1
|
Camargo-Ayala L, Bedoya M, Dasí A, Prüser M, Schütte S, Prent-Peñaloza L, Adasme-Carreño F, Kiper AK, Rinné S, Camargo-Ayala PA, Peña-Martínez PA, Bueno-Orovio A, Varela D, Wiedmann F, Márquez Montesinos JCE, Mazola Y, Venturini W, Zúñiga R, Zúñiga L, Schmidt C, Rodriguez B, Ravens U, Decher N, Gutiérrez M, González W. Rational design, synthesis, and evaluation of novel polypharmacological compounds targeting Na V1.5, K V1.5, and K 2P channels for atrial fibrillation. J Biol Chem 2025; 301:108387. [PMID: 40054693 DOI: 10.1016/j.jbc.2025.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 02/04/2025] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Abstract
Atrial fibrillation (AF) involves electrical remodeling of the atria, with ion channels such as NaV1.5, KV1.5, and TASK-1 playing crucial roles. This study investigates acetamide-based compounds designed as multi-target inhibitors of these ion channels to address AF. Compound 6f emerged as the most potent in the series, demonstrating a strong inhibition of TASK-1 (IC50 ∼ 0.3 μM), a moderate inhibition of NaV1.5 (IC50 ∼ 21.2 μM) and a subtle inhibition of KV1.5 (IC50 ∼ 81.5 μM), alongside unexpected activation of TASK-4 (∼ 40% at 100 μM). Functional assays on human atrial cardiomyocytes from sinus rhythm (SR) and patients with AF revealed that 6f reduced action potential amplitude in SR (indicating NaV1.5 block), while in AF it increased action potential duration (APD), reflecting high affinity for TASK-1. Additionally, 6f caused hyperpolarization of the resting membrane potential in AF cardiomyocytes, consistent with the observed TASK-4 activation. Mathematical modeling further validated its efficacy in reducing AF burden. Pharmacokinetic analyses suggest favorable absorption and low toxicity. These findings identify 6f as a promising multi-target therapeutic candidate for AF management.
Collapse
Affiliation(s)
- Lorena Camargo-Ayala
- Doctorado en Ciencias Mención I + D de Productos Bioactivos, Instituto de Química de Recursos Naturales, Laboratorio de Síntesis Orgánica, Universidad de Talca, Talca, Chile
| | - Mauricio Bedoya
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Albert Dasí
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Merten Prüser
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Sven Schütte
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Luis Prent-Peñaloza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Viña del Mar, Chile
| | - Francisco Adasme-Carreño
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile; Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany; Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Paola Andrea Camargo-Ayala
- Doctorado en Ciencias Biomédicas, Laboratorio de Patología Molecular, Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Paula A Peña-Martínez
- Doctorado en Ciencias Agrarias, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile; Laboratorio de Química Enológica, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Diego Varela
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - José C E Márquez Montesinos
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Yuliet Mazola
- Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile; Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Whitney Venturini
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Rafael Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Leandro Zúñiga
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Ursula Ravens
- German Atrial Fibrillation Competence NETwork (AFNET), Freiburg, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center - University of Freiburg and Faculty of Medicine, Freiburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany.
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile.
| | - Wendy González
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile; Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Talca, Chile.
| |
Collapse
|
2
|
Mohammed ASA, Naveed M, Szabados T, Szatmári I, Lőrinczi B, Mátyus P, Czompa A, Orvos P, Husti Z, Hornyik T, Topal L, Déri S, Jost N, Virág L, Bencsik P, Baczkó I, Varró A. Effects of SZV-2649, a new multiple ion channel inhibitor mexiletine analogue. Sci Rep 2024; 14:23188. [PMID: 39369049 PMCID: PMC11455950 DOI: 10.1038/s41598-024-73576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
The antiarrhythmic and cardiac electrophysiological effects of SZV-2649 that contains a 2,6-diiodophenoxy moiety but lacks the benzofuran ring system present in amiodarone, were studied in mammalian cell line, rat and dog cardiac preparations. SZV-2649 exerted antiarrhythmic effects against coronary artery occlusion/reperfusion induced ventricular arrhythmias in rats and in acetylcholine- and burst stimulation induced atrial fibrillation in dogs. SZV-2649 inhibited hERG and GIRK currents in HEK cells (IC50: 342 and 529 nM, respectively). In canine ventricular myocytes, SZV-2649 (10 µM) decreased the densities of IKr, and Ito outward and INaL and ICaL inward currents. The compound (2.5-10 µM) elicited Class IB type Vmax reducing and Class III type action potential duration prolonging effects in dog right ventricular muscle preparations. In canine atrial muscle, SZV-2629 (2.5-10 µM) moderately prolonged action potential duration and this effect was greatly augmented in preparations pretreated with 1 µM carbachol. In conclusion, SZV-2649, has antiarrhythmic effects based on its multiple ion channel blocking properties. Since its chemical structure substantially differs from that of amiodarone, it is expected that SZV-2649 would exhibit fewer adverse effects than the currently used most effective multichannel inhibitor drug amiodarone and may be a promising molecule for further development.
Collapse
Grants
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- EFOP-3.6.2-16-2017-00006, the UNKP for young researchers, UNKP-23-5-SZTE-704 Ministry of Human Capacities Hungary
- KDP-2020 Ministry for Innovation and Technology, Cooperative Doctoral Programme
- RRF-2.3.1-21-2022-00001 Recovery and Resilience Facility (RRF)
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- NKFIH K 135464, K 142738, K 147212 TKP2021-EGA-32, FK 138223, GINOP-2.3.2.-15-2016-00006, GINOP-2.3.2.-15-2016-00040 National Research Development and Innovation Office
- SZTE AOK-KKA 2021, SZGYA 2021, SZTE AOK-KKA 2022 The Albert Szent-Györgyi Medical School institutional grant
- SZTE AOK-KKA 2021, SZGYA 2021, SZTE AOK-KKA 2022 The Albert Szent-Györgyi Medical School institutional grant
- SZTE AOK-KKA 2021, SZGYA 2021, SZTE AOK-KKA 2022 The Albert Szent-Györgyi Medical School institutional grant
- HUN-REN TKI project Hungarian Research Network
- HUN-REN TKI project Hungarian Research Network
- HUN-REN TKI project Hungarian Research Network
- bo_481_21 Hungarian Academy of Sciences, János Bolyai Research Scholarships
- RRF-2.3.1-21-2022-00003 National Heart Laboratory, Hungary
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamara Szabados
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Stereochemistry Research Group, Hungarian Research Network, Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Péter Mátyus
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Andrea Czompa
- Department of Organic Chemistry, Semmelweis University, Budapest, Hungary
| | - Péter Orvos
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szilvia Déri
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary.
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
- Interdisciplinary Research and Development and Innovation Centre of Excellence, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Li XT. The involvement of K + channels in depression and pharmacological effects of antidepressants on these channels. Transl Psychiatry 2024; 14:411. [PMID: 39358318 PMCID: PMC11447029 DOI: 10.1038/s41398-024-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Depression is a common and complex psychiatric illness with multiple clinical symptoms, even leading to the disability and suicide. Owing to the partial understanding of the pathogenesis of depressive-like disorders, available pharmacotherapeutic strategies are developed mainly based on the "monoamine hypothesis", resulting in a limited effectiveness and a number of adverse effects in the clinical practice. The concept of multiple pathogenic factors be helpful for clarifying the etiology of depression and developing the antidepressants. It is well documented that K+ channels serve crucial roles in modulating the neuronal excitability and neurotransmitter release in the brain, and abnormality of these channels participated in the pathogenic process of diverse central nervous system (CNS) pathologies, such as seizure and Alzheimer's disease (AD). The clinical and preclinical evidence also delineates that the involvement of several types of K+ channels in depressive-like behaviors appear to be evident, suggesting these channels being one of the multiple factors in the etiology of this debilitating disorder. Emerging data manifest that diverse antidepressants impact distinct K+ channels, such as Kv, Kir and K2P, meaning the functioning of these drug via a "multi-target" manner. On the other hand, the scenario of antidepressants impinging K+ channels could render an alternative interpretation for the pharmacological effectiveness and numerous side effects in clinical trials. Furthermore, these channels serve to be considered as a "druggable target" to develop novel therapeutic compound to antagonize this psychiatry.
Collapse
Affiliation(s)
- Xian-Tao Li
- School of Medicine, Jingchu University of Technology, Jingmen, China.
- Research group of Neurological and Metabolic Disease, School of Medicine, Jingchu University of Technology, Jingmen, China.
