1
|
Danser AHJ, Deinum J. Antihypertensive drug treatment: are we ready for the future? J Hypertens 2025:00004872-990000000-00659. [PMID: 40167023 DOI: 10.1097/hjh.0000000000004019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Treatment of hypertension generally requires multiple antihypertensive drugs. Yet, not all patients are treated adequately, largely because of nonadherence, although drug ineffectiveness and counterbalancing mechanisms may also play a role. Novel antihypertensive drugs have not been introduced for at least one to two decades. Remarkably, over the last few years, a range of novel compounds is being introduced, acting either on novel targets, or displaying an exceptionally long half-life. The former may help to improve blood pressure lowering, for instance by interfering with counterbalancing mechanisms, while the latter might help to circumvent nonadherence. This review summarizes the latest developments, focusing on novel drugs acting on the endothelin system, the renin-angiotensin-aldosterone system (RAAS), and atrial natriuretic peptide (ANP).
Collapse
Affiliation(s)
- A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
3
|
Gekle M, Dubourg V, Schwerdt G, Benndorf RA, Schreier B. The role of EGFR in vascular AT1R signaling: From cellular mechanisms to systemic relevance. Biochem Pharmacol 2023; 217:115837. [PMID: 37777161 DOI: 10.1016/j.bcp.2023.115837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ErbB-family of receptor tyrosine kinases that are of importance in oncology. During the last years, substantial evidence accumulated for a crucial role of EGFR concerning the action of the angiotensin II type 1 receptor (AT1R) in blood vessels, resulting form AT1R-induced EGFR transactivation. This transactivation occurs through the release of membrane-anchored EGFR-ligands, cytosolic tyrosine kinases, heterocomplex formation or enhanced ligand expression. AT1R-EGFR crosstalk amplifies the signaling response and enhances the biological effects of angiotensin II. Downstream signaling cascades include ERK1/2 and p38 MAPK, PLCγ and STAT. AT1R-induced EGFR activation contributes to vascular remodeling and hypertrophy via e.g. smooth muscle cell proliferation, migration and extracellular matrix production. EGFR transactivation results in increased vessel wall thickness and reduced vascular compliance. AT1R and EGFR signaling pathways are also implicated the induction of vascular inflammation. Again, EGFR transactivation exacerbates the effects, leading to endothelial dysfunction that contributes to vascular inflammation, dysfunction and remodeling. Dysregulation of the AT1R-EGFR axis has been implicated in the pathogenesis of various cardiovascular diseases and inhibition or prevention of EGFR signaling can attenuate part of the detrimental impact of enhanced renin-angiotensin-system (RAAS) activity, highlighting the importance of EGFR for the adverse consequences of AT1R activation. In summary, EGFR plays a critical role in vascular AT1R action, enhancing signaling, promoting remodeling, contributing to inflammation, and participating in the pathogenesis of cardiovascular diseases. Understanding the interplay between AT1R and EGFR will foster the development of effective therapeutic strategies of RAAS-induced disorders.
Collapse
Affiliation(s)
- Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany.
| | - Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 6, D-06112 Halle (Saale), Germany
| |
Collapse
|
4
|
Vogt L, Marques FZ, Fujita T, Hoorn EJ, Danser AHJ. Novel mechanisms of salt-sensitive hypertension. Kidney Int 2023; 104:690-697. [PMID: 37454911 DOI: 10.1016/j.kint.2023.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
A high dietary sodium-consumption level is considered the most important lifestyle factor that can be modified to help prevent an increase in blood pressure and the development of hypertension. Despite numerous studies over the past decades, the pathophysiology explaining why some people show a salt-sensitive blood pressure response and others do not is incompletely understood. Here, a brief overview of the latest mechanistic insights is provided, focusing on the mononuclear phagocytic system and inflammation, the gut-kidney axis, and epigenetics. The article also discusses the effects of 3 types of novel drugs on salt-sensitive hypertension-sodium-glucose cotransporter 2 inhibitors, nonsteroidal mineralocorticoid receptor antagonists, and aldosterone synthase inhibitors. The conclusion is that besides kidney-centered mechanisms, vasoconstrictor mechanisms are also relevant for both the understanding and treatment of this blood pressure phenotype.
Collapse
Affiliation(s)
- Liffert Vogt
- Department of Internal Medicine, Section of Nephrology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, and Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Toshiro Fujita
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
5
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
6
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
7
|
Fu L, Adu-Amankwaah J, Sang L, Tang Z, Gong Z, Zhang X, Li T, Sun H. Gender differences in GRK2 in cardiovascular diseases and its interactions with estrogen. Am J Physiol Cell Physiol 2023; 324:C505-C516. [PMID: 36622065 DOI: 10.1152/ajpcell.00407.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a multifunctional protein involved in regulating G protein-coupled receptor (GPCR) and non-GPCR signaling in the body. In the cardiovascular system, increased expression of GRK2 has been implicated in the occurrence and development of several cardiovascular diseases (CVDs). Recent studies have found gender differences in GRK2 in the cardiovascular system under physiological and pathological conditions, where GRK2's expression and activity are increased in males than in females. The incidence of CVDs in premenopausal women is lower than in men of the same age, which is related to estrogen levels. Given the shared location of GRK2 and estrogen receptors, estrogen may interact with GRK2 by modulating vital molecules such as calmodulin (CaM), caveolin, RhoA, nitrate oxide (NO), and mouse double minute 2 homolog (Mdm2), via signaling pathways mediated by estrogen's genomic (ERα and ERβ), and non-genomic (GPER) receptors, conferring cardiovascular protection in females. Highlighting the gender differences in GRK2 and understanding its interaction with estrogen in the cardiovascular system is pertinent in treating gender-related CVDs. As a result, this article explores the gender differences of GRK2 in the cardiovascular system and its relationship with estrogen during disease conditions. Estrogen's protective and therapeutic effects and its mechanism on GRK2-related cardiovascular diseases have also been discussed.
Collapse
Affiliation(s)
- Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Lili Sang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,School of Public Affairs & Governance, Silliman University, Dumaguete, Philippines
| | - Xiaoyan Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
8
|
Baldwin SN, Forrester EA, Homer NZM, Andrew R, Barrese V, Stott JB, Isakson BE, Albert AP, Greenwood IA. Marked oestrous cycle-dependent regulation of rat arterial K V 7.4 channels driven by GPER1. Br J Pharmacol 2023; 180:174-193. [PMID: 36085551 PMCID: PMC10091994 DOI: 10.1111/bph.15947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Kcnq-encoded KV 7 channels (termed KV 7.1-5) regulate vascular smooth muscle cell (VSMC) contractility at rest and as targets of receptor-mediated responses. However, the current data are mostly derived from males. Considering the known effects of sex, the oestrous cycle and sex hormones on vascular reactivity, here we have characterised the molecular and functional properties of KV 7 channels from renal and mesenteric arteries from female Wistar rats separated into di-oestrus and met-oestrus (F-D/M) and pro-oestrus and oestrus (F-P/E). EXPERIMENTAL APPROACH RT-qPCR, immunocytochemistry, proximity ligation assay and wire myography were performed in renal and mesenteric arteries. Circulating sex hormone concentrations were determined by liquid chromatography-tandem mass spectrometry. Whole-cell electrophysiology was undertaken on cells expressing KV 7.4 channels in association with G-protein-coupled oestrogen receptor 1 (GPER1). KEY RESULTS The KV 7.2-5 activators S-1 and ML213 and the pan-KV 7 inhibitor linopirdine were more effective in arteries from F-D/M compared with F-P/E animals. In VSMCs isolated from F-P/E rats, exploratory evidence indicates reduced membrane abundance of KV 7.4 but not KV 7.1, KV 7.5 and Kcne4 when compared with cells from F-D/M. Plasma oestradiol was higher in F-P/E compared with F-D/M, and progesterone showed the converse pattern. Oestradiol/GPER1 agonist G-1 diminished KV 7.4 encoded currents and ML213 relaxations and reduced the membrane abundance of KV 7.4 and interaction between KV 7.4 and heat shock protein 90 (HSP90), in arteries from F-D/M but not F-P/E. CONCLUSIONS AND IMPLICATIONS GPER1 signalling decreased KV 7.4 membrane abundance in conjunction with diminished interaction with HSP90, giving rise to a 'pro-contractile state'.
