1
|
Rademakers T, Manca M, Jin H, Orban T, Perisic LM, Frissen HJM, Rühle F, Hautvast P, van Rijssel J, van Kuijk K, Mees BME, Peutz-Kootstra CJ, Heeneman S, Daemen MJAP, Pasterkamp G, Stoll M, van Zandvoort MAMJ, Hedin U, Dequiedt F, van Buul JD, Sluimer JC, Biessen EAL. Human atherosclerotic plaque transcriptomics reveals endothelial beta-2 spectrin as a potential regulator a leaky plaque microvasculature phenotype. Angiogenesis 2024; 27:461-474. [PMID: 38780883 PMCID: PMC11303431 DOI: 10.1007/s10456-024-09921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
The presence of atherosclerotic plaque vessels is a critical factor in plaque destabilization. This may be attributable to the leaky phenotype of these microvessels, although direct proof for this notion is lacking. In this study, we investigated molecular and cellular patterns of stable and hemorrhaged human plaque to identify novel drivers of intraplaque vessel dysfunction. From transcriptome data of a human atherosclerotic lesion cohort, we reconstructed a co-expression network, identifying a gene module strongly and selectively correlated with both plaque microvascular density and inflammation. Spectrin Beta Non-Erythrocytic 1 (sptbn1) was identified as one of the central hubs of this module (along with zeb1 and dock1) and was selected for further study based on its predominant endothelial expression. Silencing of sptbn1 enhanced leukocyte transmigration and vascular permeability in vitro, characterized by an increased number of focal adhesions and reduced junctional VE-cadherin. In vivo, sptbn1 knockdown in zebrafish impaired the development of the caudal vein plexus. Mechanistically, increased substrate stiffness was associated with sptbn1 downregulation in endothelial cells in vitro and in human vessels. Plaque SPTBN1 mRNA and protein expression were found to correlate with an enhanced presence of intraplaque hemorrhage and future cardiovascular disease (CVD) events during follow-up. In conclusion, we identify SPTBN1 as a central hub gene in a gene program correlating with plaque vascularisation. SPTBN1 was regulated by substrate stiffness in vitro while silencing blocked vascular development in vivo, and compromised barrier function in vitro. Together, SPTBN1 is identified as a new potential regulator of the leaky phenotype of atherosclerotic plaque microvessels.
Collapse
Affiliation(s)
- Timo Rademakers
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Marco Manca
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Han Jin
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Tanguy Orban
- Laboratory of Protein Signaling and Interactions, GIGA, Liège Université, Liège, Belgium
| | - Ljubica Matic Perisic
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Hubertus J M Frissen
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Frank Rühle
- Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Petra Hautvast
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jos van Rijssel
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Kim van Kuijk
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Barend M E Mees
- Department of Vascular Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carine J Peutz-Kootstra
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Sylvia Heeneman
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Monika Stoll
- Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
- Maastricht Center for Systems Biology (MaCSBio, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Marc A M J van Zandvoort
- Department of Molecular Cell Biology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| | - Franck Dequiedt
- Laboratory of Protein Signaling and Interactions, GIGA, Liège Université, Liège, Belgium
| | - Jaap D van Buul
- Department of Plasma Proteins, Laboratory for Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Judith C Sluimer
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Department for Renal and Hypertensive, Rheumatological and Immunological Diseases (Medical Clinic II), RWTH Aachen, Aachen, Germany
| | - Erik A L Biessen
- Department of Pathology, Experimental Vascular Pathology Group, Maastricht University, PO box 5800, 6202 AZ, Maastricht, The Netherlands.
- Institute for Molecular Cardiovascular Research, RWTH Aachen, Aachen, Germany.
| |
Collapse
|
2
|
Sert O, Ding X, Zhang C, Mi R, Hoke A, Rasband MN. Postsynaptic β1 spectrin maintains Na + channels at the neuromuscular junction. J Physiol 2024; 602:1127-1145. [PMID: 38441922 PMCID: PMC10942750 DOI: 10.1113/jp285894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/16/2024] Open
Abstract
Spectrins function together with actin as obligatory subunits of the submembranous cytoskeleton. Spectrins maintain cell shape, resist mechanical forces, and stabilize ion channel and transporter protein complexes through binding to scaffolding proteins. Recently, pathogenic variants of SPTBN4 (β4 spectrin) were reported to cause both neuropathy and myopathy. Although the role of β4 spectrin in neurons is mostly understood, its function in skeletal muscle, another excitable tissue subject to large forces, is unknown. Here, using a muscle specific β4 spectrin conditional knockout mouse, we show that β4 spectrin does not contribute to muscle function. In addition, we show β4 spectrin is not present in muscle, indicating the previously reported myopathy associated with pathogenic SPTBN4 variants is neurogenic in origin. More broadly, we show that α2, β1 and β2 spectrins are found in skeletal muscle, with α2 and β1 spectrins being enriched at the postsynaptic neuromuscular junction (NMJ). Surprisingly, using muscle specific conditional knockout mice, we show that loss of α2 and β2 spectrins had no effect on muscle health, function or the enrichment of β1 spectrin at the NMJ. Muscle specific deletion of β1 spectrin also had no effect on muscle health, but, with increasing age, resulted in the loss of clustered NMJ Na+ channels. Together, our results suggest that muscle β1 spectrin functions independently of an associated α spectrin to maintain Na+ channel clustering at the postsynaptic NMJ. Furthermore, despite repeated exposure to strong forces and in contrast to neurons, muscles do not require spectrin cytoskeletons to maintain cell shape or integrity. KEY POINTS: The myopathy found in pathogenic human SPTBN4 variants (where SPTBN4 is the gene encoding β4 spectrin) is neurogenic in origin. β1 spectrin plays essential roles in maintaining the density of neuromuscular junction Nav1.4 Na+ channels. By contrast to the canonical view of spectrin organization and function, we show that β1 spectrin can function independently of an associated α spectrin. Despite the large mechanical forces experienced by muscle, we show that spectrins are not required for muscle cell integrity. This is in stark contrast to red blood cells and the axons of neurons.