| |
Collapse
|
4
|
Chakraborty A, Paynter A, Szendrey M, Cornwell JD, Li W, Guo J, Yang T, Du Y, Wang T, Zhang S. Ubiquitination is involved in PKC-mediated degradation of cell surface Kv1.5 channels. J Biol Chem 2024; 300:107483. [PMID: 38897569 PMCID: PMC11301065 DOI: 10.1016/j.jbc.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid delayed rectifier K+ current (IKur) in human cells, plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. We previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) induces endocytic degradation of cell-surface Kv1.5 channels, and a point mutation removing the phosphorylation site, T15A, in the N terminus of Kv1.5 abolished the PMA-effect. In the present study, using mutagenesis, patch clamp recording, Western blot analysis, and immunocytochemical staining, we demonstrate that ubiquitination is involved in the PMA-mediated degradation of mature Kv1.5 channels. Since the expression of the Kv1.4 channel is unaffected by PMA treatment, we swapped the N- and/or C-termini between Kv1.5 and Kv1.4. We found that the N-terminus alone did not but both N- and C-termini of Kv1.5 did confer PMA sensitivity to mature Kv1.4 channels, suggesting the involvement of Kv1.5 C-terminus in the channel ubiquitination. Removal of each of the potential ubiquitination residue Lysine at position 536, 565, and 591 by Arginine substitution (K536R, K565R, and K591R) had little effect, but removal of all three Lysine residues with Arginine substitution (3K-R) partially reduced PMA-mediated Kv1.5 degradation. Furthermore, removing the cysteine residue at position 604 by Serine substitution (C604S) drastically reduced PMA-induced channel degradation. Removal of the three Lysines and Cys604 with a quadruple mutation (3K-R/C604S) or a truncation mutation (Δ536) completely abolished the PKC activation-mediated degradation of Kv1.5 channels. These results provide mechanistic insight into PKC activation-mediated Kv1.5 degradation.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amanda Paynter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - James D Cornwell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Yuan Du
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
5
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
6
|
Schulz C, Sönmez M, Krause J, Schwedhelm E, Bangfen P, Alihodzic D, Hansen A, Eschenhagen T, Christ T. A critical role of retinoic acid concentration for the induction of a fully human-like atrial action potential phenotype in hiPSC-CM. Stem Cell Reports 2023; 18:2096-2107. [PMID: 37922915 PMCID: PMC10679650 DOI: 10.1016/j.stemcr.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Retinoic acid (RA) induces an atrial phenotype in human induced pluripotent stem cells (hiPSCs), but expression of atrium-selective currents such as the ultrarapid (IKur) and acetylcholine-stimulated K+ current is variable and less than in the adult human atrium. We suspected methodological issues and systematically investigated the concentration dependency of RA. RA treatment increased IKur concentration dependently from 1.1 ± 0.54 pA/pF (0 RA) to 3.8 ± 1.1, 5.8 ± 2.5, and 12.2 ± 4.3 at 0.01, 0.1, and 1 μM, respectively. Only 1 μM RA induced enough IKur to fully reproduce human atrial action potential (AP) shape and a robust shortening of APs upon carbachol. We found that sterile filtration caused substantial loss of RA. We conclude that 1 μM RA seems to be necessary and sufficient to induce a full atrial AP shape in hiPSC-CM in EHT format. RA concentrations are prone to methodological issues and may profoundly impact the success of atrial differentiation.
Collapse
Affiliation(s)
- Carl Schulz
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Muhammed Sönmez
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Julia Krause
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center, Hamburg, Germany
| | - Edzard Schwedhelm
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany; Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pan Bangfen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dzenefa Alihodzic
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
7
|
Parra-Lucares A, Villa E, Romero-Hernández E, Méndez-Valdés G, Retamal C, Vizcarra G, Henríquez I, Maldonado-Morales EAJ, Grant-Palza JH, Ruíz-Tagle S, Estrada-Bobadilla V, Toro L. Tic-Tac: A Translational Approach in Mechanisms Associated with Irregular Heartbeat and Sinus Rhythm Restoration in Atrial Fibrillation Patients. Int J Mol Sci 2023; 24:12859. [PMID: 37629037 PMCID: PMC10454641 DOI: 10.3390/ijms241612859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent cardiac condition predominantly affecting older adults, characterized by irregular heartbeat rhythm. The condition often leads to significant disability and increased mortality rates. Traditionally, two therapeutic strategies have been employed for its treatment: heart rate control and rhythm control. Recent clinical studies have emphasized the critical role of early restoration of sinus rhythm in improving patient outcomes. The persistence of the irregular rhythm allows for the progression and structural remodeling of the atria, eventually leading to irreversible stages, as observed clinically when AF becomes permanent. Cardioversion to sinus rhythm alters this progression pattern through mechanisms that are still being studied. In this review, we provide an in-depth analysis of the pathophysiological mechanisms responsible for maintaining AF and how they are modified during sinus rhythm restoration using existing therapeutic strategies at different stages of clinical investigation. Moreover, we explore potential future therapeutic approaches, including the promising prospect of gene therapy.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Critical Care Unit, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Cardiovascular Department, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Eduardo Villa
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Gabriel Méndez-Valdés
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Catalina Retamal
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Geovana Vizcarra
- Division of Internal Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
| | - Ignacio Henríquez
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Juan H. Grant-Palza
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | - Sofía Ruíz-Tagle
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago 8380420, Chile
| | | | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago 8380420, Chile
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Universidad de Chile, Santiago 8380420, Chile
| |
Collapse
|
8
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
9
|
Al-Owais MM, Hettiarachchi NT, Dallas ML, Scragg JL, Lippiat JD, Holden AV, Steele DS, Peers C. Inhibition of the voltage-gated potassium channel Kv1.5 by hydrogen sulfide attenuates remodeling through S-nitrosylation-mediated signaling. Commun Biol 2023; 6:651. [PMID: 37336943 PMCID: PMC10279668 DOI: 10.1038/s42003-023-05016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
The voltage-gated K+ channel plays a key role in atrial excitability, conducting the ultra-rapid rectifier K+ current (IKur) and contributing to the repolarization of the atrial action potential. In this study, we examine its regulation by hydrogen sulfide (H2S) in HL-1 cardiomyocytes and in HEK293 cells expressing human Kv1.5. Pacing induced remodeling resulted in shorting action potential duration, enhanced both Kv1.5 channel and H2S producing enzymes protein expression in HL-1 cardiomyocytes. H2S supplementation reduced these remodeling changes and restored action potential duration through inhibition of Kv1.5 channel. H2S also inhibited recombinant hKv1.5, lead to nitric oxide (NO) mediated S-nitrosylation and activated endothelial nitric oxide synthase (eNOS) by increased phosphorylation of Ser1177, prevention of NO formation precluded these effects. Regulation of Ikur by H2S has important cardiovascular implications and represents a novel and potential therapeutic target.
Collapse
Affiliation(s)
- Moza M Al-Owais
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nishani T Hettiarachchi
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Jason L Scragg
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Arun V Holden
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek S Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chris Peers
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
Kingma J, Simard C, Drolet B. Overview of Cardiac Arrhythmias and Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:844. [PMID: 37375791 DOI: 10.3390/ph16060844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Maintenance of normal cardiac rhythm requires coordinated activity of ion channels and transporters that allow well-ordered propagation of electrical impulses across the myocardium. Disruptions in this orderly process provoke cardiac arrhythmias that may be lethal in some patients. Risk of common acquired arrhythmias is increased markedly when structural heart disease caused by myocardial infarction (due to fibrotic scar formation) or left ventricular dysfunction is present. Genetic polymorphisms influence structure or excitability of the myocardial substrate, which increases vulnerability or risk of arrhythmias in patients. Similarly, genetic polymorphisms of drug-metabolizing enzymes give rise to distinct subgroups within the population that affect specific drug biotransformation reactions. Nonetheless, identification of triggers involved in initiation or maintenance of cardiac arrhythmias remains a major challenge. Herein, we provide an overview of knowledge regarding physiopathology of inherited and acquired cardiac arrhythmias along with a summary of treatments (pharmacologic or non-pharmacologic) used to limit their effect on morbidity and potential mortality. Improved understanding of molecular and cellular aspects of arrhythmogenesis and more epidemiologic studies (for a more accurate portrait of incidence and prevalence) are crucial for development of novel treatments and for management of cardiac arrhythmias and their consequences in patients, as their incidence is increasing worldwide.
Collapse
Affiliation(s)
- John Kingma
- Department of Medicine, Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Chantale Simard
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| | - Benoît Drolet
- Faculty of Pharmacy Ferdinand Vandry Pavillon, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval 2725 Chemin Sainte-Foy, Québec City, QC G1V 4G5, Canada
| |
Collapse
|
11
|
Altomare C, Bartolucci C, Sala L, Balbi C, Burrello J, Pietrogiovanna N, Burrello A, Bolis S, Panella S, Arici M, Krause R, Rocchetti M, Severi S, Barile L. A dynamic clamping approach using in silico IK1 current for discrimination of chamber-specific hiPSC-derived cardiomyocytes. Commun Biol 2023; 6:291. [PMID: 36934210 PMCID: PMC10024709 DOI: 10.1038/s42003-023-04674-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) constitute a mixed population of ventricular-, atrial-, nodal-like cells, limiting the reliability for studying chamber-specific disease mechanisms. Previous studies characterised CM phenotype based on action potential (AP) morphology, but the classification criteria were still undefined. Our aim was to use in silico models to develop an automated approach for discriminating the electrophysiological differences between hiPSC-CM. We propose the dynamic clamp (DC) technique with the injection of a specific IK1 current as a tool for deriving nine electrical biomarkers and blindly classifying differentiated CM. An unsupervised learning algorithm was applied to discriminate CM phenotypes and principal component analysis was used to visualise cell clustering. Pharmacological validation was performed by specific ion channel blocker and receptor agonist. The proposed approach improves the translational relevance of the hiPSC-CM model for studying mechanisms underlying inherited or acquired atrial arrhythmias in human CM, and for screening anti-arrhythmic agents.
Collapse
Affiliation(s)
- Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Euler institute, Università Svizzera italiana, Lugano, Switzerland
| | - Chiara Bartolucci
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Carolina Balbi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Jacopo Burrello
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Division of Internal Medicine 4 and Hypertension Unit, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Nicole Pietrogiovanna
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Alessio Burrello
- Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Bologna, Italy
| | - Sara Bolis
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Stefano Panella
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Martina Arici
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Rolf Krause
- Euler institute, Università Svizzera italiana, Lugano, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi', University of Bologna, Cesena, Italy.
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale, Lugano, Switzerland.
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Euler institute, Università Svizzera italiana, Lugano, Switzerland.
- Faculty of Biomedical Sciences, Università Svizzera italiana, Lugano, Switzerland.
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
12
|
Vera-Zambrano A, Baena-Nuevo M, Rinné S, Villegas-Esguevillas M, Barreira B, Telli G, de Benito-Bueno A, Blázquez JA, Climent B, Pérez-Vizcaino F, Valenzuela C, Decher N, Gonzalez T, Cogolludo A. Sigma-1 receptor modulation fine-tunes K V1.5 channels and impacts pulmonary vascular function. Pharmacol Res 2023; 189:106684. [PMID: 36740150 DOI: 10.1016/j.phrs.2023.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.
