1
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
2
|
Li TL, Zhu NN, Zhao MX, Sun J, Yin Z, Xie P, Huang JH, Guo JP, Yuan HT, Li SX, Zhao-Liang S. Omentin-1 attenuates atrial fibrillation via Src/PI3K/Akt signaling-mediated anti-fibrotic effects in cardiac fibroblasts. Eur J Pharmacol 2025; 996:177588. [PMID: 40187594 DOI: 10.1016/j.ejphar.2025.177588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Atrial fibrillation (AF) is characterized by progressive atrial fibrosis, leading to increased morbidity and mortality. While the novel adipokine Omentin-1 demonstrates anti-fibrotic potential across organ systems, its role in AF pathogenesis remains unclear. This study investigates Omentin-1's therapeutic effects and the underlying mechanisms in angiotensin II (Ang II)-induced atrial fibrosis and AF. METHODS Atrial fibrosis was induced in C57BL/6 mice via continuous Ang II infusion for 4 weeks. Omentin-1 overexpression was achieved using adeno-associated virus serotype 2/9 (AAV2/9). AF susceptibility was assessed by programmed electrical stimulation, and atrial fibrosis was quantified using histological staining and Western blot analysis. Immunofluorescence co-localization assessed cell-type specific expression of Omentin-1, and proteomic analysis of atrial fibroblasts was conducted to explore molecular pathways involved. In vitro studies using primary fibroblasts were conducted to validate Omentin-1's effects. RESULTS Omentin-1 levels were significantly decreased in both serum and atrial tissue of Ang II-treated mice. Omentin-1 overexpression reduced AF inducibility, decreased atrial fibrosis, and improved left atrial strain parameters. Immunofluorescence showed that Omentin-1 predominantly localized to atrial fibroblasts. Mechanistically, Omentin-1 regulated collagen metabolism by targeting fibroblasts, with Src kinase acting as a critical mediator of fibroblast activation through the PI3K/Akt signaling pathway. CONCLUSION Omentin-1 attenuates atrial fibrosis and AF susceptibility through regulation of the Src/PI3K/Akt signaling pathway in atrial fibroblasts. These findings suggest that Omentin-1 may represent a potential therapeutic target for the prevention and treatment of AF.
Collapse
Affiliation(s)
- Tian-Lun Li
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Na-Na Zhu
- Department of Cardiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mao-Xiang Zhao
- Department of Interventional Center of Valvular Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jiao Sun
- Postgraduate School, Medical School of Chinese PLA, Beijing, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Yin
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
| | - Peng Xie
- Nankai University Medical College, Tianjin, 300071, China
| | - Jin-Huan Huang
- Postgraduate School, Medical School of Chinese PLA, Beijing, China
| | - Jian-Ping Guo
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hong-Tao Yuan
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shi-Xing Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Shan Zhao-Liang
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China; Nankai University Medical College, Tianjin, 300071, China.
| |
Collapse
|
3
|
Ye C, Li Y, Shi J, He L, Shi X, Yang W, Lei W, Quan S, Lan X, Liu S. Network pharmacology analysis revealed the mechanism and active compounds of jiao tai wan in the treatment of type 2 diabetes mellitus via SRC/PI3K/AKT signaling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118898. [PMID: 39374878 DOI: 10.1016/j.jep.2024.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiao-tai-wan (JTW) is a traditional Chinese herbal prescription, exerts its therapeutic effects on type 2 diabetes mellitus (T2DM). However, its mechanisms and active components remain unclear. AIM OF THE STUDY To investigate the therapeutic mechanisms of JTW in treating type 2 diabetes mellitus (T2DM), focusing on identifying active components, their targets, and validating efficacy through SRC/PI3K/AKT signaling pathway modulation in vitro and in vivo. MATERIALS AND METHODS Active ingredients were retrieved from the Traditional Chinese Medicine System Pharmacology (TCMSP) and Comprehensive Traditional Chinese Medicine Database (TCMID). Targets for these components were identified using the ChemMapper database based on 3D structural similarity. T2DM-related genes were sourced from the DisGeNET and Gene Expression Omnibus (GEO) databases. Protein-protein interaction (PPI) analysis and functional enrichment analysis were conducted to construct a pathway network of "herbs-active ingredients-candidate targets", identifying core molecular mechanisms and key active ingredients. SwissDock was used for molecular docking to predict ligands for candidate targets. The diabetic models were established using C57BL/6 mice and human liver HepG2 cell lines. Their Effectiveness and key molecules were verified through biochemical detection and immunoblotting. RESULTS Total 30 active compounds, 597 active ingredient targets, 9631 T2DM-related genes, and 521 overlapping candidate targets were found for JTW on T2DM. Go enrichment indicated the core pathways enriched on insulin and glucose metabolism. The auto-docking demonstrated SRC has potential binds to ingredients of JTW. In vivo, JTW can reduce blood glucose, and blood lipid levels, and HOMA-IR, and increase HOMA-ISI levels in T2DM mice with reduced ALT, AST, MDA levels and increased SOD levels. Meanwhile, decreased phosphorylation of SRC, along with increased levels of phosphorylated PI3K, PI3K, and phosphorylated AKT, were observed. HE staining of liver tissues further confirmed that JTW administration improved liver morphology, reducing inflammation and necrosis. In vitro, JTW significantly ameliorates upstream dysregulation by reducing SRC phosphorylation while enhancing phosphorylated PI3K, PI3K, and AKT phosphorylation levels. CONCLUSION JTW may alleviate glucose, insulin resistance, and lipid metabolism disorders by the SRC/PI3K/AKT signaling pathway, that provide a novel view of potential active compounds and essential targets in treating T2DM.
Collapse
Affiliation(s)
- Cunsi Ye
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Jiayin Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Liena He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Xinyan Shi
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Wei Yang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Shijian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China.
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China.
| |
Collapse
|
4
|
Zhang S, Li S, Xie S, Cui L, Gao Y, Wang Y. The Role of Ca 2+/PI3K/Akt/eNOS/NO Pathway in Astragaloside IV-Induced Inhibition of Endothelial Inflammation Triggered by Angiotensin II. Mediators Inflamm 2024; 2024:3193950. [PMID: 39512364 PMCID: PMC11540887 DOI: 10.1155/2024/3193950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Inflammation induced by angiotensin II (Ang II) is a key event in the progression of numerous cardiovascular diseases. Astragaloside IV (AS-IV), a glycoside extracted from Astragalus membranaceus Bunge, has been shown to inhibit Ang II-induced inflammatory responses in vivo. However, the mechanisms underlying the beneficial effects are still unclear. This study investigated whether AS-IV attenuates endothelial inflammation induced by Ang II via the activation of endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. Human umbilical vein endothelial cells (HUVECs) were cultured in the presence of AS-IV with or without the specific inhibitor of NOS or Ca2+- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent cascade prior to Ang II exposure. Incubation of HUVECs with AS-IV enhanced NO production and eNOSser1177 phosphorylation. These responses were abrogated by the inhibition of NOS or Ca2+- and PI3K/Akt-dependent pathway. In addition, preincubation of HUVECs with AS-IV inhibited Ang II-induced cytokine and chemokine production, adhesion molecule expression, monocyte adhesion, and nuclear factor kappa B (NF-κB) activation as evidenced by the attenuation of inhibitor of kappa B alpha phosphorylation and subsequent NF-κB DNA binding. These effects of AS-IV were abolished by the suppression of NOS or Ca2+- and PI3K/Akt-dependent cascade. Our findings indicate that AS-IV attenuates inflammatory responses triggered by Ang II possibly via the activation of Ca2+/PI3K/Akt/eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shiyang Xie
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Yuan Gao
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
5
|
Mezzelani M, Notarstefano V, Panni M, Giorgini E, Gorbi S, Regoli F. Exposure to environmental pharmaceuticals affects the macromolecular composition of mussels digestive glands. Sci Rep 2024; 14:9369. [PMID: 38653774 DOI: 10.1038/s41598-024-59663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Michela Panni
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy.