Collapse
Affiliation(s)
- Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Ruifa Mi
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| |
Collapse
|
3
|
Iske J, Roesel MJ, Cesarovic N, Pitts L, Steiner A, Knoedler L, Nazari-Shafti TZ, Akansel S, Jacobs S, Falk V, Kempfert J, Kofler M. The Potential of Intertwining Gene Diagnostics and Surgery for Mitral Valve Prolapse. J Clin Med 2023; 12:7441. [PMID: 38068501 PMCID: PMC10707074 DOI: 10.3390/jcm12237441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/13/2024] Open
Abstract
Mitral valve prolapse (MVP) is common among heart valve disease patients, causing severe mitral regurgitation (MR). Although complications such as cardiac arrhythmias and sudden cardiac death are rare, the high prevalence of the condition leads to a significant number of such events. Through next-generation gene sequencing approaches, predisposing genetic components have been shown to play a crucial role in the development of MVP. After the discovery of the X-linked inheritance of filamin A, autosomal inherited genes were identified. In addition, the study of sporadic MVP identified several genes, including DZIP1, TNS1, LMCD1, GLIS1, PTPRJ, FLYWCH, and MMP2. The early screening of these genetic predispositions may help to determine the patient population at risk for severe complications of MVP and impact the timing of reconstructive surgery. Surgical mitral valve repair is an effective treatment option for MVP, resulting in excellent short- and long-term outcomes. Repair rates in excess of 95% and low complication rates have been consistently reported for minimally invasive mitral valve repair performed in high-volume centers. We therefore conceptualize a potential preventive surgical strategy for the treatment of MVP in patients with genetic predisposition, which is currently not considered in guideline recommendations. Further genetic studies on MVP pathology and large prospective clinical trials will be required to support such an approach.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Health Sciences and Technology, ETH Zuerich, 8092 Zuerich, Switzerland
| | - Leonard Pitts
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Serdar Akansel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stephan Jacobs
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Joerg Kempfert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Kofler
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
4
|
Meng R, Song J, Guan L, Li Q, Shi C, Su D, Ma X. Genome-wide analysis of methylation in rat fetal heart under hyperglycemia by methylation-dependent restriction site–associated DNA sequencing. PLoS One 2022; 17:e0268117. [PMID: 35544480 PMCID: PMC9094537 DOI: 10.1371/journal.pone.0268117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes mellitus causes an increased incidence of congenital heart malformations. However, the pathogenesis and potential epigenetic mechanism involved in this process are unclear. In this study, we used MethylRAD sequencing to compare changes in methylation levels in the genomic landscapes in the fetal heart in a rat model of hyperglycemia. Our results showed that methylation of CCGG/CCNGG sites were mostly enriched in intergenic regions, followed by intron, exon, upstream and the 5′ and 3′ untranslated regions. qRT-PCR results confirmed the MethylRAD sequencing findings, suggesting that abnormal CCGG/CCNGG methylation in the upstream region regulated gene expression. The differential methylation genes (DMGs) based on the CCGG and CCNGG sites in the upstream region were examined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Gene Ontology indicated that the CCGG-based DMGs involved in biological process and function were mainly related to transcription and co-SMAD binding. The CCNGG-based DMGs were mainly related to transcription and cytokine-mediated signaling pathways. Kyoto Encyclopedia of Genes and Genomes analysis indicated that CCGG-based DMGs were mainly involved in the Wnt signaling and TGF-β signaling pathways. CCNGG-based DMGs were involved in the TNF signaling and apoptosis pathways. These genes may play dominant roles in cardiomyocyte apoptosis and heart disease and require further study. These genes may also serve as potential molecular targets or diagnostic biomarkers for heart malformations under hyperglycemia.
Collapse
Affiliation(s)
- Rui Meng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Junxian Song
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
| | - Lina Guan
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Qian Li
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Cuige Shi
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
| | - Dongmei Su
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
- * E-mail: (DS); , (XM)
| | - Xu Ma
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, China
- * E-mail: (DS); , (XM)
| |
Collapse
|
5
|
Roselli C, Yu M, Nauffal V, Georges A, Yang Q, Love K, Weng LC, Delling FN, Maurya SR, Schrölkamp M, Tfelt-Hansen J, Hagège A, Jeunemaitre X, Debette S, Amouyel P, Guan W, Muehlschlegel JD, Body SC, Shah S, Samad Z, Kyryachenko S, Haynes C, Rienstra M, Le Tourneau T, Probst V, Roussel R, Wijdh-Den Hamer IJ, Siland JE, Knowlton KU, Jacques Schott J, Levine RA, Benjamin EJ, Vasan RS, Horne BD, Muhlestein JB, Benfari G, Enriquez-Sarano M, Natale A, Mohanty S, Trivedi C, Shoemaker MB, Yoneda ZT, Wells QS, Baker MT, Farber-Eger E, Michelena HI, Lundby A, Norris RA, Slaugenhaupt SA, Dina C, Lubitz SA, Bouatia-Naji N, Ellinor PT, Milan DJ. Genome-wide association study reveals novel genetic loci: a new polygenic risk score for mitral valve prolapse. Eur Heart J 2022; 43:1668-1680. [PMID: 35245370 PMCID: PMC9649914 DOI: 10.1093/eurheartj/ehac049] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/18/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-β signalling molecules and spectrin β. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention.