Collapse
Affiliation(s)
- Samuel N. Baldwin
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Elizabeth A. Forrester
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Natalie Z. M. Homer
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Ruth Andrew
- Mass Spectrometry Core Laboratory, Edinburgh Clinical Research Facility, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
- BHF Centre for Cardiovascular Science, Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Jennifer B. Stott
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Brant E. Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research CentreUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Anthony P. Albert
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| | - Iain A. Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical SciencesSt George's University of LondonLondonUK
| |
Collapse
|
9
|
Sankrityayan H, Rao PD, Shelke V, Kulkarni YA, Mulay SR, Gaikwad AB. Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction. Curr Mol Pharmacol 2023; 16:139-146. [PMID: 35232343 DOI: 10.2174/1874467215666220301113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular endothelial dysfunction (VED) significantly results in catastrophic cardiovascular diseases with multiple aetiologies. Variations in vasoactive peptides, including angiotensin II and endothelin 1, and metabolic perturbations like hyperglycaemia, altered insulin signalling, and homocysteine levels result in pathogenic signalling cascades, which ultimately lead to VED. Endoplasmic reticulum (ER) stress reduces nitric oxide availability, causes aberrant angiogenesis, and enhances oxidative stress pathways, consequently promoting endothelial dysfunction. Moreover, the renin-angiotensin system (RAS) has widely been acknowledged to impact angiogenesis, endothelial repair and inflammation. Interestingly, experimental studies at the preclinical level indicate a possible pathological link between the two pathways in the development of VED. Furthermore, pharmacological modulation of ER stress ameliorates angiotensin-II mediated VED as well as RAS intervention either through inhibition of the pressor arm or enhancement of the depressor arm of RAS, mitigating ER stress-induced endothelial dysfunction and thus emphasizing a vital crosstalk. CONCLUSION Deciphering the pathway overlap between RAS and ER stress may open potential therapeutic avenues to combat endothelial dysfunction and associated diseases. Several studies suggest that alteration in a component of RAS may induce ER stress or induction of ER stress may modulate the RAS components. In this review, we intend to elaborate on the crosstalk of ER stress and RAS in the pathophysiology of VED.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Pooja Dhileepkumar Rao
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
10
|
Yu X, Nguyen P, Burns NC, Heaps CL, Stallone JN, Sohrabji F, Han G. Activation of G protein-coupled estrogen receptor fine-tunes age-related decreased vascular activities in the aortae of female and male rats. Steroids 2022; 183:108997. [PMID: 35314416 DOI: 10.1016/j.steroids.2022.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hormone replacement therapy was found to be effective in cardiovascular protection only in younger women, not in older women. In this study, we tested whether G protein-coupled estrogen receptor 1 (GPER) activation improves vascular activities in response to ET-1 and ACh in aging rats. METHODS Isometric tension study was applied on aortic rings isolated from young adult (5-7 months) and reproductive senescent middle-aged (10-12 months) female Sprague Dawley rats and age matched males. RESULTS The aortic contractile response to ET-1 and the relaxation response to ACh were reduced in the female middle-aged rats compared to the female young adult rats. The presence of G-1, the GPER agonist, normalized the reduced vascular activities. Cyclooxygenase inhibitor, meclofenamate, blocked the increased constriction effect of G-1, but further enhanced relaxation effect of G-1. There was no significant difference in aortic reactivity to either ET-1 or ACh between the male middle-aged and young adult rats. The contractile response to ET-1 was not different within the same age of the two sex groups, but there was a remarkable difference in relaxation response to ACh between young adult females and males with better response in females. GPER activation greatly improved the aortic relaxation of both young adult and middle-aged females, but not the males. CONCLUSIONS Endothelial dysfunction occurs earlier in males, but in females, dysfunction delays until middle age. GPER activation improves the vascular activities in females, but not males. It is promising to employ GPER as a potential drug target in cardiovascular disease in women.
Collapse
Affiliation(s)
- Xuan Yu
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Peter Nguyen
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Nioka C Burns
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Cristine L Heaps
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - John N Stallone
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Guichun Han
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA; Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, KY, USA.
| |
Collapse
|
11
|
Gao DD, Lan CF, Cao XN, Chen L, Lei TL, Peng L, Xu JW, Qiu ZE, Wang LL, Sun Q, Huang ZY, Zhu YX, Zhou WL, Zhang YL. G protein-coupled estrogen receptor promotes acrosome reaction via regulation of Ca2+ signaling in mouse sperm. Biol Reprod 2022; 107:1026-1034. [PMID: 35774023 DOI: 10.1093/biolre/ioac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER), a seven-transmembrane G protein-coupled receptor, mediates the rapid pre-genomic signaling actions of estrogen and derivatives thereof. The expression of GPER is extensive in mammal male reproductive system. However, the functional role of GPER in mouse sperm has not yet been well recognized. This study revealed that GPER was expressed at the acrosome and the mid-flagellum of the mouse sperm. The endogenous GPER ligand 17β-estradiol and the selective GPER agonist G1 increased intracellular Ca2+ concentration ([Ca2+]i) in mouse sperm, which could be abolished by G15, an antagonist of GPER. In addition, the G1-stimulated Ca2+ response was attenuated by interference with the phospholipase C (PLC) signaling pathways or by blocking the cation sperm channel (CatSper). Chlortetracycline staining assay showed that the activation of GPER increased the incidence of acrosome-reacted sperm. Conclusively, GPER was located at the acrosome and mid-flagellum of the mouse sperm. Activation of GPER triggered the elevation of [Ca2+]i through PLC-dependent Ca2+ mobilization and CatSper-mediated Ca2+ influx, which promoted the acrosome reaction in mouse sperm.
Collapse
Affiliation(s)
- Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, P.R. China
| | - Chong-Feng Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiao-Nian Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Long-Long Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qing Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
12
|
Cruz-López EO, Uijl E, Danser AHJ. Perivascular Adipose Tissue in Vascular Function: Does Locally Synthesized Angiotensinogen Play a Role? J Cardiovasc Pharmacol 2021; 78:S53-S62. [PMID: 34840262 DOI: 10.1097/fjc.0000000000001027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
ABSTRACT In recent years, perivascular adipose tissue (PVAT) research has gained special attention in an effort to understand its involvement in vascular function. PVAT is recognized as an important endocrine organ that secretes procontractile and anticontractile factors, including components of the renin-angiotensin-aldosterone system, particularly angiotensinogen (AGT). This review critically addresses the occurrence of AGT in PVAT, its release into the blood stream, and its contribution to the generation and effects of angiotensins (notably angiotensin-(1-7) and angiotensin II) in the vascular wall. It describes that the introduction of transgenic animals, expressing AGT at 0, 1, or more specific location(s), combined with the careful measurement of angiotensins, has revealed that the assumption that PVAT independently generates angiotensins from locally synthesized AGT is incorrect. Indeed, selective deletion of AGT from adipocytes did not lower circulating AGT, neither under a control diet nor under a high-fat diet, and only liver-specific AGT deletion resulted in the disappearance of AGT from blood plasma and adipose tissue. An entirely novel scenario therefore develops, supporting local angiotensin generation in PVAT that depends on the uptake of both AGT and renin from blood, in addition to the possibility that circulating angiotensins exert vascular effects. The review ends with a summary of where we stand now and recommendations for future research.
Collapse
Affiliation(s)
- Edwyn O Cruz-López
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Aldosterone rapidly activates p-PKC delta and GPR30 but suppresses p-PKC epsilon protein levels in rat kidney. Endocr Regul 2020; 53:154-164. [PMID: 31517630 DOI: 10.2478/enr-2019-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Aldosterone rapidly enhances protein kinase C (PKC) alpha and beta1 proteins in the rat kidney. The G protein-coupled receptor 30 (GPR30)-mediated PKC pathway is involved in the inhibition of the potassium channel in HEK-239 cells. GPR30 mediates rapid actions of aldosterone in vitro. There are no reports available regarding the aldosterone action on other PKC isoforms and GPR30 proteins in vivo. The aim of the present study was to examine rapid actions of aldosterone on protein levels of phosphorylated PKC (p-PKC) delta, p-PKC epsilon, and GPR30 simultaneously in the rat kidney. METHODS Male Wistar rats were intraperitoneally injected with normal saline solution or aldosterone (150 µg/kg body weight). After 30 minutes, abundance and immunoreactivity of p-PKC delta, p-PKC epsilon, and GPR30 were determined by Western blot analysis and immunohisto-chemistry, respectively. RESULTS Aldosterone administration significantly increased the renal protein abundance of p-PKC delta by 80% (p<0.01) and decreased p-PKC epsilon protein by 50% (p<0.05). Aldosterone injection enhanced protein immunoreactivity of p-PKC delta but suppressed p-PKC epsilon protein intensity in both kidney cortex and medulla. Protein abundance of GPR30 was elevated by aldosterone treatment (p<0.05), whereas the immunoreactivity was obviously changed in the kidney cortex and inner medulla. Aldosterone translocated p-PKC delta and GPR30 proteins to the brush border membrane of proximal convoluted tubules. CONCLUSIONS This is the first in vivo study simultaneously demonstrating that aldosterone administration rapidly elevates protein abundance of p-PKC delta and GPR30, while p-PKC epsilon protein is suppressed in rat kidney. The stimulation of p-PKC delta protein levels by aldosterone may be involved in the activation of GPR30.
