using endoscopic approach. During surgery, soon after being treated with 1: 1000 diluted epinephrine-soaked tampons, an hypertensive crisis was noticed followed by pulseless electrical activity. An extensive examination led to the diagnosis of non-ischemic dilated cardiomyopathy. After several days of heart failure medical therapy, complete resolution of all structural and functional changes was achieved. Conclusion In our case, we present an unusual and rare event of acute dilated cardiomyopathy following the use of epinephrine-soaked tampons during elective FESS surgery. A prompt response was observed after several days of heart failure treatment. Awareness of the epinephrine cardiotoxic potential even in the form of soaked tampons is essential for proper diagnosis and prompt treatment.
Collapse
Affiliation(s)
- Sari Naddaf
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Scott Ehrenberg
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Hakim
- Department of Anaesthesia, Emek Medical Center, Afula, Israel
| | | | - Yoav Turgeman
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Heart Institute, Emek Medical Center, Afula, Israel
| | - Ofir Koren
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Heart Institute, Emek Medical Center, Afula, Israel.
| |
Collapse
|
36
|
Zhang ZL, Liu ML, Huang YS, Liang WY, Zhang MM, Fan YD, Ma MF. Ginsenoside Re enhances the survival of H9c2 cardiac muscle cells through regulation of autophagy. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:774-787. [PMID: 31232107 DOI: 10.1080/10286020.2019.1632834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/08/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
We examined the effect of ginsenoside Re (G-Re) on autophagy in H9c2 cardiomyocytes cultured in glucose deprivation (GD). Levels of the membrane-bound autophagy-related microtubule-associated protein 1A/1B-light chain 3 (LC3) B-2 were measured via immunoblotting and immunofluorescence was conducted to assess autophagosome formation. GD H9c2 cells were treated with 100 μmol/l G-Re. Cell viability was determined in culture medium. Phosphorylated 5' AMP-activated protein kinase (AMPK)-α and mammalian target of rapamycin (mTOR) levels were measured to explore the mechanisms underlying the effects of G-Re on autophagy in GD cells. G-Re treatment inhibited autophagosome formation and may be beneficial to GD cardiomyocytes.
Collapse
Affiliation(s)
- Zi-Long Zhang
- Department of Cardiology, Emergency General Hospital, Beijing 100028, China
| | - Mei-Lin Liu
- Department of Geriatric, Peking University First Hospital, Beijing 100034, China
| | - Ying-Shuo Huang
- Department of Research Ward, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wen-Yi Liang
- Department of Geriatric, Peking University First Hospital, Beijing 100034, China
| | - Miao-Miao Zhang
- Department of Cardiology, Emergency General Hospital, Beijing 100028, China
| | - Yu-Dong Fan
- Department of Cardiology, Emergency General Hospital, Beijing 100028, China
| | - Ming-Feng Ma
- Department of Cardiology, Fenyang Hospital of Shanxi Province, Fenyang 032200, China
| |
Collapse
|
37
|
A Novel Molecular Mechanism of IKK ε-Mediated Akt/mTOR Inhibition in the Cardiomyocyte Autophagy after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7046923. [PMID: 32724494 PMCID: PMC7382748 DOI: 10.1155/2020/7046923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Autophagy of cardiomyocytes after myocardial infarction (MI) is an important factor affecting the prognosis of MI. Excessive autophagy can lead to massive death of cardiomyocytes, which will seriously affect cardiac function. IKKε plays a crucial role in the occurrence of autophagy, but the functional role in MI remains largely unknown. To evaluate the impact of IKKε on the autophagy of cardiomyocytes after MI, MI was induced by surgical left anterior descending coronary artery ligation in IKKε knockout (KO) mice and wild-type (WT) mice. Starvation of H9c2 cells with IKKε siRNA and rescued with IKKε overexpressed afterwards to test the mechanism of IKKε in autophagy in vitro. Our results demonstrated that the expression of IKKε was upregulated in mice myocardial tissues which were consistent with cardiomyocyte autophagy after MI. Significantly, the IKKε KO mice showed increased infarct size, decreased viable cardiomyocytes, and exacerbated cardiac dysfunction when compared with the wild-type mice. Western blot and electron micrography analysis also revealed that loss of IKKε induces excessive cardiomyocyte autophagy and reduced the expression of p-Akt and p-mTOR. Similar results were observed in IKKε siRNA H9c2 cells in vitro which were under starvation injury. Notably, the levels of p-Akt and p-mTOR can restore in IKKε rescued cells. In conclusion, our results indicated that IKKε protects cardiomyocyte survival by reduced autophagy following MI via regulation of the Akt/mTOR signaling pathway. Thus, our study suggests that IKKε might represent a potential therapeutic target for the treatment of MI.
