1
|
Wan S, Qi J, Xia Y, Fan C, Xu T, Zhang X, Shi J, Wang C, Cheng Y, Zhang D, Liu R, Zhu Y, Cao C, Jin D, An P, Luo Y, Luo J. Cardiac Slc25a49-Mediated Energy Reprogramming Governs Doxorubicin-Induced Cardiomyopathy through the G6P-AP-1-Sln Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502163. [PMID: 40184586 DOI: 10.1002/advs.202502163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/16/2025] [Indexed: 04/06/2025]
Abstract
Doxorubicin (Dox), a potent antitumor drug, is linked to cardiac toxicity. Few mechanism-based therapies against cardiotoxicity are available. Dysfunction in mitochondrial energy metabolism contributes to Dox-induced cardiomyopathy. It is aimed at exploring the association between specific mechanism of energy reprogramming and Dox-induced cardiomyopathy. Cardiac-specific ablation of Slc25a49 mice are generated by crossing Slc25a49flox/flox mice with Myh6-Cre mice. Slc25a49HKO mice or SLC25A49KD cardiomyocytes is treated with Dox. Echocardiography, histological analysis, transmission electron microscopy, bulk RNA sequencing, cell bioenergetic profiling, metabolomics test, chromatin immunoprecipitation, and dual-luciferase reporter assay are conducted to delineate the phenotype and elucidate the molecular mechanisms. Specific ablation of Slc25a49 in cardiomyocytes leads to exacerbated Dox-induced cardiomyopathy, characterized by compromised mitochondrial respiration enhanced glycolysis and increased glycolytic metabolite glucose-6-phosphate (G6P) levels, subsequently activating the activator protein-1 (AP-1) complex. The stimulation of the G6P-AP-1 axis intensifies myocardial damage via transcriptionally regulating Sarcolipin (Sln) expression. Strikingly, targeting of this axis with the AP-1 inhibitor T-5224 effectively improves survival and enhances cardiac function in Dox-induced cardiomyopathy. This study provides mechanistic insights into energy reprogramming that permits myocardial dysfunction, and thus provides a proof of concept for antienergy reprogramming therapy for Dox-induced cardiomyopathy through directly modulating G6P-AP-1-Sln axis.
Collapse
Affiliation(s)
- Sitong Wan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jingyi Qi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yi Xia
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Chang Fan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Teng Xu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xu Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiaxin Shi
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Chenxuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yitong Cheng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Dongyuan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yinhua Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Junjie Luo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Zhou Q, Shi R, Liu J, Liu Z. Identification and characterization of novel ferroptosis-related genes in acute myocardial infarction. Hum Genomics 2024; 18:123. [PMID: 39538299 PMCID: PMC11562590 DOI: 10.1186/s40246-024-00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of death and morbidity worldwide. Ferroptosis, a form of regulated cell death, plays a critical role in modulating immune functions during AMI. This study aimed to identify ferroptosis-related hub genes that could serve as potential therapeutic targets in the progression of AMI. METHODS Bioinformatics was used to identify overlapping genes associated with ferroptosis and the infiltration of 22 immune cells by Cell-type Identification by Estimating Relative Subsets of RNA Transcript (CIBERSORT) analysis. The expression of ferroptosis-related genes in AMI was validated across independent datasets, clinical samples, and in vitro cellular experiments. The predictive value for heart failure was evaluated in the first dimension of principal component analysis (PCA) using receiver operating characteristic (ROC) analysis. RESULTS The study identified 11 key ferroptosis-related genes significantly correlated with immune cell abundance. CIBERSORT analysis highlighted immune dysregulation in AMI. JDP2, DUSP1, TLR4, NFS1, and SLC1A5 were identified as potential biomarkers for AMI progression. Additionally, JDP2, DUSP1, and DDIT4 demonstrated strong predictive value for long-term heart failure. CONCLUSION This study highlights the potential association of ferroptosis-related genes with the pathogenesis of AMI, suggesting a role in the molecular mechanisms that may underlie acute coronary events.
Collapse
Affiliation(s)
- Qiaoyu Zhou
- Department of Cardiovascular Medicine, Postdoctoral Station of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoya Liu
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Lai Y, Ramírez-Pardo I, Isern J, An J, Perdiguero E, Serrano AL, Li J, García-Domínguez E, Segalés J, Guo P, Lukesova V, Andrés E, Zuo J, Yuan Y, Liu C, Viña J, Doménech-Fernández J, Gómez-Cabrera MC, Song Y, Liu L, Xu X, Muñoz-Cánoves P, Esteban MA. Multimodal cell atlas of the ageing human skeletal muscle. Nature 2024; 629:154-164. [PMID: 38649488 PMCID: PMC11062927 DOI: 10.1038/s41586-024-07348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.
Collapse
Affiliation(s)
- Yiwei Lai
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ignacio Ramírez-Pardo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Juan An
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Eusebio Perdiguero
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Antonio L Serrano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Jinxiu Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Esther García-Domínguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jessica Segalés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pengcheng Guo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China
| | - Vera Lukesova
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Andrés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Julio Doménech-Fernández
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Arnau de Vilanova y Hospital de Liria and Health Care Department Arnau-Lliria, Valencia, Spain
- Department of Orthopedic Surgery, Clinica Universidad de Navarra, Pamplona, Spain
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- ICREA, Barcelona, Spain.
| | - Miguel A Esteban
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Jilin, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Rinkūnaitė I, Šimoliūnas E, Alksnė M, Bartkutė G, Labeit S, Bukelskienė V, Bogomolovas J. Genetic Ablation of Ankrd1 Mitigates Cardiac Damage during Experimental Autoimmune Myocarditis in Mice. Biomolecules 2022; 12:biom12121898. [PMID: 36551326 PMCID: PMC9775225 DOI: 10.3390/biom12121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Myocarditis (MC) is an inflammatory disease of the myocardium that can cause sudden death in the acute phase, and dilated cardiomyopathy (DCM) with chronic heart failure as its major long-term outcome. However, the molecular mechanisms beyond the acute MC phase remain poorly understood. The ankyrin repeat domain 1 (ANKRD1) is a functionally pleiotropic stress/stretch-inducible protein, which can modulate cardiac stress response during various forms of pathological stimuli; however, its involvement in post-MC cardiac remodeling leading to DCM is not known. To address this, we induced experimental autoimmune myocarditis (EAM) in ANKRD1-deficient mice, and evaluated post-MC consequences at the DCM stage mice hearts. We demonstrated that ANKRD1 does not significantly modulate heart failure; nevertheless, the genetic ablation of Ankrd1 blunted the cardiac damage/remodeling and preserved heart function during post-MC DCM.