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy.
| |
Collapse
|
6
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
7
|
Pan J, Tang J, Gai J, Jin Y, Tang B, Fan X. Exploring the mechanism of Ginkgo biloba L. leaves in the treatment of vascular dementia based on network pharmacology, molecular docking, and molecular dynamics simulation. Medicine (Baltimore) 2023; 102:e33877. [PMID: 37233418 PMCID: PMC10219709 DOI: 10.1097/md.0000000000033877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Ginkgo biloba L. leaves (GBLs) play a substantial role in the treatment of vascular dementia (VD); however, the underlying mechanisms of action are unclear. OBJECTIVE This study was conducted to investigate the mechanisms of action of GBLs in the treatment of VD through network pharmacology, molecular docking, and molecular dynamics simulations. METHODS The active ingredients and related targets of GBLs were screened using the traditional Chinese medicine systems pharmacology, Swiss Target Prediction and GeneCards databases, and the VD-related targets were screened using the OMIM, DrugBank, GeneCards, and DisGeNET databases, and the potential targets were identified using a Venn diagram. We used Cytoscape 3.8.0 software and the STRING platform to construct traditional Chinese medicine-active ingredient-potential target and protein-protein interaction networks, respectively. After gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of potential targets using the DAVID platform, the binding affinity between key active ingredients and targets was analyzed by molecular docking, and finally, the top 3 proteins-ligand pairs with the best binding were simulated by molecular dynamics to verify the molecular docking results. RESULTS A total of 27 active ingredients of GBLs were screened and 274 potential targets involved in the treatment of VD were identified. Quercetin, luteolin, kaempferol, and ginkgolide B were the core ingredients for treatment, and AKT1, TNF, IL6, VEGFA, IL1B, TP53, CASP3, SRC, EGFR, JUN, and EGFR were the main targets of action. The main biological processes involved apoptosis, inflammatory response, cell migration, lipopolysaccharide response, hypoxia response, and aging. PI3K/Akt appeared to be a key signaling pathway for GBLs in the treatment of VD. Molecular docking displayed strong binding affinity between the active ingredients and the targets. Molecular dynamics simulation results further verified the stability of their interactions. CONCLUSION SUBSECTIONS This study revealed the potential molecular mechanisms involved in the treatment of VD by GBLs using multi-ingredient, multi-target, and multi-pathway interactions, providing a theoretical basis for the clinical treatment and lead drug development of VD.
Collapse
Affiliation(s)
- Jienuo Pan
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiqin Tang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jialin Gai
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yilan Jin
- School of International Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingshun Tang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohua Fan
- Department of Rehabilitation Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Papadopoulos KI, Papadopoulou A, Aw TC. Beauty and the beast: host microRNA-155 versus SARS-CoV-2. Hum Cell 2023; 36:908-922. [PMID: 36847920 PMCID: PMC9969954 DOI: 10.1007/s13577-023-00867-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
Severe acute respiratory coronavirus 2 (SARS-CoV-2) infection in the young and healthy usually results in an asymptomatic or mild viral syndrome, possibly through an erythropoietin (EPO)-dependent, protective evolutionary landscape. In the old and in the presence of co-morbidities, however, a potentially lethal coronavirus disease 2019 (COVID-19) cytokine storm, through unrestrained renin-angiotensin aldosterone system (RAAS) hyperactivity, has been described. Multifunctional microRNA-155 (miR-155) elevation in malaria, dengue virus (DENV), the thalassemias, and SARS-CoV-1/2, plays critical antiviral and cardiovascular roles through its targeted translational repression of over 140 genes. In the present review, we propose a plausible miR-155-dependent mechanism whereby the translational repression of AGRT1, Arginase-2 and Ets-1, reshapes RAAS towards Angiotensin II (Ang II) type 2 (AT2R)-mediated balanced, tolerable, and SARS-CoV-2-protective cardiovascular phenotypes. In addition, it enhances EPO secretion and endothelial nitric oxide synthase activation and substrate availability, and negates proinflammatory Ang II effects. Disrupted miR-155 repression of AT1R + 1166C-allele, significantly associated with adverse cardiovascular and COVID-19 outcomes, manifests its decisive role in RAAS modulation. BACH1 and SOCS1 repression creates an anti-inflammatory and cytoprotective milieu, robustly inducing antiviral interferons. MiR-155 dysregulation in the elderly, and in comorbidities, allows unimpeded RAAS hyperactivity to progress towards a particularly aggressive COVID-19 course. Elevated miR-155 in thalassemia plausibly engenders a favorable cardiovascular profile and protection against malaria, DENV, and SARS-CoV-2. MiR-155 modulating pharmaceutical approaches could offer novel therapeutic options in COVID-19.
Collapse
Affiliation(s)
- K. I. Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Bangkok, 10310 Thailand
| | - A. Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63 Lund, Sweden
| | - T. C. Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889 Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
9
|
Tissue Derivation and Biological Sex Uniquely Mediate Endothelial Cell Protein Expression, Redox Status, and Nitric Oxide Synthesis. Cells 2022; 12:cells12010093. [PMID: 36611888 PMCID: PMC9818567 DOI: 10.3390/cells12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Human endothelial cells are routinely utilized in cardiovascular research to provide a translational foundation for understanding how the vascular endothelium functions in vivo. However, little attention has been given to whether there are sex specific responses in vitro. Similarly, it is unclear whether endothelial cells derived from distinct tissues behave in a homogenous manner. Herein, we demonstrate that marked sex differences exist within, and between, commonly utilized human primary endothelial cells from healthy donors, with respect to redox status, nitric oxide synthesis, and associated proteins that can mediate their expression. Further, we demonstrate that endothelial cells respond uniquely to inflammatory insult in a sex- and tissue origin-dependent manner. Our findings suggest sex and tissue derivation may need to be considered when studying endothelial cells in vitro as cells derived from distinct tissue and sexes may not behave interchangeably.
Collapse
|
10
|
Munjal A, Khandia R, Paladhi S, Pandey M, Parihar A, Pathe C, Rajukumar K, Bin Emran T, Alqahtani T, Alqahtani AM, Alamri AH, Chidambara K, Dhama K. Evaluating the Effects of Hypotensive Drug Valsartan on Angiogenesis and Associated Breast Ductal Carcinoma Cell Metastasis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.817.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Mohamed R, Shajimoon A, Afroz R, Gabr M, Thomas WG, Little PJ, Kamato D. Akt acts as a switch for GPCR transactivation of the TGF-β receptor type 1. FEBS J 2021; 289:2642-2656. [PMID: 34826189 DOI: 10.1111/febs.16297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/12/2021] [Accepted: 12/25/2021] [Indexed: 12/20/2022]
Abstract
Transforming growth factor (TGF)-β signalling commences with the engagement of TGF-β ligand to cell surface TGF-β receptors (TGFBR) stimulating Smad2 carboxyl-terminal phosphorylation (phospho-Smad2C) and downstream biological responses. In several cell models, G protein-coupled receptors (GPCRs) transactivate the TGF-β receptors type-1 (TGFBR1) leading to phospho-Smad2C, however, we have recently published that in keratinocytes thrombin did not transactivate the TGFBR1. The bulk of TGFBRs reside in the cytosol and in response to protein kinase B (Akt phosphorylation) can translocate to the cell surface increasing the cell's responsiveness to TGF-β. In this study, we investigate the role of Akt in GPCR transactivation of the TGFBR1. We demonstrate that angiotensin II and thrombin do not phosphorylate Smad2C in human vascular smooth muscle cells and in keratinocytes respectively. We used Akt agonist, SC79 to sensitise the cells to Akt and observed that Ang II and thrombin phosphorylate Smad2C via Akt/AS160-dependent pathways. We show that SC79 rapidly translocates TGFBRs to the cell surface thus increasing the cell's response to the GPCR agonist. These findings highlight novel mechanistic insight for the role of Akt in GPCR transactivation of the TGFBR1.
Collapse
Affiliation(s)
- Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Aravindra Shajimoon
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Mai Gabr
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Australia
| |
Collapse
|
12
|
Kumar N, Zuo Y, Yalavarthi S, Hunker KL, Knight JS, Kanthi Y, Obi AT, Ganesh SK. SARS-CoV-2 Spike Protein S1-Mediated Endothelial Injury and Pro-Inflammatory State Is Amplified by Dihydrotestosterone and Prevented by Mineralocorticoid Antagonism. Viruses 2021; 13:2209. [PMID: 34835015 PMCID: PMC8617813 DOI: 10.3390/v13112209] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
Men are disproportionately affected by the coronavirus disease-2019 (COVID-19), and face higher odds of severe illness and death compared to women. The vascular effects of androgen signaling and inflammatory cytokines in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated endothelial injury are not defined. We determined the effects of SARS-CoV-2 spike protein-mediated endothelial injury under conditions of exposure to androgen dihydrotestosterone (DHT) and tumor necrosis factor-a (TNF-α) and tested potentially therapeutic effects of mineralocorticoid receptor antagonism by spironolactone. Circulating endothelial injury markers VCAM-1 and E-selectin were measured in men and women diagnosed with COVID-19. Exposure of endothelial cells (ECs) in vitro to DHT exacerbated spike protein S1-mediated endothelial injury transcripts for the cell adhesion molecules E-selectin, VCAM-1 and ICAM-1 and anti-fibrinolytic PAI-1 (p < 0.05), and increased THP-1 monocyte adhesion to ECs (p = 0.032). Spironolactone dramatically reduced DHT+S1-induced endothelial activation. TNF-α exacerbated S1-induced EC activation, which was abrogated by pretreatment with spironolactone. Analysis from patients hospitalized with COVID-19 showed concordant higher circulating VCAM-1 and E-Selectin levels in men, compared to women. A beneficial effect of the FDA-approved drug spironolactone was observed on endothelial cells in vitro, supporting a rationale for further evaluation of mineralocorticoid antagonism as an adjunct treatment in COVID-19.