Collapse
Affiliation(s)
- Alba Vera-Zambrano
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain.
| | - Maria Baena-Nuevo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Marta Villegas-Esguevillas
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gokcen Telli
- Hacettepe University, Department of Pharmacology, Faculty of Pharmacy, Ankara, Turkey
| | | | | | - Belén Climent
- Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Teresa Gonzalez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| |
Collapse
|
13
|
Li XT. Beneficial effects of carvedilol modulating potassium channels on the control of glucose. Biomed Pharmacother 2022; 150:113057. [PMID: 35658228 DOI: 10.1016/j.biopha.2022.113057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
The increased prevalence of hypertensive patients with type 2 diabetes mellitus (T2DM) is evident worldwide, leading to a higher risk of cardiovascular disease onset, which is substantially associated with disabilities and mortality in the clinic. In order to achieve the satisfyingly clinical outcomes and prognosis, the comprehensive therapies have been conducted with a beneficial effect on both blood pressure and glucose homeostasis, and clinical trials reveal that some kind of antihypertensive drugs such as angiotensin converting enzyme inhibitors (ACE-I) may, at least in part, meet the dual requirement during the disease management. As a nonselective β-blocker, carvedilol is employed for treating many cardiovascular diseases in clinical practice, including hypertension, angina pectoris and heart failure, and also exhibit the effectiveness for glycemic control and insulin resistance. Apart from alleviating sympathetic nervous system activity, several causes, such as lowering oxygen reactive species, may contribute to the effects of carvedilol on controlling plasma glucose levels, suggesting a feature of this drug having multiple targets. Interestingly, numerous distinct K+ channels expressed in pancreatic β-cells and peripheral insulin-sensitive tissues, which play a sentential role in glucose metabolism, are subjected to extensive modulation of carvdilol, establishing a linkage between K+ channels and drug's effects on the control of glucose. A variety of evidence shows that the impact of carvedilol on different K+ channels, including Kv, KAch, KATP and K2 P, can lead to positive influences for glucose homeostasis, contributing to its clinical beneficial effectiveness in treatment of hypertensive patients with T2DM. This review focus on the control of plasma glucose conferred by carvedilol modulation on K+ channels, providing the novel mechanistic explanation for drug's actions.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, South-Central University for Nationalities, Wuhan 430074, China; School of Medicine, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
14
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
15
|
Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms23084096. [PMID: 35456912 PMCID: PMC9029767 DOI: 10.3390/ijms23084096] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.
Collapse
|
16
|
Li XT. Alzheimer's disease therapy based on acetylcholinesterase inhibitor/blocker effects on voltage-gated potassium channels. Metab Brain Dis 2022; 37:581-587. [PMID: 35098414 DOI: 10.1007/s11011-022-00921-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder with progressive loss of memory and other cognitive functions. The pathogenesis of this disease is complex and multifactorial, and remains obscure until now. To enhance the declined level of acetylcholine (ACh) resulting from loss of cholinergic neurons, acetylcholinesterase (AChE) inhibitors are developed and successfully approved for AD treatment in the clinic, with a limited therapeutic effectiveness. At present, it is generally accepted that multi-target strategy is potently useful for designing novel drugs for AD. Accumulated evidence reveals that Kv channels, which are broadly expressed in brain and possess crucial functions in modulating the neuronal activity, are inhibited by several acetylcholinesterase (AChE) inhibitors, such as tacrine, bis(7)-tacrine, donepezil and galantamine. Inhibition of Kv channels by these AChE inhibitors can generate neuroprotective effects by either mitigating Aβ toxicity and neuronal apoptosis, or facilitating cell proliferation. These inhibitory effects provide additional explanations for clinical beneficial effectiveness of AChE inhibitors, meaning that Kv channel is a promising candidate target for novel drugs for AD therapy.
Collapse
Affiliation(s)
- Xian-Tao Li
- Department of Neuroscience, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, China.
| |
Collapse
|
17
|
Bae H, Kim T, Lim I. Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:25-36. [PMID: 34965993 PMCID: PMC8723981 DOI: 10.4196/kjpp.2022.26.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3- induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
18
|
Lin YF. Potassium channels as molecular targets of endocannabinoids. Channels (Austin) 2021; 15:408-423. [PMID: 34282702 PMCID: PMC8293965 DOI: 10.1080/19336950.2021.1910461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 10/25/2022] Open
Abstract
Endocannabinoids are a group of endogenous mediators derived from membrane lipids, which are implicated in a wide variety of physiological functions such as blood pressure regulation, immunity, pain, memory, reward, perception, reproduction, and sleep. N-Arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) represent two major endocannabinoids in the human body and they exert many of their cellular and organ system effects by activating the Gi/o protein-coupled, cannabinoid type 1 (CB1) and type 2 (CB2) receptors. However, not all effects of cannabinoids are ascribable to their interaction with CB1 and CB2 receptors; indeed, macromolecules like other types of receptors, ion channels, transcription factors, enzymes, transporters, and cellular structure have been suggested to mediate the functional effects of cannabinoids. Among the proposed molecular targets of endocannabinoids, potassium channels constitute an intriguing group, because these channels not only are crucial in shaping action potentials and controlling the membrane potential and cell excitability, thereby regulating a wide array of physiological processes, but also serve as potential therapeutic targets for the treatment of cancer and metabolic, neurological and cardiovascular disorders. This review sought to survey evidence pertaining to the CB1 and CB2 receptor-independent actions of endocannabinoids on ion channels, with an emphasis on AEA and potassium channels. To better understand the functional roles as well as potential medicinal uses of cannabinoids in human health and disease, further mechanistic studies to delineate interactions between various types of cannabinoids and ion channels, including members in the potassium channel superfamily, are warranted.
Collapse
Affiliation(s)
- Yu-Fung Lin
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
19
|
Soepriatna AH, Kim TY, Daley MC, Song E, Choi BR, Coulombe KLK. Human Atrial Cardiac Microtissues for Chamber-Specific Arrhythmic Risk Assessment. Cell Mol Bioeng 2021; 14:441-457. [PMID: 34777603 DOI: 10.1007/s12195-021-00703-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction Although atrial fibrillation is the most prevalent disorder of electrical conduction, the mechanisms behind atrial arrhythmias remain elusive. To address this challenge, we developed a robust in vitro model of 3D atrial microtissue from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and evaluated chamber-specific chemical responses experimentally and computationally. Methods We differentiated atrial and ventricular cardiomyocytes (aCMs/vCMs) from GCaMP6f-expressing hiPSCs and assessed spontaneous AP activity using fluorescence imaging. Self-assembling 3D microtissues were formed with lactate purified CMs and 5% human cardiac fibroblasts and electrically stimulated for one week before high resolution action potential (AP) optical mapping. AP responses to the atrial-specific potassium repolarizing current I Kur-blocker 4-Aminopyridine (4-AP) and funny current I f-blocker Ivabradine were characterized within their therapeutic window. Finally, we expanded upon a published hiPSC-CM computational model by incorporating the atrial-specific I Kur current, modifying ion channel conductances to match the AP waveforms of our microtissues, and employing the updated model to reinforce our experimental findings. Results High purity CMs (> 75% cTnT+) demonstrated subtype specification by MLC2v expression. Spontaneous beating rates significantly decreased following 3D microtissue formation, with atrial microtissues characterized by their faster spontaneous beating rate, slower AP rise time, and shorter AP duration (APD) compared to ventricular microtissues. We measured atrial-specific responses, including dose-dependent APD prolongation with 4-AP treatment and dose-dependent reduction in spontaneous activity post-Ivabradine treatment. Conclusion The presented in vitro platform for screening atrial-specific responses is both robust and sensitive, with high throughput, enabling studies focused at elucidating the mechanisms underlying atrial arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00703-x.
Collapse
Affiliation(s)
- Arvin H Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Mark C Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Elena Song
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| |
Collapse
|
20
|
Crotti L, Odening KE, Sanguinetti MC. Heritable arrhythmias associated with abnormal function of cardiac potassium channels. Cardiovasc Res 2021; 116:1542-1556. [PMID: 32227190 DOI: 10.1093/cvr/cvaa068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes express a surprisingly large number of potassium channel types. The primary physiological functions of the currents conducted by these channels are to maintain the resting membrane potential and mediate action potential repolarization under basal conditions and in response to changes in the concentrations of intracellular sodium, calcium, and ATP/ADP. Here, we review the diversity and functional roles of cardiac potassium channels under normal conditions and how heritable mutations in the genes encoding these channels can lead to distinct arrhythmias. We briefly review atrial fibrillation and J-wave syndromes. For long and short QT syndromes, we describe their genetic basis, clinical manifestation, risk stratification, traditional and novel therapeutic approaches, as well as insights into disease mechanisms provided by animal and cellular models.
Collapse
Affiliation(s)
- Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.,Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Institute of Experimental Cardiovascular Medicine, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany.,Department of Cardiology, Translational Cardiology, Inselspital, Bern University Hospital, and Institute of Physiology, University of Bern, Bern, Switzerland
| | - Michael C Sanguinetti
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Targeting of Potassium Channels in Cardiac Arrhythmias. Trends Pharmacol Sci 2021; 42:491-506. [PMID: 33858691 DOI: 10.1016/j.tips.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Cardiomyocytes are endowed with a complex repertoire of ion channels, responsible for the generation of action potentials (APs), travelling waves of electrical excitation, propagating throughout the heart and leading to cardiac contractions. Cardiac AP waveforms are shaped by a striking diversity of K+ channels. The pivotal role of K+ channels in cardiac health and disease is underscored by the dramatic impact that K+ channel dysfunction has on cardiac arrhythmias. The development of drugs targeted to specific K+ channels is expected to provide an optimized approach to antiarrhythmic therapy. Here, we review the functional roles of cardiac potassium channels under normal and diseased states. We survey current antiarrhythmic drugs (AADs) targeted to voltage-gated and Ca2+-activated K+ channels and highlight future research opportunities.