Collapse
Affiliation(s)
- Ieva Rinkūnaitė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Milda Alksnė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Gabrielė Bartkutė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - Virginija Bukelskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Julius Bogomolovas
- Department of Medicine, School of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
- Correspondence:
| |
Collapse
|
5
|
Gu Y, Ding Y, Zhang X, Li Y, Shang Z. Secreted frizzled-related protein 3 alleviated cardiac remodeling induced by angiotensin II via inhibiting oxidative stress and apoptosis in mice. Eur J Pharmacol 2022; 934:175303. [PMID: 36174667 DOI: 10.1016/j.ejphar.2022.175303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Increased expression of secreted frizzled related protein 3 (SFRP3) is associated with adverse outcomes of heart failure. The purpose of this study was to investigate the effect of SFRP3 on cardiac remodeling and its mechanism. Cardiac remodeling was induced by angiotensin II (Ang II) infusion in the mice, and in the neonatal rat cardiomyocytes (NRCM) treated with Ang II. The expression decreased in the heart of mice, and NRCM and HL-1 cells with Ang II treatment. Ang II-induced hypertrophy and fibrosis of heart in mice were attenuated by upregulation of SFRP3, and were further deteriorated by downregulation of SFRP3. Ang II-induced hypertrophy of NRCM and HL-1 cells were improved by SFRP3 overexpression, and were further deteriorated by SFRP3 knockdown. The oxidative stress increased in the heart of Ang II-treated mice, and this enhancement was inhibited by overexpressing of SFPR3, and was worsened by downregulation of SFPR3. These outcomes suggested that upregulation of SFPR3 could improve cardiac remodeling via inhibition of oxidative stress.
Collapse
Affiliation(s)
- Yang Gu
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Ying Ding
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xin Zhang
- Department of Cardiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yong Li
- Department of Cardiology, The Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu, China.
| |
Collapse
|
6
|
Sothivelr V, Hasan MY, Mohd Saffian S, Zainalabidin S, Ugusman A, Mahadi MK. Revisiting miRNA-21 as a Therapeutic Strategy for Myocardial Infarction: A Systematic Review. J Cardiovasc Pharmacol 2022; 80:393-406. [PMID: 35767710 DOI: 10.1097/fjc.0000000000001305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 01/31/2023]
Abstract
Several types of cardiovascular cells use microRNA-21 ( miR-21 ), which has been linked to cardioprotection. In this study, we systematically reviewed the results of published papers on the therapeutic effect of miR-21 for myocardial infarction. Studies described the cardioprotective effects of miR-21 to reduce infarct size by improving angiogenesis, antiapoptotic, and anti-inflammatory mechanisms. Results suggest that cardioprotective effects of miR-21 may work synergistically to prevent the deterioration of cardiac function during postischemia. However, there are other results that indicate that miR-21 positively regulates tissue fibrosis, potentially worsening a postischemic injury. The dual functionalities of miR-21 occur through the targeting of genes and signaling pathways, such as PTEN , PDCD4 , KBTBD7 , NOS3 , STRN , and Spry-1 . This review provides insights into the future advancement of safe miR-21 -based genetic therapy in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Vivisana Sothivelr
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| | - Mohammad Y Hasan
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| | - Shamin Mohd Saffian
- Centre for Quality Management of Medicine, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| | - Satirah Zainalabidin
- Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan, Malaysia; and
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan, Malaysia
| | - Mohd K Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan, Malaysia
| |
Collapse
|
7
|
Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wünnemann F, Nagai JS, Halder M, Schumacher D, Menzel S, Schäfer G, Hoeft K, Cheng M, Ziegler S, Zhang X, Peisker F, Kaesler N, Saritas T, Xu Y, Kassner A, Gummert J, Morshuis M, Amrute J, Veltrop RJA, Boor P, Klingel K, Van Laake LW, Vink A, Hoogenboezem RM, Bindels EMJ, Schurgers L, Sattler S, Schapiro D, Schneider RK, Lavine K, Milting H, Costa IG, Saez-Rodriguez J, Kramann R. Spatial multi-omic map of human myocardial infarction. Nature 2022; 608:766-777. [PMID: 35948637 PMCID: PMC9364862 DOI: 10.1038/s41586-022-05060-x] [Citation(s) in RCA: 317] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/29/2022] [Indexed: 02/01/2023]
Abstract
Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.
Collapse
Affiliation(s)
- Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ricardo O Ramirez Flores
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Zhijian Li
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rebecca T Levinson
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Xian Liao
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Monica T Hannani
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Jovan Tanevski
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Florian Wünnemann
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - James S Nagai
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Gideon Schäfer
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Konrad Hoeft
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Xiaoting Zhang
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Nadine Kaesler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Turgay Saritas
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Yaoxian Xu
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Astrid Kassner
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Jan Gummert
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Michiel Morshuis
- Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Junedh Amrute
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rogier J A Veltrop
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Linda W Van Laake
- Department of Cardiology, Regenerative Medicine Center and Circulatory Health Lab, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Leon Schurgers
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Denis Schapiro
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rebekka K Schneider
- Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Informatics for Life, Heidelberg, Germany.
| | - Rafael Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
JDP2, a Novel Molecular Key in Heart Failure and Atrial Fibrillation? Int J Mol Sci 2021; 22:ijms22084110. [PMID: 33923401 PMCID: PMC8074072 DOI: 10.3390/ijms22084110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Heart failure (HF) and atrial fibrillation (AF) are two major life-threatening diseases worldwide. Causes and mechanisms are incompletely understood, yet current therapies are unable to stop disease progression. In this review, we focus on the contribution of the transcriptional modulator, Jun dimerization protein 2 (JDP2), and on HF and AF development. In recent years, JDP2 has been identified as a potential prognostic marker for HF development after myocardial infarction. This close correlation to the disease development suggests that JDP2 may be involved in initiation and progression of HF as well as in cardiac dysfunction. Although no studies have been done in humans yet, studies on genetically modified mice impressively show involvement of JDP2 in HF and AF, making it an interesting therapeutic target.