Collapse
|
14
|
Evans PD. Rapid signalling responses via the G protein-coupled estrogen receptor, GPER, in a hippocampal cell line. Steroids 2019; 152:108487. [PMID: 31499073 DOI: 10.1016/j.steroids.2019.108487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 01/14/2023]
Abstract
The rapid non-genomic actions of 17β-estradiol in multiple tissues, including the nervous system, may involve the activation of the G-protein-coupled receptor, GPER. Different signalling pathways have been suggested to be activated by GPER in different cell lines and tissues. Controversially, GPER has also been suggested to be activated by the mineralocorticoid aldosterone, and by the non-steroidal diphenylacrylamide compound, STX, in some preparations. Evidence for the ability of the GPER agonist, G-1, and for aldosterone in the presence of the mineralocorticoid receptor antagonist, eplerenone, to potentiate forskolin-stimulated cyclic AMP levels in the hippocampal clonal cell line, mHippoE-18 is reviewed. The effects of both agents are blocked by the GPER antagonist G36, by PTX, (suggesting the involvement of Gi/o G proteins), by BAPTA-AM, (suggesting they are calcium sensitive), by wortmannin (suggesting an involvement of PI3Kinase) and by soluble amyloid-β peptides. STX also stimulates cyclic AMP levels in mHippoE-18 cells and these effects are blocked by G36 and PTX, as well as by amyloid-β peptides. This suggests that both aldosterone and STX may be capable of activating GPER in mHippoE-18 cells. Possible molecular mechanisms that may underlie these effects are discussed, together with possible forward directions for research on rapid non-genomic signalling by GPER, emphasising the importance of understanding the spatio-temporal aspects of its signalling in various tissues.
Collapse
Affiliation(s)
- Peter D Evans
- The Signalling Laboratory, The Babraham Institute, The Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
15
|
Liu B, Zhang TN, Knight JK, Goodwin JE. The Glucocorticoid Receptor in Cardiovascular Health and Disease. Cells 2019; 8:cells8101227. [PMID: 31601045 PMCID: PMC6829609 DOI: 10.3390/cells8101227] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor is a member of the nuclear receptor family that controls many distinct gene networks, governing various aspects of development, metabolism, inflammation, and the stress response, as well as other key biological processes in the cardiovascular system. Recently, research in both animal models and humans has begun to unravel the profound complexity of glucocorticoid signaling and convincingly demonstrates that the glucocorticoid receptor has direct effects on the heart and vessels in vivo and in vitro. This research has contributed directly to improving therapeutic strategies in human disease. The glucocorticoid receptor is activated either by the endogenous steroid hormone cortisol or by exogenous glucocorticoids and acts within the cardiovascular system via both genomic and non-genomic pathways. Polymorphisms of the glucocorticoid receptor are also reported to influence the progress and prognosis of cardiovascular disease. In this review, we provide an update on glucocorticoid signaling and highlight the critical role of this signaling in both physiological and pathological conditions of the cardiovascular system. With increasing in-depth understanding of glucocorticoid signaling, the future is promising for the development of targeted glucocorticoid treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Tie-Ning Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jessica K Knight
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Evans PD. Aldosterone, STX and amyloid-β 1-42 peptides modulate GPER (GPR30) signalling in an embryonic mouse hippocampal cell line (mHippoE-18). Mol Cell Endocrinol 2019; 496:110537. [PMID: 31404576 DOI: 10.1016/j.mce.2019.110537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023]
Abstract
The GPCR, GPER, mediates many of the rapid, non-genomic actions of 17β-estradiol in multiple tissues, including the nervous system. Controversially, it has also been suggested to be activated by aldosterone, and by the non-steroidal diphenylacrylamide compound, STX, in some preparations. Here, the ability of the GPER agonist, G-1, and aldosterone in the presence of the mineralocorticoid receptor antagonist, eplerenone, to potentiate forskolin-stimulated cyclic AMP levels in the hippocampal clonal cell line, mHippoE-18, are compared. Both stimulatory effects are blocked by the GPER antagonist G36, by PTX, (suggesting the involvement of Gi/o G proteins), by BAPTA-AM, (suggesting they are calcium sensitive), by wortmannin (suggesting an involvement of PI3Kinase) and by soluble amyloid-β peptides. STX also stimulates cyclic AMP levels in mHippoE-18 cells and these effects are blocked by G36 and PTX, as well as by amyloid-β peptides. This suggests that both aldosterone and STX may modulate GPER signalling in mHippoE-18 cells.
Collapse
Affiliation(s)
- Peter D Evans
- The Signalling Laboratory, The Babraham Institute, The Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
17
|
Roksnoer LCW, Uijl E, de Vries R, Garrelds IM, Jan Danser AH. Neprilysin inhibition and endothelin-1 elevation: Focus on the kidney. Eur J Pharmacol 2018; 824:128-132. [PMID: 29432709 DOI: 10.1016/j.ejphar.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Increasing the degree of renin-angiotensin system (RAS) blockade by combining ≥2 RAS blockers marginally increases efficacy, but results in more side effects. Hence, interference with other systems is currently being investigated, like potentiation of natriuretic peptides with neprilysin inhibitors. However, the neprilysin inhibitor thiorphan was recently found to increase endothelin-1 when administered to TGR(mREN2)27 (Ren2) rats on top of RAS blockade. Here we investigated whether this effect is thiorphan-specific, by comparing the neprilysin inhibitors thiorphan and sacubitril, administered by osmotic minipumps at a low or high dose for 7 days, in Ren2 rats. Plasma and urinary levels of endothelin-1, atrial and brain natriuretic peptide (ANP, BNP) and their second messenger cyclic guanosine 3'5' monophosphate (cGMP) were monitored. No significant differences were found in the plasma concentrations of endothelin-1, cGMP, ANP and BNP after treatment, although plasma ANP tended to be higher in the high-dose thiorphan treatment group and the low- and high-dose sacubitril treatment groups, compared with vehicle. Urinary endothelin-1 increased in the low-dose thiorphan and high-dose sacubitril groups, compared with baseline, although significance was reached for the former only. Urinary cGMP rose significantly in the high-dose sacubitril treatment group compared with baseline. Both urinary endothelin-1 and cGMP were significantly higher in the high-dose sacubitril group compared with the low-dose sacubitril group. In conclusion, endothelin-1 upregulation occurs with both thiorphan and sacubitril, and is particularly apparent in neprilysin-rich organs like the kidney. High renal neprilysin levels most likely also explain why sacubitril increased cGMP in urine only.
Collapse
Affiliation(s)
- Lodi C W Roksnoer
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Estrellita Uijl
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Yu X, Stallone JN, Heaps CL, Han G. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries. PLoS One 2018; 13:e0191418. [PMID: 29360846 PMCID: PMC5779678 DOI: 10.1371/journal.pone.0191418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/04/2018] [Indexed: 01/09/2023] Open
Abstract
Estrogen exerts protective effects against cardiovascular diseases in premenopausal women, but is associated with an increased risk of both coronary heart disease and stroke in older postmenopausal women. Studies have shown that activation of the G-protein-coupled estrogen receptor 1 (GPER) can cause either relaxation or contraction of arteries. It is highly likely that these dual actions of GPER may contribute to the seemingly paradoxical effects of estrogen in regulating coronary artery function. The objective of this study was to test the hypothesis that activation of GPER enhances agonist-stimulated porcine coronary artery contraction via epidermal growth factor receptor (EGFR) transactivation and its downstream extracellular signal-regulated kinases (ERK1/2) pathway. Isometric tension studies and western blot were performed to determine the effect of GPER activation on coronary artery contraction. Our findings demonstrated that G-1 caused concentration-dependent relaxation of ET-1-induced contraction, while pretreatment of arterial rings with G-1 significantly enhanced ET-1-induced contraction. GPER antagonist, G-36, significantly inhibited both the G-1-induced relaxation effect and G-1-enhanced ET-1 contraction. Gallein, a Gβγ inhibitor, significantly increased G-1-induced relaxation, yet inhibited G-1-enhanced ET-1-mediated contraction. Similarly, inhibition of EGFR with AG1478 or inhibition of Src with phosphatase 2 further increased G-1-induced relaxation responses in coronary arteries, but decreased G-1-enhanced ET-1-induced contraction. Western blot experiments in porcine coronary artery smooth muscle cells (PCASMC) showed that G-1 increased tyrosine phosphorylation of EGFR, which was inhibited by AG-1478. Furthermore, enzyme-linked immunosorbent assays showed that the level of heparin-binding EGF (HB-EGF) released by ET-1 treatment increased two-fold; whereas pre-incubation with G-1 further increased ET-1-induced HB-EGF release to four-fold over control conditions. Lastly, the role of ERK1/2 was determined by applying the MEK inhibitor, PD98059, in isometric tension studies and detecting phospho-ERK1/2 in immunoblotting. PD98059 potentiated G-1-induced relaxation response, but blocked G-1-enhanced ET-1-induced contraction. By western blot, G-1 treatment decreased phospho-ERK1/2, however, in the presence of the adenylyl cyclase inhibitor, SQ22536, G-1 significantly increased ERK1/2 phosphorylation in PCASMC. These data demonstrate that activation of GPER induces relaxation via cAMP as well as contraction via a mechanism involving transactivation of EGFR and the phosphorylation of ERK1/2 in porcine coronary arteries.