Collapse
|
38
|
Rocca C, Pasqua T, Cerra MC, Angelone T. Cardiac Damage in Anthracyclines Therapy: Focus on Oxidative Stress and Inflammation. Antioxid Redox Signal 2020; 32:1081-1097. [PMID: 31928066 DOI: 10.1089/ars.2020.8016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their serious side effects, anthracyclines (ANTs) are the most prescribed chemotherapeutic drugs because of their strong efficacy in both solid and hematological tumors. A major limitation to ANTs clinical application is the severe cardiotoxicity observed both acutely and chronically. The mechanism underlying cardiac dysfunction under chemotherapy is mainly dependent on the generation of oxidative stress and systemic inflammation, both of which lead to progressive cardiomyopathy and heart failure. Recent Advances: Over the years, the iatrogenic ANTs-induced cardiotoxicity was believed to be simply given by iron metabolism and reactive oxygen species production; however, several experimental data indicate that ANTs may use alternative damaging mechanisms, such as topoisomerase 2β inhibition, inflammation, pyroptosis, immunometabolism, and autophagy. Critical Issues: In this review, we aimed at discussing ANTs-induced cardiac injury from different points of view, updating and focusing on oxidative stress and inflammation, since these pathways are not exclusive or independent from each other but they together importantly contribute to the complexity of ANTs-induced multifactorial cardiotoxicity. Future Directions: A deeper understanding of the mechanistic signaling leading to ANTs side effects could reveal crucial targeting molecules, thus representing strategic knowledge to promote better therapeutic efficacy and lower cardiotoxicity during clinical application.
Collapse
Affiliation(s)
- Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Maria Carmela Cerra
- Laboratory of Organ and System Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.,National Institute of Cardiovascular Research (INRC), Bologna, Italy
| |
Collapse
|
39
|
Qian X, Zhu M, Song J, He X. Effects of atorvastatin on serum lipids, cardiomyocyte apoptosis and related genes in rats. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2020; 32:1725-1730. [DOI: 10.1016/j.jksus.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin Chim Acta 2020; 506:72-83. [PMID: 32092316 DOI: 10.1016/j.cca.2020.02.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/29/2022]
Abstract
The present review is a summary of the recent literature concerning Bnip3 expression, function, and regulation, along with its implications in mitochondrial dysfunction, disorders of mitophagy homeostasis, and development of diseases of secondary mitochondrial dysfunction. As a member of the Bcl-2 family of cell death-regulating factors, Bnip3 mediates mPTP opening, mitochondrial potential, oxidative stress, calcium overload, mitochondrial respiratory collapse, and ATP shortage of mitochondria from multiple cells. Recent studies have discovered that Bnip3 regulates mitochondrial dysfunction, mitochondrial fragmentation, mitophagy, cell apoptosis, and the development of lipid disorder diseases via numerous cellular signaling pathways. In addition, Bnip3 promotes the development of cardiac hypertrophy by mediating inflammatory response or the related signaling pathways of cardiomyocytes and is also responsible for raising abnormal mitophagy and apoptosis progression through multiple molecular signaling pathways, inducing the pathogenesis and progress of hepatocellular carcinoma (HCC). Different molecules regulate Bnip3 expression at both the transcriptional and post-transcriptional level, leading to mitochondrial dysfunction and unbalance of mitophagy in hepatocytes, which promotes the development of non-alcoholic fatty liver disease (NAFLD). Thus, Bnip3 plays an important role in mitochondrial dysfunction and mitophagy homeostasis and has emerged as a promising therapeutic target for diseases of secondary mitochondrial dysfunction.