Collapse
|
9
|
Schreckenberg R, Klein J, Kutsche HS, Schulz R, Gömöri K, Bencsik P, Benczik B, Ágg B, Sághy É, Ferdinandy P, Schlüter KD. Ischaemic post-conditioning in rats: Responder and non-responder differ in transcriptome of mitochondrial proteins. J Cell Mol Med 2020; 24:5528-5541. [PMID: 32297702 PMCID: PMC7214154 DOI: 10.1111/jcmm.15209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
Ischaemic post‐conditioning (IPoC) is a clinical applicable procedure to reduce reperfusion injury. Non‐responsiveness to IPoC possibly caused by co‐morbidities limits its clinical attractiveness. We analysed differences in the expression of mitochondrial proteins between IPoC responder (IPoC‐R) and non‐responder (IPoC‐NR). Eighty rats were randomly grouped to sham, ischaemia/reperfusion (I/R), IPoC or ischaemic pre‐conditioning (IPC, as positive cardioprotective intervention) in vivo. Infarct sizes were quantified by plasma troponin I levels 60 minutes after reperfusion. After 7 days, rats were sacrificed and left ventricular tissue was taken for post hoc analysis. The transcriptome was analysed by qRT‐PCR and small RNA sequencing. Key findings were verified by immunoblots. I/R increased plasma troponin I levels compared to Sham. IPC reduced troponin I compared to I/R, whereas IPoC produced either excellent protection (IPoC‐R) or no protection (IPoC‐NR). Twenty‐one miRs were up‐regulated by I/R and modified by IPoC. qRT‐PCR analysis revealed that IPoC‐R differed from other groups by reduced expression of arginase‐2 and bax, whereas the mitochondrial uncoupling protein (UCP)‐2 was induced in IPC and IPoC‐R. IPoC‐R and IPoC‐NR synergistically increased the expression of non‐mitochondrial proteins like VEGF and SERCA2a independent of the infarct size. Cardiac function was more closely linked to differences in mitochondrial proteins than on regulation of calcium‐handling proteins. In conclusion, healthy rats could not always be protected by IPoC. IPoC‐NR displayed an incomplete responsiveness which is reflected by different changes in the mitochondrial transcriptome compared to IPoC‐R. This study underlines the importance of mitochondrial proteins for successful long‐term outcome.
Collapse
Affiliation(s)
| | - Johann Klein
- Department of Physiology, Justus Liebig-University, Gießen, Germany
| | | | - Rainer Schulz
- Department of Physiology, Justus Liebig-University, Gießen, Germany
| | - Kamilla Gömöri
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Bencsik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Bettina Benczik
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Pharmahungary Group, Szeged, Hungary.,Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Éva Sághy
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary.,Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
10
|
Alam MJ, Gupta R, Mahapatra NR, Goswami SK. Catestatin reverses the hypertrophic effects of norepinephrine in H9c2 cardiac myoblasts by modulating the adrenergic signaling. Mol Cell Biochem 2019; 464:205-219. [PMID: 31792650 DOI: 10.1007/s11010-019-03661-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
Catestatin (CST) is a catecholamine release-inhibitory peptide secreted from the adrenergic neurons and the adrenal glands. It regulates the cardiovascular functions and it is associated with cardiovascular diseases. Though its mechanisms of actions are not known, there are evidences of cross-talk between the adrenergic and CST signaling. We hypothesized that CST moderates the adrenergic overdrive and studied its effects on norepinephrine-mediated hypertrophic responses in H9c2 cardiac myoblasts. CST alone regulated the expression of a number of fetal genes that are induced during hypertrophy. When cells were pre-treated CST, it blunted the modulation of those genes by norepinephrine. Norepinephrine (2 µM) treatment also increased cell size and enhanced the level of Troponin T in the sarcomere. These effects were attenuated by the treatment with CST. CST attenuated the immediate generation of ROS and the increase in glutathione peroxidase activity induced by norepinephrine treatment. Expression of fosB and AP-1 promoter-reporter constructs was used as the endpoint readout for the interaction between the CST and adrenergic signals at the gene level. It showed that CST largely attenuates the stimulatory effects of norepinephrine and other mitogenic signals through the modulation of the gene regulatory modules in a characteristic manner. Depending upon the dose, the signaling by CST appears to be disparate, and at 10-25 nM doses, it primarily moderated the signaling by the β1/2-adrenoceptors. This study, for the first time, provides insights into the modulation of adrenergic signaling in the heart by CST.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Fridabad, 121001, India
| | - Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shyamal K Goswami
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Fridabad, 121001, India.
| |
Collapse
|
11
|
Qian C, Chang D, Li H, Wang Y. Identification of potentially critical genes in the development of heart failure after ST-segment elevation myocardial infarction (STEMI). J Cell Biochem 2019; 120:7771-7777. [PMID: 30485493 DOI: 10.1002/jcb.28051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Heart failure (HF) remains a common complication after acute ST-segment elevation myocardial infarction (STEMI). Here, we aim to identify critical genes related to the developed HF in patients with STEMI using bioinformatics analysis. The microarray data of GSE59867, including peripheral blood samples from nine patients with post-infarct HF and eight patients without post-infarct HF, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HF and non-HF groups were screened by LIMMA package. Functional enrichment analyses of DEGs were conducted, followed by construction of a protein-protein interaction (PPI) network. The dynamic messenger RNA (mRNA) level of the hub genes during the follow-up was analyzed to further elucidate their role in HF development. A total of 58 upregulated and 75 downregulated DEGs were screen out. They were mainly enriched in biological processes about inflammatory response, extracellular matrix organization, response to cAMP, immune response, and positive regulation of cytosolic calcium ion concentration. Pathway analysis revealed that the DEGs were also involved in hematopoietic cell lineage, pathways in cancer, and extracellular matrix-receptor interaction. In the PPI network consisting of 58 nodes and 72 interactions, CXCL8 (degree = 15), THBS1 (degree = 8), FOS (degree = 7), and ITGA2B (degree = 6) were identified as the hub genes. In the comparison of patients with and without post-infarct HF, the mRNA level of these hub genes were all higher within 30 days but reached similar at 6 months after STEMI. In conclusion, CXCL8, THBS1, FOS, and ITGA2B may play important roles in the development of HF after acute STEMI.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Danqi Chang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hang Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.,Medical Research Institute of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Kalfon R, Friedman T, Eliachar S, Shofti R, Haas T, Koren L, Moskovitz JD, Hai T, Aronheim A. JDP2 and ATF3 deficiencies dampen maladaptive cardiac remodeling and preserve cardiac function. PLoS One 2019; 14:e0213081. [PMID: 30818334 PMCID: PMC6394944 DOI: 10.1371/journal.pone.0213081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
c-Jun dimerization protein (JDP2) and Activating Transcription Factor 3 (ATF3) are closely related basic leucine zipper proteins. Transgenic mice with cardiac expression of either JDP2 or ATF3 showed maladaptive remodeling and cardiac dysfunction. Surprisingly, JDP2 knockout (KO) did not protect the heart following transverse aortic constriction (TAC). Instead, the JDP2 KO mice performed worse than their wild type (WT) counterparts. To test whether the maladaptive cardiac remodeling observed in the JDP2 KO mice is due to ATF3, ATF3 was removed in the context of JDP2 deficiency, referred as double KO mice (dKO). Mice were challenged by TAC, and followed by detailed physiological, pathological and molecular analyses. dKO mice displayed no apparent differences from WT mice under unstressed condition, except a moderate better performance in dKO male mice. Importantly, following TAC the dKO hearts showed low fibrosis levels, reduced inflammatory and hypertrophic gene expression and a significantly preserved cardiac function as compared with their WT counterparts in both genders. Consistent with these data, removing ATF3 resumed p38 activation in the JDP2 KO mice which correlates with the beneficial cardiac function. Collectively, mice with JDP2 and ATF3 double deficiency had reduced maladaptive cardiac remodeling and lower hypertrophy following TAC. As such, the worsening of the cardiac outcome found in the JDP2 KO mice is due to the elevated ATF3 expression. Simultaneous suppression of both ATF3 and JDP2 activity is highly beneficial for cardiac function in health and disease.