Collapse
Affiliation(s)
- Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu Zuo
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.Z.); (S.Y.); (J.S.K.)
| | - Srilakshmi Yalavarthi
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.Z.); (S.Y.); (J.S.K.)
| | - Kristina L. Hunker
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason S. Knight
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.Z.); (S.Y.); (J.S.K.)
| | - Yogendra Kanthi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Andrea T. Obi
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (N.K.); (K.L.H.); (Y.K.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Wang SJ, Sander GE. Nebivolol/valsartan combination for the treatment of hypertension: a review. Future Cardiol 2020; 17:573-583. [PMID: 33064027 DOI: 10.2217/fca-2020-0079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nebivolol (N) is a β1-adrenoreceptor antagonist that is approved for treatment of hypertension in the USA. Effective treatment of hypertension is becoming an increasingly difficult process that often requires multiple drug combinations to meet target guidelines. This has resulted in the increasing introduction of multidrug single-pill combinations (SPCs) to facilitate cost and compliance issues. Some of the SPCs have added valsartan (V), an angiotensin receptor blocker, which is an increasingly advocated antihypertensive class. Pharmacological profiles of N and V, alone and combined, are well characterized. In 2007, the SPC of N and V, 5 and 80 mg, respectively, was approved by the US FDA for treatment of hypertension. This paper will summarize and update key issues in pharmacology, clinical use and benefit.
Collapse
Affiliation(s)
- Sarah J Wang
- Department of Medicine, Heart & Vascular Institute, Section of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Gary E Sander
- Department of Medicine, Heart & Vascular Institute, Section of Cardiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Kuo KL, Zhao JF, Huang PH, Guo BC, Tarng DC, Lee TS. Indoxyl sulfate impairs valsartan-induced neovascularization. Redox Biol 2020; 30:101433. [PMID: 31972507 PMCID: PMC6974788 DOI: 10.1016/j.redox.2020.101433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Studies revealed that the use of renin-angiotensin-aldosterone system antagonism is not associated with a statistically significant reduction in the risk of cardiovascular events in patients with chronic kidney disease (CKD) compared with that in the general population. We tested the hypothesis that indoxyl sulfate (IS) can interfere with the protective effect of valsartan-mediated on endothelial function in vitro and neovascularization in mice underwent subtotal nephrectomy. In human aortic endothelial cells, we first demonstrated that IS impaired the valsartan-mediated phosphorylation of eNOSThr495, nitric oxide production and tube formation via NADPH oxidase (NOX) and protein kinase C (PKC) phosphorylation, but this effect was suppressed by cotreatment with apocynin and calphostin C. In vivo, IS attenuated valsartan-induced angiogenesis in Matrigel plugs in mice. Moreover, in subtotal nephrectomy mice who underwent hindlimb ischemic surgery, valsartan significantly increased the mobilization of endothelial progenitor cells in circulation as well as the reperfusion of blood flow and density of CD31+ capillaries in ischemic limbs. However, IS attenuated the protective effect of valsartan-induced neovascularization and increased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Cotreatment of apocynin and calphostin C reversed the IS impaired-neovascularization and decreased the expression of p-PKCαSer657 and p-eNOSThr497 in ischemic limbs. Our study suggests that the NOX/PKC/eNOS signaling pathway plays a pivotal role in the IS-mediated inhibition of valsartan-conferred beneficial effects on endothelial function in vitro and neovascularization in subtotal nephrectomy mice. We proposed a novel causative role for IS in cardiovascular complications in CKD patients. The use of renin-angiotensin-aldosterone system antagonism fails to reduce in the risk cardiovascular events in patients with CKD. Indoxyl sulfate interferes with the protective effect of angiotensin II receptor blocker-mediated neovascularization in CKD mice. Indoxyl sulfate interferes with the beneficial effect of of valsartan on endothelial function by activating the NOX/PKC signaling pathway. This article proposed a novel causative role for indoxyl sulfate in cardiovascular complications in CKD patients.
Collapse
Affiliation(s)
- Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Jin-Feng Zhao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Po-Hsun Huang
- Institutes of Clinical Medicine, Taipei, Taiwan; Cardiovascular Research Center, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Divisions of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bei-Chia Guo
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Der-Cherng Tarng
- Institutes of Clinical Medicine, Taipei, Taiwan; Department and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan; Division of Nephrology, Department of Medicine and Immunology Research Centre, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Tzong-Shyuan Lee
- Graduate Institute and Department of Physiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
15
|
Peng H, Tang J, Zhao S, Shen L, Xu D. Inhibition of Soluble Epoxide Hydrolase in Macrophages Ameliorates the Formation of Foam Cells - Role of Heme Oxygenase-1. Circ J 2019; 83:2555-2566. [PMID: 31666457 DOI: 10.1253/circj.cj-19-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
BACKGROUND Accumulation of foam cells in the neointima represents an early stage of atherosclerosis. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHi), effectively elevates epoxyeicosatrienoic acid (EET) levels. The effects of EETs on macrophages foam cells formation are poorly understood. METHODS AND RESULTS Incubation of foam cells with TPPU markedly ameliorate cholesterol deposition in oxidized low-density lipoprotein (oxLDL)-loaded macrophages by increasing the levels of EETs. Notably, TPPU treatment significantly inhibits oxLDL internalization and promotes cholesterol efflux. The elevation of EETs results in a decrease of class A scavenger receptor (SR-A) expression via downregulation of activator protein 1 (AP-1) expression. Additionally, TPPU selectively increases protein but not the mRNA level of ATP-binding cassette transporter A1 (ABCA1) through the reduction of calpain activity that stabilizes the protein. Moreover, TPPU treatment reduces the cholesterol content of macrophages and inhibits atherosclerotic plaque formation in apolipoprotein E-deficient mice. These changes induced by TPPU are dependent on heme oxygenase-1 (HO-1) activation. CONCLUSIONS The present study findings elucidate a precise mechanism of regulating cholesterol uptake and efflux in macrophages, which involves the prevention of atherogenesis by increasing the levels of EETs with TPPU.
Collapse
Affiliation(s)
| | - Jianjun Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| |
Collapse
|
16
|
Kim HJ, Jang JH, Zhang YH, Yoo HY, Kim SJ. Fast relaxation and desensitization of angiotensin II contraction in the pulmonary artery via AT1R and Akt-mediated phosphorylation of muscular eNOS. Pflugers Arch 2019; 471:1317-1330. [PMID: 31468138 DOI: 10.1007/s00424-019-02305-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022]
Abstract
Angiotensin II (AngII) triggers a transient contraction of pulmonary arteries (PAs) followed by protracted desensitization. Based on the unconventional eNOS expression in PA smooth muscle cells (PASMCs), we hypothesized that activation of smooth muscle eNOS by AngII might be responsible for fast relaxation and tachyphylaxis. Using dual-wire myograph, mechanically endothelium-denuded rat PA [E(-)PA] showed AngII concentration-dependent transient contractions (ΔTAngII, 95% decay within 1 min), which were abolished by losartan (AT1R antagonist). Neither PD123319 (AT2R antagonist) nor A779 (MasR antagonist) affected ΔTAngII. When the vessels were pretreated with L-NAME (NOS inhibitor), ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), ΔTAngII of E(-)PA became larger and sustained, whereas nNOS or iNOS inhibitors had no such effect. Immunoblotting of human PASMCs (hPASMCs) also showed eNOS expression, and AngII treatment induced activating phosphorylations of Ser1177 in eNOS and of Ser473 in Akt (Ser/Thr protein kinase B), an upstream signal of eNOS phosphorylation. In addition, L-NAME co-treatment promoted AngII-induced Ser19 phosphorylation of myosin light chain. In hPASMCs, AngII abolished plasma membrane expression of AT1R, and recovery by washout took more than 1 h. Consistent with the data from hPASMCs, the second application of AngII to E(-)PA did not induce contraction, and significant recovery of ΔTAngII required prolonged washout (> 2 h) in the myography study. L-NAME treatment before the second application facilitated recovery of ΔTAngII. Muscular eNOS plays an auto-inhibitory role in ΔTAngII of PAs. The molecular changes investigated in hPASMCs revealed eNOS phosphorylation and internalization of AT1R by AngII. We propose that the rat PA smooth muscle eNOS-induced lusitropy and slow recovery of AT1R from tachyphylaxis might counterbalance the excessive contractile response to AngII, contributing to the distinctive low-pressure pulmonary circulation.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Ji Hyun Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hae Young Yoo
- Chung-Ang University Red Cross College of Nursing, Seoul, 100-031, South Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
17
|
Rationale for nebivolol/valsartan combination for hypertension: review of preclinical and clinical data. J Hypertens 2018; 35:1758-1767. [PMID: 28509722 PMCID: PMC5548499 DOI: 10.1097/hjh.0000000000001412] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To treat hypertension, combining two or more antihypertensive drugs from different classes is often necessary. β-Blockers and renin–angiotensin–aldosterone system inhibitors, when combined, have been deemed ‘less effective’ based on partially overlapping mechanisms of action and limited evidence. Recently, the single-pill combination (SPC) of nebivolol (Neb) 5 mg – a vasodilatory β1-selective antagonist/β3 agonist – and valsartan 80 mg, an angiotensin II receptor blocker, was US Food and Drug Administration-approved for hypertension. Pharmacological profiles of Neb and valsartan, alone and combined, are well characterized. In addition, a large 8-week randomized trial in stages I–II hypertensive patients (N = 4161) demonstrated greater blood pressure-reducing efficacy for Neb/valsartan SPCs than component monotherapies with comparable tolerability. In a biomarkers substudy (N = 805), Neb/valsartan SPCs prevented valsartan-induced increases in plasma renin, and a greater reduction in plasma aldosterone was observed with the highest SPC dose vs. valsartan 320 mg/day. This review summarizes preclinical and clinical evidence supporting Neb/valsartan as an efficacious and well tolerated combination treatment for hypertension.
