1
|
Kanmaz H, Şahingil D, Alwazeer D, Bulut M, Kuru M, Makav M, Kuru BB, Bektaşoğlu F, Hayaloğlu AA. Hydrogen-rich water consumption modifies the chemical, biochemical, nutritional, and bioactive properties of the goat's colostrum and mature milk. Food Chem 2025; 480:143855. [PMID: 40112728 DOI: 10.1016/j.foodchem.2025.143855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
This study aimed to investigate the effects of hydrogen-rich water (HRW) consumption in goats on the chemical composition, antioxidant activity, total phenolic content, in vitro antidiabetic activity (α-amylase and α-glucosidase inhibitions), free fatty acid profile, and volatile compounds of colostrum and mature milk. Goats were fed ad libitum with either normal water (NW) or HRW for 20-22 days before and 28 days after parturition. Colostrum and milk samples were collected from goats on the day of parturition, as well as on days 7, 14, 21, and 28 days. The milk fat content of goats fed with HRW was found to be higher compared to those fed with NW. On day 7, the total phenolic content was higher in the NW-fed milk compared to the HRW-fed milk. The ABTS radical scavenging activity of the HRW-fed colostrum was higher than NW. The inhibitory activity of α-amylase and α-glucosidase was higher in the HRW-fed milk. Some free fatty acids, including C2, C8, C10, C15, C18, and C20, increased in HRW-fed milk. Some volatile components were more abundant in the HRW-fed milk. The findings from this study may lead to new insights into the potential health benefits of milk from goats consuming HRW.
Collapse
Affiliation(s)
- Hilal Kanmaz
- Department of Food Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Didem Şahingil
- Department of Food Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Iğdır, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| | - Menekşe Bulut
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Iğdır, Türkiye; Department of Gastronomy, Faculty of Tourism, Igdir University, 76000, Igdır, Türkiye.
| | - Mushap Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, 36100 Kars, Türkiye.
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars 36100, Türkiye.
| | - Buket Boğa Kuru
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars 36100, Türkiye.
| | - Fikret Bektaşoğlu
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars 36100, Türkiye.
| | | |
Collapse
|
2
|
Ying J, Zhang K, Huang Y, Zhu X, Ruan Y, Lin H, Wu G. Molecular hydrogen: Mechanism against oxidative stress and application in periodontitis: A review. Medicine (Baltimore) 2025; 104:e41800. [PMID: 40068089 PMCID: PMC11902952 DOI: 10.1097/md.0000000000041800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Molecular hydrogen, as an effective anti-oxidative stress reagent, has been extensively studied in medicine with new developments continuing to be reported during the years. This review firstly discusses the mechanism of molecular hydrogen of alleviating oxidative stress. Considering the current antioxidant demand in clinical dental treatment, we summarize the progress and future potential of hydrogen's application in periodontitis. Finally, taking its treatment of periodontitis as an example, we develop an Essence-Necessity-Feasibility-Practice (ENFP) benefit evaluation model for whether to introduce new reagents in medical treatment and propose our conclusions on the application of molecular hydrogen before, during, and after periodontal surgeries.
Collapse
Affiliation(s)
- Jiaxun Ying
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
| | - Keran Zhang
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
| | - Yangwen Huang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Xinyi Zhu
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
| | - Yan Ruan
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Haiyan Lin
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
| | - Gang Wu
- Savaid Stomatology School, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
3
|
Obara T, Naito H, Nojima T, Hirayama T, Hongo T, Ageta K, Aokage T, Hisamura M, Yumoto T, Nakao A. Hydrogen in Transplantation: Potential Applications and Therapeutic Implications. Biomedicines 2024; 12:118. [PMID: 38255223 PMCID: PMC10813693 DOI: 10.3390/biomedicines12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation.
Collapse
Affiliation(s)
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (T.N.); (T.H.); (T.H.); (K.A.); (T.A.); (M.H.); (T.Y.); (A.N.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Vincent SM, Madani M, Dikeman D, Golden K, Crocker N, Jackson C, Wimmer SP, Dover M, Tucker A, Ghiani CA, Colwell CS, LeBaron TW, Tarnava A, Paul KN. Hydrogen-rich water improves sleep consolidation and enhances forebrain neuronal activation in mice. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 5:zpad057. [PMID: 38264142 PMCID: PMC10803172 DOI: 10.1093/sleepadvances/zpad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Study Objectives Sleep loss contributes to various health issues and impairs neurological function. Molecular hydrogen has recently gained popularity as a nontoxic ergogenic and health promoter. The effect of molecular hydrogen on sleep and sleep-related neural systems remains unexplored. This study investigates the impact of hydrogen-rich water (HRW) on sleep behavior and neuronal activation in sleep-deprived mice. Methods Adult C57BL/6J mice were implanted with electroencephalography (EEG) and electromyography (EMG) recording electrodes and given HRW (0.7-1.4 mM) or regular water for 7 days ad libitum. Sleep-wake cycles were recorded under baseline conditions and after acute sleep loss. Neuronal activation in sleep- and wake-related regions was assessed using cFos immunostaining. Results HRW increased sleep consolidation in undisturbed mice and increased non-rapid-eye movement and rapid-eye-movement sleep amount in sleep-deprived mice. HRW also decreased the average amount of time for mice to fall asleep after light onset. Neuronal activation in the lateral septum, medial septum, ventrolateral preoptic area, and median preoptic area was significantly altered in all mice treated with HRW. Conclusions HRW improves sleep consolidation and increases neuronal activation in sleep-related brain regions. It may serve as a simple, effective treatment to improve recovery after sleep loss.
Collapse
Affiliation(s)
- Scott M Vincent
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Melika Madani
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Dante Dikeman
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kyle Golden
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Naomi Crocker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Cameron Jackson
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sam P Wimmer
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary Dover
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexis Tucker
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Cristina A Ghiani
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler W LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT, USA
- Molecular Hydrogen Institute, Enoch, UT, USA
| | - Alex Tarnava
- Natural Wellness Now Health Products Inc, Maple ridge, BC, Canada
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Electrolyzed-Reduced Water: Review I. Molecular Hydrogen Is the Exclusive Agent Responsible for the Therapeutic Effects. Int J Mol Sci 2022; 23:ijms232314750. [PMID: 36499079 PMCID: PMC9738607 DOI: 10.3390/ijms232314750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Numerous benefits have been attributed to alkaline-electrolyzed-reduced water (ERW). Sometimes these claims are associated with easily debunked concepts. The observed benefits have been conjectured to be due to the intrinsic properties of ERW (e.g., negative oxidation-reduction potential (ORP), alkaline pH, H2 gas), as well enigmatic characteristics (e.g., altered water structure, microclusters, free electrons, active hydrogen, mineral hydrides). The associated pseudoscientific marketing has contributed to the reluctance of mainstream science to accept ERW as having biological effects. Finally, through many in vitro and in vivo studies, each one of these propositions was examined and refuted one-by-one until it was conclusively demonstrated that H2 was the exclusive agent responsible for both the negative ORP and the observed therapeutic effects of ERW. This article briefly apprised the history of ERW and comprehensively reviewed the sequential research demonstrating the importance of H2. We illustrated that the effects of ERW could be readily explained by the known biological effects of H2 and by utilizing conventional chemistry without requiring any metaphysical conjecture (e.g., microclustering, free electrons, etc.) or reliance on implausible notions (e.g., alkaline water neutralizes acidic waste). The H2 concentration of ERW should be measured to ensure it is comparable to those used in clinical studies.