Collapse
Affiliation(s)
- Roy Kalfon
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tom Friedman
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Cardiac Surgery Department, Rambam Health Care Campus, Haifa, Israel
| | - Shir Eliachar
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rona Shofti
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Tali Haas
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Lilach Koren
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jacob D. Moskovitz
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tsonwin Hai
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio United States of America
| | - Ami Aronheim
- Department of Cell Biology and Cancer Science, The B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
13
|
Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N. Protective role of heat shock transcription factor 1 in heart failure: A diagnostic approach. J Cell Physiol 2018; 234:7764-7770. [DOI: 10.1002/jcp.27639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology Faculty of Medicine, Semnan University of Medical Sciences Semnan Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
14
|
Xu H, Liu X, Jia Y, Dong F, Xu J, Wu X, Yang Y, Zheng Y. Fipronil-induced toxic effects in zebrafish (Danio rerio) larvae by using digital gene expression profiling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:550-559. [PMID: 29800848 DOI: 10.1016/j.scitotenv.2018.05.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 05/07/2023]
Abstract
Fipronil residue has caused widespread concern around the world, especially after the recent "toxic eggs" event in seven European countries. To evaluate the effects of fipronil on vertebrates, zebrafish larvae were used as an animal model to examine the lethal effect, developmental phenotypes at high doses, and possible mechanisms of toxicity by employing digital gene expression (DGE) profiling at environmentally relevant doses. The results of acute toxicity test indicated that treatment with fipronil from 75 h post-fertilization (hpf) led to the death of larvae with a 96-h LC50 value of 459 μg/L, as well as abnormal development including bent spine and shortened body length. Besides, we obtained high-quality-sequencing DGE profilings at fipronil concentrations of 0.5, 5, and 50 μg/L, respectively. The results revealed that 44 differentially expressed genes, 10 GO terms, and 3 KEGG pathways were overlapped among the three concentrations. MIDN, one of the 44 differentially expressed genes, showed dose-dependent responses at the transcriptional level, indicating that it was possibly a potential biomarker to reflect fipronil toxicity in zebrafish. Furthermore, we presumed that the changing transcriptional level of AP-1 family was possibly a reason for bent spine and shortened body length in larvae exposed to fipronil. Concurrently, altered abundance of transcripts of the ELOVL family in a key step of fatty acid elongation could possibly lead to the accumulation of long-chain fatty acids. Collectively, our results suggested that exposure to fipronil caused lethal and developmental toxicity in zebrafish larvae, and demonstrated the need for a comprehensive understanding of the potential mechanisms of fipronil toxicity due to fipronil's frequent presence in the environment and its potential threat to human health.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
15
|
Wang XH, Liu Q, Shao ZT. Deletion of JDP2 improves neurological outcomes of traumatic brain injury (TBI) in mice: Inactivation of Caspase-3. Biochem Biophys Res Commun 2018; 504:805-811. [DOI: 10.1016/j.bbrc.2018.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
|
16
|
Chen B, Li Z, Feng Y, Wu X, Xu Y. Myocardin-related transcription factor A (MRTF-A) mediates doxorubicin-induced PERP transcription in colon cancer cells. Biochem Biophys Res Commun 2018; 503:1732-1739. [DOI: 10.1016/j.bbrc.2018.07.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
|
17
|
Heger J, Bornbaum J, Würfel A, Hill C, Brockmann N, Gáspár R, Pálóczi J, Varga ZV, Sárközy M, Bencsik P, Csont T, Török S, Kojonazarov B, Schermuly RT, Böngler K, Parahuleva M, Ferdinandy P, Schulz R, Euler G. JDP2 overexpression provokes cardiac dysfunction in mice. Sci Rep 2018; 8:7647. [PMID: 29769710 PMCID: PMC5955919 DOI: 10.1038/s41598-018-26052-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 01/19/2023] Open
Abstract
The transcriptional regulator JDP2 (Jun dimerization protein 2) has been identified as a prognostic marker for patients to develop heart failure after myocardial infarction. We now performed in vivo studies on JDP2-overexpressing mice, to clarify the impact of JDP2 on heart failure progression. Therefore, during birth up to the age of 4 weeks cardiac-specific JDP2 overexpression was prevented by doxycycline feeding in transgenic mice. Then, JDP2 overexpression was started. Already after 1 week, cardiac function, determined by echocardiography, decreased which was also resembled on the cardiomyocyte level. After 5 weeks blood pressure declined, ejection fraction and cardiac output was reduced and left ventricular dilatation developed. Heart weight/body weight, and mRNA expression of ANP, inflammatory marker genes, collagen and fibronectin increased. Collagen 1 protein expression increased, and fibrosis developed. As an additional sign of elevated extracellular matrix remodeling, matrix metalloproteinase 2 activity increased in JDP2 mice. Thus, JDP2 overexpression is deleterious to heart function in vivo. It can be concluded that JDP2 overexpression provokes cardiac dysfunction in adult mice that is accompanied by hypertrophy and fibrosis. Thus, induction of JDP2 is a maladaptive response contributing to heart failure development.
Collapse
Affiliation(s)
- Jacqueline Heger
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Julia Bornbaum
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Alona Würfel
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Christian Hill
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Nils Brockmann
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Renáta Gáspár
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - János Pálóczi
- Department of Biochemistry, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Márta Sárközy
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Péter Bencsik
- Department of Biochemistry, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Szilvia Török
- Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kerstin Böngler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Mariana Parahuleva
- Internal Medicine/Cardiology and Angiology, University Hospital of Giessen and Marburg, Location Marburg, Marburg, Germany
| | - Peter Ferdinandy
- Department of Biochemistry, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
18
|
Guo X, Hu S, Chen J, Jiang H. JDP2: A novel therapeutic thought in cardiac remodeling. Int J Cardiol 2018; 257:229. [PMID: 29397205 DOI: 10.1016/j.ijcard.2017.09.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
19
|
miR-139-5p inhibits isoproterenol-induced cardiac hypertrophy by targetting c-Jun. Biosci Rep 2018; 38:BSR20171430. [PMID: 29440459 PMCID: PMC5843750 DOI: 10.1042/bsr20171430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 12/23/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a serious monogenic disease characterized by cardiac hypertrophy, fibrosis, sudden cardiac death, and heart failure. Previously, we identified that miR-139-5p was down-regulated in HCM patients. However, the regulatory effects of miR-139-5p remain unclear. Thus, we investigated the role of miR-139-5p in the regulation of cardiac hypertrophy. The expression of miR-139-5p in left ventricular tissues in HCM patients and mice subjected to transverse aortic constriction (TAC) was significantly down-regulated. Knockdown of miR-139-5p expression in neonatal rat cardiomyocytes (NRCMs) induced cardiomyocyte enlargement and increased atrial natriuretic polypeptide (ANP) expression. Overexpression of miR-139-5p antagonized isoproterenol (ISO)-induced cardiomyocyte enlargement and ANP/brain natriuretic peptide (BNP) up-regulation. More importantly, we found that c-Jun expression was inhibited by miR-139-5p in NRCMs. Knockdown of c-Jun expression significantly attenuated cardiac hypertrophy induced by miR-139-5p deprivation. Our data indicated that miR-139-5p was down-regulated in the hearts of HCM patients and that it inhibited cardiac hypertrophy by targetting c-Jun expression.