Collapse
Affiliation(s)
- Carolina Roselli
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mengyao Yu
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
| | - Victor Nauffal
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Adrien Georges
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
| | - Qiong Yang
- School of Public Health, Boston University, Boston, MA, USA
| | - Katie Love
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Lu Chen Weng
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Francesca N Delling
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Svetlana R Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
| | - Maren Schrölkamp
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Albert Hagège
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
- Assistance Publique–Hôpitaux de Paris, Departments of Cardiology and Genetics, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Xavier Jeunemaitre
- Université de Paris, PARCC, Inserm, F-75015 Paris, France
- Assistance Publique–Hôpitaux de Paris, Departments of Cardiology and Genetics, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, Inserm Center U1219, University of Bordeaux, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Inserm U1219, Bordeaux, France
| | - Philippe Amouyel
- Univ. Lille, Inserm, Centre Hosp. Univ Lille, Institut Pasteur de Lille, UMR1167 – RID-AGE- Risk factors and molecular determinants of aging-related diseases, F-59000 Lille, France
| | - Wyliena Guan
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Simon C Body
- Department of Anesthesiology, Boston University School of Medicine, Boston, MA, USA
| | - Svati Shah
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Zainab Samad
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | | | - Carol Haynes
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thierry Le Tourneau
- l’institut du thorax, INSERM, CNRS, Univ Nantes, CHU Nantes, Nantes, France
- l’institut du thorax, CHU Nantes, Nantes, France
| | - Vincent Probst
- l’institut du thorax, INSERM, CNRS, Univ Nantes, CHU Nantes, Nantes, France
| | - Ronan Roussel
- Cordeliers Research Centre, ImMeDiab Team, INSERM, Université de Paris, Paris, France
- Hôpital Bichat-Claude-Bernard, APHP, Department of Diabetology, Paris, France
| | - Inez J Wijdh-Den Hamer
- Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joylene E Siland
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kirk U Knowlton
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Robert A Levine
- Cardiac Ultrasound Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute’s and Boston University’s, The Framingham Heart Study, Framingham, MA, USA
- Section of Cardiovascular Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Ramachandran S Vasan
- School of Public Health, Boston University, Boston, MA, USA
- National Heart, Lung, and Blood Institute’s and Boston University’s, The Framingham Heart Study, Framingham, MA, USA
- School of Medicine, Boston University, Boston, MA, USA
| | - Benjamin D Horne
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph B Muhlestein
- Intermountain Medical Center Heart Institute, Salt Lake City, UT, USA
- Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Giovanni Benfari
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, USA
| | - Sanghamitra Mohanty
- Texas Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, USA
| | - Chintan Trivedi
- Texas Cardiac Arrhythmia Institute, St David’s Medical Center, Austin, TX, USA
| | - Moore B Shoemaker
- Department of Medicine, Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zachary T Yoneda
- Department of Medicine, Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn S Wells
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael T Baker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Farber-Eger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, København 2200, Denmark
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Christian Dina
- l’institut du thorax, INSERM, CNRS, Univ Nantes, CHU Nantes, Nantes, France
| | - Steven A Lubitz
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | | | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - David J Milan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Leducq Foundation, Boston, MA 02110, USA
| |
Collapse
|
6
|
Li S, Liu T, Li K, Bai X, Xi K, Chai X, Mi L, Li J. Spectrins and human diseases. Transl Res 2022; 243:78-88. [PMID: 34979321 DOI: 10.1016/j.trsl.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Spectrin, as one of the major components of a plasma membrane-associated cytoskeleton, is a cytoskeletal protein composed of the modular structure of α and β subunits. The spectrin-based skeleton is essential for preserving the integrity and mechanical characteristics of the cell membrane. Moreover, spectrin regulates a variety of cell processes including cell apoptosis, cell adhesion, cell spreading, and cell cycle. Dysfunction of spectrins is implicated in various human diseases including hemolytic anemia, neurodegenerative diseases, ataxia, heart diseases, and cancers. Here, we briefly discuss spectrins function as well as the clinical manifestations and currently known molecular mechanisms of human diseases related to spectrins, highlighting that strategies for targeting regulation of spectrins function may provide new avenues for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Shan Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Ting Liu
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kejing Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xinyi Bai
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kewang Xi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xiaojing Chai
- Central Laboratory, The First Hospital of Lanzhou University, Gansu, China
| | - Leyuan Mi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China; Clinical Laboratory Center, Gansu Provincial Maternity and Child Care Hospital, Gansu, China
| | - Juan Li
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Gansu, China; Central Laboratory, The First Hospital of Lanzhou University, Gansu, China.
| |
Collapse
|
7
|
Yang P, Yang Y, He X, Sun P, Zhang Y, Song X, Tian Y, Zong T, Ma J, Chen X, Lv Q, Yu T, Jiang Z. miR-153-3p Targets βII Spectrin to Regulate Formaldehyde-Induced Cardiomyocyte Apoptosis. Front Cardiovasc Med 2022; 8:764831. [PMID: 34977182 PMCID: PMC8714842 DOI: 10.3389/fcvm.2021.764831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Formaldehyde (FA) is ubiquitous in the environment and can be transferred to the fetus through placental circulation, causing miscarriage and congenital heart disease (CHD). Studies have shown that βII spectrin is necessary for cardiomyocyte survival and differentiation, and its loss leads to heart development defects and cardiomyocyte apoptosis. Additionally, previous studies have demonstrated that miRNA is essential in heart development and remodeling. However, whether miRNA regulates FA-induced CHD and cardiomyocyte apoptosis remains unclear. Methods: Using commercially available rat embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis. Real-time quantitative PCR (RT-qPCR) and Western blot were performed to examine the level of miR-153-3p, βII spectrin, caspase 7, cleaved caspase7, Bax, Bcl-2 expression in embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis. Apoptotic cell populations were evaluated by flow cytometry and Tunel. Luciferase activity assay and RNA pull-down assay were used to detect the interaction between miR-153-3p and βII spectrin. Masson's trichrome staining detects the degree of tissue fibrosis. Fluorescence in situ hybridization (FISH) and Immunohistochemistry were used to detect the expression of miR-153-3p and βII spectrin in tissues. Results: Using commercially available rat embryonic cardiomyocytes and a rat model of fetal cardiomyocyte apoptosis, our studies indicate that miR-153-3p plays a regulatory role by directly targeting βII spectrin to promote cardiomyocyte apoptosis. miR-153-3p mainly regulates cardiomyocyte apoptosis by regulating the expression of caspase7, further elucidating the importance of apoptosis in heart development. Finally, the results with our animal model revealed that targeting the miR-153-3p/βII spectrin pathway effectively regulated FA-induced damage during heart development. Recovery experiments with miR-153-3p antagomir resulted in the reversal of FA-induced cardiomyocyte apoptosis and fetal cardiac fibrosis. Conclusion: This study investigated the molecular mechanism underpinning the role of βII spectrin in FA-induced CHD and the associated upstream miRNA pathway. The study findings suggest that miR-153-3p may provide a potential target for the clinical diagnosis and treatment of CHD.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofei Chen