Collapse
|
22
|
Darkow E, Nguyen TT, Stolina M, Kari FA, Schmidt C, Wiedmann F, Baczkó I, Kohl P, Rajamani S, Ravens U, Peyronnet R. Small Conductance Ca 2 +-Activated K + (SK) Channel mRNA Expression in Human Atrial and Ventricular Tissue: Comparison Between Donor, Atrial Fibrillation and Heart Failure Tissue. Front Physiol 2021; 12:650964. [PMID: 33868017 PMCID: PMC8047327 DOI: 10.3389/fphys.2021.650964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
In search of more efficacious and safe pharmacological treatments for atrial fibrillation (AF), atria-selective antiarrhythmic agents have been promoted that target ion channels principally expressed in the atria. This concept allows one to engage antiarrhythmic effects in atria, but spares the ventricles from potentially proarrhythmic side effects. It has been suggested that cardiac small conductance Ca2+-activated K+ (SK) channels may represent an atria-selective target in mammals including humans. However, there are conflicting data concerning the expression of SK channels in different stages of AF, and recent findings suggest that SK channels are upregulated in ventricular myocardium when patients develop heart failure. To address this issue, RNA-sequencing was performed to compare expression levels of three SK channels (KCNN1, KCNN2, and KCNN3) in human atrial and ventricular tissue samples from transplant donor hearts (no cardiac disease), and patients with cardiac disease in sinus rhythm or with AF. In addition, for control purposes expression levels of several genes known to be either chamber-selective or differentially expressed in AF and heart failure were determined. In atria, as compared to ventricle from transplant donor hearts, we confirmed higher expression of KCNN1 and KCNA5, and lower expression of KCNJ2, whereas KCNN2 and KCNN3 were statistically not differentially expressed. Overall expression of KCNN1 was low compared to KCNN2 and KCNN3. Comparing atrial tissue from patients with AF to sinus rhythm samples we saw downregulation of KCNN2 in AF, as previously reported. When comparing ventricular tissue from heart failure patients to non-diseased samples, we found significantly increased ventricular expression of KCNN3 in heart failure, as previously published. The other channels showed no significant difference in expression in either disease. Our results add weight to the view that SK channels are not likely to be an atria-selective target, especially in failing human hearts, and modulators of these channels may prove to have less utility in treating AF than hoped. Whether targeting SK1 holds potential remains to be elucidated.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thong T Nguyen
- Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Marina Stolina
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Fabian A Kari
- Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg University, Heidelberg, Germany
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Sridharan Rajamani
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg im Breisgau, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
Chirikian O, Goodyer WR, Dzilic E, Serpooshan V, Buikema JW, McKeithan W, Wu H, Li G, Lee S, Merk M, Galdos F, Beck A, Ribeiro AJS, Paige S, Mercola M, Wu JC, Pruitt BL, Wu SM. CRISPR/Cas9-based targeting of fluorescent reporters to human iPSCs to isolate atrial and ventricular-specific cardiomyocytes. Sci Rep 2021; 11:3026. [PMID: 33542270 PMCID: PMC7862643 DOI: 10.1038/s41598-021-81860-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Generating cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) has represented a significant advance in our ability to model cardiac disease. Current differentiation protocols, however, have limited use due to their production of heterogenous cell populations, primarily consisting of ventricular-like CMs. Here we describe the creation of two chamber-specific reporter hiPSC lines by site-directed genomic integration using CRISPR-Cas9 technology. In the MYL2-tdTomato reporter, the red fluorescent tdTomato was inserted upstream of the 3′ untranslated region of the Myosin Light Chain 2 (MYL2) gene in order faithfully label hiPSC-derived ventricular-like CMs while avoiding disruption of endogenous gene expression. Similarly, in the SLN-CFP reporter, Cyan Fluorescent Protein (CFP) was integrated downstream of the coding region of the atrial-specific gene, Sarcolipin (SLN). Purification of tdTomato+ and CFP+ CMs using flow cytometry coupled with transcriptional and functional characterization validated these genetic tools for their use in the isolation of bona fide ventricular-like and atrial-like CMs, respectively. Finally, we successfully generated a double reporter system allowing for the isolation of both ventricular and atrial CM subtypes within a single hiPSC line. These tools provide a platform for chamber-specific hiPSC-derived CM purification and analysis in the context of atrial- or ventricular-specific disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Orlando Chirikian
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Biotechnology Graduate Program, California State University Channel Islands, Camarillo, CA, USA.,Biomolecular, Science, and Engineering, University California, Santa Barbara, CA, USA
| | - William R Goodyer
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA
| | - Elda Dzilic
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Cardiovascular Surgery, German Heart Center Munich, Technische Universität München, Lazarettstraße 36, 80636, Munich, Germany.,Insure (Institute for Translational Cardiac Surgery), Department of Cardiovascular Surgery, German Heart Center, Technische Universität München, Lothstraße 11, 80636, Munich, Germany
| | - Vahid Serpooshan
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Jan W Buikema
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Cardiology, Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 GA, Utrecht, The Netherlands
| | - Wesley McKeithan
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - HaoDi Wu
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Guang Li
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Soah Lee
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Markus Merk
- Biomolecular, Science, and Engineering, University California, Santa Barbara, CA, USA
| | - Francisco Galdos
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Aimee Beck
- Stanford Cardiovascular Institute, Stanford, CA, USA.,Biotechnology Graduate Program, California State University Channel Islands, Camarillo, CA, USA
| | - Alexandre J S Ribeiro
- Stanford University, Stanford, CA, USA.,Departments of Bioengineering and of Mechanical Engineering, Stanford University, Stanford, USA
| | - Sharon Paige
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA
| | - Mark Mercola
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA
| | - Joseph C Wu
- Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA
| | - Beth L Pruitt
- Stanford University, Stanford, CA, USA.,Departments of Bioengineering and of Mechanical Engineering, Stanford University, Stanford, USA.,Department of Mechanical Engineering, University California, Santa Barbara, CA, USA
| | - Sean M Wu
- Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford, CA, USA. .,Stanford University School of Medicine, Stanford, CA, USA. .,Department of Pediatrics, Division of Cardiology, Stanford, CA, USA. .,Department of Medicine, Division of Cardiovascular Medicine, Stanford University , Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
Wu CI, Lu YY, Chen YC, Lin FZ, Huang JH, Lin YK, Higa S, Chan CS, Liu CM, Chen SA, Chen YJ. The AMP-activated protein kinase modulates hypothermia-induced J wave. Eur J Clin Invest 2020; 50:e13247. [PMID: 32307703 DOI: 10.1111/eci.13247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mechanism underlying the occurrence of the J wave in low temperature remains unclear. However, low temperature is associated with metabolic disorder and 5' AMP-activated protein kinase (AMPK), which modulates ionic currents and cardiac metabolism. This study investigated whether AMPK regulation can modulate the occurrence of the J wave at low temperature. METHODS Unipolar and bipolar leads were used to record monophasic action potential (the endocardium and epicardium) and pseudo-electrocardiograms (inferior leads) to study the cardiac electrical activity. Measurements were taken in isolated Langendorff rabbit hearts at both 30℃ and 37℃ before and after administration of 4-aminopyridine (an ultrarapid delayed rectifier potassium current inhibitor, IKur , 50 µmol L-1 ), PF06409577 (an AMPK activator, 1 µmol L-1 ), compound C (an AMPK inhibitor, 10 µmol L-1 ) and glibenclamide (an ATP-sensitive inward rectifier potassium channel inhibitor, IKATP , 20 µmol L-1 ). RESULTS The amplitude of the J wave (2.46 ± 0.34 mV vs. 1.11 ± 0.23 mV, P < .01) at 30℃ (n = 15) was larger than that at 37℃ (n = 15). PF06409577 (1 µmol L-1 ) increased the J waves at both 30℃ and 37℃. In contrast, compound C (10 µmol L-1 ) reduced J wave at both 37℃ and 30℃. Low-temperature-induced J waves were individually suppressed by 4-AP (50 µmol L-1 ) and glibenclamide (20 µmol L-1 ). CONCLUSIONS AMPK inhibition reduces low-temperature-induced J waves and possible ventricular arrhythmogenesis by modulating IKATP and IKur channels.
Collapse
Affiliation(s)
- Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Yu Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering and Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Zhi Lin
- Grade Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Hung Huang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa, Japan
| | - Chao-Shun Chan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cardiovacular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Ritchie LA, Qin S, Penson PE, Henney NC, Lip GY. Vernakalant hydrochloride for the treatment of atrial fibrillation: evaluation of its place in clinical practice. Future Cardiol 2020; 16:585-595. [PMID: 32460637 DOI: 10.2217/fca-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vernakalant is an intravenous anti-arrhythmic drug available in Europe, Canada and some countries in Asia for the restoration of sinus rhythm in acute onset atrial fibrillation. Currently, it is not available in USA because the US FDA have ongoing concerns about its safety. Vernakalant has a unique pharmacological profile of multi-ion channel activity and atrial-specificity that distinguishes it from other anti-arrhythmic drugs. This is thought to enhance efficacy but there are concerns of adverse events stemming from its diverse pharmacology. This ambiguity has prompted a review of the available clinical evidence on efficacy and safety to help re-evaluate its place in clinical practice.