Collapse
|
18
|
Hao HF, Liu LM, Pan CS, Wang CS, Gao YS, Fan JY, Han JY. Rhynchophylline Ameliorates Endothelial Dysfunction via Src-PI3K/Akt-eNOS Cascade in the Cultured Intrarenal Arteries of Spontaneous Hypertensive Rats. Front Physiol 2017; 8:928. [PMID: 29187825 PMCID: PMC5694770 DOI: 10.3389/fphys.2017.00928] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: To examine the protective effect of Rhynchophylline (Rhy) on vascular endothelial function in spontaneous hypertensive rats (SHRs) and the underlying mechanism. Methods: Intrarenal arteries of SHRs and Wistar rats were suspended in myograph for force measurement. Expression and phosphorylation of endothelial nitric oxide (NO) synthase (eNOS), Akt, and Src kinase (Src) were examined by Western blotting. NO production was assayed by ELISA. Results: Rhy time- and concentration-dependently improved endothelium-dependent relaxation in the renal arteries from SHRs, but had no effect on endothelium-independent relaxation in SHR renal arteries. Wortmannin (an inhibitor of phosphatidylinositol 3-kinase) or PP2 (an inhibitor of Src) inhibited the improvement of relaxation in response to acetylcholine by 12 h-incubation with 300 μM Rhy. Western blot analysis revealed that Rhy elevated phosphorylations of eNOS, Akt, and Src in SHR renal arteries. Moreover, wortmannin reversed the increased phosphorylations of Akt and eNOS induced by Rhy, but did not affect the phosphorylation of Src. Furthermore, the enhanced phosphorylations of eNOS, Akt, and Src were blunted by PP2. Importantly, Rhy increased NO production and this effect was blocked by inhibition of Src or PI3K/Akt. Conclusion: The present study provides evidences for the first time that Rhy ameliorates endothelial dysfunction in SHRs through the activation of Src-PI3K/Akt-eNOS signaling pathway.
Collapse
Affiliation(s)
- Hui-Feng Hao
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Mei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Chuan-She Wang
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Yuan-Sheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Papadopoulos P, Tong XK, Imboden H, Hamel E. Losartan improves cerebrovascular function in a mouse model of Alzheimer's disease with combined overproduction of amyloid-β and transforming growth factor-β1. J Cereb Blood Flow Metab 2017; 37:1959-1970. [PMID: 27389178 PMCID: PMC5464692 DOI: 10.1177/0271678x16658489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alterations of the renin-angiotensin system have been implicated in the pathogenesis of Alzheimer's disease. We tested the efficacy of losartan (10 mg/kg/day for three months), a selective angiotensin II type 1 receptor antagonist, in alleviating cerebrovascular and cognitive deficits in double-transgenic mice (six months at endpoint) that overexpress a mutated form of the human amyloid precursor protein (APPSwe,Ind) and a constitutively active form of the transforming growth factor-β1, thereafter named A/T mice. Losartan rescued cerebrovascular reactivity, particularly the dilatory responses, but failed to attenuate astroglial activation and to normalize the neurovascular uncoupling response to sensory stimulation. The cognitive deficits of A/T mice were not restored by losartan nor were the increased brain levels of soluble and insoluble Aβ1-40 and Aβ1-42 peptides normalized. Our results are the first to demonstrate the capacity of losartan to improve cerebrovascular reactivity in an Alzheimer's disease mouse model of combined Aβ-induced vascular oxidative stress and transforming growth factor-β1-mediated vascular fibrosis. These data suggest that losartan may be promising for restoring cerebrovascular function in patients with vascular diseases at risk for vascular dementia or Alzheimer's disease. However, a combined therapy may be warranted for rescuing both vascular and cognitive deficits in a multifaceted pathology like Alzheimer's disease.
Collapse
Affiliation(s)
- Panayiota Papadopoulos
- 1 Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Xin-Kang Tong
- 1 Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Hans Imboden
- 2 Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Edith Hamel
- 1 Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
20
|
Zhao Y, Wang L, He S, Wang X, Shi W. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway. Bosn J Basic Med Sci 2017; 17:132-137. [PMID: 28178430 DOI: 10.17305/bjbms.2017.1319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/17/2023] Open
Abstract
Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.
Collapse
Affiliation(s)
- Yingshuai Zhao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China; Department of General Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | | | | | | | | |
Collapse
|
21
|
Wang Y, Cui L, Xu H, Liu S, Zhu F, Yan F, Shen S, Zhu M. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway. Atherosclerosis 2017; 260:13-19. [DOI: 10.1016/j.atherosclerosis.2017.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/05/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022]
|
22
|
Haghighi F SR, Emamghorei M, Nekooeian AA, Farjadian S. Enalapril and Valsartan Improved Enhanced CPA-induced Aortic Contractile Response in Type 2 Diabetic Rats by Reduction in TRPC4 Protein Level. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.884.892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
PGC-1α ameliorates AngiotensinII-induced eNOS dysfunction in human aortic endothelial cells. Vascul Pharmacol 2016; 83:90-7. [PMID: 27235860 DOI: 10.1016/j.vph.2016.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/29/2016] [Accepted: 05/21/2016] [Indexed: 02/05/2023]
Abstract
Increasing evidences support that PGC-1α participates in regulating endothelial homeostasis, in part by mediating endothelial nitric oxide (NO) synthase (eNOS) activity and NO production. However, the molecular mechanisms by which PGC-1α regulates eNOS activity are not completely understood. In the present study, we investigated the effects of PGC-1α on eNOS dysfunction and further explore the underlying mechanisms. The results showed that PGC-1α expression was downregulated after AngiotensinII (AngII) treatment and paralleled with the decreased NO generation in human aortic endothelial cells. Overexpression of PGC-1α with adenovirus or pharmacological agonist ameliorated AngII-induced the decrease of NO generation, evidenced by the restoration of cGMP and nitrite concentration. Rather than affecting eNOS expression and uncoupling, PGC-1α inhibited AngII-induced decrease of eNOS serine 1177 phosphorylation through activation of PI3K/Akt signaling. In addition, PGC-1α overexpression suppressed AngII-induced the increase of PP2A-A/eNOS interaction and PP2A phosphatase activity, with a concomitant decrease in PP2A phosphorylation, leading to eNOS serine 1177 phosphorylation. However, pharmacological inhibition of PI3K/Akt signaling blunted the observed effect of PGC-1α on PP2A activity. Taken together, our findings suggest that PGC-1α overexpression improves AngII-induced eNOS dysfunction and that improved eNOS dysfunction is associated with activated PI3K/Akt pathway, impaired PP2A activity and reduced PP2A-A/eNOS association. These date indicate that forced PGC-1α expression may be a novel therapeutic approach for endothelial dysfunction.