Collapse
|
6
|
Ladak SS, McQueen LW, Layton GR, Aujla H, Adebayo A, Zakkar M. The Role of Endothelial Cells in the Onset, Development and Modulation of Vein Graft Disease. Cells 2022; 11:3066. [PMID: 36231026 PMCID: PMC9561968 DOI: 10.3390/cells11193066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/23/2023] Open
Abstract
Endothelial cells comprise the intimal layer of the vasculature, playing a crucial role in facilitating and regulating aspects such nutrient transport, vascular homeostasis, and inflammatory response. Given the importance of these cells in maintaining a healthy haemodynamic environment, dysfunction of the endothelium is central to a host of vascular diseases and is a key predictor of cardiovascular risk. Of note, endothelial dysfunction is believed to be a key driver for vein graft disease-a pathology in which vein grafts utilised in coronary artery bypass graft surgery develop intimal hyperplasia and accelerated atherosclerosis, resulting in poor long-term patency rates. Activation and denudation of the endothelium following surgical trauma and implantation of the graft encourage a host of immune, inflammatory, and cellular differentiation responses that risk driving the graft to failure. This review aims to provide an overview of the current working knowledge regarding the role of endothelial cells in the onset, development, and modulation of vein graft disease, as well as addressing current surgical and medical management approaches which aim to beneficially modulate endothelial function and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| |
Collapse
|
7
|
Kura B, Szantova M, LeBaron TW, Mojto V, Barancik M, Szeiffova Bacova B, Kalocayova B, Sykora M, Okruhlicova L, Tribulova N, Gvozdjakova A, Sumbalova Z, Kucharska J, Faktorova X, Jakabovicova M, Durkovicová Z, Macutek J, Koscová M, Slezak J. Biological Effects of Hydrogen Water on Subjects with NAFLD: A Randomized, Placebo-Controlled Trial. Antioxidants (Basel) 2022; 11:antiox11101935. [PMID: 36290657 PMCID: PMC9598482 DOI: 10.3390/antiox11101935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized, double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2’-deoxyguanosine and malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of molecular hydrogen that occurred prior to the significant clinical improvements reported in previous longer-term studies. The favorable trends in this study in conjunction with previous animal and clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance, or treatment of NAFLD and early stages of NASH are warranted.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Maria Szantova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84721, USA
| | - Viliam Mojto
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Ludmila Okruhlicova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Narcisa Tribulova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Anna Gvozdjakova
- Pharmacobiochemical Laboratory of 3rd Medical Department, Medical Faculty, Comenius University Bratislava, 811 08 Bratislava, Slovakia
| | - Zuzana Sumbalova
- Pharmacobiochemical Laboratory of 3rd Medical Department, Medical Faculty, Comenius University Bratislava, 811 08 Bratislava, Slovakia
| | - Jarmila Kucharska
- Pharmacobiochemical Laboratory of 3rd Medical Department, Medical Faculty, Comenius University Bratislava, 811 08 Bratislava, Slovakia
| | - Xenia Faktorova
- Internal Clinic of Slovak Medical University, Hospital of St. Michael, 811 08 Bratislava, Slovakia
| | - Martina Jakabovicova
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Zuzana Durkovicová
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia
| | - Jan Macutek
- Mathematical Institute, Slovak Academy of Sciences, 814 73 Bratislava, Slovakia
- Department of Mathematics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Michaela Koscová
- Mathematical Institute, Slovak Academy of Sciences, 814 73 Bratislava, Slovakia
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-903620181
| |
Collapse
|
8
|
Mu Q, Lv K, Yu J, Chu S, Zhang L, Kong L, Zhang L, Tian Y, Jia X, Liu B, Wei Y, Yang N. Hydrogen Repairs LPS-Induced Endothelial Progenitor Cells Injury via PI3K/AKT/eNOS Pathway. Front Pharmacol 2022; 13:894812. [PMID: 35645804 PMCID: PMC9133378 DOI: 10.3389/fphar.2022.894812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Endotoxins and other harmful substances may cause an increase in permeability in endothelial cells (ECs) monolayers, as well as ECs shrinkage and death to induce lung damage. Lipopolysaccharide (LPS) can impair endothelial progenitor cells (EPCs) functions, including proliferation, migration, and tube formation. EPCs can migrate to the damaged area, differentiate into ECs, and participate in vascular repair, which improves pulmonary capillary endothelial dysfunction and maintains the integrity of the endothelial barrier. Hydrogen (H2) contributes to the repairment of lung injury and the damage of ECs. We therefore speculate that H2 protects the EPCs against LPS-induced damage, and it's mechanism will be explored. The bone marrow-derived EPCs from ICR Mice were treated with LPS to establish a damaged model. Then EPCs were incubated with H2, and treated with PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor L-NAME. MTT assay, transwell assay and tube formation assay were used to detect the proliferation, migration and angiogenesis of EPCs. The expression levels of target proteins were detected by Western blot. Results found that H2 repaired EPCs proliferation, migration and tube formation functions damaged by LPS. LY294002 and L-NAME significantly inhibited the repaired effect of H2 on LPS-induced dysfunctions of EPCs. H2 also restored levels of phosphor-AKT (p-AKT), eNOS and phosphor-eNOS (p-eNOS) suppressed by LPS. LY294002 significantly inhibited the increase of p-AKT and eNOS and p-eNOS expression exposed by H2. L-NAME significantly inhibited the increase of eNOS and p-eNOS expression induced by H2. H2 repairs the dysfunctions of EPCs induced by LPS, which is mediated by PI3K/AKT/eNOS signaling pathway.
Collapse
Affiliation(s)
- Qingjie Mu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kaixuan Lv
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Jielun Yu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| | - Shangmin Chu
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lichun Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Lingyu Kong
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Linlin Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Yan Tian
- Research Center of Translational Medicine Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xiaopeng Jia
- Shandong Qilu Stem Cell Engineering Co., Jinan, China
| | - Benhong Liu
- Department of Respiratory, Dongying People's Hospital, Dongying, China
| | - Youzhen Wei
- Research Center for Translational Medicine and Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
- Medical Laboratory Animal Center, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular Diseases, Weifang, China
| |
Collapse
|
9
|
Abstract
Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
10
|
High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells. Sci Rep 2021; 11:13493. [PMID: 34188159 PMCID: PMC8242094 DOI: 10.1038/s41598-021-93081-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin’s nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.
Collapse
|
11
|
Qiu X, Bajinka O, Wang L, Wu G, Tan Y. High-fat diet promotes epithelial-mesenchymal transition through enlarged growth of opportunistic pathogens and the intervention of saturated hydrogen. Am J Transl Res 2021; 13:6016-6030. [PMID: 34306341 PMCID: PMC8290812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/25/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES This study investigated the effects and mechanism of high-fat diet on the epithelial-mesenchymal transition (EMT) of respiratory tract and the intervention of saturated hydrogen on it. METHODS 80 five-week-old C57BL6/J male mice were randomly divided into normal control group, H2 group, high-fat (HF) group and HF+H2 group, making 20 mice in each group. The weights of the mice were measured on weekly basis. Six mice from each group were executed at every second week. Blood samples were collected for lipid testing. Lung tissues were collected for 16S rRNA gene sequencing, HE staining, immunofluorescence and quantitative real-time PCR (qPCR). RESULTS Compared with the control group, the mice in the HF group showed increased inflammatory cell infiltration, decreased expression of e-cadherin (E-cad) and increased expression of Twist. There were significant differences in the composition of bacteria in the lung, and the expression of isocitrate lyase (ICL) genes in Pseudomonas aeruginosa, Staphylococcus aureus and Acinetobacter baumannii, which were significantly associated with asthma were seen with a significant increasing trend. After the treatment of saturated hydrogen, the changes in lung microbial population, lung tissue infiltration of inflammatory cells and the transformation of epithelial stroma caused by high-fat diet were moderately alleviated. CONCLUSION High-fat diet can promote inflammation and EMT in the lung by enlarging the growth of glyoxylic acid cycle-dependent bacteria, and the pathological process are partly alleviated by saturated hydrogen.
Collapse
Affiliation(s)
- Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South UniversityChangsha, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
12
|
Zhang Y, Bi M, Chen Z, Dai M, Zhou G, Hu Y, Yang H, Guan W. Hydrogen gas alleviates acute alcohol-induced liver injury by inhibiting JNK activation. Exp Ther Med 2021; 21:453. [PMID: 33767761 PMCID: PMC7976433 DOI: 10.3892/etm.2021.9884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/08/2020] [Indexed: 11/09/2022] Open
Abstract
Binge alcohol drinking is fast becoming a global health concern, with the liver among the first organ involved and the one afflicted with the greatest degree of injury. Oxidative stress, alterations in hepatic metabolism, immunity and inflammation have all been reported to contribute to the development of alcoholic liver disease (ALD). Hydrogen gas (H2) serves a key role in the modulation of hepatic redox, immune and inflammatory homeostasis. However, the effects of treatment using intraperitoneal injection of H2 on ALD remain unexplored. Therefore, the aim of the present study was to investigate the effects and underlying mechanism of intraperitoneal injection of H2 on acute alcohol-induced liver injury in a mouse model. H2 was administered by daily intraperitoneal injections (1.0 ml/100 g) for 4 days. On day 4, the mice received H2 after fasting for 5.5 h. After 30 min, the mice were administered with 33% (v/v) ethanol at a cumulative dose of 4.5 g/kg body weight by four equally divided gavages at 20-min intervals. Blood and liver tissues were collected at 16 h after the first ethanol gavage. Subsequently, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride and total cholesterol (TC) levels were analyzed using an Automatic Clinical Analyzer. Hepatic JNK activity and GAPDH levels were examined by western blotting. It was observed that acute ethanol gavage induced liver injury, as indicated by significantly increased serum ALT and AST levels, which were effectively decreased by H2 at 16 h after the first ethanol gavage. In addition, H2 treatment reduced serum TC levels in the Alcohol+H2 group when compared with those in Alcohol group. Mechanistically, H2 attenuated hepatic JNK phosphorylation induced by acute ethanol gavage. Therefore, the results of the present study demonstrated that treatment with exogenous H2 by intraperitoneal injection may alleviate acute alcohol-induced liver injury by inhibiting hepatic JNK activation, which may represent a novel therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zifeng Chen
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China.,Department of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Min Dai
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ge Zhou
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuxuan Hu
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Weibing Guan
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
13
|
Fouquet O, Blossier JD, Dang Van S, Robert P, Barbelivien A, Pinaud F, Binuani P, Eid M, Henrion D, Loufrani L, Baufreton C. Author's reply (in reference to letter to editor proposed by Etem Caliskan, Catherine J. Pachuk, Louis P. Perrault, Maximilian Y Emmert and entitled: preservation solutions to improve graft patency: The devil is in the detail). J Cardiothorac Surg 2021; 16:14. [PMID: 33478510 PMCID: PMC7819152 DOI: 10.1186/s13019-021-01391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Not applicable.