Collapse
Affiliation(s)
- Xuan Yu
- Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - John N. Stallone
- Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute Texas A&M University, College Station, TX, United States of America
| | - Cristine L. Heaps
- Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute Texas A&M University, College Station, TX, United States of America
| | - Guichun Han
- Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
19
|
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94:317-325. [PMID: 28772209 DOI: 10.1016/j.biopha.2017.07.091] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Renin-angiotensin-aldosterone system (RAAS) is a vital system of human body, as it maintains plasma sodium concentration, arterial blood pressure and extracellular volume. Kidney-secreted renin enzyme acts on its substrate to form angiotensin II, a versatile effector peptide hormone. Every organ is affected by RAAS activation and the resultant hypertension, cell proliferation, inflammation, and fibrosis. The imbalance of renin and angiotensin II can result in an overwhelming number of chronic and acute diseases. RAAS is influenced by other enzymes, hormones, pumps and signaling pathways, hence, this review discusses important facets of this system, its crosstalk with other crucial factors like estrogen, thyroid, cortisol, kallikrein-kinin system, Wnt/β-catenin signaling, and sodium-potassium pump. The nexus of RAAS with the above-discussed systems was scantily explored before. So, this review furnishes a new perspective in comprehension of inflammation diseases. It is followed by the formulation of hypotheses, which can contribute to better management of an array of pathologies plaguing mankind. Manipulation of RAAS, by bending it towards ACE2 expression can regulate endocrine functions, which can be critical for a number of pathological management. Dietary intervention can restore RAAS to normalcy.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, 92182, USA.
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| |
Collapse
|
20
|
Ruhs S, Nolze A, Hübschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 2017; 234:T107-T124. [PMID: 28348113 DOI: 10.1530/joe-16-0659] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family and classically functions as a ligand-dependent transcription factor. It is involved in water-electrolyte homeostasis and blood pressure regulation but independent from these effects also furthers inflammation, fibrosis, hypertrophy and remodeling in cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions within minutes that do not require transcription or translation and that occur not only in classical MR epithelial target organs like kidney and colon but also in nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects can be mediated by classical MR and its crosstalk with different signaling cascades. Near the plasma membrane, the MR seems to be associated with caveolin and striatin as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone effects. GPER1 has also been named a putative novel MR. There is a close interaction and functional synergism between the genomic and the nongenomic signaling so that nongenomic signaling can lead to long-term effects and support genomic actions. Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance for modulating genomic aldosterone effects and may provide additional targets for intervention.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Nolze
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralf Hübschmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Grossmann
- Julius Bernstein Institute of PhysiologyMartin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
21
|
Rajkumar P, Pluznick JL. Unsung renal receptors: orphan G-protein-coupled receptors play essential roles in renal development and homeostasis. Acta Physiol (Oxf) 2017; 220:189-200. [PMID: 27699982 DOI: 10.1111/apha.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/31/2022]
Abstract
Recent studies have shown that orphan GPCRs of the GPR family are utilized as specialized chemosensors in various tissues to detect metabolites, and in turn to activate downstream pathways which regulate systemic homeostasis. These studies often find that such metabolites are generated by well-known metabolic pathways, implying that known metabolites and chemicals may perform novel functions. In this review, we summarize recent findings highlighting the role of deorphanized GPRs in renal development and function. Understanding the role of these receptors is critical in gaining insights into mechanisms that regulate renal function both in health and in disease.
Collapse
Affiliation(s)
- P. Rajkumar
- Department of Physiology; Johns Hopkins School of Medicine; Baltimore; MD USA
| | - J. L. Pluznick
- Department of Physiology; Johns Hopkins School of Medicine; Baltimore; MD USA
| |
Collapse
|
22
|
Nehme A, Zibara K. Cellular distribution and interaction between extended renin-angiotensin-aldosterone system pathways in atheroma. Atherosclerosis 2017; 263:334-342. [PMID: 28600074 DOI: 10.1016/j.atherosclerosis.2017.05.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
The importance of the renin-angiotensin-aldosterone system (RAAS) in the development of atherosclerotic has been experimentally documented. In fact, RAAS components have been shown to be locally expressed in the arterial wall and to be differentially regulated during atherosclerotic lesion progression. RAAS transcripts and proteins were shown to be differentially expressed and to interact in the 3 main cells of atheroma: endothelial cells, vascular smooth muscle cells, and macrophages. This review describes the local expression and cellular distribution of extended RAAS components in the arterial wall and their differential regulation during atherosclerotic lesion development.
Collapse
Affiliation(s)
- Ali Nehme
- EA4173, Functional Genomics of Arterial Hypertension, Hôpital Nord-Ouest, Villefranche-sur-Saône, Université Lyon1, Lyon, France; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
23
|
Zhou L, Chen H, Mao X, Qi H, Baker PN, Zhang H. G-protein-coupled receptor 30 mediates the effects of estrogen on endothelial cell tube formation in vitro. Int J Mol Med 2017; 39:1461-1467. [PMID: 28440394 PMCID: PMC5428938 DOI: 10.3892/ijmm.2017.2957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/04/2017] [Indexed: 11/05/2022] Open
Abstract
The placenta is the exchange organ between the mother and the fetus. The inadequate function of this organ is associated with a number of pregnancy disorders. Hypoxia and oxidative stress during placental development may induce endothelial dysfunction, resulting in the reduction in the perfusion of the placenta. During pregnancy, the levels of estrogen are increased. Decreased estrogen levels have been reported in women with preeclampsia. However, whether estrogen is involved in placental angiogenesis remains unclear. In this study, we aimed to investigate the effects of estrogen on endothelial cell tube formation and to elucidate the underlying mechanisms. For this purpose, human umbilical vein endothelial cells (HUVECs) were cultured with 17‑β‑estradiol under conditions of hypoxia/reoxygenation (H/R). The total pipe length of the tube‑like structure on endothelial cells was measured. The expression levels of G‑protein‑coupled receptor 30 (GPR30) and endothelial nitric oxide synthase (eNOS) and Akt were also measured in the endothelial cells following treatment with 17‑β‑estradiol under H/R conditions by western blot analysis and immunostaining. We found that the total pipe length of the tube‑like structure on endothelial cells was significantly reduced. This reduction was reversed by treatment with 17‑β‑estradiol. The expression of GPR30 in endothelial cells was significantly increased following treatment with 17‑β‑estradiol under H/R conditions. Furthermore, the levels of eNOS and Akt in endothelial cells were also significantly increased following treatment with 17-β-estradiol under H/R conditions. The activation of eNOS was inhibited by wortmannin, an inhibitor of PI3K/Akt. Our data thus demonstrate that estrogen prevents the failure of endothelial cell tube formation induced by H/R. GPR30 plays an important role in these protective effects through the activation of eNOS and Akt in endothelial cells. Our data suggest that increased levels of estrogen are important for placental angiogenesis.