Collapse
|
41
|
Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020; 9:cells9010242. [PMID: 31963679 PMCID: PMC7016826 DOI: 10.3390/cells9010242] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is the most rapidly growing cardiovascular health burden worldwide. HF can be classified into three groups based on the percentage of the ejection fraction (EF): heart failure with reduced EF (HFrEF), heart failure with mid-range-also called mildly reduced EF- (HFmrEF), and heart failure with preserved ejection fraction (HFpEF). HFmrEF can progress into either HFrEF or HFpEF, but its phenotype is dominated by coronary artery disease, as in HFrEF. HFrEF and HFpEF present with differences in both the development and progression of the disease secondary to changes at the cellular and molecular level. While recent medical advances have resulted in efficient and specific treatments for HFrEF, these treatments lack efficacy for HFpEF management. These differential response rates, coupled to increasing rates of HF, highlight the significant need to understand the unique pathogenesis of HFrEF and HFpEF. In this review, we summarize the differences in pathological development of HFrEF and HFpEF, focussing on disease-specific aspects of inflammation and endothelial function, cardiomyocyte hypertrophy and death, alterations in the giant spring titin, and fibrosis. We highlight the areas of difference between the two diseases with the aim of guiding research efforts for novel therapeutics in HFrEF and HFpEF.
Collapse
|
42
|
Zhang J, Liu D, Zhang M, Zhang Y. Programmed necrosis in cardiomyocytes: mitochondria, death receptors and beyond. Br J Pharmacol 2019; 176:4319-4339. [PMID: 29774530 PMCID: PMC6887687 DOI: 10.1111/bph.14363] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Excessive death of cardiac myocytes leads to many cardiac diseases, including myocardial infarction, arrhythmia, heart failure and sudden cardiac death. For the last several decades, most work on cell death has focused on apoptosis, which is generally considered as the only form of regulated cell death, whereas necrosis has been regarded to be an unregulated process. Recent findings reveal that necrosis also occurs in a regulated manner and that it is closely related to the physiology and pathophysiology of many organs, including the heart. The recognition of necrosis as a regulated process mandates a re-examination of cell death in the heart together with the mechanisms and therapy of cardiac diseases. In this study, we summarize the regulatory mechanisms of the programmed necrosis of cardiomyocytes, that is, the intrinsic (mitochondrial) and extrinsic (death receptor) pathways. Furthermore, the role of this programmed necrosis in various heart diseases is also delineated. Finally, we describe the currently known pharmacological inhibitors of several of the key regulatory molecules of regulated cell necrosis and the opportunities for their therapeutic use in cardiac disease. We intend to systemically summarize the recent progresses in the regulation and pathological significance of programmed cardiomyocyte necrosis along with its potential therapeutic applications to cardiac diseases. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Junxia Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Dairu Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular MedicinePeking UniversityBeijingChina
| |
Collapse
|
43
|
Ma J, Chen Z, Ma Y, Xia Y, Hu K, Zhou Y, Chen A, Qian J, Ge J. MicroRNA‐19a attenuates hypoxia‐induced cardiomyocyte apoptosis by downregulating NHE‐1 expression and decreasing calcium overload. J Cell Biochem 2019; 121:1747-1758. [PMID: 31633225 DOI: 10.1002/jcb.29411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jiaqi Ma
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Yuanji Ma
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases Fudan University Shanghai China
| |
Collapse
|
44
|
Liu B, Zhang Q, Liang Y, Zhang Y, Yuan X, Ling J, Li C. Extracorporeal membrane oxygenation mitigates myocardial injury and improves survival in porcine model of ventricular fibrillation cardiac arrest. Scand J Trauma Resusc Emerg Med 2019; 27:82. [PMID: 31462264 PMCID: PMC6714103 DOI: 10.1186/s13049-019-0653-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Despite decades of improved strategy in conventional cardiopulmonary resuscitation (CCPR), survival rates of favorable neurological outcome after cardiac arrest (CA) remains poor. It is indicated that the survival rate of successful resuscitation of extracorporeal membrane oxygenation (ECMO) is superior to that of CCPR. But the effect of ECMO in heart is unclear. We aimed to investigate whether ECMO produces cardiac protection by ameliorating post-ischemia reperfusion