Collapse
Affiliation(s)
- Olivier Fouquet
- Department of Cardiac Surgery, CHU, Angers, France. .,Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France.
| | - Jean-David Blossier
- Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France.,Department of Cardiac Surgery, CHU Dupuytren, Limoges, France
| | - Simon Dang Van
- Department of Cardiac Surgery, CHU, Angers, France.,Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France
| | - Pauline Robert
- Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France
| | | | - Frédéric Pinaud
- Department of Cardiac Surgery, CHU, Angers, France.,Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France
| | | | - Maroua Eid
- Department of Cardiac Surgery, CHU, Angers, France
| | - Daniel Henrion
- Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France.,University Hospital of Angers, Angers, France
| | - Laurent Loufrani
- Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France.,University Hospital of Angers, Angers, France
| | - Christophe Baufreton
- Department of Cardiac Surgery, CHU, Angers, France.,Institute MITOVASC CNRS UMR 6015, INSERM, 1083, Angers, France
| |
Collapse
|
14
|
Zhang Y, Liu H, Xu J, Zheng S, Zhou L. Hydrogen Gas: A Novel Type of Antioxidant in Modulating Sexual Organs Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8844346. [PMID: 33510842 PMCID: PMC7826209 DOI: 10.1155/2021/8844346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
Sex is a science of cutting edge but bathed in mystery. Coitus or sexual intercourse, which is at the core of sexual activities, requires healthy and functioning vessels to supply the pelvic region, thus contributing to clitoris erection and vaginal lubrication in female and penile erection in male. It is well known that nitric oxide (NO) is the main gas mediator of penile and clitoris erection. In addition, the lightest and diffusible gas molecule hydrogen (H2) has been shown to improve erectile dysfunction (ED), testis injuries, sperm motility in male, preserve ovarian function, protect against uterine inflammation, preeclampsia, and breast cancer in female. Mechanistically, H2 has strong abilities to attenuate excessive oxidative stress by selectively reducing cytotoxic oxygen radicals, modulate immunity and inflammation, and inhibit injuries-induced cell death. Therefore, H2 is a novel bioactive gas molecule involved in modulating sexual organs homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lequan Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Barancik M, Kura B, LeBaron TW, Bolli R, Buday J, Slezak J. Molecular and Cellular Mechanisms Associated with Effects of Molecular Hydrogen in Cardiovascular and Central Nervous Systems. Antioxidants (Basel) 2020; 9:antiox9121281. [PMID: 33333951 PMCID: PMC7765453 DOI: 10.3390/antiox9121281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
The increased production of reactive oxygen species and oxidative stress are important factors contributing to the development of diseases of the cardiovascular and central nervous systems. Molecular hydrogen is recognized as an emerging therapeutic, and its positive effects in the treatment of pathologies have been documented in both experimental and clinical studies. The therapeutic potential of hydrogen is attributed to several major molecular mechanisms. This review focuses on the effects of hydrogen on the cardiovascular and central nervous systems, and summarizes current knowledge about its actions, including the regulation of redox and intracellular signaling, alterations in gene expressions, and modulation of cellular responses (e.g., autophagy, apoptosis, and tissue remodeling). We summarize the functions of hydrogen as a regulator of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated redox signaling and the association of hydrogen with mitochondria as an important target of its therapeutic action. The antioxidant functions of hydrogen are closely associated with protein kinase signaling pathways, and we discuss possible roles of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and Wnt/β-catenin pathways, which are mediated through glycogen synthase kinase 3β and its involvement in the regulation of cellular apoptosis. Additionally, current knowledge about the role of molecular hydrogen in the modulation of autophagy and matrix metalloproteinases-mediated tissue remodeling, which are other responses to cellular stress, is summarized in this review.
Collapse
Affiliation(s)
- Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
| | - Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA;
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 12108 Prague, Czech Republic;
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Correspondence: ; Tel.: +42-19-03-620-181
| |
Collapse
|
16
|
Yamamoto H, Aokage T, Igawa T, Hirayama T, Seya M, Ishikawa-Aoyama M, Nojima T, Nakao A, Naito H. Luminal preloading with hydrogen-rich saline ameliorates ischemia-reperfusion injury following intestinal transplantation in rats. Pediatr Transplant 2020; 24:e13848. [PMID: 32997862 DOI: 10.1111/petr.13848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023]
Abstract
Prolonged intestinal cold storage causes considerable mucosal breakdown, which could bolster bacterial translocation and cause life-threatening infection for the transplant recipient. The intestine has an intraluminal compartment, which could be a target for intervention, but has not yet been fully investigated. Hydrogen gas exerts organ protection and has used been recently in several clinical and basic research studies on topics including intestinal transplantation. In this study, we aimed to investigate the cytoprotective efficacy of intraluminally administered hydrogen-rich saline on cold IR injury in intestinal transplantation. Isogeneic intestinal transplantation with 6 hours of cold ischemia was performed on Lewis rats. Hydrogen-rich saline (H2 concentration at 5 ppm) or normal saline was intraluminally introduced immediately before preservation. Graft intestine was excised 3 hours after reperfusion and analyzed. Histopathological analysis of control grafts revealed blunting of the villi and erosion. These mucosal changes were notably attenuated by intraluminal hydrogen. Intestinal mucosa damage caused by IR injury led to considerable deterioration of gut barrier function 3 h post-reperfusion. However, this decline in permeability was critically prevented by hydrogen treatment. IR-induced upregulation of proinflammatory cytokine mRNAs such as IL-6 was mitigated by hydrogen treatment. Western blot revealed that hydrogen treatment regulated loss of the transmembrane protein ZO-1. Hydrogen-rich saline intraluminally administered in the graft intestine modulated IR injury to transplanted intestine in rats. Successful abrogation of intestinal IR injury with a novel strategy using intraluminal hydrogen may be easily clinically applicable and will compellingly improve patient care after transplantation.
Collapse
Affiliation(s)
- Hirotsugu Yamamoto
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takuro Igawa
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takahiro Hirayama
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Mizuki Seya
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Michiko Ishikawa-Aoyama
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| |
Collapse
|
17
|
Constitutive hydrogen inhalation prevents vascular remodeling via reduction of oxidative stress. PLoS One 2020; 15:e0227582. [PMID: 32302306 PMCID: PMC7164592 DOI: 10.1371/journal.pone.0227582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/20/2019] [Indexed: 12/07/2022] Open
Abstract
Molecular hydrogen is thought to have an inhibitory effect on oxidative stress, thereby attenuating the onset and progression of various diseases including cardiovascular disease; however, few reports have assessed the preventive effect of constitutive inhalation of hydrogen gas on of vascular remodeling. Here, we investigated the effect of constitutive inhalation of hydrogen gas on vascular neointima formation using a cuff-induced vascular injury mouse model. After constitutive inhalation of compressed hydrogen gas (O2 21%, N2 77.7%, hydrogen 1.3%) or compressed air only (O2 21%, N2 79%) by C57BL/6 mice for 2 weeks from 8 weeks of age in a closed chamber, inflammatory cuff injury was induced by polyethylene cuff placement around the femoral artery under anesthesia, and hydrogen gas administration was continued until sampling of the femoral artery. Neointima formation, accompanied by an increase in cell proliferation, was significantly attenuated in the hydrogen group compared with the control group. NADPH oxidase NOX1 downregulation in response to cuff injury was shown in the hydrogen group, but the expression levels of NADPH oxidase subunits, p40phox and p47phox, did not differ significantly between the hydrogen and control groups. Although the increase in superoxide anion production did not significantly differ between the hydrogen and control groups, DNA damage was decreased as a result of reduction of reactive oxygen species such as hydroxyl radical (⋅OH) and peroxynitrite (ONOO-) in the hydrogen group. These results demonstrate that constitutive inhalation of hydrogen gas attenuates vascular remodeling partly via reduction of oxidative stress, suggesting that constitutive inhalation of hydrogen gas at a safe concentration in the living environment could be an effective strategy for prevention of vascular diseases such as atherosclerosis.