Collapse
|
24
|
Ching LC, Chen CY, Su KH, Hou HH, Shyue SK, Kou YR, Lee TS. Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase. Mol Med 2016; 18:805-15. [PMID: 22451268 PMCID: PMC7751829 DOI: 10.2119/molmed.2011.00461] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We investigated whether AMP-activated protein kinase (AMPK), a multifunctional regulator of energy homeostasis, is involved in transient receptor potential vanilloid type 1 (TRPV1)-mediated activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) and mice. In ECs, treatment with evodiamine, the activator of TRPV1, increased the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC) and eNOS, as revealed by Western blot analysis. Inhibition of AMPK activation by compound C or dominant-negative AMPK mutant abrogated the evodiamine-induced increase in phosphorylation of AMPK and eNOS and NO bioavailability, as well as tube formation in ECs. Immunoprecipitation and two-hybrid analysis demonstrated that AMPK mediated the evodiamine-induced increase in the formation of a TRPVl-eNOS complex. Additionally, TRPV1 activation by evodiamine increased the phosphorylation of AMPK and eNOS in aortas of wild-type mice but did not activate eNOS in aortas of TRPV1-deficient mice. In mice, inhibition of AMPK activation by compound C markedly decreased evodiamine-evoked angiogenesis in matrigel plugs and in a hind-limb ischemia model. Moreover, evodiamine-induced phosphorylation of AMPK and eNOS in aortas of apolipoprotein E-deficient (ApoE−/−) mice was abrogated in TRPVl-deficient ApoE−/− mice. In conclusion, TRPV1 activation may trigger AMPK-dependent signaling, which leads to enhanced activation of AMPK and eNOS and retarded development of atherosclerosis.
Collapse
Affiliation(s)
- Li-Chieh Ching
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
26
|
Hsu CP, Zhao JF, Lin SJ, Shyue SK, Guo BC, Lu TM, Lee TS. Asymmetric Dimethylarginine Limits the Efficacy of Simvastatin Activating Endothelial Nitric Oxide Synthase. J Am Heart Assoc 2016; 5:e003327. [PMID: 27091343 PMCID: PMC4843600 DOI: 10.1161/jaha.116.003327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), is considered a risk factor for the pathogenesis of cardiovascular diseases. Simvastatin, a lipid‐lowering drug with other pleiotropic effects, has been widely used for treatment of cardiovascular diseases. However, little is known about the effect and underlying molecular mechanisms of ADMA on the effectiveness of simvastatin in the vascular system. Methods and Results We conducted a prospective cohort study to enroll 648 consecutive patients with coronary artery disease for a follow‐up period of 8 years. In patients with plasma ADMA level ≥0.49 μmol/L (a cut‐off value from receiver operating characteristic curve), statin treatment had no significant effect on cardiovascular events. We also conducted randomized, controlled studies using in vitro and in vivo models. In endothelial cells, treatment with ADMA (≥0.5 μmol/L) impaired simvastatin‐induced nitric oxide (NO) production, endothelial NO synthase (eNOS) phosphorylation, and angiogenesis. In parallel, ADMA markedly increased the activity of NADPH oxidase (NOX) and production of reactive oxygen species (ROS). The detrimental effects of ADMA on simvastatin‐induced NO production and angiogenesis were abolished by the antioxidant, N‐acetylcysteine, NOX inhibitor, or apocynin or overexpression of dimethylarginine dimethylaminohydrolase 2 (DDAH‐2). Moreover, in vivo, ADMA administration reduced Matrigel plug angiogenesis in wild‐type mice and decreased simvastatin‐induced eNOS phosphorylation in aortas of apolipoprotein E–deficient mice, but not endothelial DDAH‐2‐overexpressed aortas. Conclusions We conclude that ADMA may trigger NOX‐ROS signaling, which leads to restricting the simvastatin‐conferred protection of eNOS activation, NO production, and angiogenesis as well as the clinical outcome of cardiovascular events.
Collapse
Affiliation(s)
- Chiao-Po Hsu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jin-Feng Zhao
- Department of Physiology, Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bei-Chia Guo
- Department of Physiology, Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Min Lu
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology, Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
27
|
Role of phosphatase activity of soluble epoxide hydrolase in regulating simvastatin-activated endothelial nitric oxide synthase. Sci Rep 2015; 5:13524. [PMID: 26304753 PMCID: PMC4548251 DOI: 10.1038/srep13524] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
Soluble epoxide hydrolase (sEH) has C-terminal epoxide hydrolase and N-terminal lipid phosphatase activity. Its hydrolase activity is associated with endothelial nitric oxide synthase (eNOS) dysfunction. However, little is known about the role of sEH phosphatase in regulating eNOS activity. Simvastatin, a clinical lipid-lowering drug, also has a pleiotropic effect on eNOS activation. However, whether sEH phosphatase is involved in simvastatin-activated eNOS activity remains elusive. We investigated the role of sEH phosphatase activity in simvastatin-mediated activation of eNOS in endothelial cells (ECs). Simvastain increased the phosphatase activity of sEH, which was diminished by pharmacological inhibitors of sEH phosphatase. In addition, pharmacological inhibition of sEH phosphatase or overexpressing the inactive phosphatase domain of sEH enhanced simvastatin-induced NO bioavailability, tube formation and phosphorylation of eNOS, Akt, and AMP-activated protein kinase (AMPK). In contrast, overexpressing the phosphatase domain of sEH limited the simvastatin-increased NO biosynthesis and eNOS phosphorylation at Ser1179. Simvastatin evoked epidermal growth factor receptor–c-Src–increased Tyr phosphorylation of sEH and formation of an sEH–Akt–AMPK–eNOS complex, which was abolished by the c-Src kinase inhibitor PP1 or c-Src dominant-negative mutant K298M. These findings suggest that sEH phosphatase activity negatively regulates simvastatin-activated eNOS by impeding the Akt–AMPK–eNOS signaling cascade.
Collapse
|
28
|
Gérard L, Galloy AC, Capron A, Hantson P. Mixed amlodipine/valsartan overdose treated by the molecular adsorbent recirculating system (MARS™). Clin Toxicol (Phila) 2015; 53:573-7. [DOI: 10.3109/15563650.2015.1050594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Guo BC, Wei J, Su KH, Chiang AN, Zhao JF, Chen HY, Shyue SK, Lee TS. Transient receptor potential vanilloid type 1 is vital for (-)-epigallocatechin-3-gallate mediated activation of endothelial nitric oxide synthase. Mol Nutr Food Res 2015; 59:646-57. [PMID: 25581901 DOI: 10.1002/mnfr.201400699] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 11/06/2022]
Abstract
SCOPE Epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, has beneficial effects on physiological functions of endothelial cells (ECs), yet the detailed mechanisms are not fully understood. In this study, we investigated the role of transient receptor potential vanilloid type 1 (TRPV1), a ligand-gated nonselective calcium channel, in EGCG-mediated endothelial nitric oxide (NO) synthase (eNOS) activation and angiogenesis. METHODS AND RESULTS In ECs, treatment with EGCG time-dependently increased the intracellular level of Ca(2+) . Removal of extracellular calcium (Ca(2+) ) by EGTA or EDTA or inhibition of TRPV1 by capsazepine or SB366791 abrogated EGCG-increased intracellular Ca(2+) level in ECs or TRPV1-transfected HEK293 cells. Additionally, EGCG increased the phsophorylation of eNOS at Ser635 and Ser1179, Akt at Ser473, calmodulin-dependent protein kinase II (CaMKII) at Thr286 and AMP-activated protein kinase (AMPK) at Thr172, all abolished by the TRPV1 antagonist capsazepine. EGCG-induced NO production was diminished by pretreatment with LY294002 (an Akt inhibitor), KN62 (a CaMKII inhibitor), and compound C (an AMPK inhibitor). Moreover, blocking TRPV1 activation prevented EGCG-induced EC proliferation, migration, and tube formation, as well as angiogenesis in Matrigel plugs in mice. CONCLUSION EGCG may trigger activation of TRPV1-Ca(2+) signaling, which leads to phosphorylation of Akt, AMPK, and CaMKII; eNOS activation; NO production; and, ultimately, angiogenesis in ECs.