myocardial injury and myocardial apoptosis. METHODS After undergoing 8-min untreated ventricle fibrillation (VF) and 6-min basic life support, 20 male pigs were ultimately used in this study and randomly divided into two groups: CCPR group (n = 10) and extracorporeal CPR (ECPR) group (n = 10). Hemodynamics and blood samples were obtained at baseline and 1, 2, 4, and 6 h during resuscitation. The successfully resuscitated pigs were sacrificed at 6 h after return of spontaneous circulation (ROSC), and the hearts were removed and analyzed under electron microscopy, and immunohistochemistry, quantitative real-time polymerase chain reaction, and immunofluorescence staining assay were performed to evaluate myocardial injury and myocardial apoptosis. RESULTS There were no significant differences at basic hemodynamic status between the two groups. The survival rate of ECPR was significantly higher than CCPR group (10/10 [100%] vs. 4/10 [40%], P = 0.04). Compared to CCPR group, ECPR group exhibited a better outcome in hemodynamic function. Cardiac function was significantly impaired after ROSC in both groups, but left ventricular ejection fraction (LVEF) was significantly elevated in ECPR group than CCPR group. The expression of myocardial injury biomarkers (CK-MB, cTNI, H-FABP), endothelial injury biomarker (sP-selectin), and cardiac function biomarker (BNP) were remarkably increased after ROSC in both groups, but low levels in ECPR group than in CCPR group. Cardiomyocytes injury was attenuated in ECPR group under transmission electron microscopy (TEM). Typical apoptotic nuclei of cardiomyocytes were significantly reduced and oxidative damage were attenuated in ECPR group. CONCLUSIONS During prolonged VF-induced CA, ECPR contributes to improving hemodynamics, attenuating myocardial ischemia-reperfusion injury, ameliorating myocardial ultra structure, improving cardiac function, and elevating survival rate by preventing oxidative damage, regulating energy metabolism, inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Bo Liu
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Qiang Zhang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Yong Liang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Yun Zhang
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Xiaoli Yuan
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Jiyang Ling
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| | - Chunsheng Li
- grid.411607.5Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8# Worker’s Stadium South Road, Chao-Yang District, Beijing, 100020 China
| |
Collapse
|
45
|
Daniels LJ, Varma U, Annandale M, Chan E, Mellor KM, Delbridge LMD. Myocardial Energy Stress, Autophagy Induction, and Cardiomyocyte Functional Responses. Antioxid Redox Signal 2019; 31:472-486. [PMID: 30417655 DOI: 10.1089/ars.2018.7650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Energy stress in the myocardium occurs in a variety of acute and chronic pathophysiological contexts, including ischemia, nutrient deprivation, and diabetic disease settings of substrate disturbance. Although the heart is highly adaptive and flexible in relation to fuel utilization and routes of adenosine-5'-triphosphate (ATP) generation, maladaptations in energy stress situations confer functional deficit. An understanding of the mechanisms that link energy stress to impaired myocardial performance is crucial. Recent Advances: Emerging evidence suggests that, in parallel with regulated enzymatic pathways that control intracellular substrate supply, other processes of "bulk" autophagic macromolecular breakdown may be important in energy stress conditions. Recent findings indicate that cargo-specific autophagic activity may be important in different stress states. In particular, induction of glycophagy, a glycogen-specific autophagy, has been described in acute and chronic energy stress situations. The impact of elevated cardiomyocyte glucose flux relating to glycophagy dysregulation on contractile function is unknown. Critical Issues: Ischemia- and diabetes-related cardiac adverse events comprise the majority of cardiovascular disease morbidity and mortality. Current therapies involve management of systemic comorbidities. Cardiac-specific adjunct treatments targeted to manage myocardial energy stress responses are lacking. Future Directions: New knowledge is required to understand the mechanisms involved in selective recruitment of autophagic responses in the cardiomyocyte energy stress response. In particular, exploration of the links between cell substrate flux, calcium ion (Ca2+) flux, and phagosomal cargo flux is required. Strategies to target specific fuel "bulk" management defects in cardiac energy stress states may be of therapeutic value.