Collapse
|
18
|
Qu Q, Pang Y, Zhang C, Liu L, Bi Y. Exosomes derived from human umbilical cord mesenchymal stem cells inhibit vein graft intimal hyperplasia and accelerate reendothelialization by enhancing endothelial function. Stem Cell Res Ther 2020; 11:133. [PMID: 32293542 PMCID: PMC7092460 DOI: 10.1186/s13287-020-01639-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background In our previous research, we found that mesenchymal stem cell (MSC) transplantation therapy can inhibit intimal hyperplasia and enhance endothelial function in arterialized vein grafts in rats. However, whether MSC-derived exosomes (MSC-exosomes) can reduce neointimal formation and its possible mechanism is still unclear. Methods The primary human umbilical cord MSCs (hucMSCs) and human umbilical vein endothelial cells (HUVECs) were isolated and characterized by flow cytometry and immunofluorescence. The exosomes derived from hucMSCs (hucMSC-exosomes) were identified by transmission electron microscopy and western blots. hucMSC-exosomes were intravenously injected into a rat model of vein grafting, and its effect on vein grafts reendothelialization and intimal hyperplasia was assessed by physical, histological, immunohistochemistry, and immunofluorescence examinations. The effects of hucMSC-exosomes on endothelial cells were evaluated by integrated experiment, EdU staining, scratch assay, and Transwell assay. The expression levels of key gene and pathways associated with the biological activity of vascular endothelial cells were evaluated following the stimulation of hucMSC-exosomes. Results We successfully isolated and characterized primary hucMSCs and hucMSC-exosomes and primary HUVECs. We verified that the systemic administration of hucMSC-exosomes accelerates reendothelialization and decreases intimal hyperplasia of autologous vein graft in a rat model. We also identified that hucMSC-exosomes can be uptaken by endothelial cells to stimulate cell proliferative and migratory activity in vitro. Furthermore, we detected that vascular endothelial growth factor (VEGF) plays an important part in hucMSC-exosome-mediated proliferation and migration in HUVECs. In addition, we also provided evidence that the signalling pathways of PI3K/AKT and MAPK/ERK1/2 take part in hucMSC-exosome-induced VEGF regulation. Conclusion Our data suggest that hucMSC-exosomes exert a vasculoprotective role in the setting of vein graft disease, which may provide a new clue to protect against vein graft failure in the future.
Collapse
Affiliation(s)
- Qingxi Qu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Chunmei Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Linghong Liu
- Research Center of Stem Cell and Regenerative Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Yanwen Bi
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
19
|
Fouquet O, Blossier JD, Dang Van S, Robert P, Barbelivien A, Pinaud F, Binuani P, Eid M, Henrion D, Baufreton C, Loufrani L. Do storage solutions protect endothelial function of arterialized vein graft in an experimental rat model? J Cardiothorac Surg 2020; 15:34. [PMID: 32041642 PMCID: PMC7011455 DOI: 10.1186/s13019-020-1077-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/30/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This study aims to compare the effects of storage solutions commonly used in coronary artery bypass grafting on the vascular reactivity in vein graft interposed in arterial position in syngeneic rats. METHODS Twenty-seven male Lewis rats were sacrified to sample a vein graft implanted 6 weeks ago into abdominal aorta position. The vein grafts were inferior venae cavae initially pretreated with heparinized saline solution (HS) or autologous heparinized blood (AHB) or our referent solution, GALA. The endothelial functionality, the in situ Reactive Oxygen Species (ROS) levels and the histological characteristics were conducted from segments of arterialized vein graft. RESULTS At 6 weeks, graft thrombosis occurred respectively in 22% of AHB group, 62.5% in the HS group and 82.5% in the GALA group. In each group, significative intimal hyperplasia was observed. After 6 weeks, an endothelium-remodeling layer associated with an increase of wall thickness was observed in each group. Endothelium-dependent tone was reduced in the vein graft regardless of the group. No difference was observed concerning the ROS in vein graft between the different groups. In distal aortic sections, ROS levels were increased in HS and GALA groups. CONCLUSIONS Storage solutions used in this experimental model of vein graft implanted in arterial position cause graft injury and a complete disappearance of vascular reactivity. GALA solution did not reduce intimal risk hyperplasia when the vein graft was exposed to arterial flow in a rat model.
Collapse
Affiliation(s)
- Olivier Fouquet
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France.
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France.
| | - Jean-David Blossier
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
- Department of Cardiac Surgery, CHU Dupuytren, Limoges, France
| | - Simon Dang Van
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | - Pauline Robert
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | | | - Frédéric Pinaud
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | - Patrice Binuani
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
| | - Maroua Eid
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
| | - Daniel Henrion
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
- University Hospital of Angers, Angers, France
| | - Christophe Baufreton
- Department of Cardiac Surgery, University Hospital of Angers, France, 4 rue Larrey, 49933 CHU, Angers Cedex 9, France
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
| | - Laurent Loufrani
- Institute MITOVASC CNRS UMR 6015, INSERM 1083, Angers, France
- University Hospital of Angers, Angers, France
| |
Collapse
|
20
|
Tao G, Song G, Qin S. Molecular hydrogen: current knowledge on mechanism in alleviating free radical damage and diseases. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1189-1197. [PMID: 31738389 DOI: 10.1093/abbs/gmz121] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/20/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Ever since molecular hydrogen was first reported as a hydroxyl radical scavenger in 2007, the beneficial effect of hydrogen was documented in more than 170 disease models and human diseases including ischemia/reperfusion injury, metabolic syndrome, inflammation, and cancer. All these pathological damages are concomitant with overproduction of reactive oxygen species (ROS) where molecular hydrogen has been widely demonstrated as a selective antioxidant. Although it is difficult to construe the molecular mechanism of hydrogen's biomedical effect, an increasing number of studies have been helping us draw the picture clearer with days passing by. In this review, we summarized the current knowledge on systemic and cellular modulation by hydrogen treatment. We discussed the antioxidative, anti-inflammatory, and anti-apoptosis effects of hydrogen, as well as its protection on mitochondria and the endoplasmic reticulum, regulation of intracellular signaling pathways, and balancing of the immune cell subtypes. We hope that this review will provide organized information that prompts further investigation for in-depth studies of hydrogen effect.
Collapse
Affiliation(s)
- Geru Tao
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Guohua Song
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in University of Shandong, Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271000, China
| |
Collapse
|
21
|
Tan S, Long Z, Hou X, Lin Y, Xu J, You X, Wang T, Zhang Y. H 2 Protects Against Lipopolysaccharide-Induced Cardiac Dysfunction via Blocking TLR4-Mediated Cytokines Expression. Front Pharmacol 2019; 10:865. [PMID: 31440160 PMCID: PMC6694767 DOI: 10.3389/fphar.2019.00865] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose: Septic cardiomyopathy, which is one of the features of multi-organ dysfunction in sepsis, is characterized by ventricular dilatation, reduced ventricular contractility, and reduction in ejection fraction and, if severe, can lead to death. To date, there is no specific therapy that exists, and its treatment represents a large unmet clinical need. Herein, we investigated the effects and underlying anti-inflammatory mechanisms of hydrogen gas in the setting of lipopolysaccharide (LPS)-induced cardiomyocytes injury. Experimental Approach: Hydrogen gas was intraperitoneally injected to mice in LPS plus hydrogen group and hydrogen group for 4 days. On fourth, LPS was given by intraperitoneal injection to mice in LPS group and to mice in LPS plus hydrogen group. In addition, H9c2 cardiomyocytes were treated with hydrogen-rich medium for 30 min before LPS. The transthoracic echocardiography was performed at 6 h post‐LPS to assess left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), left ventricular ejection fraction (EF%), fractional shortening (FS%), left ventricular mass average weight (LV mass AW), and LV mass AW (Corrected). The histological and morphological analyses of left ventricular were performed by hematoxylin and eosin (H&E) staining and Masson’s trichrome staining. The mRNA levels of ANP and BNP were examined by PCR in vitro. The expression of cytokines were assayed by Enzyme Linked Immunosorbent Assay (ELISA) and PCR. Moreover, Western blotting was performed to examine the expression of TLR4, the activation of ERK1/2, p38, JNK, and the expression of NF-κB in nucleus after 6 h of LPS challenge in vivo and in vitro. Key Results: LPS induced cardiac dysfunction; hydrogen therapy improved cardiac function after LPS challenge. Furthermore, pretreatment with hydrogen resulted in cardioprotection during septic cardiomyopathy via inhibiting the expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-18; suppressing the phosphorylation of ERK1/2, p38, and JNK; and reducing the nuclear translocation of NF-κB and the expression of TLR4 by LPS. Conclusion and Implications: Hydrogen therapy prevents LPS-induced cardiac dysfunction in part via downregulation of TLR4-mediated pro-inflammatory cytokines expression.