Collapse
|
20
|
Fan D, Yang Z, Liu FY, Tang N, Deng W, Tang QZ. A potential therapeutic approach to cardiac remodeling: JDP2. Int J Cardiol 2018; 254:283. [PMID: 29407109 DOI: 10.1016/j.ijcard.2017.10.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
21
|
Pan L, Sheng M, Huang Z, Zhu Z, Xu C, Teng L, He L, Gu C, Yi C, Li J. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis. PLoS One 2017; 12:e0186635. [PMID: 29065170 PMCID: PMC5655480 DOI: 10.1371/journal.pone.0186635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
Background This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418) on cardiac hypertrophy caused by aortic banding (AB), phenylephrine (PE) or angiotensin II (Ang II) in vivo and in vitro. Methods The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting. Results ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG) mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro. Conclusion ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.
Collapse
Affiliation(s)
- Liming Pan
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Mengting Sheng
- Department of Intensive Care Unit(ICU), the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Zirui Huang
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Zhilin Zhu
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Chunli Xu
- Department of Inspection office, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Lin Teng
- Department of Cardiology, the First College of Clinical Medical Sciences of Three Gorges University/ Central People's Hospital of Yichang, Yichang, China
| | - Ling He
- Department of Geriatrics, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Chen Gu
- Department of B ultrasound room, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
| | - Cai Yi
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, China
| | - Junming Li
- Department of Cardiology, the People’s Hospital of Three Gorges University/the First People’s Hospital of Yichang, Yichang, China
- * E-mail:
| |
Collapse
|
22
|
LIU JJ, LU Y, PING NN, LI X, LIN YX, LI CF. Apocynin Ameliorates Pressure Overload-Induced Cardiac Remodeling by Inhibiting Oxidative Stress and Apoptosis. Physiol Res 2017; 66:741-752. [DOI: 10.33549/physiolres.933257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays an important role in pressure overload-induced cardiac remodeling. The purpose of this study was to determine whether apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, attenuates pressure overload-induced cardiac remodeling in rats. After abdominal aorta constriction, the surviving rats were randomly divided into four groups: sham group, abdominal aorta constriction group, apocynin group, captopril group. Left ventricular pathological changes were studied using Masson’s trichrome staining. Metalloproteinase-2 (MMP-2) levels in the left ventricle were analyzed by western blot and gelatin zymography. Oxidative stress and apoptotic index were also examined in cardiomyocytes using dihydroethidium and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), respectively. Our results showed that abdominal aorta constriction significantly caused excess collagen deposition and cardiac insult. Treatment with apocynin significantly inhibited deposition of collagen and reduced the level of MMP-2. Furthermore, apocynin also decreased the NADPH oxidase activity, reactive oxygen species production and cardiomyocyte apoptotic index. Interestingly, apocynin only inhibited NADPH oxidase activity without affecting its expression or the level of angiotension II in the left ventricle. In conclusion, apocynin reduced collagen deposition, oxidative stress, and inhibited apoptosis, ultimately ameliorating cardiac remodeling by mechanisms that are independent of the renin-angiotensin system.
Collapse
Affiliation(s)
| | | | | | | | | | - C.-F. LI
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China
| |
Collapse
|
23
|
c-Jun dimerization protein 2 (JDP2) deficiency promotes cardiac hypertrophy and dysfunction in response to pressure overload. Int J Cardiol 2017; 249:357-363. [PMID: 28893429 DOI: 10.1016/j.ijcard.2017.08.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 02/02/2023]
|
24
|
Nielsen N, Kondratska K, Ruck T, Hild B, Kovalenko I, Schimmelpfennig S, Welzig J, Sargin S, Lindemann O, Christian S, Meuth SG, Prevarskaya N, Schwab A. TRPC6 channels modulate the response of pancreatic stellate cells to hypoxia. Pflugers Arch 2017; 469:1567-1577. [PMID: 28849300 DOI: 10.1007/s00424-017-2057-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6-/- mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6-/- PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6-/- PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.
Collapse
Affiliation(s)
- Nikolaj Nielsen
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Tobias Ruck
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Benedikt Hild
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Ilya Kovalenko
- Bayer-Pharma AG, Müllerstr. 178, 13353, Berlin, Germany.,Cancer Center, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48104, USA
| | - Sandra Schimmelpfennig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Jana Welzig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Sarah Sargin
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Otto Lindemann
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | | | - Sven G Meuth
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| |
Collapse
|
25
|
Yu CJ, Liang C, Li YX, Hu QQ, Zheng WW, Niu N, Yang X, Wang ZR, Yu XD, Zhang BL, Song BL, Zhang ZR. ZNF307 (Zinc Finger Protein 307) Acts as a Negative Regulator of Pressure Overload–Induced Cardiac Hypertrophy. Hypertension 2017; 69:615-624. [DOI: 10.1161/hypertensionaha.116.08500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/05/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022]
Abstract
Pathological cardiac hypertrophy is a key risk factor for heart failure. We found that the protein expression levels of the ZNF307 (zinc finger protein 307) were significantly increased in heart samples from both human patients with dilated cardiomyopathy and mice subjected to aortic banding. Therefore, we aimed to elucidate the role of ZNF307 in the development of cardiac hypertrophy and to explore the signal transduction events that mediate the effect of ZNF307 on cardiac hypertrophy, using cardiac-specific ZNF307 transgenic (ZNF307-TG) mice and ZNF307 global knockout (ZNF307-KO) mice. The results showed that the deletion of ZNF307 potentiated aortic banding–induced pathological cardiac hypertrophy, fibrosis, and cardiac dysfunction; however, the aortic banding–induced cardiac hypertrophic phenotype was dramatically diminished by ZNF307 overexpression in mouse heart. Mechanistically, the antihypertrophic effects mediated by ZNF307 in response to pathological stimuli were associated with the direct inactivation of NF-κB (nuclear factor-κB) signaling and blockade of the nuclear translocation of NF-κB subunit p65. Furthermore, the overexpression of a degradation-resistant mutant of IκBα (IκBα
S32A/S36A
) reversed the exacerbation of cardiac hypertrophy, fibrosis, and dysfunction shown in aortic banding–treated ZNF307-KO mice. In conclusion, our findings demonstrate that ZNF307 ameliorates pressure overload–induced cardiac hypertrophy by inhibiting the activity of NF-κB–signaling pathway.