Collapse
Affiliation(s)
- Lorna J Daniels
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Upasna Varma
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Marco Annandale
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Eleia Chan
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand.,2 Department of Physiology, University of Melbourne, Melbourne, Australia.,3 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Lea M D Delbridge
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
46
|
Etehad Roodi N, Karkuki Osguei N, Hasanzadeh Daloee M, Pasdar A, Ghayour-Mobarhan M, Ferns G, Samadi Kuchaksaraei A. Association of Endonuclease G Gene Variants with Cardiovascular Disease Risk Factors. Rep Biochem Mol Biol 2019; 8:147-152. [PMID: 31832438 PMCID: PMC6844608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a leading cause of death, supporting the need for the identification of novel biomarkers as risk stratification factors. Endonuclease G (ENDOG) has recently been suggested to be a novel determinant of cardiac hypertrophy and mitochondrial function, and plays an important role in apoptosis processes involved in cardiac myocyte death. The aim of current study was to explore the association of two genetic variants in ENDOG gene (ENDOG) with CVD risk factors in an Iranian population. METHODS Subjects included 663 patients with CVD and 282 healthy individuals recruited as part of the Mashhad Stroke and Heart Atherosclerotic Disorders Cohort Study. The ENDOG S12L (rs 2293969) and L142M (rs 61397314) variants were genotyped. Anthropometric and biochemical factors were measured in all the subjects followed by univariate and multivariate analyses to determine the association of these genetic markers with CVD and biochemical parameters. RESULTS ENDOG polymorphisms were found at a significantly higher prevalence in individuals who had histories of smoking and breaking point in L142M. In contrast, other risk factors for cardiovascular disease, including lipid profile and blood pressure, showed no or very weak relationship with the ENDOG polymorphisms. CONCLUSION Our findings indicated an association between an ENDOG genetic variant and smoking history as a cardiovascular risk factor. Further studies in the prospective setting are warranted to investigate the value of this marker.
Collapse
Affiliation(s)
- Negar Etehad Roodi
- Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran.
| | | | - Mahdy Hasanzadeh Daloee
- Cardiovascular Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK.
| | | |
Collapse
|
47
|
Copaiba Oil Attenuates Right Ventricular Remodeling by Decreasing Myocardial Apoptotic Signaling in Monocrotaline-Induced Rats. J Cardiovasc Pharmacol 2019; 72:214-221. [PMID: 30212415 DOI: 10.1097/fjc.0000000000000617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is an increase in oxidative stress and apoptosis signaling during the transition from hypertrophy to right ventricular (RV) failure caused by pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). In this study, it was evaluated the action of copaiba oil on the modulation of proteins involved in RV apoptosis signaling in rats with PAH. Male Wistar rats (±170 g, n = 7/group) were divided into 4 groups: control, MCT, copaiba oil, and MCT + copaiba oil. PAH was induced by MCT (60 mg/kg intraperitoneally) and, 7 days later, treatment with copaiba oil (400 mg/kg by gavage) was given for 14 days. Echocardiographic and hemodynamic measurements were performed, and the RV was collected for morphometric evaluations, oxidative stress, apoptosis, and cell survival signaling, and eNOS protein expression. Copaiba oil reduced RV hypertrophy (24%), improved RV systolic function, and reduced RV end-diastolic pressure, increased total sulfhydryl levels and eNOS protein expression, reduced lipid and protein oxidation, and the expression of proteins involved in apoptosis signaling in the RV of MCT + copaiba oil as compared to MCT group. In conclusion, copaiba oil reduced oxidative stress, and apoptosis signaling in RV of rats with PAH, which may be associated with an improvement in cardiac function caused by this compound.