Collapse
Affiliation(s)
- Bei-Chia Guo
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Su KH, Lin SJ, Wei J, Lee KI, Zhao JF, Shyue SK, Lee TS. The essential role of transient receptor potential vanilloid 1 in simvastatin-induced activation of endothelial nitric oxide synthase and angiogenesis. Acta Physiol (Oxf) 2014; 212:191-204. [PMID: 25183024 DOI: 10.1111/apha.12378] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/26/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
AIMS We investigated the role of transient receptor potential vanilloid receptor type 1 (TRPV1) in simvastatin-mediated activation of endothelial nitric oxide synthase (eNOS) and angiogenesis. METHODS Fluo-8 NW assay was for Ca(2+) detection; Griess's assay was for NO bioavailability; Western blotting and immunoprecipitation were for protein phosphorylation and interaction; tube formation and Matrigel plug assay were for angiogenesis. RESULTS In endothelial cells (ECs), treatment with simvastatin time-dependently increased intracellular level of Ca(2+). Pharmacological inhibition or genetic disruption of TRPV1 abrogated simvastatin-mediated elevation of intracellular Ca(2+) in ECs or TRPV1-transfected HEK293 cells. Loss of TRPV1 function abolished simvastatin-induced NO production and phosphorylation of eNOS and calmodulin protein kinase II (CaMKII) in ECs and in aortas of mice. Inhibition of TRPV1 activation prevented the simvastatin-elicited increase in the formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex. In mice, Matrigel plug assay showed that simvastatin-evoked angiogenesis was abolished by TRPV1 antagonist and genetic ablation of TRPV1. Additionally, our results demonstrated that TRP ankyrin 1 (TRPA1) is the downstream effector in the simvastatin-activated TRPV1-Ca(2+) signalling and in the consequent NO production and angiogenesis as evidence by that re-expression of TRPA1 further augmented simvastatin-elicited Ca(2+) influx in TRPV1-expressed HEK293 cells and ablation of TRPA1 function profoundly inhibited the simvastatin-induced increase in the phosphorylation of eNOS and CaMKII, formation of TRPV1-Akt-CaMKII-AMPK-eNOS complex, NO bioavailability, tube formation and angiogenesis in ECs or mice. CONCLUSION Simvastatin-induced Ca(2+) influx may through the activation of TRPV1-TRPA1 signalling, which leads to phosphorylation of CaMKII, increases in the formation of TRPV1-CaMKII-AMPK-eNOS complex, eNOS activation, NO production and, ultimately, angiogenesis in ECs.
Collapse
Affiliation(s)
- K.-H. Su
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-J. Lin
- Department of Internal Medicine; Taipei Veterans General Hospital; Taipei Taiwan
| | - J. Wei
- Heart Center; Cheng-Hsin General Hospital; Taipei Taiwan
| | - K.-I. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - J.-F. Zhao
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| | - S.-K. Shyue
- Cardiovascular Division; Institute of Biomedical Sciences; Academia Sinica; Taipei Taiwan
| | - T.-S. Lee
- Institute of Physiology; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
31
|
Liu S, Premont RT, Rockey DC. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J Biol Chem 2014; 289:18163-74. [PMID: 24764294 DOI: 10.1074/jbc.m113.521203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production.
Collapse
Affiliation(s)
- Songling Liu
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Don C Rockey
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
32
|
Chou WY, Zhao JF, Chen YMA, Lee KI, Su KH, Shyue SK, Lee TS. Role of glycine N-methyltransferase in experimental ulcerative colitis. J Gastroenterol Hepatol 2014; 29:494-501. [PMID: 24219143 DOI: 10.1111/jgh.12434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with unclear etiology and mechanism(s). Glycine N-methyltransferase (GNMT) plays a central role in inflammatory diseases such as hepatitis and atherosclerosis. However, little is known about the impact of GNMT and the involved mechanism in the pathogenesis of IBD. In the current study, we investigated the role of GNMT in the mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS Protein expression was determined by Western blotting or immunohistochemistry. Histopathology was examined by hematoxylin and eosin staining. Levels of pro-inflammatory cytokines were evaluated by ELISA kits. RESULTS GNMT was expressed in the epithelium of the colon under normal conditions, and with DSS treatment, its expression was predominant in infiltrated leukocytes of lesions. Mice with genetic deletion of GNMT (GNMT(-/-) ) showed increased susceptibility to DSS induction of colitis, as revealed by the progression of colitis. Additionally, severe colonic inflammation, including increased crypt loss, leukocyte infiltration, and hemorrhage, was greater with DSS treatment in GNMT(-/-) than wild-type mice. Furthermore, the expression of adhesion molecule and inflammatory mediators in the colon was significantly higher with DSS treatment in GNMT(-/-) than wild-type mice. Moreover, loss of GNMT decreased cell apoptosis in colitis lesions with DSS treatment. CONCLUSIONS Collectively, our findings suggest that GNMT may be a crucial molecule in the pathogenesis of DSS-induced colitis. This finding may provide new information for a potential therapeutic target in treating IBD.
Collapse
Affiliation(s)
- Wen-Yueh Chou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
33
|
Bovine milk-derived lactoferrin exerts proangiogenic effects in an Src-Akt-eNOS-dependent manner in response to ischemia. J Cardiovasc Pharmacol 2013; 61:423-9. [PMID: 23364610 DOI: 10.1097/fjc.0b013e318287d526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lactoferrin (LF) exerts a variety of biological effects, including the promotion of angiogenesis by increasing the expression of angiogenesis-related genes and reducing blood pressure via a nitric oxide-dependent mechanism. In this study, we investigated the effects of LF on angiogenesis using C57BL/6J mice that received daily unilateral treatment with or without bovine milk-derived LF (bLF) after unilateral hindlimb surgery. The analysis of laser speckle blood flow showed that bLF treatment promoted blood flow recovery in response to ischemic hindlimb. The capillary density of ischemic adductor muscles and the phosphorylation of Src, Akt, and endothelial nitric oxide synthase (eNOS) were also significantly higher in bLF-treated mice than in vehicle-treated mice. Furthermore, bLF increased the phosphorylation levels of Src, Akt, and eNOS in in vitro experiments using human aortic endothelial cells. The action of bLF on eNOS phosphorylation was abolished by both LY294002, a phosphatidylinositol 3-kinase inhibitor, and 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo [3,4-d]pyrimidine (PP2), an Src inhibitor. Similarly, bLF-induced acceleration of tube formation, cell proliferation, and cell migration in human aortic endothelial cells were inhibited by LY294002 or PP2. Thus, bLF promotes vascular endothelial cell function via an Src Akt eNOS-dependent pathway, thereby contributing to revascularization in response to ischemia.
Collapse
|
34
|
Ching LC, Zhao JF, Su KH, Shyue SK, Hsu CP, Lu TM, Lin SJ, Lee TS. Activation of transient receptor potential vanilloid 1 decreases endothelial nitric oxide synthase phosphorylation at Thr497 by protein phosphatase 2B-dependent dephosphorylation of protein kinase C. Acta Physiol (Oxf) 2013; 209:124-35. [PMID: 24028645 DOI: 10.1111/apha.12157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/12/2013] [Indexed: 01/09/2023]
Abstract
AIMS We investigated the effects and underlying molecular mechanism of transient receptor potential vanilloid 1 (TRPV1), a calcium (Ca(2+) )-permeable non-selective cation channel, on phosphorylation of endothelial nitric oxide synthase (eNOS) at threonine 497 (Thr497) in bovine aortic endothelial cells (BAECs) and in mice. METHODS Western blotting and immunoprecipitation were used for the evaluation of protein phosphorylation; protein phosphatase 2B (PP2B) activity was assessed by convention kit; Griess assay was for NO production; tube formation and Matrigel plug assay were used for angiogenesis. RESULTS In BAECs, treatment with the TRPV1 ligand evodiamine decreased the phosphorylation of eNOS at Thr497, protein kinase Cα (PKCα) at Serine 657 (Ser657) and PKCβ2 at Ser660. Evodiamine increased protein phosphatase 2B (PP2B) activity and promoted the formation of a PP2B-PKC complex. Inhibition of TRPV1 activation by the pharmacological antagonists, removal of extracellular Ca(2+) or pharmacological inhibition of PI3K/Akt/calmodulin-dependent protein kinase II/AMP-activated protein kinase signalling pathway abolished the evodiamine-induced alterations in phosphorylation of eNOS at Thr497, PKCα at Ser657, PKCβ2 at Ser660 and PP2B activity, as well as the formation of a PP2B-PKC complex. Inhibition of PP2B activation partially reduced the evodiamine-induced NO bioavailability and tube formation in endothelial cells (ECs) and angiogenesis in mice. Moreover, evodiamine decreased the phosphorylation of eNOS at Thr497, PKCα at Ser657 and PKCβ2 at Ser660 in apolipoprotein E (ApoE)-deficient mouse aortas but not TRPV1-deficient or ApoE/TRPV1 double-knockout mice. CONCLUSION TRPV1 activation in ECs may elicit a Ca(2+) -dependent effect on PP2B-PKC signalling, which leads to dephosphorylation of eNOS at Thr497 in ECs and in mice.