Collapse
Affiliation(s)
- Leona A Ritchie
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK
| | - Shuguang Qin
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK.,Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an 710004, China
| | - Peter E Penson
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK.,School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Neil C Henney
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Gregory Yh Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart & Chest Hospital, Liverpool, L7 8TX, UK
| |
Collapse
|
26
|
Tazmini K, Frisk M, Lewalle A, Laasmaa M, Morotti S, Lipsett DB, Manfra O, Skogestad J, Aronsen JM, Sejersted OM, Sjaastad I, Edwards AG, Grandi E, Niederer SA, Øie E, Louch WE. Hypokalemia Promotes Arrhythmia by Distinct Mechanisms in Atrial and Ventricular Myocytes. Circ Res 2020; 126:889-906. [PMID: 32070187 PMCID: PMC7098435 DOI: 10.1161/circresaha.119.315641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Hypokalemia occurs in up to 20% of hospitalized patients and is associated with increased incidence of ventricular and atrial fibrillation. It is unclear whether these differing types of arrhythmia result from direct and perhaps distinct effects of hypokalemia on cardiomyocytes. OBJECTIVE To investigate proarrhythmic mechanisms of hypokalemia in ventricular and atrial myocytes. METHODS AND RESULTS Experiments were performed in isolated rat myocytes exposed to simulated hypokalemia conditions (reduction of extracellular [K+] from 5.0 to 2.7 mmol/L) and supported by mathematical modeling studies. Ventricular cells subjected to hypokalemia exhibited Ca2+ overload and increased generation of both spontaneous Ca2+ waves and delayed afterdepolarizations. However, similar Ca2+-dependent spontaneous activity during hypokalemia was only observed in a minority of atrial cells that were observed to contain t-tubules. This effect was attributed to close functional pairing of the Na+-K+ ATPase and Na+-Ca2+ exchanger proteins within these structures, as reduction in Na+ pump activity locally inhibited Ca2+ extrusion. Ventricular myocytes and tubulated atrial myocytes additionally exhibited early afterdepolarizations during hypokalemia, associated with Ca2+ overload. However, early afterdepolarizations also occurred in untubulated atrial cells, despite Ca2+ quiescence. These phase-3 early afterdepolarizations were rather linked to reactivation of nonequilibrium Na+ current, as they were rapidly blocked by tetrodotoxin. Na+ current-driven early afterdepolarizations in untubulated atrial cells were enabled by membrane hyperpolarization during hypokalemia and short action potential configurations. Brief action potentials were in turn maintained by ultra-rapid K+ current (IKur); a current which was found to be absent in tubulated atrial myocytes and ventricular myocytes. CONCLUSIONS Distinct mechanisms underlie hypokalemia-induced arrhythmia in the ventricle and atrium but also vary between atrial myocytes depending on subcellular structure and electrophysiology.
Collapse
Affiliation(s)
- Kiarash Tazmini
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway (K.T., E.Ø.)
| | - Michael Frisk
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
- KG Jebsen Center for Cardiac Research (M.F., M.L., O.M., I.S., W.E.L.), University of Oslo, Norway
| | - Alexandre Lewalle
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (A.L., S.A.N.)
| | - Martin Laasmaa
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
- KG Jebsen Center for Cardiac Research (M.F., M.L., O.M., I.S., W.E.L.), University of Oslo, Norway
| | - Stefano Morotti
- Department of Pharmacology, School of Medicine, University of California Davis (S.M., A.G.E., E.G.)
| | - David B. Lipsett
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
| | - Ornella Manfra
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
- KG Jebsen Center for Cardiac Research (M.F., M.L., O.M., I.S., W.E.L.), University of Oslo, Norway
| | - Jonas Skogestad
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
| | - Jan M. Aronsen
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
- Bjørknes College, Oslo, Norway (J.M.A.)
| | - Ole M. Sejersted
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
| | - Ivar Sjaastad
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
- KG Jebsen Center for Cardiac Research (M.F., M.L., O.M., I.S., W.E.L.), University of Oslo, Norway
| | - Andrew G. Edwards
- Department of Pharmacology, School of Medicine, University of California Davis (S.M., A.G.E., E.G.)
| | - Eleonora Grandi
- Department of Pharmacology, School of Medicine, University of California Davis (S.M., A.G.E., E.G.)
| | - Steven A. Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (A.L., S.A.N.)
| | - Erik Øie
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway (K.T., E.Ø.)
| | - William E. Louch
- From the Institute for Experimental Medical Research, Oslo University Hospital (K.T., M.F., M.L., D.B.L., O.M., J.S., J.M.A., O.M.S., I.S., W.E.L.), University of Oslo, Norway
- KG Jebsen Center for Cardiac Research (M.F., M.L., O.M., I.S., W.E.L.), University of Oslo, Norway
| |
Collapse
|
27
|
Mechanism of electrical remodeling of atrial myocytes and its influence on susceptibility to atrial fibrillation in diabetic rats. Life Sci 2019; 239:116903. [PMID: 31639397 DOI: 10.1016/j.lfs.2019.116903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
AIMS To explore the atrial electrical remodeling and the susceptibility of atrial fibrillation (AF) in diabetic rats. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) rats were chosen as diabetic animal model, and age-matched non-diabetic littermate Zucker lean (ZL) rats as control. AF susceptibility was determined by electrophysiological examination. The current density of Ito, IKur and ICa-L were detected by whole-cell patch-clamp technique, and ion channel protein expression in atrial tissue and HL-1 cells treated with advanced glycation end products (AGE) was analyzed by western blotting. KEY FINDINGS Diabetic rats had significantly enlarged left atria and evenly thickened ventricular walls, hypertrophied cells and interstitial fibrosis in atrial myocardium, increased AF susceptibility, and prolonged AF duration after atrial burst stimulation. Compared with atrial myocytes isolated from ZL controls, atrial myocytes isolated from ZDF rats had prolonged action potential duration, decreased absolute value of resting membrane potential level and current densities of Ito, IKur and ICa-L. The ion channel protein (Kv4.3, Kv1.5 and Cav1.2) expression in atrium tissue of ZDF rats and HL-1 cells treated with high concentration AGE were significantly down-regulated, compared with controls. SIGNIFICANCE The atrial electrical remodeling induced by hyperglycemia contributed to the increased AF susceptibility in diabetic rats.
Collapse
|
28
|
Wang Y, Zhu R, Tung L. Contribution of potassium channels to action potential repolarization of human embryonic stem cell-derived cardiomyocytes. Br J Pharmacol 2019; 176:2780-2794. [PMID: 31074016 DOI: 10.1111/bph.14704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 03/11/2019] [Accepted: 03/29/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The electrophysiological properties of human pluripotent stem cell-derived cardiomyocytes (CMs) have not yet been characterized in a syncytial context. This study systematically characterized the contributions of different repolarizing potassium currents in human embryonic stem cell-derived CMs (hESC-CMs) during long-term culture as cell monolayers. EXPERIMENTAL APPROACH The H9 hESC line was differentiated to CMs and plated to form confluent cell monolayers. Optical mapping was used to record the action potentials (APs) and conduction velocity (CV) during electrophysiological and pharmacological experiments. RT-PCR and Western blot were used to detect the presence and expression levels of ion channel subunits. KEY RESULTS Long-term culture of hESC-CMs led to shortened AP duration (APD), faster repolarization rate, and increased CV. Selective block of IKr , IKs , IK1 , and IKur significantly affected AP repolarization and APD in a concentration- and culture time-dependent manner. Baseline variations in APD led to either positive or negative APD dependence of drug response. Chromanol 293B produced greater relative AP prolongation in mid- and late-stage cultures, while DPO-1 had more effect in early-stage cultures. CV in cell monolayers in early- and late-stage cultures was most susceptible to slowing by E-4031 and BaCl2 respectively. CONCLUSIONS AND IMPLICATIONS IKr , IKs , IK1 , and IKur all play an essential role in the regulation of APD and CV in hESC-CMs. During time in culture, increased expression of IKr and IK1 helps to accelerate repolarization, shorten APD, and increase CV. We identified a new pro-arrhythmic parameter, positive APD dependence of ion channel block, which can increase APD and repolarization gradients.
Collapse
Affiliation(s)
- Yin Wang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Peyronnet R, Ravens U. Atria-selective antiarrhythmic drugs in need of alliance partners. Pharmacol Res 2019; 145:104262. [PMID: 31059791 DOI: 10.1016/j.phrs.2019.104262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Abstract
Atria-selective antiarrhythmic drugs in need of alliance partners. Guideline-based treatment of atrial fibrillation (AF) comprises prevention of thromboembolism and stroke, as well as antiarrhythmic therapy by drugs, electrical rhythm conversion, ablation and surgical procedures. Conventional antiarrhythmic drugs are burdened with unwanted side effects including a propensity of triggering life-threatening ventricular fibrillation. In order to solve this therapeutic dilemma, 'atria-selective' antiarrhythmic drugs have been developed for the treatment of supraventricular arrhythmias. These drugs are designed to aim at atrial targets, taking advantage of differences in atrial and ventricular ion channel expression and function. However it is not clear, whether such drugs are sufficiently antiarrhythmic or whether they are in need of an alliance partner for clinical efficacy. Atria-selective Na+ channel blockers display fast dissociation kinetics and high binding affinity to inactivated channels. Compounds targeting atria-selective K+ channels include blockers of ultra rapid delayed rectifier (Kv1.5) or acetylcholine-activated inward rectifier K+ channels (Kir3.x), inward rectifying K+ channels (Kir2.x), Ca2+-activated K+ channels of small conductance (SK), weakly rectifying two-pore domain K+ channels (K2P), and transient receptor potential channels (TRP). Despite good antiarrhythmic data from in-vitro and animal model experiments, clinical efficacy of atria-selective antiarrhythmic drugs remains to be demonstrated. In the present review we will briefly summarize the novel compounds and their proposed antiarrhythmic action. In addition, we will discuss the evidence for putative improvement of antiarrhythmic efficacy and potency by addressing multiple pathophysiologically relevant targets as possible alliance partners.