Collapse
|
48
|
Ghardashi Afousi A, Gaeini A, Rakhshan K, Naderi N, Darbandi Azar A, Aboutaleb N. Targeting necroptotic cell death pathway by high-intensity interval training (HIIT) decreases development of post-ischemic adverse remodelling after myocardial ischemia / reperfusion injury. J Cell Commun Signal 2019; 13:255-267. [PMID: 30073629 PMCID: PMC6498245 DOI: 10.1007/s12079-018-0481-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022] Open
Abstract
Regulated necrosis (necroptosis) plays a pivotal role in the extent of cardiomyocyte loss and the development of post-ischemic adverse remodelling and cardiac dysfunction following myocardial I/R injury. Although HIIT has been reported to give rise to cardioprotection against MI, but the detailed knowledge of its molecular targets for treatment of MI is still not available. The LAD of Male Wistar rats was occluded to induce MI for 30 min and reperfusion for eight weeks. We investigated the effect of long-term HIIT for eight weeks on lipid peroxidation, SOD activity and GSH content using ELISA assay. Cardiac function, fibrosis, and infarct size were assessed by echocardiography, Masson's trichrome and Evans Blue/TTC dual staining respectively. The expressions of gene markers of myocardial hypertrophy, fibrosis and key mediators of necroptosis were measured using RT-PCR and western blotting assay respectively. The results indicated that HIIT reduced lipid peroxidation, infarct size and improved endogenous antioxidant system and heart function. Significant decreases in mRNA levels of procollagen α1(I), α1(III), and fibronectin1were observed following HIIT. Moreover, that HIIT significantly decreased the expression of key mediators of necroptosis induced by MI (P < 0.05). There were no significant differences in β-MHC mRNA level in different groups. The findings of study suggest that HIIT might exert cardioprotective effects against post-ischemic adverse remodeling through targeting necroptosis process. Likewise, cardioprotective effects of HIIT in coping with myocardial I/R injury may be associated with RIP1-RIP3-MLKL axis. These findings establish a critical foundation for higher efficiency of exercise-based cardiac rehabilitation post-MI and future research.
Collapse
Affiliation(s)
- Alireza Ghardashi Afousi
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, IR Iran
| | - Abbasali Gaeini
- Department of Exercise Physiology, Faculty of Physical Education and Exercise Sciences, University of Tehran, Tehran, IR Iran
| | - Kamran Rakhshan
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darbandi Azar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Liu W, Ru L, Su C, Qi S, Qi X. Serum Levels of Inflammatory Cytokines and Expression of BCL2 and BAX mRNA in Peripheral Blood Mononuclear Cells and in Patients with Chronic Heart Failure. Med Sci Monit 2019; 25:2633-2639. [PMID: 30968846 PMCID: PMC6474297 DOI: 10.12659/msm.912457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background This study investigated the expression of the BCL2 and BAX mRNA, inflammatory cytokines, interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), and cardiac function in patients with chronic heart failure (CHF). The New York Heart Association (NYHA) Functional Classification and measurement of the left ventricular ejection fraction (LVEF) evaluated cardiac function. Material/Methods Patients with CHF (n=60) due to coronary heart disease, hypertensive heart disease, and cardiomyopathy, and healthy controls (n=30) were studied. Enzyme-linked immunosorbent assay (ELISA) measured serum levels of IL-1β, IL-6, and TNF-α. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) detected mRNA expression of BCL2 and BAX in peripheral blood mononuclear cells (PBMCs). Color Doppler ultrasound measured the LVEF, and the NYHA classification of CHF was used. Results In patients with CHF, levels of IL-1β, IL-6 and TNF-α, and mRNA expression of BAX were significantly increased compared with the control group (p<0.01); BCL2 mRNA level was significantly lower (p<0.01). There were no significant differences in the expression levels of inflammatory cytokines, or BCL2 or BAX mRNA in patients with CHF due to coronary heart disease, hypertensive heart disease, or cardiomyopathy. Expression levels of IL-1β, IL-6, TNF-α, and BAX mRNA were significantly associated with the degree of CHF. Cardiac function was negatively correlated with LVEF (p<0.05). Expression levels of BCL2 mRNA level were negatively correlated with cardiac function (p<0.05), and positively correlated with LVEF (p<0.05). Conclusions Levels of IL-1β, IL-6, TNF-α, and BAX mRNA were negatively correlated with cardiac function, and BCL2 mRNA expression was positively associated with CHF.
Collapse
Affiliation(s)
- Wenxiu Liu
- Department of Cardiology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Chang Su
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Xiaoyong Qi
- Department of Cardiology, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
50
|
Li Y, Quan X, Li X, Pan Y, Zhang T, Liang Z, Wang Y. Kdm6A Protects Against Hypoxia-Induced Cardiomyocyte Apoptosis via H3K27me3 Demethylation of Ncx Gene. J Cardiovasc Transl Res 2019; 12:488-495. [DOI: 10.1007/s12265-019-09882-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/05/2019] [Indexed: 12/28/2022]
|