Collapse
Affiliation(s)
- Chang-Jiang Yu
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Chen Liang
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Yu-Xia Li
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Qing-Qing Hu
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Wei-Wan Zheng
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Na Niu
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Xu Yang
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Zi-Rui Wang
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Xiao-Di Yu
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Bao-Long Zhang
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Bin-Lin Song
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| | - Zhi-Ren Zhang
- From the Institute of Metabolic Disease, Department of Cardiology (X.-D.Y., B.-L.Z., Z.-R.Z.), and Department of Clinical Pharmacy (C.-J.Y., C.L., Y.-X.L, Q.-Q.H., W.-W.Z., N.N., X.Y., Z.-R.W., B.-L.S., Z.-R.Z.), Harbin Medical University Cancer Hospital, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, P. R. China
| |
Collapse
|
26
|
Kumar S, Jahangir Alam M, Prabhakar P, Ahmad S, Maulik SK, Sharma M, Goswami SK. Proteomic analysis of the protective effects of aqueous bark extract of Terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:98-108. [PMID: 28063919 DOI: 10.1016/j.jep.2016.12.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 12/12/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aqueous bark extract of Terminalia arjuna (TA) has been in use as an ethnomedicine for cardiovascular ailments in the Indian subcontinent for centuries. Studies using hemodynamic, ROS scavenging and anti-inflammatory parameters in animal models have shown its anti-atherogenic, hypotensive, inotropic, anti-inflammatory effects. However, details analysis on its effects on established molecular and cell biological markers are a prerequisite for its wider acceptance to the medical community. AIMS OF THE STUDY To test the efficacy of TA extract in ameliorating cardiac hypertrophy induced by ISO in rats. METHODS Cardiac hypertrophy was induced by ISO (5mg/kg/day s.c. for 14 days) in rats and a standardized aqueous extract of TA stem bark was orally administered by gavage. Total RNA and protein were isolated from control, ISO, ISO plus TA and TA treated rat hearts and analyzed for the transcripts for the markers of hypertrophy, signaling kinases, transcription factors and total protein profile. RESULTS TA extract reversed the induction of fetal genes like β-myosin heavy chain, skeletal α-actin and brain natriuretic peptide in hypertrophic rat hearts. While ISO slightly increased the level of phospho-ERK, TA repressed it to about one third of the base line level. Survival kinase Akt, ER stress marker Grp78 and epigenetic regulator HDAC5 were augmented by ISO and TA restored them by various extents. ISO administration moderately increased the transcription factor NFκB binding activity, while coadministration of TA further increased it. AP-1 binding activity was largely unchanged by ISO treatment but it was upregulated when administered along with TA. MEF2D binding activity was increased by ISO and TA restored it to the baseline level. Global proteomic analysis revealed that TA treatment restored a subset of proteins up- and down-regulated in the hypertrophied hearts. Amongst those restored by TA were purinergic receptor X, myosin light chain 3, tropomyosin, and kininogen; suggesting a nodal role of TA in modulating cardiac function. CONCLUSIONS This study for the first time reveals that TA partially or completely restores the marker mRNAs, signaling kinases, transcription factors and total protein profile in rat heart, thereby demonstrating its efficacy in preventing ISO-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Santosh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| | - Md Jahangir Alam
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| | - Pankaj Prabhakar
- Department of Pharmacology, All India Institute of Medical Sciences (A.I.I.M.S.), Ansari Nagar, 110029, New Delhi, India.
| | - Sayeed Ahmad
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| | - Subir K Maulik
- Department of Pharmacology, All India Institute of Medical Sciences (A.I.I.M.S.), Ansari Nagar, 110029, New Delhi, India.
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India.
| |
Collapse
|
27
|
Koneva LA, Vyas AK, McEachin RC, Puttabyatappa M, H-S W, Sartor MA, Padmanabhan V. Developmental programming: Interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:4-18. [PMID: 28079927 PMCID: PMC5730970 DOI: 10.1002/em.22071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 05/23/2023]
Abstract
Epidemiologic studies and studies in rodents point to potential risks from developmental exposure to BPA on cardiometabolic diseases. Furthermore, it is becoming increasingly evident that the manifestation and severity of adverse outcomes is the result of interaction between developmental insults and the prevailing environment. Consistent with this premise, recent studies in sheep found prenatal BPA treatment prevented the adverse effects of postnatal obesity in inducing hypertension. The gene networks underlying these complex interactions are not known. mRNA-seq of myocardium was performed on four groups of four female sheep to assess the effects of prenatal BPA exposure, postnatal overfeeding and their interaction on gene transcription, pathway perturbations and functional effects. The effects of prenatal exposure to BPA, postnatal overfeeding, and prenatal BPA with postnatal overfeeding all resulted in transcriptional changes (85-141 significant differentially expressed genes). Although the effects of prenatal BPA and postnatal overfeeding did not involve dysregulation of many of the same genes, they affected a remarkably similar set of biological pathways. Furthermore, an additive or synergistic effect was not found in the combined treatment group, but rather prenatal BPA treatment led to a partial reversal of the effects of overfeeding alone. Many genes previously known to be affected by BPA and involved in obesity, hypertension, or heart disease were altered following these treatments, and AP-1, EGR1, and EGFR were key hubs affected by BPA and/or overfeeding. Environ. Mol. Mutagen. 58:4-18, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LA Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - AK Vyas
- Department of Pediatrics, Texas Tech Health Sciences Permian Basin, Odessa, TX
| | - RC McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - M Puttabyatappa
- Department of Pediatrics, University of Michigan, Ann Arbor MI
| | - Wang H-S
- Department of Environmental Health, University of Cincinnati, Cincinnati OH
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati OH
| | - MA Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor MI
| |
Collapse
|
28
|
Voelkl J, Alesutan I, Primessnig U, Feger M, Mia S, Jungmann A, Castor T, Viereck R, Stöckigt F, Borst O, Gawaz M, Schrickel JW, Metzler B, Katus HA, Müller OJ, Pieske B, Heinzel FR, Lang F. AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes. J Mol Cell Cardiol 2016; 97:36-43. [PMID: 27106803 DOI: 10.1016/j.yjmcc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Uwe Primessnig
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martina Feger
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Sobuj Mia
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Tatsiana Castor
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Robert Viereck
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Florian Stöckigt
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Oliver Borst
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Jan Wilko Schrickel
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Bernhard Metzler
- Department of Medicine - Cardiology, Medical University Innsbruck, Anichstr.35, 6020 Innsbruck, Austria
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiology, University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Frank R Heinzel
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Lang
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
29
|
Tsai MH, Wuputra K, Lin YC, Lin CS, Yokoyama KK. Multiple functions of the histone chaperone Jun dimerization protein 2. Gene 2016; 590:193-200. [PMID: 27041241 DOI: 10.1016/j.gene.2016.03.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/12/2016] [Accepted: 03/22/2016] [Indexed: 11/25/2022]
Abstract
The Jun dimerization protein 2 (JDP2) is part of the family of stress-responsible transcription factors such as the activation protein-1, and binds the 12-O-tetradecanoylphorbol-13-acetateresponse element and the cAMP response element. It also plays a role as a histone chaperone and participates in diverse processes, such as cell-cycle arrest, cell differentiation, apoptosis, senescence, and metastatic spread, and functions as an oncogene and anti-oncogene, and as a cellular reprogramming factor. However, the molecular mechanisms underlying these multiple functions of JDP2 have not been clarified. This review summarizes the structure and function of JDP2, highlighting the specific role of JDP2 in cellular-stress regulation and prevention.