Collapse
Affiliation(s)
- Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany; Institute of Physiology, Medical Faculty TU Dresden, Dresden, Germany.
| |
Collapse
|
30
|
Long-term 4-AP treatment facilitates functional expression of human Kv1.5 channel. Eur J Pharmacol 2019; 844:195-203. [PMID: 30552904 DOI: 10.1016/j.ejphar.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
The human Kv1.5 channel (hKv1.5) produces the ultrarapid delayed rectifier potassium current (IKur), which is important for determining the repolarization of action potential in the cardiac atrium. However, the expression of IKur is reduced in patients with chronic atrial fibrillation. 4-Aminopyridine (4-AP) can specifically suppress IKur, suggesting that it modifies hKv1.5 as a chaperone molecule. Herein, the effects of long-term 4-AP treatment on hKv1.5 protein expression and function were investigated in HEK cells. 4-AP treatment (24 h) improved hKv1.5 protein levels, promoted hKv1.5 glycosylation, and facilitated the hKv1.5 current in a time-dependent manner. Long-term 4-AP treatment also markedly enhanced hKv1.5 localization in the cell membrane, endoplasmic reticulum, and Golgi. Importantly, the Ile508 residue located in the hKv1.5 channel pore was found to be important for 4-AP inhibitory activity. These results provide insight into developing hKv1.5 channel blocker that can functionally rescue IKur in patients with chronic atrial fibrillation.
Collapse
|
31
|
Kanaporis G, Kalik ZM, Blatter LA. Action potential shortening rescues atrial calcium alternans. J Physiol 2018; 597:723-740. [PMID: 30412286 DOI: 10.1113/jp277188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Cardiac alternans refers to a beat-to-beat alternation in contraction, action potential (AP) morphology and Ca2+ transient (CaT) amplitude, and represents a risk factor for cardiac arrhythmia, including atrial fibrillation. We developed strategies to pharmacologically manipulate the AP waveform with the goal to reduce or eliminate the occurrence of CaT and contraction alternans in atrial tissue. With combined patch-clamp and intracellular Ca2+ measurements we investigated the effect of specific ion channel inhibitors and activators on alternans. In single rabbit atrial myocytes, suppression of Ca2+ -activated Cl- channels eliminated AP duration alternans, but prolonged the AP and failed to eliminate CaT alternans. In contrast, activation of K+ currents (IKs and IKr ) shortened the AP and eliminated both AP duration and CaT alternans. As demonstrated also at the whole heart level, activation of K+ conductances represents a promising strategy to suppress alternans, and thus reducing a risk factor for atrial fibrillation. ABSTRACT At the cellular level alternans is observed as beat-to-beat alternations in contraction, action potential (AP) morphology and magnitude of the Ca2+ transient (CaT). Alternans is a well-established risk factor for cardiac arrhythmia, including atrial fibrillation. This study investigates whether pharmacological manipulation of AP morphology is a viable strategy to reduce the risk of arrhythmogenic CaT alternans. Pacing-induced AP and CaT alternans were studied in rabbit atrial myocytes using combined Ca2+ imaging and electrophysiological measurements. Increased AP duration (APD) and beat-to-beat alternations in AP morphology lowered the pacing frequency threshold and increased the degree of CaT alternans. Inhibition of Ca2+ -activated Cl- channels reduced beat-to-beat AP alternations, but prolonged APD and failed to suppress CaT alternans. In contrast, AP shortening induced by activators of two K+ channels (ML277 for Kv7.1 and NS1643 for Kv11.1) abolished both APD and CaT alternans in field-stimulated and current-clamped myocytes. K+ channel activators had no effect on the degree of Ca2+ alternans in AP voltage-clamped cells, confirming that suppression of Ca2+ alternans was caused by the changes in AP morphology. Finally, activation of Kv11.1 channel significantly attenuated or even abolished atrial T-wave alternans in isolated Langendorff perfused hearts. In summary, AP shortening suppressed or completely eliminated both CaT and APD alternans in single atrial myocytes and atrial T-wave alternans at the whole heart level. Therefore, we suggest that AP shortening is a potential intervention to avert development of alternans with important ramifications for arrhythmia prevention and therapy.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Zane M Kalik
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
32
|
Lamothe SM, Hogan-Cann AE, Li W, Guo J, Yang T, Tschirhart JN, Zhang S. The N terminus and transmembrane segment S1 of Kv1.5 can coassemble with the rest of the channel independently of the S1-S2 linkage. J Biol Chem 2018; 293:15347-15358. [PMID: 30121572 DOI: 10.1074/jbc.ra118.004065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Indexed: 11/06/2022] Open
Abstract
The voltage-gated potassium channel Kv1.5 belongs to the Shaker superfamily. Kv1.5 is composed of four subunits, each comprising 613 amino acids, which make up the N terminus, six transmembrane segments (S1-S6), and the C terminus. We recently demonstrated that, in HEK cells, extracellularly applied proteinase K (PK) cleaves Kv1.5 channels at a single site in the S1-S2 linker. This cleavage separates Kv1.5 into an N-fragment (N terminus to S1) and a C-fragment (S2 to C terminus). Interestingly, the cleavage does not impair channel function. Here, we investigated the role of the N terminus and S1 in Kv1.5 expression and function by creating plasmids encoding various fragments, including those that mimic PK-cleaved products. Our results disclosed that although expression of the pore-containing fragment (Frag(304-613)) alone could not produce current, coexpression with Frag(1-303) generated a functional channel. Immunofluorescence and biotinylation analyses uncovered that Frag(1-303) was required for Frag(304-613) to traffic to the plasma membrane. Biochemical analysis revealed that the two fragments interacted throughout channel trafficking and maturation. In Frag(1-303)+(304-613)-coassembled channels, which lack a covalent linkage between S1 and S2, amino acid residues 1-209 were important for association with Frag(304-613), and residues 210-303 were necessary for mediating trafficking of coassembled channels to the plasma membrane. We conclude that the N terminus and S1 of Kv1.5 can attract and coassemble with the rest of the channel (i.e. Frag(304-613)) to form a functional channel independently of the S1-S2 linkage.
Collapse
Affiliation(s)
- Shawn M Lamothe
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Aja E Hogan-Cann
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wentao Li
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jun Guo
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tonghua Yang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jared N Tschirhart
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shetuan Zhang
- From the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
33
|
Yang Q, Lv Q, Feng M, Liu M, Feng Y, Lin S, Yang J, Hu J. Taurine Prevents the Electrical Remodeling in Ach-CaCl 2 Induced Atrial Fibrillation in Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:821-830. [PMID: 28849502 DOI: 10.1007/978-94-024-1079-2_64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVE To study the preventive actions and mechanism of taurine on the electrical remodeling in atrial fibrillation (AF) rats. METHODS Male Wistar rats were injected with the mixture of acetylcholine (Ach) (66 μg/mL)-CaCl2 (10 mg/mL) (i.v.) for 7 days to establish AF model. Taurine was administered in drinking water 1 week before or at the same time of AF model establishment. The duration of AF was monitored by recording ECG of rats during the model establishment. At the end of the experiment, left atrial appendages were cut down to measure the effective refractory period (ERP) by S1-S2 double stimulation method; atrial tissues were collected in order to detect the concentration of K+ and taurine by flame atomic absorption spectrometry and ELISA respectively; total RNA were extracted from the atrium, gene expressions of Kv1.5, Kv4.3, Kir2.1, Kir3.4 were detected by semi-quantitative RT-PCR. RESULTS Taurine administration effectively shortened the AF duration of rats and prolonged atrial ERP than the model and taurine depleted rats. In addition, atrial K+ level in taurine treated groups was significantly reduced nearly to the normal level. Moreover, the mRNA expression levels of Kir3.4 and Kv1.5 were significantly increased in the taurine preventive treated groups. CONCLUSIONS Taurine can prevent the atrial electrical remodeling and decrease the duration of AF in rats by reducing the atrial K+ concentration and up-regulating mRNA expression levels of Kir3.4 and Kv1.5.
Collapse
Affiliation(s)
- Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Qiufeng Lv
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Man Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Mei Liu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Ying Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China.
| |
Collapse
|
34
|
Ravens U. Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:38-44. [DOI: 10.1016/j.pbiomolbio.2018.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
|
35
|
Vagos M, van Herck IGM, Sundnes J, Arevalo HJ, Edwards AG, Koivumäki JT. Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges. Front Physiol 2018; 9:1221. [PMID: 30233399 PMCID: PMC6131668 DOI: 10.3389/fphys.2018.01221] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The pathophysiology of atrial fibrillation (AF) is broad, with components related to the unique and diverse cellular electrophysiology of atrial myocytes, structural complexity, and heterogeneity of atrial tissue, and pronounced disease-associated remodeling of both cells and tissue. A major challenge for rational design of AF therapy, particularly pharmacotherapy, is integrating these multiscale characteristics to identify approaches that are both efficacious and independent of ventricular contraindications. Computational modeling has long been touted as a basis for achieving such integration in a rapid, economical, and scalable manner. However, computational pipelines for AF-specific drug screening are in their infancy, and while the field is progressing quite rapidly, major challenges remain before computational approaches can fill the role of workhorse in rational design of AF pharmacotherapies. In this review, we briefly detail the unique aspects of AF pathophysiology that determine requirements for compounds targeting AF rhythm control, with emphasis on delimiting mechanisms that promote AF triggers from those providing substrate or supporting reentry. We then describe modeling approaches that have been used to assess the outcomes of drugs acting on established AF targets, as well as on novel promising targets including the ultra-rapidly activating delayed rectifier potassium current, the acetylcholine-activated potassium current and the small conductance calcium-activated potassium channel. Finally, we describe how heterogeneity and variability are being incorporated into AF-specific models, and how these approaches are yielding novel insights into the basic physiology of disease, as well as aiding identification of the important molecular players in the complex AF etiology.