Collapse
Affiliation(s)
- Sihua Tan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhiyuan Long
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangping Hou
- Department of Psychological Sleeping, Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Lin
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China.,Department of Biomedical Engineering, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Xinchao You
- Department of Science and Education, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tinghuai Wang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China.,Biofeedback Therapy and Research Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Sun Q, Han W, Hu H, Fan D, Li Y, Zhang Y, Lv Y, Li M, Pan S. Hydrogen alleviates hyperoxic acute lung injury related endoplasmic reticulum stress in rats through upregulation of SIRT1. Free Radic Res 2017; 51:622-632. [PMID: 28675985 DOI: 10.1080/10715762.2017.1351027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qiang Sun
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Wenjie Han
- Department of VIP Respiration Medicine, PLA Navy General Hospital, Beijing, China
| | - Huijun Hu
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Danfeng Fan
- Department of VIP Respiration Medicine, PLA Navy General Hospital, Beijing, China
| | - Yanbo Li
- Department of VIP General Medicine, PLA Navy General Hospital, Beijing, China
| | - Yu Zhang
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Yan Lv
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Mingxin Li
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, PLA Navy General Hospital, Beijing, China
| |
Collapse
|
23
|
Li Q, Tanaka Y, Miwa N. Influence of hydrogen-occluding-silica on migration and apoptosis in human esophageal cells in vitro. Med Gas Res 2017; 7:76-85. [PMID: 28744359 PMCID: PMC5510297 DOI: 10.4103/2045-9912.208510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the last decade, many studies have shown that hydrogen gas or hydrogen water can reduce the levels of reactive oxygen species in the living body. Molecular hydrogen has antioxidant and antiapoptotic effects and a preventive effect on oxidative stress-induced cell death. In the present study, we investigated solidified hydrogen-occluding-silica (H2-silica) that can release molecular hydrogen into cell culture medium because the use of hydrogen gas has strict handling limitations in hospital and medical facilities and laboratories, owing to its physicochemical characteristics. Human esophageal squamous cell carcinoma (KYSE-70) cells and normal human esophageal epithelial cells (HEEpiCs) were used to investigate the effects of H2-silica on cell viability and proliferation. Cell migration was examined with wound healing and culture-insert migration assays. The intracellular levels of reactive oxygen species were evaluated with a nitroblue tetrazolium assay. To assess the apoptotic status of the cells, the Bax/Bcl-2 ratio and cleaved caspase-3 were analyzed by western blot. The results showed that KYSE-70 cells and HEEpiCs were generally inhibited by H2-silica administration, and there was a significant proliferation-inhibitory effect in an H2-silica concentration-dependent manner compared with the control group (P < 0.05) in KYSE-70. Apoptosis-inducing effect on KYSE-70 cells was observed in 10, 300, 600, and 1,200 ppm H2-silica, and only 1,200 ppm H2-silica caused a 2.4-fold increase in apoptosis in HEEpiCs compared with the control group as the index of Bax/Bcl-2. H2 silica inhibited cell migration in KYSE-70 cells, and high concentrations had a cytotoxic effect on normal cells. These findings should provide insights into the mechanism of inhibition of H2-silica on human cancer cells in vitro.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiological Technology, Faculty of Health Sciences, Butsuryo College of Osaka, Osaka, Japan
| | - Yoshiharu Tanaka
- Division of Biology, Faculty of Liberal Arts and Sciences, and Division of Quantum Radiation, Faculty of Technology, Osaka Prefecture University, Osaka, Japan
| | - Nobuhiko Miwa
- Japanese Center for AntiAging MedSciences, Hiroshima, Japan
| |
Collapse
|
24
|
Blaas I, Heinz K, Würtinger P, Türkcan A, Tepeköylü C, Grimm M, Doppler C, Danzl K, Messner B, Bernhard D. Vein graft thrombi, a niche for smooth muscle cell colonization - a hypothesis to explain the asymmetry of intimal hyperplasia. J Thromb Haemost 2016; 14:1095-104. [PMID: 26875593 DOI: 10.1111/jth.13295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Essentials Vein graft failure is the most frequent late onset complication of coronary artery bypass grafting. Cuff technique-based interposition mouse model including new anticoagulation regime was conducted. Early vein graft thrombi may serve as a niche for smooth muscle cell colonization. The focal character of early thrombi may form the basis for the asymmetry of intimal hyperplasia. SUMMARY Background Autologous saphenous veins are widely used in coronary artery bypass grafting; however, 10 years after surgery, 40% of grafts are completely occluded, and another 30% show reduced blood flow. Objective In the past, the central processes and signaling pathways responsible for this loss of patency have been identified. However, one central finding in the process of graft failure is so far not understood: the asymmetric character of intimal hyperplasia. It was the goal of the present study to address this aspect. Methods By the use of a cuff technique-based vein interposition mouse model with a new anticoagulation regime, alterations in vein grafts were analyzed 1 h, 1 day, 2 days, 3 days, 7 days and 21 days after reperfusion by means of immunolabeling, histochemistry, and high-resolution ultrasound. Results The novel and major finding of this study is that the vein graft thrombus may serve as a niche that is infiltrated and colonized by smooth muscle cells (SMCs). Fibroblast growth factor-1 and platelet-derived growth factor-B may be the SMC-attracting factors in the thrombus. The focal character of early thrombi may define the focal and asymmetric character of vein graft intimal hyperplasia. Conclusions Inhibiting the formation and reducing the size of early thrombi is an old concept for reducing vein graft failure. However, in light of the present new findings obtained under a clinic-like anticoagulation regime, early vein graft thrombus prevention/size reduction should be revisited in the prevention of graft failure.
Collapse
Affiliation(s)
- I Blaas
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - K Heinz
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - P Würtinger
- Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), Medical University of Innsbruck, Innsbruck, Austria
| | - A Türkcan
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - C Tepeköylü
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - M Grimm
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - C Doppler
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - K Danzl
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - B Messner
- Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - D Bernhard
- Cardiac Surgery Research Laboratory, University Clinic for Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Zhao M, Liu MD, Pu YY, Wang D, Xie Y, Xue GC, Jiang Y, Yang QQ, Sun XJ, Cao L. Hydrogen-rich water improves neurological functional recovery in experimental autoimmune encephalomyelitis mice. J Neuroimmunol 2016; 294:6-13. [PMID: 27138092 DOI: 10.1016/j.jneuroim.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 02/03/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS). The high costs, inconvenient administration, and side effects of current Food and Drug Administration (FDA)-approved drugs often lead to poor adherence to the long-term treatment of MS. Molecular hydrogen (H2) has been reported to exhibit anti-oxidant, anti-apoptotic, anti-inflammatory, anti-allergy, and anti-cancer effects. In the present study, we explored the prophylactic and therapeutic effects of hydrogen-rich water (HRW) on the progress of experimental autoimmune encephalomyelitis (EAE), the animal model for MS. We found that prophylactic administration of both 0.36mM and 0.89mM HRW was able to delay EAE onset and reduce maximum clinical scores. Moreover, 0.89mM HRW also reduced disease severity, CNS infiltration, and demyelination when administered after the onset of disease. Furthermore, HRW treatment prevented infiltration of CD4(+) T lymphocytes into the CNS and inhibited Th17 cell development without affecting Th1 cell populations. Because HRW is non-toxic, inexpensive, easily administered, and can readily cross the blood-brain barrier, our experiments suggest that HRW may have great potential in the treatment of MS.