Collapse
Affiliation(s)
- Ming-Ho Tsai
- Graduated Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenly Wuputra
- Graduated Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Shen Lin
- Graduated Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduated Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Faculty of Science and Engineering, Tokushima Bunri University, Sanuki, Japan; Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Heger J, Schulz R, Euler G. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure. Br J Pharmacol 2015; 173:3-14. [PMID: 26431212 DOI: 10.1111/bph.13344] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/23/2015] [Accepted: 09/29/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiac hypertrophy is a mechanism to compensate for increased cardiac work load, that is, after myocardial infarction or upon pressure overload. However, in the long run cardiac hypertrophy is a prevailing risk factor for the development of heart failure. During pathological remodelling processes leading to heart failure, decompensated hypertrophy, death of cardiomyocytes by apoptosis or necroptosis and fibrosis as well as a progressive dysfunction of cardiomyocytes are apparent. Interestingly, the induction of hypertrophy, cell death or fibrosis is mediated by similar signalling pathways. Therefore, tiny changes in the signalling cascade are able to switch physiological cardiac remodelling to the development of heart failure. In the present review, we will describe examples of these molecular switches that change compensated hypertrophy to the development of heart failure and will focus on the importance of the signalling cascades of the TGFβ superfamily in this process. In this context, potential therapeutic targets for pharmacological interventions that could attenuate the progression of heart failure will be discussed.
Collapse
Affiliation(s)
- J Heger
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - R Schulz
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| | - G Euler
- Institute of Physiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
31
|
Sun T, Tang G, Tian H, Hu K, Yao S, Su Y, Wang C. Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe [18F]FP-DPAZn2. Oncotarget 2015; 6:30579-91. [PMID: 26416423 PMCID: PMC4741553 DOI: 10.18632/oncotarget.5769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 09/12/2015] [Indexed: 01/13/2023] Open
Abstract
Cardiomyocyte apoptosis plays a causal role in the development and progression of heart failure. Currently, there is no effective imaging agent that can be used to detect cardiomyocyte apoptosis in vivo. To target phosphatidylserine (PS) on the surface of the dying cell, we synthesized a novel 18F-labeled Zn2+-dipicolylamine (DPA) analog, [18F]FP-DPAZn2, and evaluated it for noninvasive imaging of cardiomyocyte apoptosis. In vitro, the fluorescence imaging of dansyl-DPAZn2 was suitable for detecting cardiomyocyte apoptosis, which was confirmed by confocal immunofluorescence imaging, terminal dUTP nick-end labeling (TUNEL) assay, and western blot assay. The in vivo biodistribution showed that the uptake ratios of [18F]FP-DPAZn2 in the heart were 4.41±0.29% ID/g at 5 min, 2.40 ± 0.43% ID/g at 30 min, 1.63 ± 0.26% ID/g at 60 min, and 1.43% ± 0.07 ID/g at 120 min post-injection. In vivo, the [18F]FP-DPAZn2 PET images showed more cardiac accumulation of radioactivity 60 min post-injection in acute myocardial infarction (AMI) rats than in normal rats, which was consistent with the findings of a histological analysis of the rat cardiac tissues in vitro. [18F]FP-DPAZn2 PET imaging has the capability for myocardial apoptosis detection, but the method will require improved myocardial uptake for the noninvasive evaluation of cardiomyocyte apoptosis in clinical settings.
Collapse
Affiliation(s)
- Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Ganghua Tang
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute and Cancer Institute of Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kongzhen Hu
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shaobo Yao
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yifan Su
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
32
|
Cheng WP, Wang BW, Lo HM, Shyu KG. Mechanical Stretch Induces Apoptosis Regulator TRB3 in Cultured Cardiomyocytes and Volume-Overloaded Heart. PLoS One 2015; 10:e0123235. [PMID: 25898323 PMCID: PMC4405267 DOI: 10.1371/journal.pone.0123235] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
The expression of TRB3 (tribbles 3), an apoptosis regulated gene, increases during endoplasmic reticulum (ER) stress. How mechanical stress affects the regulation of TRB3 in cardiomyocytes during apoptosis is not fully understood. An in vivo model of aorta-caval shunt in adult rats demonstrated the increased TRB3 protein expression in the myocardium. The tumor necrosis factor-alpha (TNF-α) antagonist etanercept reversed the TRB3 protein expression and cardiomyocyte apoptosis induced by AV shunt. An in vitro model of cyclic stretch in neonatal rats was also used to investigate TRB3 expression. We hypothesized that cardiomyocyte apoptosis induced by cyclic stretch is TRB3 dependent. Neonatal rat cardiomyocytes grown on a flexible membrane base were stretched by vacuum to 20% of maximum elongation, at 60 cycles/min. Cyclic stretch significantly increased TRB3 protein and mRNA expression. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, TNF-α antibody and etanercept 30 min before stretch reversed the induction of TRB3 protein induced by stretch. Cyclic stretch induced the DNA-binding activity of growth arrest and DNA damaged inducible gene-153 (GADD153) by electrophoretic mobility shift assay. SP600125, JNK siRNA, TNF-α antibody and etanercept abolished the binding activity induced by stretch. TRB3 promoter activity was enhanced by stretch and TRB3-mut plasmid, SP600125, TNF-α antibody and etanercept attenuated TRB3 promoter activity induced by stretch. Exogenous administration of TNF-α recombinant protein to the non-stretched cardiomyocytes increased TRB3 protein expression similar to that seen after stretch. Cyclic stretch induced cardiomyocyte apoptosis is inhibited by TRB3 siRNA and etanercept. The stretch-induced TRB3 is mediated by TNF-α、JNK and GADD153 pathway. These results indicate that TRB3 plays an important role in stretch-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Wen-Pin Cheng
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Bao-Wei Wang
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Huey-Ming Lo
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD, Tucker HO. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 2015; 10:e0121765. [PMID: 25803368 PMCID: PMC4372598 DOI: 10.1371/journal.pone.0121765] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense—a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.