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qifeng Lv
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Zheng Y, Lang Y, Qi Z, Gao W, Hu X, Li T. PIK3R1, SPNB2, and CRYAB as Potential Biomarkers for Patients with Diabetes and Developing Acute Myocardial Infarction. Int J Endocrinol 2021; 2021:2267736. [PMID: 34887920 PMCID: PMC8651423 DOI: 10.1155/2021/2267736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Young patients with type 2 diabetes mellitus (DM) and acute myocardial infarction (AMI) have high long-term all-cause and cardiovascular mortality rates. We aimed to investigate the differentially expressed genes (DEGs) that might be potential targets for DM patients with AMI. METHODS Gene datasets GSE775, GSE19322, and GSE97494 were meta-analyzed to obtain DEGs of the left ventricle myocardium in infarcted mice. Gene datasets including GSE3313, GSE10617, and GSE136948 were meta-analyzed to identify DEGs in diabetes mice. A Venn diagram was used to obtain the overlapping DEGs. KEGG and GO pathway analyses were performed, and hub genes were obtained. Pivotal miRNAs were predicted and validated using the miRNA dataset in GSE114695. To investigate the cardiac function of the screened genes, a MI mouse model was constructed; echocardiogram, qPCR, and ELISA of hub genes were performed; ELISA of hub genes in human blood samples was also utilized. RESULTS A total of 67 DEGs were identified, which may be potential biomarkers for patients with DM and AMI. GO and KEGG pathway analyses were performed, which were mainly enriched in response to organic cyclic compound and PI3K-Akt signaling pathway. The expression of PIK3R1 and SPNB2 increased in the MI group and was negatively correlated to left ventricular ejection fraction (LVEF), whereas that of CRYAB decreased and was positively correlated to LVEF. Patients with high CRYAB expression demonstrated a short hospital stay and the area under the curves of the three protein levels before and after treatment were 0.964, 0.982, and 0.918, suggesting that PIK3R1, SPNB2, and CRYAB may be diagnostic and prognostic biomarkers for the diabetes patients with AMI. CONCLUSION The screened hub genes, PIK3R1, SPNB2, and CRYAB, were validated as credible molecular biomarkers and may provide a novel therapy for diabetic cardiac diseases with increased proteotoxic stress.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin 300071, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Yuheng Lang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Zhenchang Qi
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Wenqing Gao
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Xiaomin Hu
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin 300071, China
- Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
- The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
9
|
Yang P, Yang Y, Sun P, Tian Y, Gao F, Wang C, Zong T, Li M, Zhang Y, Yu T, Jiang Z. βII spectrin (SPTBN1): biological function and clinical potential in cancer and other diseases. Int J Biol Sci 2021; 17:32-49. [PMID: 33390831 PMCID: PMC7757025 DOI: 10.7150/ijbs.52375] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
βII spectrin, the most common isoform of non-erythrocyte spectrin, is a cytoskeleton protein present in all nucleated cells. Interestingly, βII spectrin is essential for the development of various organs such as nerve, epithelium, inner ear, liver and heart. The functions of βII spectrin include not only establishing and maintaining the cell structure but also regulating a variety of cellular functions, such as cell apoptosis, cell adhesion, cell spreading and cell cycle regulation. Notably, βII spectrin dysfunction is associated with embryonic lethality and the DNA damage response. More recently, the detection of altered βII spectrin expression in tumors indicated that βII spectrin might be involved in the development and progression of cancer. Its mutations and disorders could result in developmental disabilities and various diseases. The versatile roles of βII spectrin in disease have been examined in an increasing number of studies; nonetheless, the exact mechanisms of βII spectrin are still poorly understood. Thus, we summarize the structural features and biological roles of βII spectrin and discuss its molecular mechanisms and functions in development, homeostasis, regeneration and differentiation. This review highlight the potential effects of βII spectrin dysfunction in cancer and other diseases, outstanding questions for the future investigation of therapeutic targets. The investigation of the regulatory mechanism of βII spectrin signal inactivation and recovery may bring hope for future therapy of related diseases.
Collapse
Affiliation(s)
- Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Pin Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fang Gao
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chen Wang
- Department of Physical Medicine and Rehabiliation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Ying Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
10
|
Patel NJ, Nassal DM, Gratz D, Hund TJ. Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opin Ther Targets 2020; 25:63-73. [PMID: 33170045 DOI: 10.1080/14728222.2021.1849145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction : Cardiac fibrosis contributes to the development of cardiovascular disease (CVD) and arrhythmia. Cardiac fibroblasts (CFs) are collagen-producing cells that regulate extracellular matrix (ECM) homeostasis. A complex signaling network has been defined linking environmental stress to changes in CF function and fibrosis. Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a critical integrator of pro-fibrotic signals in CFs downstream of several established signaling networks. Areas covered : This article provides an overview of STAT3 function in CFs and its involvement in coordinating a vast web of intracellular pro-fibrotic signaling molecules and transcription factors. We highlight recent work elucidating a critical role for the fibroblast cytoskeleton in maintaining spatial and temporal control of STAT3-related signaling . Finally, we discuss potential opportunities and obstacles for therapeutic targeting of STAT3 to modulate cardiac fibrosis and arrhythmias. Relevant publications on the topic were identified through Pubmed. Expert opinion : Therapeutic targeting of STAT3 for CVD and arrhythmias presents unique challenges and opportunities. Thus, it is critical to consider the multimodal and dynamic nature of STAT3 signaling. Going forward, it will be beneficial to consider ways to maintain balanced STAT3 function, rather than large-scale perturbations in STAT3 function.