Collapse
Affiliation(s)
- Márcia Vagos
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ilsbeth G. M. van Herck
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Joakim Sundnes
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Hermenegild J. Arevalo
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Andrew G. Edwards
- Computational Physiology Department, Simula Research Laboratory, Lysaker, Norway
- Center for Cardiological Innovation, Oslo, Norway
| | - Jussi T. Koivumäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
36
|
Rashid MH, Kuyucak S. Computational Study of the Loss-of-Function Mutations in the Kv1.5 Channel Associated with Atrial Fibrillation. ACS OMEGA 2018; 3:8882-8890. [PMID: 31459020 PMCID: PMC6645308 DOI: 10.1021/acsomega.8b01094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 06/10/2023]
Abstract
Atrial fibrillation (AF) is a heart disease caused by defective ion channels in the atria, which affect the action potential (AP) duration and disturb normal heart rhythm. Rapid firing of APs in neighboring atrial cells is a common mechanism of AF, and therefore, therapeutic approaches have focused on extending the AP duration by inhibiting the K+ channels involved in repolarization. Of these, Kv1.5 that carries the I Kur current is a promising target because it is expressed mainly in atria and not in ventricles. In genetic studies of AF patients, both loss-of-function and gain-of-function mutations in Kv1.5 have been identified, indicating that either decreased or increased I Kur currents could trigger AF. Blocking of already downregulated Kv1.5 channels could cause AF to become chronic. Thus, a molecular-level understanding of how the loss-of-function mutations in Kv1.5 affect I Kur would be useful for developing new therapeutics. Here, we perform molecular dynamics simulations to study the effect of three loss-of-function mutations in the pore domain of Kv1.5 on ion permeation. Comparison of the pore structures and ion free energies in the wild-type and mutant Kv1.5 channels indicates that conformational changes in the selectivity filter could hinder ion permeation in the mutant channels.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Department of Chemistry,
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
37
|
Ma D, Liu Z, Loh LJ, Zhao Y, Li G, Liew R, Islam O, Wu J, Chung YY, Teo WS, Ching CK, Tan BY, Chong D, Ho KL, Lim P, Yong RYY, Panama BK, Kaplan AD, Bett GCL, Ware J, Bezzina CR, Verkerk AO, Cook SA, Rasmusson RL, Wei H. Identification of an I Na-dependent and I to-mediated proarrhythmic mechanism in cardiomyocytes derived from pluripotent stem cells of a Brugada syndrome patient. Sci Rep 2018; 8:11246. [PMID: 30050137 PMCID: PMC6062539 DOI: 10.1038/s41598-018-29574-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 07/16/2018] [Indexed: 02/08/2023] Open
Abstract
Brugada syndrome (BrS) is an inherited cardiac arrhythmia commonly associated with SCN5A mutations, yet its ionic mechanisms remain unclear due to a lack of cellular models. Here, we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a BrS patient (BrS1) to evaluate the roles of Na+ currents (INa) and transient outward K+ currents (Ito) in BrS induced action potential (AP) changes. To understand the role of these current changes in repolarization we employed dynamic clamp to “electronically express” IK1 and restore normal resting membrane potentials and allow normal recovery of the inactivating currents, INa, ICa and Ito. HiPSC-CMs were generated from BrS1 with a compound SCN5A mutation (p. A226V & p. R1629X) and a healthy sibling control (CON1). Genome edited hiPSC-CMs (BrS2) with a milder p. T1620M mutation and a commercial control (CON2) were also studied. CON1, CON2 and BrS2, had unaltered peak INa amplitudes, and normal APs whereas BrS1, with over 75% loss of INa, displayed a loss-of-INa basal AP morphology (at 1.0 Hz) manifested by a reduced maximum upstroke velocity (by ~80%, p < 0.001) and AP amplitude (p < 0.001), and an increased phase-1 repolarization pro-arrhythmic AP morphology (at 0.1 Hz) in ~25% of cells characterized by marked APD shortening (~65% shortening, p < 0.001). Moreover, Ito densities of BrS1 and CON1 were comparable and increased from 1.0 Hz to 0.1 Hz by ~ 100%. These data indicate that a repolarization deficit could be a mechanism underlying BrS.
Collapse
Affiliation(s)
- Dongrui Ma
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Zhenfeng Liu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Li Jun Loh
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Yongxing Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Guang Li
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Reginald Liew
- Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School Singapore, Singapore, 169857, Republic of Singapore
| | - Omedul Islam
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Jianjun Wu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Ying Ying Chung
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Wee Siong Teo
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Chi Keong Ching
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Boon Yew Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Daniel Chong
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Kah Leng Ho
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Paul Lim
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore
| | - Rita Yu Yin Yong
- Defense Medical and Environmental Research Institute, DSO National Laboratories, Singapore, 117510, Republic of Singapore
| | - Brian K Panama
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Aaron D Kaplan
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - Glenna C L Bett
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
| | - James Ware
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Connie R Bezzina
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore.,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School Singapore, Singapore, 169857, Republic of Singapore.,Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Randall L Rasmusson
- University at Buffalo, State University of New York, Buffalo, NY, 14214, USA.
| | - Heming Wei
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Republic of Singapore. .,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School Singapore, Singapore, 169857, Republic of Singapore.
| |
Collapse
|
38
|
Calvo D, Filgueiras-Rama D, Jalife J. Mechanisms and Drug Development in Atrial Fibrillation. Pharmacol Rev 2018; 70:505-525. [PMID: 29921647 PMCID: PMC6010660 DOI: 10.1124/pr.117.014183] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation is a highly prevalent cardiac arrhythmia and the most important cause of embolic stroke. Although genetic studies have identified an increasing assembly of AF-related genes, the impact of these genetic discoveries is yet to be realized. In addition, despite more than a century of research and speculation, the molecular and cellular mechanisms underlying AF have not been established, and therapy for AF, particularly persistent AF, remains suboptimal. Current antiarrhythmic drugs are associated with a significant rate of adverse events, particularly proarrhythmia, which may explain why many highly symptomatic AF patients are not receiving any rhythm control therapy. This review focuses on recent advances in AF research, including its epidemiology, genetics, and pathophysiological mechanisms. We then discuss the status of antiarrhythmic drug therapy for AF today, reviewing molecular mechanisms, and the possible clinical use of some of the new atrial-selective antifibrillatory agents, as well as drugs that target atrial remodeling, inflammation and fibrosis, which are being tested as upstream therapies to prevent AF perpetuation. Altogether, the objective is to highlight the magnitude and endemic dimension of AF, which requires a significant effort to develop new and effective antiarrhythmic drugs, but also improve AF prevention and treatment of risk factors that are associated with AF complications.
Collapse
Affiliation(s)
- David Calvo
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| | - David Filgueiras-Rama
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| | - José Jalife
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| |
Collapse
|
39
|
Nguyen HX, Kirkton RD, Bursac N. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies. Nat Protoc 2018; 13:927-945. [PMID: 29622805 PMCID: PMC6050172 DOI: 10.1038/nprot.2018.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.
Collapse
Affiliation(s)
- Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| | - Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| |
Collapse
|
40
|
Enhancement of 5-HT 2A receptor function and blockade of Kv1.5 by MK801 and ketamine: implications for PCP derivative-induced disease models. Exp Mol Med 2018; 50:1-8. [PMID: 29700292 PMCID: PMC5938026 DOI: 10.1038/s12276-018-0073-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
MK801 and ketamine, which are phencyclidine (PCP) derivative N-methyl-d-aspartate receptor (NMDAr) blockers, reportedly enhance the function of 5-hydroxytryptamine (HT)-2A receptors (5-HT2ARs). Both are believed to directly affect the pathogenesis of schizophrenia, as well as hypertension. 5-HT2AR signaling involves the inhibition of Kv conductance. This study investigated the interaction of these drugs with Kv1.5, which plays important roles in 5-HT2AR signaling and in regulating the excitability of the cardiovascular and nervous system, and the potential role of this interaction in the enhancement of the 5-HT2AR-mediated response. Using isometric organ bath experiments with arterial rings and conventional whole-cell patch-clamp recording of Chinese hamster ovary (CHO) cells ectopically overexpressing Kv1.5, we examined the effect of ketamine and MK801 on 5-HT2AR-mediated vasocontraction and Kv1.5 channels. Both ketamine and MK801 potentiated 5-HT2AR-mediated vasocontraction. This potentiation of 5-HT2AR function occurred in a membrane potential-dependent manner, indicating the involvement of ion channel(s). Both ketamine and MK801 rapidly and directly inhibited Kv1.5 channels from the extracellular side independently of NMDArs. The potencies of MK801 in facilitating the 5-HT2AR-mediated response and blocking Kv1.5 were higher than those of ketamine. Our data demonstrated the direct inhibition of Kv1.5 channels by MK801/ketamine and indicated that this inhibition may potentiate the functions of 5-HT2ARs. We suggest that 5-HT2AR-Kv1.5 may serve as a receptor-effector module in response to 5-HT and is a promising target in the pathogenesis of MK801-/ketamine-induced disease states such as hypertension and schizophrenia. The drugs ketamine and MK801, which are derivatives of phencyclidine (PCP, or angel dust), may provide clues to treatment of schizophrenia and hypertension. Both ketamine and MK801 have been reported to induce symptoms of schizophrenia and hypertension, and are used as to study these illnesses. The two drugs are known to affect serotonin receptors, but the mechanism remains unclear. Young Min Bae at Konkuk University School of Medicine, Chungju, South Korea, and colleagues investigated how ketamine and MK801 interact with a type of electrically activated biological switch known as a voltage-gated ion channel to influence serotonin receptors. They found that both ketamine and MK801 blocked the switch and enhanced activity of serotonin receptors, with MK801 having a stronger effect than ketamine. These results may help identify drug targets for treating hypertension and schizophrenia.