Collapse
Affiliation(s)
- Tara L. Rasmussen
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chong Yon Park
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - June Harriss
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Stephanie A. Pierce
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Joseph D. Dekker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - M. David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail: (MDS); (HT)
| | - Haley O. Tucker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
- * E-mail: (MDS); (HT)
| |
Collapse
|
34
|
Maciejak A, Kiliszek M, Michalak M, Tulacz D, Opolski G, Matlak K, Dobrzycki S, Segiet A, Gora M, Burzynska B. Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure. Genome Med 2015; 7:26. [PMID: 25984239 PMCID: PMC4432772 DOI: 10.1186/s13073-015-0149-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/02/2015] [Indexed: 12/16/2022] Open
Abstract
Background Heart failure (HF) is the most common cause of morbidity and mortality in developed countries. Here, we identify biologically relevant transcripts that are significantly altered in the early phase of myocardial infarction and are associated with the development of post-myocardial infarction HF. Methods We collected peripheral blood samples from patients with ST-segment elevation myocardial infarction (STEMI): n = 111 and n = 41 patients from the study and validation groups, respectively. Control groups comprised patients with a stable coronary artery disease and without a history of myocardial infarction. Based on plasma NT-proBNP level and left ventricular ejection fraction parameters the STEMI patients were divided into HF and non-HF groups. Microarrays were used to analyze mRNA levels in peripheral blood mononuclear cells (PBMCs) isolated from the study group at four time points and control group. Microarray results were validated by RT-qPCR using whole blood RNA from the validation group. Results Samples from the first three time points (admission, discharge, and 1 month after AMI) were compared with the samples from the same patients collected 6 months after AMI (stable phase) and with the control group. The greatest differences in transcriptional profiles were observed on admission and they gradually stabilized during the follow-up. We have also identified a set of genes the expression of which on the first day of STEMI differed significantly between patients who developed HF after 6 months of observation and those who did not. RNASE1, FMN1, and JDP2 were selected for further analysis and their early up-regulation was confirmed in HF patients from both the study and validation groups. Significant correlations were found between expression levels of these biomarkers and clinical parameters. The receiver operating characteristic (ROC) curves indicated a good prognostic value of the genes chosen. Conclusions This study demonstrates an altered gene expression profile in PBMCs during acute myocardial infarction and through the follow-up. The identified gene expression changes at the early phase of STEMI that differentiated the patients who developed HF from those who did not could serve as a convenient tool contributing to the prognosis of heart failure. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0149-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agata Maciejak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kiliszek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland ; Department of Cardiology and Internal Diseases, Military Institute of Medicine, Warsaw, Poland
| | - Marcin Michalak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Tulacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Matlak
- Department of Cardiac Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Slawomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Segiet
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland ; 1st Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Monika Gora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Burzynska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Pyridostigmine ameliorates cardiac remodeling induced by myocardial infarction via inhibition of the transforming growth factor-β1/TGF-β1-activated kinase pathway. J Cardiovasc Pharmacol 2014; 63:412-20. [PMID: 24805145 DOI: 10.1097/fjc.0000000000000062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Autonomic imbalance characterized by sympathetic predominance coinciding with diminished vagal activity is an independent risk factor in cardiovascular diseases. Several studies show that vagus nerve stimulation exerted beneficial effects on cardiac function and survival. In this study, we investigated the vagomimetic effect of pyridostigmine on left ventricular (LV) remodeling in rats after myocardial infarction. After myocardial infarction, surviving rats were treated with or without pyridostigmine (31 mg·kg⁻¹·d⁻¹) for 2 weeks, and hemodynamic parameters were measured. LV tissue was used to assess infarct size and interstitial fibrosis by Masson's trichrome and 0.1% picrosirius red staining. Protein expression of heart tissues was used to assess the efficacy of the treatment. Pyridostigmine markedly reduced myocardial infarct size and improved cardiac diastolic function. These improvements were accompanied with a significant decrease in matrix metalloproteinase-2 expression and collagen deposition. Additionally, pyridostigmine inhibited both transforming growth factor-β1 (TGF-β1) and TGF-β1-activated kinase expression in hearts postmyocardial infarction. Thus, pyridostigmine reduces collagen deposition, attenuates cardiac fibrosis, and improves LV diastolic function after myocardial infarction via TGF-β1/TGF-β1-activated kinase pathway inhibition.
Collapse
|
36
|
Ribeiro AS, Zaleta-Rivera K, Ashley EA, Pruitt BL. Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15516-26. [PMID: 25133578 PMCID: PMC4160263 DOI: 10.1021/am5042324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The mechanical output of contracting cardiomyocytes, the muscle cells of the heart, relates to healthy and disease states of the heart. Culturing cardiomyocytes on arrays of elastomeric microposts can enable inexpensive and high-throughput studies of heart disease at the single-cell level. However, cardiomyocytes weakly adhere to these microposts, which limits the possibility of using biomechanical assays of single cardiomyocytes to study heart disease. We hypothesized that a stable covalent attachment of laminin to the surface of microposts improves cardiomyocyte contractility. We cultured cells on polydimethylsiloxane microposts with laminin covalently bonded with the organosilanes 3-glycidoxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane with glutaraldehyde. We measured displacement of microposts induced by the contractility of mouse neonatal cardiomyocytes, which attach better than mature cardiomyocytes to substrates. We observed time-dependent changes in contractile parameters such as micropost deformation, contractility rates, contraction and relaxation speeds, and the times of contractions. These parameters were affected by the density of laminin on microposts and by the stability of laminin binding to micropost surfaces. Organosilane-mediated binding resulted in higher laminin surface density and laminin binding stability. 3-glycidoxypropyltrimethoxysilane provided the highest laminin density but did not provide stable protein binding with time. Higher surface protein binding stability and strength were observed with 3-aminopropyltriethoxysilane with glutaraldehyde. In cultured cardiomyocytes, contractility rate, contraction speeds, and contraction time increased with higher laminin stability. Given these variations in contractile function, we conclude that binding of laminin to microposts via 3-aminopropyltriethoxysilane with glutaraldehyde improves contractility observed by an increase in beating rate and contraction speed as it occurs during the postnatal maturation of cardiomyocytes. This approach is promising for future studies to mimic in vivo tissue environments.
Collapse
Affiliation(s)
- Alexandre
J. S. Ribeiro
- Department of Mechanical Engineering and Stanford Cardiovascular Institute, Stanford University, Stanford, California United
States
| | - Kathia Zaleta-Rivera
- Department of Mechanical Engineering and Stanford Cardiovascular Institute, Stanford University, Stanford, California United
States
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California United States
| | - Euan A. Ashley
- Department of Mechanical Engineering and Stanford Cardiovascular Institute, Stanford University, Stanford, California United
States
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California United States
| | - Beth L. Pruitt
- Department of Mechanical Engineering and Stanford Cardiovascular Institute, Stanford University, Stanford, California United
States
- E-mail: . Fax: +1 650 725 1587. Phone: +1 650 723 2300
| |
Collapse
|