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
11
|
HPV16 E7-impaired keratinocyte differentiation leads to tumorigenesis via cell cycle/pRb/involucrin/spectrin/adducin cascade. Appl Microbiol Biotechnol 2020; 104:4417-4433. [PMID: 32215704 DOI: 10.1007/s00253-020-10492-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022]
Abstract
Here, we used codon usage technology to generate two codon-modified human papillomavirus (HPV)16 E7 genes and, together with wild-type E7, to construct three HPV16 E7 gene plasmids: Wt-E7, HB1-E7, and HB2-E7. The three HPV 16 E7 plasmids were used to investigate how HPV16 E7 protein was expressed in different cells and how this oncoprotein deregulated cellular and molecular events in human keratinocytes to induce carcinogenesis. We discovered that codon usage of HPV16 E7 gene played a key role in determining expression of E7 oncoprotein in all tested cells. HPV16 E7 inhibited significantly expression of pRb to impair keratinocyte differentiation and disrupted development of skin epidermis in mice. HPV16 E7 increased substantially the number of G0/G1 cells associated with upregulation of cyclin D2 and downregulation of cyclin B1 in keratinocytes. HPV16 E7 not only inhibited expression of involucrin and α-spectrin but also disrupted the organization of involucrin filaments and spectrin cytoskeleton. Furthermore, HPV16 E7 inhibited expression of β-adducin, destroyed its cytoskeletal structure and induced phosphorylation of β-adducin(Ser662) in keratinocytes. Importantly, HPV16 E7 induced carcinogenesis in mice associated with expression of phosphorylated β-adducin(Ser662) and its nucleus-translocation. In conclusion, we provided evidence that HPV16 E7 oncoprotein inhibited keratinocyte differentiation in vitro and in vivo leading to carcinogenesis through cell cycle arrest and disruption of pRb/involucrin/spectrin/adducin cascade.
Collapse
|
12
|
Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-0050-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Congenital heart diseases (CHDs) are the most common congenital anomalies with an estimated prevalence of 8 in 1000 live births. CHDs occur as a result of abnormal embryogenesis of the heart. Congenital heart diseases are associated with significant mortality and morbidity. The damage of the heart is irreversible due to a lack of regeneration potential, and usually, the patients may require surgical intervention. Studying the developmental biology of the heart is essential not only in understanding the mechanisms and pathogenesis of congenital heart diseases but also in providing us with insight towards developing new preventive and treatment methods.
Main body
The etiology of congenital heart diseases is still elusive. Both genetic and environmental factors have been implicated to play a role in the pathogenesis of the diseases. Recently, cardiac transcription factors, cardiac-specific genes, and signaling pathways, which are responsible for early cardiac morphogenesis have been extensively studied in both human and animal experiments but leave much to be desired. The discovery of novel genetic methods such as next generation sequencing and chromosomal microarrays have led to further study the genes, non-coding RNAs and subtle chromosomal changes, elucidating their implications to the etiology of congenital heart diseases. Studies have also implicated non-hereditary risk factors such as rubella infection, teratogens, maternal age, diabetes mellitus, and abnormal hemodynamics in causing CHDs.
These etiological factors raise questions on multifactorial etiology of CHDs. It is therefore important to endeavor in research based on finding the causes of CHDs. Finding causative factors will enable us to plan intervention strategies and mitigate the consequences associated with CHDs. This review, therefore, puts forward the genetic and non-genetic causes of congenital heart diseases. Besides, it discusses crucial signaling pathways which are involved in early cardiac morphogenesis. Consequently, we aim to consolidate our knowledge on multifactorial causes of CHDs so as to pave a way for further research regarding CHDs.
Conclusion
The multifactorial etiology of congenital heart diseases gives us a challenge to explicitly establishing specific causative factors and therefore plan intervention strategies. More well-designed studies and the use of novel genetic technologies could be the way through the discovery of etiological factors implicated in the pathogenesis of congenital heart diseases.
Collapse
|
13
|
Li XL, Yu F, Li BY, Fu CL, Yu X, Xu M, Cheng M, Gao HQ. The protective effects of grape seed procyanidin B2 against asporin mediates glycated low-density lipoprotein induced-cardiomyocyte apoptosis and fibrosis. Cell Biol Int 2020; 44:268-277. [PMID: 31498521 DOI: 10.1002/cbin.11229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/31/2019] [Indexed: 01/24/2023]
Abstract
The progression of diabetic cardiomyopathy is related to cardiomyocyte dysfunction and apoptosis. Our previous studies showed that asporin (ASPN) was significantly increased in the myocardium of db/db mice through proteomics, and grape seed procyanidin B2 (GSPB2) significantly inhibited the expression of ASPN in the heart of db/db mice. We report here that ASPN played a critical role in glycated low-density lipoproteins (gly-LDL) induced-cardiomyocyte apoptosis. We found that gly-LDL upregulated ASPN expression. ASPN increased H9C2 cardiomyocyte apoptosis with down-regulation of Bcl-2, upregulation of transforming growth factor-β1, Bax, collagen III, fibronectin, and phosphorylation of smad2 and smad3. However, GSPB2 treatment reversed ASPN-induced impairments in H9C2 cardiomyocytes. These results provide evidence for the cardioprotective action of GSPB2 against ASPN injury, and thus suggest a new target for fighting against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Drug Purchase and Supply, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Bao-Ying Li
- Department of Geriatric Medicine, Bai-Ren Hospital of Weinan, Middle Section of Letian Street, Weinan, Shanxi Province, 714000, China
| | - Chun-Li Fu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Mei Xu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| | - Hai-Qing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong Province, 250012, China
| |
Collapse
|
14
|
Hulsurkar M, Quick AP, Wehrens XH. STAT3: a link between CaMKII-βIV-spectrin and maladaptive remodeling? J Clin Invest 2018; 128:5219-5221. [PMID: 30418170 PMCID: PMC6264720 DOI: 10.1172/jci124778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
βIV-Spectrin, along with ankyrin and Ca2+/calmodulin-dependent kinase II (CaMKII), has been shown to form local signaling domains at the intercalated disc, while playing a key role in the regulation of Na+ and K+ channels in cardiomyocytes. In this issue of the JCI, Unudurthi et al. show that under chronic pressure overload conditions, CaMKII activation leads to βIV-spectrin degradation, resulting in the release of sequestered STAT3 from the intercalated discs. This in turn leads to dysregulation of STAT3-mediated gene transcription, maladaptive remodeling, fibrosis, and decreased cardiac function. Overall, this study presents interesting findings regarding the role of CaMKII and βIV-spectrin under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Mohit Hulsurkar
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
| | - Ann P. Quick
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
- Department of Medicine
- Department of Pediatrics
- Department of Neuroscience, and