Collapse
Affiliation(s)
- Liyuan Zhou
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xun Mao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hongbo Qi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Philip N Baker
- Canada‑China‑New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
24
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
25
|
Cao X, Huang J, Zhang G, Zuo W, Lan C, Sun Q, Yang D, Gao D, Cheng CHK, Zhou WL. Functional expression of G protein-coupled receptor 30 in immature rat epididymal epithelium. Cell Biol Int 2016; 41:134-146. [PMID: 27888566 DOI: 10.1002/cbin.10709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The aim of this study is to investigate the functional role of G protein-coupled receptor 30 (GPR30) in the epididymis. We found that GPR30 is expressed in the epithelium of the immature rat epididymis and is involved in chloride secretion into the caudal epididymis lumen. The short-circuit current (Isc) experiments showed that in primary cultured caudal epididymis epithelium, activation of GPR30 by its specific agonist G1 induced a mono-phasic current increase, and G15, the specific antagonist of GPR30, could completely inhibit the current induced by G1. The G1-induced Isc was largely blocked by application of the non-specific chloride channel inhibitor diphenylamine-dicarboxylic acid (DPC), or by the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172 , suggesting that the current was mainly mediated through CFTR. In addition, after stimulating GPR30 by G1, the intracellular concentration of cAMP in the epithelium was significantly increased, indicating that the cAMP signal pathway is involved and could be responsible for the CFTR activation. Finally, to further investigate the function of GPR30 in vivo, G15 was administrated into rats subcutaneously. The osmotic pressure of the micro perfusion solution from epididymis was measured and the sperms were collected. Results showed that there was an osmotic pressure increase of the perfusion solution from G15 treated rats. When the GPR30 was inhibited by G15 endogenously, the motility of sperms decreased. Our data demonstrated that GPR30 is involved in the formation of caudal epididymis fluid micro-environment thus affecting sperm motility.
Collapse
Affiliation(s)
- Xiaonian Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Geng Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wulin Zuo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chongfeng Lan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qing Sun
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dengliang Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dongdong Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Yang F, Shao ZM. Double-edged role of G protein-coupled estrogen receptor 1 in breast cancer prognosis: an analysis of 167 breast cancer samples and online data sets. Onco Targets Ther 2016; 9:6407-6415. [PMID: 27822058 PMCID: PMC5087701 DOI: 10.2147/ott.s111846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1) is widely expressed in breast cancer; however, its prognostic significance in breast cancer patients remains controversial. In this study, expression levels of GPER1 were analyzed by using real-time polymerase chain reaction in 167 primary breast cancer samples, and overall survival (OS), recurrence-free survival (RFS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were analyzed by using Kaplan-Meier curves and multivariable Cox regression. In addition, a meta-analysis was conducted with all available online data sets found in the Web sites kmplot.com and www.prognoscan.org. The results showed that there was no significant correlation between GPER1 expression and OS, RFS, DMFS, and DFS in the total breast cancer patient population. In contrast, the meta-analysis of online data sets found that expression levels of GPER1 were slightly associated with better RFS in the total breast cancer population (P=0.021). Interestingly, higher expression of GPER1 was associated with poorer DFS in HER2-positive subtype of breast cancer (P=0.047) but with better DMFS (P=0.040) and DFS (P=0.035) in HER2-negative subtype of breast cancer. In addition, it was found that HER2 overexpression in MDA-MB-231 cell increased GPER1, which may help explain protumor effect of GPER1 in HER2-overexpressed patients. The overall results suggested that the expression of GPER1 has distinct prognostic values in HER2-positive and HER2-negative breast cancer patients.
Collapse
Affiliation(s)
- Fan Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Zhi-Min Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Gaudet HM, Cheng SB, Christensen EM, Filardo EJ. The G-protein coupled estrogen receptor, GPER: The inside and inside-out story. Mol Cell Endocrinol 2015; 418 Pt 3:207-19. [PMID: 26190834 DOI: 10.1016/j.mce.2015.07.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
GPER possesses structural and functional characteristics shared by members of the G-protein-coupled receptor (GPCR) superfamily, the largest class of plasma membrane receptors. This newly appreciated estrogen receptor is localized predominately within intracellular membranes in most, but not all, cell types and its surface expression is modulated by steroid hormones and during tissue injury. An intracellular staining pattern is not unique among GPCRs, which employ a diverse array of molecular mechanisms that restrict cell surface expression and effectively regulating receptor binding and activation. The finding that GPER displays an intracellular predisposition has created some confusion as the estrogen-inducible transcription factors, ERα and ERβ, also reside intracellularly, and has led to complex suggestions of receptor interaction. GPER undergoes constitutive retrograde trafficking from the plasma membrane to the endoplasmic reticulum and recent studies indicate its interaction with PDZ binding proteins that sort transmembrane receptors to synaptosomes and endosomes. Genetic targeting and selective ligand approaches as well as cell models that express GPER in the absence of ERs clearly supports GPER as a bonafide "stand alone" receptor. Here, the molecular details that regulate GPER action, its cell biological activities and its implicated roles in physiological and pathological processes are reviewed.
Collapse
Affiliation(s)
- H M Gaudet
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - S B Cheng
- Women & Infants Hospital, Brown University, Providence, RI, 02903, USA
| | - E M Christensen
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - E J Filardo
- Rhode Island Hospital, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
30
|
Forrester SJ, Kawai T, O'Brien S, Thomas W, Harris RC, Eguchi S. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu Rev Pharmacol Toxicol 2015; 56:627-53. [PMID: 26566153 DOI: 10.1146/annurev-pharmtox-070115-095427] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Shannon O'Brien
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter Thomas
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
31
|
Feldman RD, Limbird LE. Copernicus Revisited: Overturning Ptolemy's View of the GPER Universe. Trends Endocrinol Metab 2015; 26:592-594. [PMID: 26482875 DOI: 10.1016/j.tem.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 01/24/2023]
Abstract
Whether aldosterone activates the G-protein-coupled estrogen receptor (GPER) has been questioned, recently, in the name of Copernicus. However, for G-protein-coupled receptors (GPCRs) multiple hormone activators are common. Further, studies in mineralocorticoid receptor (MR)-deficient systems, with pharmacological GPER-selective antagonists or regulation of GPER expression, consistently show that some aldosterone effects can be GPER mediated.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St John's, Canada.
| | - Lee E Limbird
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
| |
Collapse
|
32
|
Pathophysiology and treatment of resistant hypertension: the role of aldosterone and amiloride-sensitive sodium channels. Semin Nephrol 2015; 34:532-9. [PMID: 25416662 DOI: 10.1016/j.semnephrol.2014.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resistant hypertension is a clinically distinct subgroup of hypertension defined by the failure to achieve blood pressure control on optimal dosing of at least 3 antihypertensive medications of different classes, including a diuretic. The pathophysiology of hypertension can be attributed to aldosterone excess in more than 20% of patients with resistant hypertension. Existing dogma attributes the increase in blood pressure seen with increases in aldosterone to its antinatriuretic effects in the distal nephron. However, emerging research, which has identified and has begun to define the function of amiloride-sensitive sodium channels and mineralocorticoid receptors in the systemic vasculature, challenges impaired natriuresis as the sole cause of aldosterone-mediated resistant hypertension. This review integrates these findings to better define the role of the vasculature and aldosterone in the pathophysiology of resistant hypertension. In addition, a brief guide to the treatment of resistant hypertension is presented.
Collapse
|
33
|
Duarte-Guterman P, Lieblich SE, Chow C, Galea LAM. Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats. PLoS One 2015; 10:e0129880. [PMID: 26075609 PMCID: PMC4468121 DOI: 10.1371/journal.pone.0129880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol’s effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.1, 5, 10 μg), G15 (40 μg), G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO). After 30 min, animals received an injection of bromodeoxyuridine (BrdU) and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg) decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E. Lieblich
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A. M. Galea
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
34
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 511] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
35
|
Haan YC, Oudman I, de Lange ME, Timmermans A, Ankum WM, van Montfrans GA, Brewster LM. Hypertension risk in Dutch women with symptomatic uterine fibroids. Am J Hypertens 2015; 28:487-92. [PMID: 25241046 DOI: 10.1093/ajh/hpu183] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Female-specific risk factors for cardiovascular disease are understudied. We assessed whether women with uterine fibroids have a greater hypertension risk, independent of the shared risk factors for both conditions. METHODS Blood pressure was measured in women scheduled for fibroid surgery compared to women scheduled for nonfibroid gynecological surgery and women randomly sampled from the general population. We used multivariable binary logistic regression to assess whether hypertension was more common with surgically treated fibroids, independent of age, body mass index, and African ancestry. RESULTS We included 1,342 women (542 of African ancestry), of which 272 scheduled for fibroid surgery, 385 controls scheduled for nonfibroid gynecological surgery, and 685 random population controls, with a mean age (SD) of, respectively, 43.4 (6.6), 41.3 (10.2), and 45.1 (6.6) years; and a mean body mass index (SD) of, respectively, 27.4 (5.3), 25.7 (5.7), and 28.2 (5.6) kg/m(2). Hypertension was found more frequently with surgically treated fibroids, with an occurrence of 41.9% in women with fibroids vs. 27.5% in surgical controls, and 28.3% in population controls (P < 0.001 for fibroids vs. controls). The association with hypertension was independent of age, body mass index, and African ancestry (odds ratio, 2.4; 95% confidence interval, 1.7-3.4). CONCLUSIONS Hypertension risk is higher in Dutch women with surgically treated fibroids than in surgery or population controls, independent of age, body mass index, and African ancestry. Our data add to the body of evidence indicating that women with uterine fibroids are eligible for hypertension screening.