Collapse
Affiliation(s)
- L.-C. Ching
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - J.-F. Zhao
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - K.-H. Su
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| | - S.-K. Shyue
- Institute of Biomedical Sciences; Academia Sinica; Taipei; Taiwan
| | - C.-P. Hsu
- Division of Cardiovascular Surgery; Department of Surgery; Taipei Veterans General Hospital; Taipei; Taiwan
| | - T.-M. Lu
- Division of Cardiology; Department of Internal Medicine; Taipei Veterans General Hospital; Taipei; Taiwan
| | | | - T.-S. Lee
- Department of Physiology; National Yang-Ming University; Taipei; Taiwan
| |
Collapse
|
35
|
Liu H, Liu X, Wei X, Chen L, Xiang Y, Yi F, Zhang X. Losartan, an angiotensin II type 1 receptor blocker, ameliorates cerebral ischemia-reperfusion injury via PI3K/Akt-mediated eNOS phosphorylation. Brain Res Bull 2012; 89:65-70. [PMID: 22766267 DOI: 10.1016/j.brainresbull.2012.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/09/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Angiotensin (Ang) II type 1 receptor blockers (ARBs) have been shown to protect against cerebral ischemia-reperfusion (I/R) injury. However, the mechanism by which ARBs protect brain ischemia injury is still unclear. The aims of this study were to investigate the effects of losartan, an ARB, on the phosphorylation of endothelial nitric oxide synthase (eNOS) in response to focal brain I/R and to determine whether the neuroprotective phosphatidylinositol-3-kinase (PI3K)-Akt signaling pathway is involved. Normotensive Wistar rats were pretreated for 14 days with 5mg/kg losartan, then subjected to middle cerebral artery occlusion for 2h followed by reperfusion (MCAO-R). Our results showed that losartan reduced infarct volumes and improved neurobehavioral outcomes in rats subjected to MCAO-R. Losartan pretreatment significantly suppressed an increase in inducible nitric oxide synthase (iNOS) and sustained normal levels of eNOS expression 24h after MCAO-R injury. Phosphorylated eNOS and Akt levels were much lower than those in the sham group at 24h after MCAO-R, suggesting that losartan pretreatment significantly preserved eNOS phosphorylation in response to the activated Akt. Moreover, blockade of PI3K activity by wortmannin, totally abolished losartan-induced eNOS phosphorylation, providing the first evidence that losartan stimulates eNOS phosphorylation through PI3K/Akt signaling in the MCAO-R rat model. Our findings provide a mechanistic basis underlying the benefits of using selective ARBs, such as losartan, in the treatment of cerebrovascular disease.
Collapse
Affiliation(s)
- Huiqing Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Yu L, Liu Y, Qiu Z, Liu S, Gao X, Zhu D. Cellular mechanisms and intracellular signaling pathways for the modulation of eNOS in pulmonary arteries by 15-HETE. J Recept Signal Transduct Res 2012; 32:87-95. [DOI: 10.3109/10799893.2012.660530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Hou HH, Hammock BD, Su KH, Morisseau C, Kou YR, Imaoka S, Oguro A, Shyue SK, Zhao JF, Lee TS. N-terminal domain of soluble epoxide hydrolase negatively regulates the VEGF-mediated activation of endothelial nitric oxide synthase. Cardiovasc Res 2011; 93:120-9. [PMID: 22072631 DOI: 10.1093/cvr/cvr267] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The mammalian soluble epoxide hydrolase (sEH) has both an epoxide hydrolase and a phosphatase domain. The role of sEH hydrolase activity in the metabolism of epoxyeicosatrienoic acids (EETs) and the activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) has been well defined. However, far less is known about the role of sEH phosphatase activity in eNOS activation. In the present study, we investigated whether the phosphatase domain of sEH was involved in the eNOS activation in ECs. METHODS AND RESULTS The level of eNOS phosphorylation in aortas is higher in the sEH knockout (sEH(-/-)) mice than in wild-type mice. In ECs, pharmacological inhibition of sEH phosphatase or overexpressing sEH with an inactive phosphatase domain enhanced vascular endothelial growth factor (VEGF)-induced NO production and eNOS phosphorylation. In contrast, overexpressing the phosphatase domain of sEH prevented the VEGF-mediated NO production and eNOS phosphorylation at Ser617, Ser635, and Ser1179. Additionally, treatment with VEGF induced a c-Src kinase-dependent increase in transient tyrosine phosphorylation of sEH and the formation of a sEH-eNOS complex, which was abolished by treatment with a c-Src kinase inhibitor, PP1, or the c-Src dominant-negative mutant K298M. We also demonstrated that the phosphatase domain of sEH played a key role in VEGF-induced angiogenesis by detecting the tube formation in ECs and neovascularization in Matrigel plugs in mice. CONCLUSION In addition to epoxide hydrolase activity, phosphatase activity of sEH plays a pivotal role in the regulation of eNOS activity and NO-mediated EC functions.
Collapse
Affiliation(s)
- Hsin-Han Hou
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and Valsartan Reduce Myocardial AT1 Receptor Expression and Limit Myocardial Infarct Size in Diabetic Mice. Cardiovasc Drugs Ther 2011; 25:505-15. [DOI: 10.1007/s10557-011-6339-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, De W, Zhu GQ. Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 2011; 203:289-97. [PMID: 21624097 DOI: 10.1111/j.1748-1716.2011.02313.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study was to determine the roles of inflammatory cytokines in paraventricular nucleus (PVN) in modulating sympathetic activity, blood pressure and cardiac sympathetic afferent reflex (CSAR). METHODS Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anaesthetized rats with bilateral sinoaortic denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin (BK). The levels of inflammatory cytokines were measured with ELISA. RESULTS The PVN microinjection of pro-inflammatory cytokines (PIC), tumour necrosis factor (TNF)-α or interleukin (IL)-1β, increased the baseline MAP and RSNA, and enhanced the CSAR. Anti-inflammatory cytokines (AIC), IL-4 or IL-13, in the PVN only increased the baseline MAP. In the rats pretreated with TNF-α or IL-1β but not in the rats pretreated with IL-4 or IL-13, sub-response dose of angiotensin II caused significant increases in the MAP and RSNA and enhancement in the CSAR. AT(1) receptor antagonist losartan in the PVN attenuated the effects of angiotensin II, TNF-α and IL-1β, but not the effects of IL-4 and IL-13. Stimulation of cardiac sympathetic afferents with epicardial application of BK increased the levels of TNF-α, IL-1β but not IL-4 in the PVN. CONCLUSION TNF-α or IL-1β in the PVN increases blood pressure and sympathetic outflow and enhances the CSAR, which is partially dependent on the AT(1) receptors, while IL-4 or IL-13 in the PVN only increases blood pressure. There is a synergetic effect of Ang II with TNF-α or IL-1β on blood pressure, sympathetic activity and CSAR.
Collapse
Affiliation(s)
- Z Shi
- Department of Physiology, Nanjing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Su KH, Shyue SK, Kou YR, Ching LC, Chiang AN, Yu YB, Chen CY, Pan CC, Lee TS. β Common receptor integrates the erythropoietin signaling in activation of endothelial nitric oxide synthase. J Cell Physiol 2011; 226:3330-9. [DOI: 10.1002/jcp.22678] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Lunder M, Janic M, Sabovic M. Reduction of age-associated arterial wall changes by low-dose valsartan. Eur J Prev Cardiol 2011; 19:1243-9. [PMID: 21933833 DOI: 10.1177/1741826711423104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Functional and morphological arterial wall impairment progresses with ageing. Angiotensin II in the arterial wall is involved in this process. Appropriate early intervention might theoretically slow the progress of age-related changes. Herein, we investigated a new approach to this issue: whether arterial wall changes present in middle-aged males could be reduced by low-dose valsartan intervention. METHODS Forty apparently healthy, middle-aged males (42.9 ± 0.9 years) were recruited for a double-blind randomized study and received either placebo or valsartan (20 mg daily) for 30 days. Brachial artery flow-mediated dilation (FMD), pulse wave velocity (PWV), and β-stiffness of the common carotid artery were measured using an Aloka alfa-10 Prosound with an integrated eTracking system at inclusion, after 30 days, and after 3 and 8 months. RESULTS Intervention resulted in FMD increase (154.2 ± 20.1 %; p < 0.001) and PWV and β-stiffness decrease compared to initial values (-6.9 ± 1.0 % and -13.2 ± 1.4 %; both p < 0.01) whereas values in the untreated group (p < 0.001 for all parameters) remained unchanged throughout the study. The advantageous effects decreased over the months following valsartan discontinuation, but were still significant after 3 months (largely in FMD and less in PWV and β-stiffness), and negligible after 8 months. The beneficial effects were ascribed to valsartan's pleiotropic effects, as no blood pressure changes were recorded. CONCLUSIONS We showed that age-related arterial wall changes in middle-aged males are reversible and could be reduced by a low-dose, short-term valsartan intervention. The new approach merits detailed investigation in future studies.