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Liu Y, Liu Y, Li G, Chen Z, Gu G. Ghrelin protects the myocardium with hypoxia/reoxygenation treatment through upregulating the expression of growth hormone, growth hormone secretagogue receptor and insulin-like growth factor-1, and promoting the phosphorylation of protein kinase B. Int J Mol Med 2018; 42:3037-3046. [PMID: 30272367 PMCID: PMC6202102 DOI: 10.3892/ijmm.2018.3886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Ghrelin is an endogenous ligand of growth hormone (GH) secretagogue receptor (GHSR) and has a number of biological effects, including heart protection. The present study aimed to reveal the positive effect of ghrelin on myocardium with hypoxia/reoxygenation (H/R) treatment and the involved molecular mechanisms. Successful construction of lentiviral expression vector (ghrelin-pLVX-Puro) was confirmed by colony polymerase chain reaction (PCR) verification. Primary rat cardiac myocytes were isolated and identified by immunofluorescence staining. Existence of red fluorescence of α-sarcomeric actinin indicated the successful isolation. Following ghrelin transfection and H/R treatment, primary cells were divided into four groups: Control, H/R, empty (empty pLVX-Puro + H/R) and ghrelin (ghrelin-pLVX-Puro + H/R). Cell viability and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) and Hoechst staining, respectively. The cell viability in the ghrelin group was significantly higher than that in the empty control group (P<0.05). The apoptosis rate in the ghrelin group was significantly lower than that in the empty control group (P<0.05). An ex vivo rat cardiac perfusion model was established. Following ghrelin incubation and H/R treatment, ex vivo myocardium was divided into four groups: Control, sham, H/R and ghrelin (ghrelin + H/R). Immunohistochemical analysis demonstrated that ghrelin increased the integrity of cardiac myocytes, and decreased shrinkage and apoptosis. mRNA and protein expression levels of GH, GHSR, insulin-like growth factor-1 (IGF-1), protein kinase B (Akt), phosphorylated Akt (p-Akt) were determined by reverse transcription (RT)-PCR, western blot analysis and immunohistochemical analysis. Ghrelin upregulated the mRNA and protein expression levels of GH, GHSR and IGF-1, and increased the ratio of p-Akt to Akt protein level (p-Akt/Akt) in cardiac myocytes and myocardial tissues with H/R treatment. In conclusion, ghrelin protected the myocardium with H/R treatment through upregulating the expression of GH, GHSR and IGF-1, and promoting the phosphorylation of Akt. This would provide promising insights into the treatment of hypoxic myocardial injury by ghrelin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Child Hygiene, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yanling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guolin Li
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengrong Chen
- Department of Respiratory Disease, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Guixiong Gu
- Department of Child Hygiene, Children's Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
16
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
17
|
αII-spectrin and βII-spectrin do not affect TGFβ1-induced myofibroblast differentiation. Cell Tissue Res 2018; 374:165-175. [PMID: 29725768 PMCID: PMC6132645 DOI: 10.1007/s00441-018-2842-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 04/10/2018] [Indexed: 12/13/2022]
Abstract
Mechanosensing of fibroblasts plays a key role in the development of fibrosis. So far, no effective treatments are available to treat this devastating disorder. Spectrins regulate cell morphology and are potential mechanosensors in a variety of non-erythroid cells, but little is known about the role of spectrins in fibroblasts. We investigate whether αII- and βII-spectrin are required for the phenotypic properties of adult human dermal (myo)fibroblasts. Knockdown of αII- or βII-spectrin in fibroblasts did not affect cell adhesion, cell size and YAP nuclear/cytosolic localization. We further investigated whether αII- and βII-spectrin play a role in the phenotypical switch from fibroblasts to myofibroblasts under the influence of the pro-fibrotic cytokine TGFβ1. Knockdown of spectrins did not affect myofibroblast formation, nor did we observe changes in the organization of αSMA stress fibers. Focal adhesion assembly was unaffected by spectrin deficiency, as was collagen type I mRNA expression and protein deposition. Wound closure was unaffected as well, showing that important functional properties of myofibroblasts are unchanged without αII- or βII-spectrin. In fact, fibroblasts stimulated with TGFβ1 demonstrated significantly lower endogenous mRNA levels of αII- and βII-spectrin. Taken together, despite the diverse roles of spectrins in a variety of other cells, αII- and βII-spectrin do not regulate cell adhesion, cell size and YAP localization in human dermal fibroblasts and are not required for the dermal myofibroblast phenotypical switch.
Collapse
|
18
|
Derbala MH, Guo AS, Mohler PJ, Smith SA. The role of βII spectrin in cardiac health and disease. Life Sci 2017; 192:278-285. [PMID: 29128512 DOI: 10.1016/j.lfs.2017.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
Spectrins are large, flexible proteins comprised of α-β dimers that are connected head-to-head to form the canonical heterotetrameric spectrin structure. Spectrins were initially believed to be exclusively found in human erythrocytic membrane and are highly conserved among different species. βII spectrin, the most common isoform of non-erythrocytic spectrin, is found in all nucleated cells and forms larger macromolecular complexes with ankyrins and actins. Not only is βII spectrin a central cytoskeletal scaffolding protein involved in preserving cell structure but it has also emerged as a critical protein required for distinct physiologic functions such as posttranslational localization of crucial membrane proteins and signal transduction. In the heart, βII spectrin plays a vital role in maintaining normal cardiac membrane excitability and proper cardiac development during embryogenesis. Mutations in βII spectrin genes have been strongly linked with the development of serious cardiac disorders such as congenital arrhythmias, heart failure, and possibly sudden cardiac death. This review focuses on our current knowledge of the role βII spectrin plays in the cardiovascular system in health and disease and the potential future clinical implications.
Collapse
Affiliation(s)
- Mohamed H Derbala
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Aaron S Guo
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
19
|
Fai TG, Leo-Macias A, Stokes DL, Peskin CS. Image-based model of the spectrin cytoskeleton for red blood cell simulation. PLoS Comput Biol 2017; 13:e1005790. [PMID: 28991926 PMCID: PMC5654263 DOI: 10.1371/journal.pcbi.1005790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/19/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023] Open
Abstract
We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton. Red blood cells are responsible for delivering oxygen to tissues throughout the body. These terminally differentiated cells have developed a fascinating flexibility and resiliency that is critical to navigating the circulatory system. Far from being rigid bodies, red blood cells adopt biconcave disk shapes at equilibrium, parachute-like shapes as they move between large vessels and small capillaries, and more extreme shapes as they traverse the endothelial slits of the spleen. Understanding the remarkable mechanical properties that allow red cells to experience such large deformations while maintaining structural integrity is a fundamental question in physiology that may help advance treatments of genetic disorders such as hereditary spherocytosis and elliptocytosis that affect red cell flexibility and can lead to severe anemia. In this work, we present a model of the red blood cell cytoskeleton based on cryoelectron tomography data. We develop an image processing technique to gather statistics from these data and use these statistics to generate a random entropic network to model the cytoskeleton. We then simulate the behavior of the resulting red blood cells in flow. As we demonstrate through simulations, this method makes it possible to examine the consequences of changes in microstructural properties such as the rate of cytoskeletal remodeling.