Collapse
Affiliation(s)
- Yentl C Haan
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands;
| | - Inge Oudman
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria E de Lange
- Department of Gynaecology and Obstetrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Anne Timmermans
- Department of Gynaecology and Obstetrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Willem M Ankum
- Department of Gynaecology and Obstetrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gert A van Montfrans
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lizzy M Brewster
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Social Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
36
|
Maher J, Hunter AC, Mabley JG, Lippiat J, Allen MC. Smooth muscle relaxation and activation of the large conductance Ca(++)-activated K+ (BK(Ca)) channel by novel oestrogens. Br J Pharmacol 2015; 169:1153-65. [PMID: 23586466 DOI: 10.1111/bph.12211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/25/2013] [Accepted: 03/24/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Oestrogens can interact directly with membrane receptors and channels and can activate vascular BK(Ca) channels. We hypothesized that novel oestrogen derivatives could relax smooth muscle by an extracllular effect on the α and β1 subunits of the BK(Ca) channel, rather than at an intracellular site. EXPERIMENTAL APPROACH We studied the effects of novel oestrogens on the tension of pre-contracted isolated rat aortic rings, and on the electrophysiological properties of HEK 293 cells expressing the hSloα or hSloα+β1 subunits. Two of the derivatives incorporated a quaternary ammonium side-chain making them membrane impermeable. KEY RESULTS Oestrone, oestrone oxime and Quat DME-oestradiol relaxed pre-contracted rat aorta, but only Quat DME-oestradiol-induced relaxation was iberiotoxin sensitive. However, only potassium currents recorded in HEK 293 cells over-expressing both hSloα and hSloβ1 were activated by oestrone, oestrone oxime and Quat DME-oestradiol. CONCLUSION AND IMPLICATIONS The novel oestrogens were able to relax smooth muscle, but through different mechanisms. In particular, oestrone oxime required the presence of the endothelium to exert much of its effect, whilst Quat DME-oestradiol depended both on NO and BK(Ca) channel activation. The activation of BK(Ca) currents in HEK 293 cells expressing hSloα+β1 by Quat DME-oestradiol is consistent with an extracellular binding site between the two subunits. The binding site resides between the extracellular N terminal of the α subunit and the extracellular loop between TM1 and 2 of the β1 subunit. Membrane-impermeant Quat DME-oestradiol lacks an exchangeable hydrogen on the A ring obviating antioxidant activity.
Collapse
Affiliation(s)
- J Maher
- School of Pharmacy and Biomolecular Science, University of Brighton, Brighton, UK
| | | | | | | | | |
Collapse
|
37
|
Gomez-Sanchez EP. Brain mineralocorticoid receptors in cognition and cardiovascular homeostasis. Steroids 2014; 91:20-31. [PMID: 25173821 PMCID: PMC4302001 DOI: 10.1016/j.steroids.2014.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/10/2014] [Accepted: 08/04/2014] [Indexed: 12/20/2022]
Abstract
Mineralocorticoid receptors (MR) mediate diverse functions supporting osmotic and hemodynamic homeostasis, response to injury and inflammation, and neuronal changes required for learning and memory. Inappropriate MR activation in kidneys, heart, vessels, and brain hemodynamic control centers results in cardiovascular and renal pathology and hypertension. MR binds aldosterone, cortisol and corticosterone with similar affinity, while the glucocorticoid receptor (GR) has less affinity for cortisol and corticosterone. As glucocorticoids are more abundant than aldosterone, aldosterone activates MR in cells co-expressing enzymes with 11β-hydroxydehydrogenase activity to inactivate them. MR and GR co-expressed in the same cell interact at the molecular and functional level and these functions may be complementary or opposing depending on the cell type. Thus the balance between MR and GR expression and activation is crucial for normal function. Where 11β-hydroxydehydrogenase 2 (11β-HSD2) that inactivates cortisol and corticosterone in aldosterone target cells of the kidney and nucleus tractus solitarius (NTS) is not expressed, as in most neurons, MR are activated at basal glucocorticoid concentrations, GR at stress concentrations. An exception may be pre-autonomic neurons of the PVN which express MR and 11β-HSD1 in the absence of hexose-6-phosphate dehydrogenase required to generate the requisite cofactor for reductase activity, thus it acts as a dehydrogenase. MR antagonists, valuable adjuncts to the treatment of cardiovascular disease, also inhibit MR in the brain that are crucial for memory formation and exacerbate detrimental effects of excessive GR activation on cognition and mood. 11β-HSD1 inhibitors combat metabolic and cognitive diseases related to glucocorticoid excess, but may exacerbate MR action where 11β-HSD1 acts as a dehydrogenase, while non-selective 11β-HSD1&2 inhibitors cause injurious disruption of MR hemodynamic control. MR functions in the brain are multifaceted and optimal MR:GR activity is crucial. Therefore selectively targeting down-stream effectors of MR specific actions may be a better therapeutic goal.
Collapse
Affiliation(s)
- Elise P Gomez-Sanchez
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
38
|
Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids 2014; 91:54-60. [PMID: 25194457 PMCID: PMC4252580 DOI: 10.1016/j.steroids.2014.08.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/25/2014] [Accepted: 08/17/2014] [Indexed: 12/19/2022]
Abstract
Dr. Conn originally reported an increased risk of diabetes in patients with hyperaldosteronism in the 1950s, although the mechanism remains unclear. Aldosterone-induced hypokalemia was initially described to impair glucose tolerance by impairing insulin secretion. Correction of hypokalemia by potassium supplementation only partially restored insulin secretion and glucose tolerance, however. Aldosterone also impairs glucose-stimulated insulin secretion in isolated pancreatic islets via reactive oxygen species in a mineralocorticoid receptor-independent manner. Aldosterone-induced mineralocorticoid receptor activation also impairs insulin sensitivity in adipocytes and skeletal muscle. Aldosterone may produce insulin resistance secondarily by altering potassium, increasing inflammatory cytokines, and reducing beneficial adipokines such as adiponectin. Renin-angiotensin system antagonists reduce circulating aldosterone concentrations and also the risk of type 2 diabetes in clinical trials. These data suggest that primary and secondary hyperaldosteronism may contribute to worsening glucose tolerance by impairing insulin sensitivity or insulin secretion in humans. Future studies should define the effects of MR antagonists and aldosterone on insulin secretion and sensitivity in humans.
Collapse
Affiliation(s)
- James M Luther
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
39
|
Meinel S, Gekle M, Grossmann C. Mineralocorticoid receptor signaling: crosstalk with membrane receptors and other modulators. Steroids 2014; 91:3-10. [PMID: 24928729 DOI: 10.1016/j.steroids.2014.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/16/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022]
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid receptor superfamily. Classically, it acts as a ligand-bound transcription factor in epithelial tissues, where it regulates water and electrolyte homeostasis and controls blood pressure. Additionally, the MR has been shown to elicit pathophysiological effects including inflammation, fibrosis and remodeling processes in the cardiovascular system and the kidneys and MR antagonists have proven beneficial for patients with certain cardiovascular and renal disease. The underlying molecular mechanisms that mediate MR effects have not been fully elucidated but very likely rely on interactions with other signaling pathways in addition to genomic actions at hormone response elements. In this review we will focus on interactions of MR signaling with different membrane receptors, namely receptor tyrosine kinases and the angiotensin II receptor because of their potential relevance for disease. In addition, GPR30 is discussed as a new aldosterone receptor. To gain insights into the problem why the MR only seems to mediate pathophysiological effects in the presence of additional permissive factors we will also briefly discuss factors that lead to modulation of MR activity as well. Overall, MR signaling is part of an intricate network that still needs to be investigated further.
Collapse
Affiliation(s)
- S Meinel
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - M Gekle
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany
| | - C Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
40
|
Lother A, Moser M, Bode C, Feldman RD, Hein L. Mineralocorticoids in the heart and vasculature: new insights for old hormones. Annu Rev Pharmacol Toxicol 2014; 55:289-312. [PMID: 25251996 DOI: 10.1146/annurev-pharmtox-010814-124302] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mineralocorticoid aldosterone is a key regulator of water and electrolyte homeostasis. Numerous recent developments have advanced the field of mineralocorticoid pharmacology—namely, clinical trials have shown the beneficial effects of aldosterone antagonists in chronic heart failure and post-myocardial infarction treatment. Experimental studies using cell type-specific gene targeting of the mineralocorticoid receptor (MR) gene in mice have revealed the importance of extrarenal aldosterone signaling in cardiac myocytes, endothelial cells, vascular smooth cells, and macrophages. In addition, several molecular pathways involving signal transduction via the classical MR as well as the G protein-coupled receptor GPER mediate the diverse spectrum of effects of aldosterone on cells. This knowledge has initiated the development of new pharmacological ligands to specifically interfere with targets on different levels of aldosterone signaling. For example, aldosterone synthase inhibitors such as LCI699 and the novel nonsteroidal MR antagonist BAY 94-8862 have been tested in clinical trials. Interference with the interaction between MR and its coregulators seems to be a promising strategy toward the development of selective MR modulators.