Collapse
Affiliation(s)
- Mojca Lunder
- Ljubljana University Medical Centre, University of Ljubljana, Korytkova 2, Ljubljana, Slovenia.
| | | | | |
Collapse
|
42
|
Ching LC, Kou YR, Shyue SK, Su KH, Wei J, Cheng LC, Yu YB, Pan CC, Lee TS. Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1. Cardiovasc Res 2011; 91:492-501. [DOI: 10.1093/cvr/cvr104] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Wong WT, Tian XY, Xu A, Ng CF, Lee HK, Chen ZY, Au CL, Yao X, Huang Y. Angiotensin II type 1 receptor-dependent oxidative stress mediates endothelial dysfunction in type 2 diabetic mice. Antioxid Redox Signal 2010; 13:757-68. [PMID: 20136508 DOI: 10.1089/ars.2009.2831] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the effect of the renin-angiotensin-aldosterone system (RAAS) inhibition on endothelial dysfunction in type 2 diabetes are incompletely understood. This study explored a causal relationship between RAAS activation and oxidative stress involved in diabetes-associated endothelial dysfunction. Daily oral administration of valsartan or enalapril at 10 mg/kg/day to db/db mice for 6 weeks reversed the blunted acetylcholine-induced endothelium-dependent dilatations, suppressed the upregulated expression of angiotensin II type 1 receptor (AT(1)R) and NAD(P)H oxidase subunits (p22(phox) and p47(phox)), and reduced reactive oxygen species (ROS) production. Acute exposure to AT(1)R blocker losartan restored the impaired endothelium-dependent dilatations in aortas of db/db mice and also in renal arteries of diabetic patients (fasting plasma glucose level > or =7.0 mmol/l). Similar observations were also made with apocynin, diphenyliodonium, or tempol treatment in db/db mouse aortas. DHE fluorescence revealed an overproduction of ROS in db/db aortas which was sensitive to inhibition by losartan or ROS scavengers. Losartan also prevented the impairment of endothelium-dependent dilatations under hyperglycemic conditions that were accompanied by high ROS production. The present study has identified an initiative role of AT(1)R activation in mediating endothelial dysfunction of arteries from db/db mice and diabetic patients.
Collapse
Affiliation(s)
- Wing Tak Wong
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tsai JY, Su KH, Shyue SK, Kou YR, Yu YB, Hsiao SH, Chiang AN, Wu YL, Ching LC, Lee TS. EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc Res 2010; 88:415-23. [PMID: 20615914 DOI: 10.1093/cvr/cvq226] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Accumulation of foam cells in the intima is a hallmark of early-stage atherosclerotic lesions. Ginkgo biloba extract (EGb761) has been reported to exert anti-oxidative and anti-inflammatory properties in atherosclerosis, yet the significance and the molecular mechanisms of action of EGb761 in the formation of macrophage foam cells are not fully understood. METHODS AND RESULTS Treatment with EGb761 resulted in a dose-dependent decrease in oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, a consequence that was due to a decrease in cholesterol uptake and an increase in cholesterol efflux. Additionally, EGb761 significantly down-regulated the mRNA and protein expression of class A scavenger receptor (SR-A) by decreasing expression of activator protein 1 (AP-1); however, EGb761 increased the protein stability of ATP-binding cassette transporter A1 (ABCA1) by reducing calpain activity without affecting ABCA1 mRNA expression. Small interfering RNA (siRNA) targeting haem oxygenase-1 (HO-1) abolished the EGb761-induced protective effects on the expression of AP-1, SR-A, ABCA1, and calpain activity. Accordingly, EGb761-mediated suppression of lipid accumulation in foam cells was also abrogated by HO-1 siRNA. Moreover, the lesion size of atherosclerosis was smaller in EGb761-treated, apolipoprotein E-deficient mice compared with the vehicle-treated mice, and the expression of HO-1, SR-A, and ABCA1 in aortas was modulated similar to that observed in macrophages. CONCLUSION These findings suggest that EGb761 confers a protection from the formation of foam cells by a novel HO-1-dependent regulation of cholesterol homeostasis in macrophages.
Collapse
Affiliation(s)
- Jin-Yi Tsai
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pan P, Fu H, Zhang L, Huang H, Luo F, Wu W, Guo Y, Liu X. Angiotensin II upregulates the expression of placental growth factor in human vascular endothelial cells and smooth muscle cells. BMC Cell Biol 2010; 11:36. [PMID: 20500895 PMCID: PMC2885991 DOI: 10.1186/1471-2121-11-36] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 05/26/2010] [Indexed: 02/09/2023] Open
Abstract
Background Atherosclerosis is now recognized as a chronic inflammatory disease. Angiotensin II (Ang II) is a critical factor in inflammatory responses, which promotes the pathogenesis of atherosclerosis. Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family cytokines and is associated with inflammatory progress of atherosclerosis. However, the potential link between PlGF and Ang II has not been investigated. In the current study, whether Ang II could regulate PlGF expression, and the effect of PlGF on cell proliferation, was investigated in human vascular endothelial cells (VECs) and smooth muscle cells (VSMCs). Results In growth-arrested human VECs and VSMCs, Ang II induced PlGF mRNA expression after 4 hour treatment, and peaked at 24 hours. 10-6 mol/L Ang II increased PlGF protein production after 8 hour treatment, and peaked at 24 hours. Stimulation with Ang II also induced mRNA expression of VEGF receptor-1 and -2(VEGFR-1 and -2) in these cells. The Ang II type I receptor (AT1R) antagonist blocked Ang II-induced PlGF gene expression and protein production. Several intracellular signals elicited by Ang II were involved in PlGF synthesis, including activation of protein kinase C, extracellular signal-regulated kinase 1/2 (ERK1/2) and PI3-kinase. A neutralizing antibody against PlGF partially inhibited the Ang II-induced proliferation of VECs and VSMCs. However, this antibody showed little effect on the basal proliferation in these cells, whereas blocking antibody of VEGF could suppress both basal and Ang II-induced proliferation in VECs and VSMCs. Conclusion Our results showed for the first time that Ang II could induce the gene expression and protein production of PlGF in VECs and VSMCs, which might play an important role in the pathogenesis of vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Pingxi Pan
- Laboratory of Cardiovascular Diseases, National Key Laboratory of Biotherapy of Human Diseases, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Marcus NJ, Li YL, Bird CE, Schultz HD, Morgan BJ. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir Physiol Neurobiol 2010; 171:36-45. [PMID: 20153844 PMCID: PMC2846996 DOI: 10.1016/j.resp.2010.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/01/2010] [Accepted: 02/05/2010] [Indexed: 12/18/2022]
Abstract
Chronic exposure to intermittent hypoxia (CIH) increases carotid sinus nerve activity in normoxia and in response to acute hypoxia. We hypothesized that CIH augments basal and chemoreflex-stimulated sympathetic outflow through an angiotensin receptor-dependent mechanism. Rats were exposed to CIH for 28 days: a subset was treated with losartan. Then, lumbar sympathetic activity was recorded under anesthesia during 20-s apneas, isocapnic hypoxia, and potassium cyanide. We measured carotid body superoxide production and expression of angiotensin II type-1 receptor, neuronal nitric oxide synthase, and NADPH oxidase. Sympathetic activity was higher in CIH vs. control rats at baseline, during apneas and isocapnic hypoxia, but not cyanide. Carotid body superoxide production and expression of angiotensin II type 1 receptor and gp91(phox) subunit of NADPH oxidase were elevated in CIH rats, whereas expression of neuronal nitric oxide synthase was reduced. None of these differences were evident in animals treated with losartan. CIH-induced augmentation of chemoreflex sensitivity occurs, at least in part, via the renin-angiotensin system.
Collapse
Affiliation(s)
- Noah J. Marcus
- John Rankin Laboratory of Pulmonary Medicine, Department of Kinesiology, University of Wisconsin, Madison, WI, USA
- Respiratory Neurobiology Training Program, University of Wisconsin, Madison, WI, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cynthia E. Bird
- John Rankin Laboratory of Pulmonary Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, USA
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Barbara J. Morgan
- John Rankin Laboratory of Pulmonary Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, WI, USA
- Respiratory Neurobiology Training Program, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
47
|
Ye Y, Keyes KT, Zhang CF, Perez-Polo JR, Lin Y, Birnbaum Y. Additive Effect of TAK-491, a New Angiotensin Receptor Blocker, and Pioglitazone, in Reducing Myocardial Infarct Size. Cardiovasc Drugs Ther 2010; 24:107-20. [DOI: 10.1007/s10557-010-6227-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|