Collapse
Affiliation(s)
- Thomas G. Fai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Alejandra Leo-Macias
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, United States of America
| | - David L. Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Charles S. Peskin
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| |
Collapse
|
20
|
Choo DW, Goh SH, Cho YW, Baek HJ, Park EJ, Motoyama N, Kim TH, Kim JY, Kim SS. CHK2 is involved in the p53-independent radiosensitizing effects of valproic acid. Oncol Lett 2017; 13:2591-2598. [PMID: 28454438 PMCID: PMC5403276 DOI: 10.3892/ol.2017.5792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/20/2016] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy is an effective treatment for the majority of types of localized solid cancer. However, the risk of side effects to the surrounding normal tissues limits radiotherapeutic approaches. Whilst the mechanism of action of valproic acid, an inhibitor of histone deacetylase, remains unknown, the inhibitor is a potential antineoplastic radiosensitizer. The present study demonstrated the in vitro radiosensitizing effects of valproic acid on the human breast cancer MCF7 cell line, and revealed that valproic acid increased the level of DNA breakage, apoptosis and senescence. In addition, western blot analyses revealed that valproic acid induced tumor suppressor protein (p)53 and p21 expression, and activated checkpoint kinase 2 (CHK2) in MCF7 cells and primary mouse embryonic fibroblasts. Notably, treatment with valproic acid also induced increases in the level of p21 protein levels and CHK2 activity in p53-null colon cancer HCT116 cells. Furthermore, the present study demonstrated that valproic acid-induced radiosensitization was largely dependent on the activity of CHK2. The results of the present study reveal that valproic acid may exhibit clinical utility with respect to increasing the anticancer efficacy of radiotherapy by affecting the level of p53.
Collapse
Affiliation(s)
- Dong Wan Choo
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sung Ho Goh
- Cancer Genomics Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Young Woo Cho
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea.,Colgate University, Hamilton, NY 13346, USA
| | - Hye Jung Baek
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Eun Jung Park
- Cancer Immunology Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Noboru Motoyama
- Department of Cognitive Brain Science, National Centre for Geriatrics and Gerontology, Obu, Aichi 474-8522, Japan.,Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tae Hyun Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Joo Young Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| | - Sang Soo Kim
- Radiation Medicine Branch, National Cancer Center, Goyang, Gyeonggi 410-769, Republic of Korea
| |
Collapse
|
21
|
Smith SA, Hughes LD, Kline CF, Kempton AN, Dorn LE, Curran J, Makara M, Webb TR, Wright P, Voigt N, Binkley PF, Janssen PML, Kilic A, Carnes CA, Dobrev D, Rasband MN, Hund TJ, Mohler PJ. Dysfunction of the β2-spectrin-based pathway in human heart failure. Am J Physiol Heart Circ Physiol 2016; 310:H1583-91. [PMID: 27106045 DOI: 10.1152/ajpheart.00875.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/11/2016] [Indexed: 11/22/2022]
Abstract
β2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of β2-spectrin for vertebrate function is illustrated by dysfunction of β2-spectrin-based pathways in disease. Recently, defects in β2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of β2-spectrin in common forms of acquired heart failure and arrhythmia is unknown. We report that β2-spectrin protein levels are significantly altered in human cardiovascular disease as well as in large and small animal cardiovascular disease models. Specifically, β2-spectrin levels were decreased in atrial samples of patients with atrial fibrillation compared with tissue from patients in sinus rhythm. Furthermore, compared with left ventricular samples from nonfailing hearts, β2-spectrin levels were significantly decreased in left ventricle of ischemic- and nonischemic heart failure patients. Left ventricle samples of canine and murine heart failure models confirm reduced β2-spectrin protein levels. Mechanistically, we identify that β2-spectrin levels are tightly regulated by posttranslational mechanisms, namely Ca(2+)- and calpain-dependent proteases. Furthermore, consistent with this data, we observed Ca(2+)- and calpain-dependent loss of β2-spectrin downstream effector proteins, including ankyrin-B in heart. In summary, our findings illustrate that β2-spectrin and downstream molecules are regulated in multiple forms of cardiovascular disease via Ca(2+)- and calpain-dependent proteolysis.
Collapse
Affiliation(s)
- Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio;
| | - Langston D Hughes
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Crystal F Kline
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Amber N Kempton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Lisa E Dorn
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Jerry Curran
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Michael Makara
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Tyler R Webb
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Patrick Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Niels Voigt
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; and
| | - Philip F Binkley
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Paul M L Janssen
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Ahmet Kilic
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Cynthia A Carnes
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Dobromir Dobrev
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; and
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| |
Collapse
|
22
|
TGF-β receptor type II costameric localization in cardiomyocytes and host cell TGF-β response is disrupted by Trypanosoma cruzi infection. Parasitology 2016; 143:704-15. [DOI: 10.1017/s0031182016000299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYTransforming growth factor beta (TGF-β) cytokine is involved in Chagas disease establishment and progression. Since Trypanosoma cruzi can modulate host cell receptors, we analysed the TGF-β receptor type II (TβRII) expression and distribution during T. cruzi – cardiomyocyte interaction. TβRII immunofluorescent staining revealed a striated organization in cardiomyocytes, which was co-localized with vinculin costameres and enhanced (38%) after TGF-β treatment. Cytochalasin D induced a decrease of 45·3% in the ratio of cardiomyocytes presenting TβRII striations, demonstrating an association of TβRII with the cytoskeleton. Western blot analysis showed that cytochalasin D significantly inhibited Smad 2 phosphorylation and fibronectin stimulation after TGF-β treatment in cardiomyocytes. Trypanosoma cruzi infection elicited a decrease of 79·8% in the frequency of cardiomyocytes presenting TβRII striations, but did not interfere significantly in its expression. In addition, T. cruzi-infected cardiomyocytes present a lower response to exogenous TGF-β, showing no enhancement of TβRII striations and a reduction of phosphorylated Smad 2, with no significant difference in TβRII expression when compared to uninfected cells. Together, these results suggest that the co-localization of TβRII with costameres is important in activating the TGF-β signalling cascade, and that T. cruzi-derived cytoskeleton disorganization could result in altered or low TGF-β response in infected cardiomyocytes.