Collapse
Affiliation(s)
- Achim Lother
- Heart Center, Department of Cardiology and Angiology I, University of Freiburg, 79106 Freiburg, Germany;
| | | | | | | | | |
Collapse
|
41
|
Mutual amplification of corticosteroids and angiotensin systems in human vascular smooth muscle cells and carotid atheroma. J Mol Med (Berl) 2014; 92:1201-8. [DOI: 10.1007/s00109-014-1193-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 12/23/2022]
|
42
|
Feldman RD, Gros R. Vascular effects of aldosterone: sorting out the receptors and the ligands. Clin Exp Pharmacol Physiol 2014; 40:916-21. [PMID: 23902478 DOI: 10.1111/1440-1681.12157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/27/2023]
Abstract
Aldosterone has actions far beyond its role as a renal regulator of sodium reabsorption, and broader mechanisms of action than simply a transcriptional regulator. Aldosterone has a number of vascular effects, including regulation of vascular reactivity and vascular growth and/or development. Aldosterone-mediated effects on vascular reactivity reflect a balance between its endothelial-dependent vasodilator effects and its direct smooth muscle vasoconstrictor effects. The endothelial vasodilator effects of aldosterone are mediated by phosphatidylinositol 3-kinase-dependent activation of nitric oxide synthase. G-Protein oestrogen receptor (GPER) is a recently recognized G-protein coupled receptor (GPCR) that is activated by steroid hormones. It was first recognized as the GPCR mediating the rapid effects of oestrogens. Activation of GPER also mediates at least some of the vascular effects of aldosterone in smooth muscle and endothelial cells. In vascular endothelial cells, aldosterone activation of GPER mediates vasodilation. In contrast, activation of endothelial mineralocorticoid receptors has been linked to enhanced vasoconstrictor and/or impaired vasodilator responses.
Collapse
Affiliation(s)
- Ross D Feldman
- Departments of Medicine and of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada; Vascular Biology Research Group, Robarts Research Institute, London, ON, Canada
| | | |
Collapse
|
43
|
Abstract
The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and tissue repair; the significantly more abundant glucocorticoids are indispensable for energy homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate gene transcription for proteins that effect their actions as well as rapid non-genomic effects through classical cell signaling pathways. GR and MR are expressed in many tissues types, often in the same cells, where they interact at molecular and functional levels, at times in synergy, others in opposition. Thus the appropriate balance of MR and GR activation is crucial for homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect.
Collapse
Affiliation(s)
- Elise Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Celso E. Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
44
|
Han G, White RE. G-protein-coupled estrogen receptor as a new therapeutic target for treating coronary artery disease. World J Cardiol 2014; 6:367-375. [PMID: 24976908 PMCID: PMC4072826 DOI: 10.4330/wjc.v6.i6.367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/06/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) continues to be the greatest mortality risk factor in the developed world. Estrogens are recognized to have great therapeutic potential to treat CHD and other cardiovascular diseases; however, a significant array of potentially debilitating side effects continues to limit their use. Moreover, recent clinical trials have indicated that long-term postmenopausal estrogen therapy may actually be detrimental to cardiovascular health. An exciting new development is the finding that the more recently discovered G-protein-coupled estrogen receptor (GPER) is expressed in coronary arteries-both in coronary endothelium and in smooth muscle within the vascular wall. Accumulating evidence indicates that GPER activation dilates coronary arteries and can also inhibit the proliferation and migration of coronary smooth muscle cells. Thus, selective GPER activation has the potential to increase coronary blood flow and possibly limit the debilitating consequences of coronary atherosclerotic disease. This review will highlight what is currently known regarding the impact of GPER activation on coronary arteries and the potential signaling mechanisms stimulated by GPER agonists in these vessels. A thorough understanding of GPER function in coronary arteries may promote the development of new therapies that would help alleviate CHD, while limiting the potentially dangerous side effects of estrogen therapy.
Collapse
|
45
|
Knowlton AA, Korzick DH. Estrogen and the female heart. Mol Cell Endocrinol 2014; 389:31-9. [PMID: 24462775 PMCID: PMC5709037 DOI: 10.1016/j.mce.2014.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/05/2014] [Indexed: 12/24/2022]
Abstract
Estrogen has a plethora of effects in the cardiovascular system. Studies of estrogen and the heart span human clinical trials and basic cell and molecular investigations. Greater understanding of cell and molecular responses to estrogens can provide further insights into the findings of clinical studies. Differences in expression and cellular/intracellular distribution of the two main receptors, estrogen receptor (ER) α and β, are thought to account for the specificity and differences in responses to estrogen. Much remains to be learned in this area, but cellular distribution within the cardiovascular system is becoming clearer. Identification of GPER as a third ER has introduced further complexity to the system. 17β-estradiol (E2), the most potent human estrogen, clearly has protective properties activating a signaling cascade leading to cellular protection and also influencing expression of the protective heat shock proteins (HSP). E2 protects the heart from ischemic injury in basic studies, but the picture is more involved in the whole organism and clinical studies. Here the complexity of E2's widespread effects comes into play and makes interpretation of findings more challenging. Estrogen loss occurs primarily with aging, but few studies have used aged models despite clear evidence of differences between the response to estrogen deficiency in adult and aged animals. Thus more work is needed focusing on the effects of aging vs. estrogen loss on the cardiovascular system.
Collapse
Affiliation(s)
- A A Knowlton
- The Department of Veteran's Affairs, Northern California VA, Sacramento, CA, USA; Molecular & Cellular Cardiology, Departments of Medicine and Pharmacology, University of California, Davis, USA.
| | - D H Korzick
- Intercollege Program in Physiology and Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
46
|
Maron BA, Oldham WM, Chan SY, Vargas SO, Arons E, Zhang YY, Loscalzo J, Leopold JA. Upregulation of steroidogenic acute regulatory protein by hypoxia stimulates aldosterone synthesis in pulmonary artery endothelial cells to promote pulmonary vascular fibrosis. Circulation 2014; 130:168-79. [PMID: 25001622 DOI: 10.1161/circulationaha.113.007690] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The molecular mechanism(s) regulating hypoxia-induced vascular fibrosis are unresolved. Hyperaldosteronism correlates positively with vascular remodeling in pulmonary arterial hypertension, suggesting that aldosterone may contribute to the pulmonary vasculopathy of hypoxia. The hypoxia-sensitive transcription factors c-Fos/c-Jun regulate steroidogenic acute regulatory protein (StAR), which facilitates the rate-limiting step of aldosterone steroidogenesis. We hypothesized that c-Fos/c-Jun upregulation by hypoxia activates StAR-dependent aldosterone synthesis in human pulmonary artery endothelial cells (HPAECs) to promote vascular fibrosis in pulmonary arterial hypertension. METHODS AND RESULTS Patients with pulmonary arterial hypertension, rats with Sugen/hypoxia-pulmonary arterial hypertension, and mice exposed to chronic hypoxia expressed increased StAR in remodeled pulmonary arterioles, providing a basis for investigating hypoxia-StAR signaling in HPAECs. Hypoxia (2.0% FiO2) increased aldosterone levels selectively in HPAECs, which was confirmed by liquid chromatography-mass spectrometry. Increased aldosterone by hypoxia resulted from enhanced c-Fos/c-Jun binding to the proximal activator protein-1 site of the StAR promoter in HPAECs, which increased StAR expression and activity. In HPAECs transfected with StAR-small interfering RNA or treated with the activator protein-1 inhibitor SR-11302 [3-methyl-7-(4-methylphenyl)-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenoic acid], hypoxia failed to increase aldosterone, confirming that aldosterone biosynthesis required StAR activation by c-Fos/c-Jun. The functional consequences of aldosterone were confirmed by pharmacological inhibition of the mineralocorticoid receptor with spironolactone or eplerenone, which attenuated hypoxia-induced upregulation of the fibrogenic protein connective tissue growth factor and collagen III in vitro and decreased pulmonary vascular fibrosis to improve pulmonary hypertension in vivo. CONCLUSION Our findings identify autonomous aldosterone synthesis in HPAECs attributable to hypoxia-mediated upregulation of StAR as a novel molecular mechanism that promotes pulmonary vascular remodeling and fibrosis.