Collapse
Affiliation(s)
- Ming Zhao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China; Department of Neurology, Chinese PLA 254 Hospital, Tianjin, China
| | - Ming-Dong Liu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Ying-Yan Pu
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Dan Wang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yu Xie
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Gai-Ci Xue
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yong Jiang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Qian-Qian Yang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Xue-Jun Sun
- Department of Aviation Medicine, Faculty of Naval Medicine, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Li Cao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
26
|
Gregory EK, Vercammen JM, Flynn ME, Kibbe MR. Establishment of a rat and guinea pig aortic interposition graft model reveals model-specific patterns of intimal hyperplasia. J Vasc Surg 2016; 64:1835-1846.e1. [PMID: 26781075 DOI: 10.1016/j.jvs.2015.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Although the aortic interposition bypass model has been widely used to evaluate biomaterials for bypass grafting, there is no comprehensive description of the procedure or of the distribution of intimal hyperplasia that results. The objectives of this study were to (1) review and summarize approaches of aortic interposition grafting in animal models, (2) determine the pertinent anatomy for this procedure, (3) validate this model in the rat and guinea pig, and (4) compare the distribution of intimal hyperplasia that develops in each species. METHODS A literature search was performed in PubMed from 1980 to the present to analyze the use of anesthesia, anticoagulation, antiplatelet agents, graft material, suture, and anastomotic techniques. Using 10-week-old male Sprague-Dawley rats and Hartley guinea pigs, we established pertinent aortic anatomy, developed comparable models, and assessed complications for each model. At 30 days, the graft and associated aorta were explanted, intimal formation was assessed morphometrically, and cellularity was assessed via nuclear counting. RESULTS We reviewed 30 articles and summarized the pertinent procedural findings. Upon establishing both animal models, key anatomic differences between the species that affect this model were noted. Guinea pigs have a much larger cecum, increased retroperitoneal fat, and lack the iliolumbar vessels compared with the rat. Surgical outcomes for the rat model included a 53% technical success rate and a 32% technical error rate. Surgical outcomes for the guinea pig model included a 69% technical success rate and a 31% technical error rate. These two species demonstrated unique distribution of intimal hyperplasia at 30 days. Intimal hyperplasia in the rat model was greatest at two areas, the proximal graft (5400 μm2; P < .001) and distal graft (2800 μm2; P < .04), whereas the guinea pig model developed similar intimal hyperplasia throughout the graft (4500-5100 μm2; P < .01). CONCLUSIONS In this report, we summarize the literature on the aortic interposition graft model, present a detailed description of the anatomy and aortic interposition graft procedure in the rat and guinea pig, and describe a unique distribution of intimal formation that results in both species. This information will be helpful when designing studies to evaluate novel graft materials in the future.
Collapse
Affiliation(s)
- Elaine K Gregory
- Division of Vascular Surgery, Feinberg School of Medicine, and Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Ill
| | - Janet M Vercammen
- Division of Vascular Surgery, Feinberg School of Medicine, and Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Ill
| | - Megan E Flynn
- Division of Vascular Surgery, Feinberg School of Medicine, and Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Ill
| | - Melina R Kibbe
- Division of Vascular Surgery, Feinberg School of Medicine, and Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, Ill; Section of Vascular Surgery, Jesse Brown Veterans Affairs Medical Center, Chicago, Ill.
| |
Collapse
|
27
|
Ge X, Chen S, Liu M, Liang T, Liu C. Evodiamine Attenuates PDGF-BB-Induced Migration of Rat Vascular Smooth Muscle Cells through Activating PPARγ. Int J Mol Sci 2015; 16:28180-93. [PMID: 26703570 PMCID: PMC4691040 DOI: 10.3390/ijms161226093] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 11/24/2022] Open
Abstract
The uncontrolled migration of vascular smooth muscle cells (VSMCs) into the intima is a critical process in the development of atherosclerosis. Evodiamine, an indole alkaloid extracted from the Chinese medicine evodia, has been shown to inhibit tumor cell invasion and protect the cardiovascular system, but its effects on VSMCs remain unknown. In the present study, we investigated the inhibitory effects of evodiamine on the platelet-derived growth factor-BB (PDGF-BB)-induced VSMC migration using wound healing and transwell assays, and assessed its role in decreasing the protein levels of matrix metalloproteinases and cell adhesion molecules. More importantly, we found that evodiamine activated the expression and nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ). Inhibition of PPARγ activity by using its antagonist T0070907 and its specific siRNA oligonucleotides significantly attenuated the inhibitory effects of evodiamine on VSMC migration. Taken together, our results indicate a promising anti-atherogenic effect of evodiamine through attenuation of VSMC migration by activating PPARγ.
Collapse
MESH Headings
- Animals
- Becaplermin
- Cell Movement
- Cells, Cultured
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Quinazolines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Wound Healing
Collapse
Affiliation(s)
- Xie Ge
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Siyu Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
28
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
29
|
Han L, Tian R, Yan H, Pei L, Hou Z, Hao S, Li YV, Tian Q, Liu B, Zhang Q. Hydrogen-rich water protects against ischemic brain injury in rats by regulating calcium buffering proteins. Brain Res 2015; 1615:129-138. [PMID: 25920370 DOI: 10.1016/j.brainres.2015.04.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Hydrogen-rich water (HRW) has anti-oxidant activities, and it exerts neuroprotective effects during ischemia-reperfusion brain injury. Parvalbumin and hippocalcin are two calcium buffering proteins, which are involved in neuronal differentiation, maturation and apoptosis. The aim of this study was to investigate whether HRW could moderate parvalbumin and hippocalcin expression during ischemic brain injury and glutamate toxicity-induced neuronal cell death. Focal brain ischemia was induced in male Sprague-Dawley rats by middle cerebral artery occlusion (MCAO). Rats were treated with H2O or HRW (6 ml/kg per rat) before and after MCAO, and cerebral cortical tissues were collected 1, 7 and 14 days after MCAO. Based on our results, HRW treatment was able to reduce brain infarct volume and improve neurological function following ischemic brain injury. In addition, HRW prevented the ischemia-induced reduction of parvalbumin and hippocalcin levels in vivo and also reduced the glutamate toxicity-induced death of neurons, including the dose-dependent reduction of glutamate toxicity-associated proteins in vitro. Moreover, HRW attenuated the glutamate toxicity-induced elevate in intracellular Ca(2+) levels. All these results suggest that HRW could protect against ischemic brain injury and that the maintenance of parvalbumin and hippocalcin levels by HRW during ischemic brain injury might contribute to the neuroprotective effects against neuron damage.
Collapse
Affiliation(s)
- Li Han
- Department of Neurology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Runfa Tian
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing 100050, PR China
| | - Huanhuan Yan
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Lei Pei
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China; Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing 100050, PR China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing 100050, PR China
| | - Yang V Li
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan 430000, PR China; Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Tiantan Xili 6, Dongcheng District, Beijing 100050, PR China; Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, PR China.
| | - Qi Zhang
- Department of Neurology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, PR China; Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan 430000, PR China.
| |
Collapse
|
30
|
Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, Mori K. Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci 2015; 16:22. [PMID: 25925889 PMCID: PMC4411925 DOI: 10.1186/s12868-015-0165-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 04/14/2015] [Indexed: 01/08/2023] Open
Abstract
Background Enhanced oxidative stress occurs in spontaneously hypertensive stroke-prone rats (SHRSP), and is important in blood–brain barrier (BBB) disruption. Hydrogen can exert potent protective cellular effects via reduction in oxidative stress in various diseases. The present study investigated whether long-term hydrogen treatment can improve neurological function outcome in the SHRSP model, and the effects of hydrogen on BBB function, especially the oxidative stress and the activity of matrix metalloproteinases (MMPs) in this model. Fifty-six animals were randomly assigned to 2 groups and treated as follows: SHRSP treated with hydrogen-rich water (HRW) (HRW group, n = 28); and SHRSP treated with regular water (control group, n = 28). The effect of HRW on overall survival and neurological function, and the effects of HRW on reactive oxygen species, BBB function, and MMP activities were examined. Results HRW treatment improved neurological function and tended to improve overall survival but without significant difference. The numbers of bleeds and infarcts were lower in the cortex and hippocampus in the HRW group. The HRW group exhibited a significantly lower number of 8-hydroxy-2'-deoxyguanosine-positive cells and vessels of extravasated albumin in the hippocampus compared with the control group. MMP-9 activity was reduced in the hippocampus in the HRW group compared with the control group. Conclusions The present study suggests that ingestion of HRW can improve neurological function outcome in the SHRSP model. This beneficial effect may be due to attenuation of BBB disruption via reduction in reactive oxygen species and suppression of MMP-9 activity in the hippocampus.