Collapse
|
23
|
Baek HJ, Lee YM, Kim TH, Kim JY, Park EJ, Iwabuchi K, Mishra L, Kim SS. Caspase-3/7-mediated Cleavage of β2-spectrin is Required for Acetaminophen-induced Liver Damage. Int J Biol Sci 2016; 12:172-83. [PMID: 26884715 PMCID: PMC4737674 DOI: 10.7150/ijbs.13420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/21/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The ubiquitously expressed β2-spectrin (β2SP, SPTBN1) is the most common non-erythrocytic member of the β-spectrin gene family. Loss of β2-spectrin leads to defects in liver development, and its haploinsufficiency spontaneously leads to chronic liver disease and the eventual development of hepatocellular cancer. However, the specific role of β2-spectrin in liver homeostasis remains to be elucidated. Here, we reported that β2-spectrin was cleaved by caspase-3/7 upon treatment with acetaminophen which is the main cause of acute liver injury. Blockage of β2-spectrin cleavage robustly attenuated β2-spectrin-specific functions, including regulation of the cell cycle, apoptosis, and transcription. Cleaved fragments of β2-spectrin were physiologically active, and the N- and C-terminal fragments retained discrete interaction partners and activity in transcriptional regulation and apoptosis, respectively. Cleavage of β2-spectrin facilitated the redistribution of the resulting fragments under conditions of liver damage induced by acetaminophen. In contrast, downregulation of β2-spectrin led to resistance to acetaminophen-induced cytotoxicity, and its insufficiency in the liver promoted suppression of acetaminophen-induced liver damage and enhancement of liver regeneration. CONCLUSIONS β2-Spectrin, a TGF-β mediator and signaling molecule, is cleaved and activated by caspase-3/7, consequently enhancing apoptosis and transcriptional control to determine cell fate upon liver damage. These findings have extended our knowledge on the spectrum of β2-spectrin functions from a scaffolding protein to a target and transmitter of TGF-β in liver damage.
Collapse
Affiliation(s)
| | | | | | | | - Eun Jung Park
- 2. Cancer Immunology Branch, National Cancer Center, Goyang, Gyeonggi, 410-769, Korea
| | - Kuniyoshi Iwabuchi
- 3. Department of Biochemistry I, School of Medicine, Kanazawa Medical University, Kahoku-gun, Ishikawa, 920-0293, Japan
| | - Lopa Mishra
- 4. Department of Gastroenterology, Hepatology, and Nutrition, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | | |
Collapse
|
24
|
Zhi X, Lin L, Yang S, Bhuvaneshwar K, Wang H, Gusev Y, Lee MH, Kallakury B, Shivapurkar N, Cahn K, Tian X, Marshall JL, Byers SW, He AR. βII-Spectrin (SPTBN1) suppresses progression of hepatocellular carcinoma and Wnt signaling by regulation of Wnt inhibitor kallistatin. Hepatology 2015; 61:598-612. [PMID: 25307947 PMCID: PMC4327990 DOI: 10.1002/hep.27558] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 10/07/2014] [Indexed: 12/27/2022]
Abstract
UNLABELLED βII-Spectrin (SPTBN1) is an adapter protein for Smad3/Smad4 complex formation during transforming growth factor beta (TGF-β) signal transduction. Forty percent of SPTBN1(+/-) mice spontaneously develop hepatocellular carcinoma (HCC), and most cases of human HCC have significant reductions in SPTBN1 expression. In this study, we investigated the possible mechanisms by which loss of SPTBN1 may contribute to tumorigenesis. Livers of SPTBN1(+/-) mice, compared to wild-type mouse livers, display a significant increase in epithelial cell adhesion molecule-positive (EpCAM(+)) cells and overall EpCAM expression. Inhibition of SPTBN1 in human HCC cell lines increased the expression of stem cell markers EpCAM, Claudin7, and Oct4, as well as decreased E-cadherin expression and increased expression of vimentin and c-Myc, suggesting reversion of these cells to a less differentiated state. HCC cells with decreased SPTBN1 also demonstrate increased sphere formation, xenograft tumor development, and invasion. Here we investigate possible mechanisms by which SPTBN1 may influence the stem cell traits and aggressive behavior of HCC cell lines. We found that HCC cells with decreased SPTBN1 express much less of the Wnt inhibitor kallistatin and exhibit decreased β-catenin phosphorylation and increased β-catenin nuclear localization, indicating Wnt signaling activation. Restoration of kallistatin expression in these cells reversed the observed Wnt activation. CONCLUSION SPTBN1 expression in human HCC tissues is positively correlated with E-cadherin and kallistatin levels, and decreased SPTBN1 and kallistatin gene expression is associated with decreased relapse-free survival. Our data suggest that loss of SPTBN1 activates Wnt signaling, which promotes acquisition of stem cell-like features, and ultimately contributes to malignant tumor progression.
Collapse
Affiliation(s)
- Xiuling Zhi
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Laboratory of Medical Molecular Biology, Training Center of Medical Experiments, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Lin
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Shaoxian Yang
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Krithika Bhuvaneshwar
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Hongkun Wang
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Yuriy Gusev
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Mi-Hye Lee
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Bhaskar Kallakury
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Narayan Shivapurkar
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Katherine Cahn
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Xuefei Tian
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - John L. Marshall
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Aiwu R. He
- Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Corresponding author: Aiwu R. He, M.D. Ph.D., Departments of Medicine and Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road, NW, Washington, DC 20007, USA., Phone: 02-444-1259, Fax: 202-444-9429,
| |
Collapse
|