Collapse
Affiliation(s)
- Bradley A Maron
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.).
| | - William M Oldham
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.)
| | - Stephen Y Chan
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.)
| | - Sara O Vargas
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.)
| | - Elena Arons
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.)
| | - Ying-Yi Zhang
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.)
| | - Joseph Loscalzo
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.)
| | - Jane A Leopold
- From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA (S.O.V.)
| |
Collapse
|
47
|
The renin-angiotensin-aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin Sci (Lond) 2014; 126:537-44. [PMID: 24400721 DOI: 10.1042/cs20130455] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pregnancy demands major changes of the cardiovascular system, and this involves, among others, activation of the RAAS (renin-angiotensin-aldosterone system), allowing an aldosterone-dependent increase in volume. Remarkably, a relative resistance to the pressor response of AngII (angiotensin II) develops simultaneously to prevent the increase in blood pressure that would normally accompany RAAS activation. The increase in volume, the degree of RAAS activation and the diminished pressor response to AngII are less pronounced in pre-eclampsia. However, animal models displaying excessive RAAS activation also result in a pre-eclampsia-like syndrome, and the aldosterone/renin ratio is elevated in pre-eclampsia compared with a normal pregnancy. New insights into the pathogenesis of pre-eclampsia have revealed a major role for VEGF (vascular endothelial growth factor), VEGF-inactivating sFlt-1 (soluble fms-like tyrosine kinase-1) and AT1 (angiotensin II type 1) receptor autoantibodies. The last mentioned activate AT(1) receptors, thereby potentially suppressing circulating renin and aldosterone. VEGF, both directly and indirectly (by increasing capillary density), affects adrenal aldosterone synthesis. The present review summarizes all of the recent findings regarding RAAS regulation in pre-eclampsia compared with normal pregnancy, concluding that factors such as sFlt-1 and AT(1) receptor autoantibodies disturb the delicate balance that normally results in a volume increase and a diminished vasoconstrictor response to AngII in pregnant women. It is possible that there are non-parallel changes in the circulating and renal RAAS in pre-eclampsia, which are potentially reflected by the urinary levels of renin.
Collapse
|
48
|
Cheng SB, Dong J, Pang Y, LaRocca J, Hixon M, Thomas P, Filardo EJ. Anatomical location and redistribution of G protein-coupled estrogen receptor-1 during the estrus cycle in mouse kidney and specific binding to estrogens but not aldosterone. Mol Cell Endocrinol 2014; 382:950-9. [PMID: 24239983 DOI: 10.1016/j.mce.2013.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 12/19/2022]
Abstract
Prior studies have linked renoprotective effects of estrogens to G-protein-coupled estrogen receptor-1 (GPER-1) and suggest that aldosterone may also activate GPER-1. Here, the role of GPER-1 in murine renal tissue was further evaluated by examining its anatomical distribution, subcellular distribution and steroid binding specificity. Dual immunofluorescent staining using position-specific markers showed that GPER-1 immunoreactivity primarily resides in distal convoluted tubules and the Loop of Henle (stained with Tamm-Horsfall Protein-1). Lower GPER-1 expression was observed in proximal convoluted tubules marked with megalin, and GPER-1 was not detected in collecting ducts. Plasma membrane fractions prepared from whole kidney tissue or HEK293 cells expressing recombinant human GPER-1 (HEK-GPER-1) displayed high-affinity, specific [(3)H]-17β-estradiol ([(3)H]-E2) binding, but no specific [(3)H]-aldosterone binding. In contrast, cytosolic preparations exhibited specific binding to [(3)H]-aldosterone but not to [(3)H]-E2, consistent with the subcellular distribution of GPER-1 and mineralocorticoid receptor (MR) in these preparations. Aldosterone and MR antagonists, spironolactone and eplerenone, failed to compete for specific [(3)H]-E2 binding to membranes of HEK-GPER-1 cells. Furthermore, aldosterone did not increase [(35)S]-GTP-γS binding to membranes of HEK-GPER-1 cells, indicating that it is not involved in G protein signaling mediated through GPER-1. During the secretory phases of the estrus cycle, GPER-1 is upregulated on cortical epithelia and localized to the basolateral surface during proestrus and redistributed intracellularly during estrus. GPER-1 is down-modulated during luteal phases of the estrus cycle with significantly less receptor on the surface of renal epithelia. Our results demonstrate that GPER-1 is associated with specific estrogen binding and not aldosterone binding and that GPER-1 expression is modulated during the estrus cycle which may suggest a physiological role for GPER-1 in the kidney during reproduction.
Collapse
Affiliation(s)
- Shi-Bin Cheng
- Division of Hematology & Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States
| | - Jing Dong
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Yefei Pang
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States
| | - Jessica LaRocca
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States
| | - Mary Hixon
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, United States.
| | - Edward J Filardo
- Division of Hematology & Oncology, Rhode Island Hospital, Alpert Medical School of Brown University, RI, United States.
| |
Collapse
|
49
|
van der Pas R, van Esch JHM, de Bruin C, Danser AHJ, Pereira AM, Zelissen PM, Netea-Maier R, Sprij-Mooij DM, van den Berg-Garrelds IM, van Schaik RHN, Lamberts SWJ, van den Meiracker AH, Hofland LJ, Feelders RA. Cushing's disease and hypertension: in vivo and in vitro study of the role of the renin-angiotensin-aldosterone system and effects of medical therapy. Eur J Endocrinol 2014; 170:181-91. [PMID: 24165019 DOI: 10.1530/eje-13-0477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE/METHODS Cushing's disease (CD) is often accompanied by hypertension. CD can be treated surgically and, given the expression of somatostatin subtype 5 and dopamine 2 receptors by corticotroph pituitary adenomas, pharmacologically. Indeed, we recently observed that stepwise medical combination therapy with the somatostatin-analog pasireotide, the dopamine-agonist cabergoline, and ketoconazole (which directly suppresses steroidogenesis) biochemically controlled CD patients and lowered their blood pressure after 80 days. Glucocorticoids (GC) modulate the renin-angiotensin-aldosterone system (RAAS) among others by increasing hepatic angiotensinogen expression and stimulating mineralocorticoid receptors (MR). This study therefore evaluated plasma RAAS components in CD patients before and after drug therapy. In addition, we studied whether cabergoline/pasireotide have direct relaxant effects in angiotensin II (Ang II)-constricted iliac arteries of spontaneously hypertensive rats, with and without concomitant GR/MR stimulation with dexamethasone or hydrocortisone. RESULTS Baseline concentrations of angiotensinogen were elevated, while renin and aldosterone were low and suppressed, respectively, even in patients treated with RAAS-blockers. This pattern did not change after 80 days of treatment, despite blood pressure normalization, nor after 4 years of remission. In the presence of dexamethasone, pasireotide inhibited Ang II-mediated vasoconstriction. CONCLUSIONS The low plasma renin concentrations, even under RAAS blockade, in CD may be the consequence of increased GC-mediated MR stimulation and/or the elevated angiotensinogen levels in such patients. The lack of change in RAAS-parameters despite blood pressure and cortisol normalization suggests persisting consequences of long-term exposure to cortisol excess. Finally, pasireotide may have a direct vasodilating effect contributing to blood pressure lowering.
Collapse
|
50
|
Evans PD, Bayliss A, Reale V. GPCR-mediated rapid, non-genomic actions of steroids: comparisons between DmDopEcR and GPER1 (GPR30). Gen Comp Endocrinol 2014; 195:157-63. [PMID: 24188886 DOI: 10.1016/j.ygcen.2013.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
Steroid hormones classically mediate their actions by binding to intracellular receptor proteins that migrate to the nucleus and act as transcription factors to change gene expression. However, evidence is now accumulating for rapid, non-genomic effects of steroids. There is considerable controversy over the mechanisms underlying such effects. In a number of cases evidence has been presented for the direct activation of G-protein coupled receptors (GPCRs) by steroids, either at the plasma membrane, or at intracellular locations. Here, we will focus on the non-genomic actions of ecdysteroids on a Drosophila GPCR, DopEcR (CG18314), which can be activated by both ecdysone and the catecholamine, dopamine. We will also point out parallels between this system and the activation of the vertebrate GPCR, GPER1 (GPR30), which is thought to be activated by 17β-estradiol. We propose that the cellular localization and signalling properties of both DopEcR and GPER1 may be cell specific and depend upon their interactions with both accessory molecules and signalling pathways.
Collapse
Affiliation(s)
- Peter D Evans
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Asha Bayliss
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Vincenzina Reale
- The Inositide Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|