Collapse
Affiliation(s)
- Satoru Takeuchi
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Kimihiro Nagatani
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Naoki Otani
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Hiroshi Nawashiro
- Division of Neurosurgery, Tokorozawa Central Hospital, Tokorozawa, Saitama, Japan.
| | - Takashi Sugawara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Kentaro Mori
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
31
|
Potential ghrelin-mediated benefits and risks of hydrogen water. Med Hypotheses 2015; 84:350-5. [PMID: 25649854 DOI: 10.1016/j.mehy.2015.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
Molecular hydrogen (H2) can scavenge hydroxyl radical and diminish the toxicity of peroxynitrite; hence, it has interesting potential for antioxidant protection. Recently, a number of studies have explored the utility of inhaled hydrogen gas, or of hydrogen-saturated water, administered parenterally or orally, in rodent models of pathology and in clinical trials, oftentimes with very positive outcomes. The efficacy of orally ingested hydrogen-rich water (HW) has been particularly surprising, given that only transient and rather small increments in plasma hydrogen can be achieved by this method. A recent study in mice has discovered that orally administered HW provokes increased gastric production of the orexic hormone ghrelin, and that this ghrelin mediates the favorable impact of HW on a mouse model of Parkinson's disease. The possibility that most of the benefits observed with HW in experimental studies are mediated by ghrelin merits consideration. Ghrelin is well known to function as an appetite stimulant and secretagogue for growth hormone, but it influences physiological function throughout the body via interaction with the widely express GHS-R1a receptor. Rodent and, to a more limited extent, clinical studies establish that ghrelin has versatile neuroprotective and cognitive enhancing activity, favorably impacts vascular health, exerts anti-inflammatory activity useful in autoimmune disorders, and is markedly hepatoprotective. The stimulatory impact of ghrelin on GH-IGF-I activity, while potentially beneficial in sarcopenia or cachectic disorders, does raise concerns regarding the long-term impact of ghrelin up-regulation on cancer risk. The impact of ingesting HW water on ghrelin production in humans needs to be evaluated; if HW does up-regulate ghrelin in humans, it may have versatile potential for prevention and control of a number of health disorders.
Collapse
|
32
|
Takeuchi S, Mori K, Arimoto H, Fujii K, Nagatani K, Tomura S, Otani N, Osada H, Wada K. Effects of intravenous infusion of hydrogen-rich fluid combined with intra-cisternal infusion of magnesium sulfate in severe aneurysmal subarachnoid hemorrhage: study protocol for a randomized controlled trial. BMC Neurol 2014; 14:176. [PMID: 25201463 PMCID: PMC4172868 DOI: 10.1186/s12883-014-0176-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023] Open
Abstract
Background The failures of recent studies intended to prevent cerebral vasospasm have moved the focus of research into delayed cerebral ischemia away from cerebral artery constriction towards other mechanisms. Recent accumulating evidence has suggested that early brain injury is also involved in the development of delayed cerebral ischemia, and that hydrogen can prevent early brain injury. Therefore, we have established a combination therapy of intravenous hydrogen infusion and intra-cisternal magnesium sulfate infusion for the treatment of both early brain injury and cerebral vasospasm. The present randomized controlled clinical trial is designed to investigate the effects of this novel therapeutic strategy on the occurrence of cerebral vasospasm, delayed cerebral ischemia, and clinical outcomes after high-grade subarachnoid hemorrhage. Methods This study is a randomized, double-blind, placebo-controlled design to be conducted in two hospitals. A total of 450 patients with high-grade subarachnoid hemorrhage will be randomized to one of three arms: (i) Mg + H2 group, (ii) Mg group, and (iii) control group. Patients who are assigned to the Mg + H2 group will receive intra-cisternal magnesium sulfate infusion (2.5 mmol/L) at 20 mL/h for 14 days and intravenous hydrogen-rich fluid infusion (200 mL) twice a day for 14 days. Patients who are assigned to the Mg group will receive intra-cisternal magnesium sulfate infusion (2.5 mmol/L) at 20 mL/h for 14 days and intravenous normal glucose-electrolyte solution (200 mL) without added hydrogen twice a day for 14 days. Patients who are assigned to the control group will receive intra-cisternal Ringer solution without magnesium sulfate at 20 mL/h for 14 days and intravenous normal glucose-electrolyte solution (200 mL) without added hydrogen twice a day for 14 days. Primary outcome measures will be occurrence of delayed cerebral ischemia and cerebral vasospasm. Secondary outcome measures will be modified Rankin scale score at 3, 6, and 12 months and biochemical markers. Discussion The present protocol for a randomized, placebo-controlled study of intravenous hydrogen therapy with intra-cisternal magnesium infusion is expected to establish the efficacy and safety of this therapeutic strategy. Trial registration UMIN-CTR: UMIN000014696
Collapse
|
33
|
Zhao Y, Liu XZ, Tian WW, Guan YF, Wang P, Miao CY. Extracellular visfatin has nicotinamide phosphoribosyltransferase enzymatic activity and is neuroprotective against ischemic injury. CNS Neurosci Ther 2014; 20:539-47. [PMID: 24750959 DOI: 10.1111/cns.12273] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 12/25/2022] Open
Abstract
AIM Visfatin, a novel adipokine, is predominantly produced by visceral adipose tissue and exists in intracellular and extracellular compartments. The intracellular form of visfatin is proved to be nicotinamide phosphoribosyltransferase (NAMPT) and exhibits neuroprotection through maintaining intracellular NAD(+) pool. However, whether extracellular form of visfatin has NAMPT activity and the effect of extracellular visfatin in cerebral ischemia are unknown. METHODS AND RESULTS Plasma concentrations of visfatin, NAD(+) , and ATP were increased in mice upon cerebral ischemia. Cultured glia, but not neuron, was able to secrete visfatin. Oxygen-glucose deprivation (OGD) stress increased the secretion of visfatin from glia. Extracellular recombinant mouse wild-type visfatin, but not mouse H247A-mutant enzymatic-dead visfatin, had NAMPT enzymatic function in vitro. Treatment of wild-type visfatin, but not H247A-mutant enzymatic-dead visfatin, significantly attenuated detrimental effect of OGD on the cell viability and apoptosis in both cultured mouse neuron and glia. Treatment of neutralizing antibody, abolished the protective effect of extracellular visfatin on cell viability, but failed to block the antiapoptotic effect of extracellular visfatin. At last, we observed that plasma visfatin concentrations decreased in 6-month-old but not 3-month-old SHR-SP compared with that in age-matched Wistar-Kyoto rats. Inhibition of NAMPT enzymatic function of visfatin (by FK866) accelerated the occurrence of stroke in SHR-SP. CONCLUSIONS Extracellular visfatin has NAMPT enzymatic activity and maybe be neuroprotective just as intracellular visfatin in cerebral ischemic injury.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Zhang JY, Wu QF, Wan Y, Song SD, Xu J, Xu XS, Chang HL, Tai MH, Dong YF, Liu C. Protective role of hydrogen-rich water on aspirin-induced gastric mucosal damage in rats. World J Gastroenterol 2014; 20:1614-1622. [PMID: 24587639 PMCID: PMC3925872 DOI: 10.3748/wjg.v20.i6.1614] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/24/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the role of the hydrogen-rich water (HRW) in the prevention of aspirin-induced gastric mucosal injury in rats.
METHODS: Forty male rats were allocated into four groups: normal control group, HRW group, aspirin group, and HRW plus aspirin group. The protective efficacy was tested by determining the gastric mucosal damage score. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), interleukin (IL)-06 and tumor necrosis factor (TNF)-α in gastric tissues were evaluated. The serum levels of IL-1β and TNF-α were also detected. Histopathology of gastric tissues and localization of Cyclooxygenase 2 (COX-2) were detected using hematoxylin and eosin staining and immunohistochemistry, respectively.
RESULTS: Pretreatment with HRW obviously reduced aspirin-induced gastric damage scores (4.04 ± 0.492 vs 2.10 ± 0.437, P < 0.05). The oxidative stress levels of MDA and MPO in the gastric tissues increased significantly in the aspirin-treated group compared with the HRW group (2.43 ± 0.145 vs 1.79 ± 0.116 nmol/mg prot, P < 0.05 and 2.53 ± 0.238 vs 1.40 ± 0.208 U/g tissue, P < 0.05, respectively). HRW could obviously elevated the SOD levels in the gastric tissues (37.94 ± 8.44 vs 59.55 ± 9.02 nmol/mg prot, P < 0.05). Pretreatment with HRW significantly reduced IL-06 and TNF-α in the gastric tissues (46.65 ± 5.50 vs 32.15 ± 4.83 pg/mg, P < 0.05 and 1305.08 ± 101.23 vs 855.96 ± 93.22 pg/mg, P < 0.05), and IL-1β and TNF-α in the serum (505.38 ± 32.97 vs 343.37 ± 25.09 pg/mL, P < 0.05 and 264.53 ± 28.63 vs 114.96 ± 21.79 pg/mL, P < 0.05) compared to treatment with aspirin alone. HRW could significantly decrease the COX-2 expression in the gastric tissues (staining score: 8.4 ± 2.1 vs 2.9 ± 1.5, P < 0.05).
CONCLUSION: HRW pretreatment alleviated the aspirin-induced gastric lesions by inhibiting the oxidative stress, inflammatory reaction and reducing the COX-2 in the gastric tissues.