Collapse
|
41
|
Interactions of Propofol With Human Voltage-gated Kv1.5 Channel Determined by Docking Simulation and Mutagenesis Analyses. J Cardiovasc Pharmacol 2018; 71:10-18. [DOI: 10.1097/fjc.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Ni H, Whittaker DG, Wang W, Giles WR, Narayan SM, Zhang H. Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Front Physiol 2017; 8:946. [PMID: 29218016 PMCID: PMC5703742 DOI: 10.3389/fphys.2017.00946] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
- Space Institute of Southern China, Shenzhen, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | | | - Wei Wang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wayne R. Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, AB, Canada
| | - Sanjiv M. Narayan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Henggui Zhang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
- Space Institute of Southern China, Shenzhen, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
43
|
Al-Owais MM, Hettiarachchi NT, Boyle JP, Scragg JL, Elies J, Dallas ML, Lippiat JD, Steele DS, Peers C. Multiple mechanisms mediating carbon monoxide inhibition of the voltage-gated K + channel Kv1.5. Cell Death Dis 2017; 8:e3163. [PMID: 29095440 PMCID: PMC5775415 DOI: 10.1038/cddis.2017.568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
The voltage-gated K+ channel has key roles in the vasculature and in atrial excitability and contributes to apoptosis in various tissues. In this study, we have explored its regulation by carbon monoxide (CO), a product of the cytoprotective heme oxygenase enzymes, and a recognized toxin. CO inhibited recombinant Kv1.5 expressed in HEK293 cells in a concentration-dependent manner that involved multiple signalling pathways. CO inhibition was partially reversed by superoxide dismutase mimetics and by suppression of mitochondrial reactive oxygen species. CO also elevated intracellular nitric oxide (NO) levels. Prevention of NO formation also partially reversed CO inhibition of Kv1.5, as did inhibition of soluble guanylyl cyclase. CO also elevated intracellular peroxynitrite levels, and a peroxynitrite scavenger markedly attenuated the ability of CO to inhibit Kv1.5. CO caused nitrosylation of Kv1.5, an effect that was also observed in C331A and C346A mutant forms of the channel, which had previously been suggested as nitrosylation sites within Kv1.5. Augmentation of Kv1.5 via exposure to hydrogen peroxide was fully reversed by CO. Native Kv1.5 recorded in HL-1 murine atrial cells was also inhibited by CO. Action potentials recorded in HL-1 cells were increased in amplitude and duration by CO, an effect mimicked and occluded by pharmacological inhibition of Kv1.5. Our data indicate that Kv1.5 is a target for modulation by CO via multiple mechanisms. This regulation has important implications for diverse cellular functions, including excitability, contractility and apoptosis.
Collapse
Affiliation(s)
- Moza M Al-Owais
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nishani T Hettiarachchi
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John P Boyle
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jason L Scragg
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jacobo Elies
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Mark L Dallas
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jon D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Derek S Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Chris Peers
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
44
|
Ellinwood N, Dobrev D, Morotti S, Grandi E. Revealing kinetics and state-dependent binding properties of I Kur-targeting drugs that maximize atrial fibrillation selectivity. CHAOS (WOODBURY, N.Y.) 2017; 27:093918. [PMID: 28964116 PMCID: PMC5573366 DOI: 10.1063/1.5000226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.
Collapse
Affiliation(s)
- Nicholas Ellinwood
- Department of Pharmacology, University of California Davis, Davis, California 95616, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California 95616, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California 95616, USA
| |
Collapse
|
45
|
Ravens U. Atrial-selective K + channel blockers: potential antiarrhythmic drugs in atrial fibrillation? Can J Physiol Pharmacol 2017; 95:1313-1318. [PMID: 28738160 DOI: 10.1139/cjpp-2017-0024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K+) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting IKur, the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting IK,ACh, the Ca2+-activated K+ channels of small conductance (SK) conducting ISK, and the two-pore domain K+ (K2P) channels (tandem of P domains, weak inward-rectifying K+ channels (TWIK-1), TWIK-related acid-sensitive K+ channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents ITWIK-1, ITASK-1, and ITASK-3. Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.
Collapse
Affiliation(s)
- Ursula Ravens
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany.,Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, University of Freiburg, Germany; Institute of Physiology, Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| |
Collapse
|
46
|
Kanaporis G, Blatter LA. Alternans in atria: Mechanisms and clinical relevance. MEDICINA-LITHUANIA 2017; 53:139-149. [PMID: 28666575 DOI: 10.1016/j.medici.2017.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation is the most common sustained arrhythmia and its prevalence is rapidly rising with the aging of the population. Cardiac alternans, defined as cyclic beat-to-beat alternations in contraction force, action potential (AP) duration and intracellular Ca2+ release at constant stimulation rate, has been associated with the development of ventricular arrhythmias. Recent clinical data also provide strong evidence that alternans plays a central role in arrhythmogenesis in atria. The aim of this article is to review the mechanisms that are responsible for repolarization alternans and contribute to the transition from spatially concordant alternans to the more arrhythmogenic spatially discordant alternans in atria.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, USA.
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, USA
| |
Collapse
|
47
|
The inhibitory effects of levo-tetrahydropalmatine on rat Kv1.5 channels expressed in HEK293 cells. Eur J Pharmacol 2017; 809:105-110. [PMID: 28502629 DOI: 10.1016/j.ejphar.2017.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/07/2023]
Abstract
Levo-tetrahydropalmatine (l-THP) exerts various pharmacological effects on neural and cardiac tissues and K+ channel can be one of its multiple targets. The rapidly activating Kv1.5 channel is expressed in a variety of tissues including atrial cells and hippocampal neurons, and has an essential role in tuning the action potential and excitability in those cells. The aim of current study is to explore whether there are the possible effects of l-THP on Kv1.5 channels expressed in HEK293 cells. Superfusion of l-THP led to a dose-dependent blockage of Kv1.5 currents with an IC50 value of 53.2μM. This blocking effect was substantially attenuated in mutant H452G rather than R476V and R476Y, suggesting a specific binding site in the outer mouth region. In addition, the properties of Kv1.5 channel kinetics were markedly altered by l-THP. Treatment with l-THP resulted in a potential left shift of the inactivation curve, with the half-maximum inactivation potential (V1/2) of 4.5mV in control and -12.8mV in 50μM l-THP. Our data reveal that l-THP can exert an inhibitory effect on the delayed rectifier Kv1.5 channels expressed in HEK293 cells. These lines of evidence provided an insight to understand the possible effects exerted by l-THP on relative tissues.
Collapse
|
48
|
Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation. Toxicol Appl Pharmacol 2017; 322:89-96. [DOI: 10.1016/j.taap.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 12/27/2022]
|
49
|
Gunaga P, Lloyd J, Mummadi S, Banerjee A, Dhondi NK, Hennan J, Subray V, Jayaram R, Rajugowda N, Umamaheshwar Reddy K, Kumaraguru D, Mandal U, Beldona D, Adisechen AK, Yadav N, Warrier J, Johnson JA, Sale H, Putlur SP, Saxena A, Chimalakonda A, Mandlekar S, Conder M, Xing D, Gupta AK, Gupta A, Rampulla R, Mathur A, Levesque P, Wexler RR, Finlay HJ. Selective I Kur Inhibitors for the Potential Treatment of Atrial Fibrillation: Optimization of the Phenyl Quinazoline Series Leading to Clinical Candidate 5-[5-Phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide. J Med Chem 2017; 60:3795-3803. [PMID: 28418664 DOI: 10.1021/acs.jmedchem.6b01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have recently disclosed 5-phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine 1 as a potent IKur current blocker with selectivity versus hERG, Na and Ca channels, and an acceptable preclinical PK profile. Upon further characterization in vivo, compound 1 demonstrated an unacceptable level of brain penetration. In an effort to reduce the level of brain penetration while maintaining the overall profile, SAR was developed at the C2' position for a series of close analogues by employing hydrogen bond donors. As a result, 5-[5-phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide (25) was identified as the lead compound in this series. Compound 25 showed robust effects in rabbit and canine pharmacodynamic models and an acceptable cross-species pharmacokinetic profile and was advanced as the clinical candidate. Further optimization of 25 to mitigate pH-dependent absorption resulted in identification of the corresponding phosphoramide prodrug (29) with an improved solubility and pharmacokinetic profile.
Collapse
Affiliation(s)
- Prashantha Gunaga
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - John Lloyd
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Somanadham Mummadi
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Abhisek Banerjee
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Naveen Kumar Dhondi
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - James Hennan
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Veena Subray
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ramya Jayaram
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Nagendra Rajugowda
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Kommuri Umamaheshwar Reddy
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Duraimurugan Kumaraguru
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Umasankar Mandal
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Dasthagiri Beldona
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ashok Kumar Adisechen
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Navnath Yadav
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Jayakumar Warrier
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - James A Johnson
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Harinath Sale
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Siva Prasad Putlur
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ajay Saxena
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Anjaneya Chimalakonda
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sandhya Mandlekar
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - MaryLee Conder
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Dezhi Xing
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arun Kumar Gupta
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Anuradha Gupta
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arvind Mathur
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Paul Levesque
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ruth R Wexler
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Heather J Finlay
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| |
Collapse
|
50
|
Inhibitory effects of cholinesterase inhibitor donepezil on the Kv1.5 potassium channel. Sci Rep 2017; 7:41509. [PMID: 28198801 PMCID: PMC5304190 DOI: 10.1038/srep41509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/21/2016] [Indexed: 11/25/2022] Open
Abstract
Kv1.5 channels carry ultra-rapid delayed rectifier K+ currents in excitable cells, including neurons and cardiac myocytes. In the current study, the effects of cholinesterase inhibitor donepezil on cloned Kv1.5 channels expressed in HEK29 cells were explored using whole-cell recording technique. Exposure to donepezil resulted in a rapid and reversible block of Kv1.5 currents, with an IC50 value of 72.5 μM. The mutant R476V significantly reduced the binding affinity of donepezil to Kv1.5 channels, showing the target site in the outer mouth region. Donepezil produced a significant delay in the duration of activation and deactivation, and mutant R476V potentiated these effects without altering activation curves. In response to slowed deactivation time course, a typical crossover of Kv1.5 tail currents was clearly evident after bath application of donepezil. In addition, both this chemical and mutant R476V accelerated current decay during channel inactivation in a voltage-dependent way, but barely changed the inactivation and recovery curves. The presence of donepezil exhibited the use-dependent block of Kv1.5 currents in response to a series of depolarizing pulses. Our data indicate that donepezil can directly block Kv1.5 channels in its open and closed states.
Collapse
|