Collapse
|
35
|
Li Q, Kato S, Matsuoka D, Tanaka H, Miwa N. Hydrogen water intake via tube-feeding for patients with pressure ulcer and its reconstructive effects on normal human skin cells in vitro. Med Gas Res 2013; 3:20. [PMID: 24020833 PMCID: PMC3843550 DOI: 10.1186/2045-9912-3-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/05/2013] [Indexed: 12/25/2022] Open
Abstract
Background Pressure ulcer (PU) is common in immobile elderly patients, and there are some research works to investigate a preventive and curative method, but not to find sufficient effectiveness. The aim of this study is to clarify the clinical effectiveness on wound healing in patients with PU by hydrogen-dissolved water (HW) intake via tube-feeding (TF). Furthermore, normal human dermal fibroblasts OUMS-36 and normal human epidermis-derived cell line HaCaT keratinocytes were examined in vitro to explore the mechanisms relating to whether hydrogen plays a role in wound-healing at the cellular level. Methods Twenty-two severely hospitalized elderly Japanese patients with PU were recruited in the present study, and their ages ranged from 71.0 to 101.0 (86.7 ± 8.2) years old, 12 male and 10 female patients, all suffering from eating disorder and bedridden syndrome as the secondary results of various underlying diseases. All patients received routine care treatments for PU in combination with HW intake via TF for 600 mL per day, in place of partial moisture replenishment. On the other hand, HW was prepared with a hydrogen-bubbling apparatus which produces HW with 0.8-1.3 ppm of dissolved hydrogen concentration (DH) and −602 mV to −583 mV of oxidation-reduction potential (ORP), in contrast to reversed osmotic ultra-pure water (RW), as the reference, with DH of < 0.018 ppm and ORP of +184 mV for use in the in vitro experimental research. In in vitro experiments, OUMS-36 fibroblasts and HaCaT keratinocytes were respectively cultured in medium prepared with HW and/or RW. Immunostain was used for detecting type-I collagen reconstruction in OUMS-36 cells. And intracellular reactive oxygen species (ROS) were quantified by NBT assay, and cell viability of HaCaT cells was examined by WST-1 assay, respectively. Results Twenty-two patients were retrospectively divided into an effective group (EG, n = 12) and a less effective group (LG, n = 10) according to the outcomes of endpoint evaluation and the healing criteria. PU hospitalized days in EG were significantly shorter than in LG (113.3 days vs. 155.4 days, p < 0.05), and the shortening rate was approximately 28.1%. Either in EG or in LG, the reducing changes (EG: 91.4%; LG: 48.6%) of wound size represented statistically significant difference versus before HW intake (p < 0.05, p < 0.001). The in vitro data demonstrate that intracellular ROS as quantified by NBT assay was diminished by HW, but not by RW, in ultraviolet-A (UVA)-irradiated HaCaT cells. Nuclear condensation and fragmentation had occurred for UVA-irradiated HaCaT cells in RW, but scarcely occurred in HW as demonstrated by Hoechst 33342 staining. Besides, under UVA-irradiation, either the mitochondrial reducing ability of HaCaT cells or the type-I collagen construction in OUMS-36 cells deteriorated in RW-prepared culture medium, but was retained in HW-prepared culture medium as shown by WST-1 assay or immunostain, respectively. Conclusions HW intake via TF was demonstrated, for severely hospitalized elderly patients with PU, to execute wound size reduction and early recovery, which potently ensue from either type-I collagen construction in dermal fibroblasts or the promoted mitochondrial reducing ability and ROS repression in epidermal keratinocytes as shown by immunostain or NBT and WST-1 assays, respectively.
Collapse
Affiliation(s)
- Qiang Li
- Department of Radiological Technology, Faculty of Health Sciences, Butsuryo College of Osaka, Otorikitamachi 3-33, Nishi-ku, Sakai, Osaka 593-8328, Japan.
| | | | | | | | | |
Collapse
|
36
|
Tsubone H, Hanafusa M, Endo M, Manabe N, Hiraga A, Ohmura H, Aida H. Effect of Treadmill Exercise and Hydrogen-rich Water Intake on Serum Oxidative and Anti-oxidative Metabolites in Serum of Thoroughbred Horses. J Equine Sci 2013; 24:1-8. [PMID: 24833996 PMCID: PMC4013981 DOI: 10.1294/jes.24.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 01/13/2023] Open
Abstract
The present study aimed to clarify changes of oxidative stress and antioxidative
functions in treadmill-exercised Thoroughbred horses (n=5, 3 to 7 years old), using
recently developed techniques for measurement of serum d-ROMs for oxidative stress, and
BAP for antioxidative markers. Also, the effect of nasogastric administration of
hydrogen-rich water (HW) or placebo water preceding the treadmill exercise on these
parameters was examined. Each horse was subjected to a maximum level of treadmill exercise
in which the horses were exhausted at an average speed of 13.2 ± 0.84 m/sec. Blood samples
were taken 4 times, immediately before the intake of HW or placebo water at 30 min
preceding the treadmill exercise, immediately before the exercise (pre-exercise),
immediately after the exercise (post-exercise) and at 30 min following the exercise. In
all horses, both d-ROMs and BAP values significantly increased at post-exercise. The
increase in d-ROMs tended to be lower in the HW trial, as compared to the placebo trial at
pre-exercise. The increase in BAP was considerable at approximately 150% of the
pre-exercise values in both the HW and placebo treatment trials. The BAP/d-ROMs ratio was
significantly elevated at post-exercise in both treatment trials, while a significant
elevation was also observed at pre-exercise in the HW trial. BAP, d-ROM, and the BAP/d-ROM
ratio tended to decline at 30 min after the exercise, except BAP and BAP/d-ROMs in the
placebo trial. These results demonstrate that the marked elevation of oxidative stress and
anitioxidative functions occurred simultaneously in the intensively exercised horses, and
suggest a possibility that HW has some antioxidative efficacy.
Collapse
Affiliation(s)
- Hirokazu Tsubone
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masakazu Hanafusa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maiko Endo
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 3145 Ago, Ibaraki-Kasama 319-0206, Japan
| | - Noboru Manabe
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 3145 Ago, Ibaraki-Kasama 319-0206, Japan
| | - Atsushi Hiraga
- Hidaka Training Farm, Japan Racing Association, 535-13 Aza-nisi Sha, Urakawa-cho, Hokkaido 057-0171, Japan
| | - Hajime Ohmura
- The Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan
| | - Hiroko Aida
- The Equine Research Institute, Japan Racing Association, 321-4 Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan
| |
Collapse
|
37
|
Noda K, Shigemura N, Tanaka Y, Kawamura T, Hyun Lim S, Kokubo K, Billiar TR, Bermudez CA, Kobayashi H, Nakao A. A novel method of preserving cardiac grafts using a hydrogen-rich water bath. J Heart Lung Transplant 2013; 32:241-50. [DOI: 10.1016/j.healun.2012.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 10/23/2012] [Accepted: 11/04/2012] [Indexed: 02/05/2023] Open
|
38
|
Affiliation(s)
- Andre R Simon
- Royal Brompton and Harefield NHS Foundation Trust, Department Surgery, Transplantation and Mechanical Assist, Harefield, UK.
| |
Collapse
|
39
|
Noda K, Tanaka Y, Shigemura N, Kawamura T, Wang Y, Masutani K, Sun X, Toyoda Y, Bermudez CA, Nakao A. Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl Int 2012; 25:1213-22. [PMID: 22891787 DOI: 10.1111/j.1432-2277.2012.01542.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent evidence suggests that molecular hydrogen has therapeutic value for disease states that involve inflammation. We hypothesized that drinking hydrogen-rich water (HW) daily would protect cardiac and aortic allograft recipients from inflammation-associated deterioration. Heterotopic heart transplantation with short-course tacrolimus immunosuppression and orthotopic aortic transplantation were performed in allogeneic rat strains. HW was generated either by bubbling hydrogen gas through tap water (Bu-HW) or via chemical reaction using a magnesium stick [Mg + 2H(2) O → Mg (OH)(2) + H(2) ] immersed in tap water (Mg-HW). Recipients were given either regular water (RW), Mg-HW, Bu-HW, or Mg-HW that had been subsequently degassed (DW). Graft survival was assessed by daily palpation for a heartbeat. Drinking Mg-HW or Bu-HW was remarkably effective in prolonging heart graft survival and reducing intimal hyperplasia in transplanted aortas as compared with grafts treated with RW or DW. Furthermore, T cell proliferation was significantly inhibited in the presence of hydrogen in vitro, accompanied by less production of interleukin-2 and interferon-γ. Hydrogen treatment was also associated with increased graft ATP levels and increased activity of the enzymes in mitochondrial respiratory chain. Drinking HW prolongs survival of cardiac allografts and reduces intimal hyperplasia of aortic allografts.
Collapse
Affiliation(s)
- Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|