1
|
Li M, Sun X, Zeng L, Sun A, Ge J. Metabolic Homeostasis of Immune Cells Modulates Cardiovascular Diseases. RESEARCH (WASHINGTON, D.C.) 2025; 8:0679. [PMID: 40270694 PMCID: PMC12015101 DOI: 10.34133/research.0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
Recent investigations into the mechanisms underlying inflammation have highlighted the pivotal role of immune cells in regulating cardiac pathophysiology. Notably, these immune cells modulate cardiac processes through alternations in intracellular metabolism, including glycolysis and oxidative phosphorylation, whereas the extracellular metabolic environment is changed during cardiovascular disease, influencing function of immune cells. This dynamic interaction between immune cells and their metabolic environment has given rise to the novel concept of "immune metabolism". Consequently, both the extracellular and intracellular metabolic environment modulate the equilibrium between anti- and pro-inflammatory responses. This regulatory mechanism subsequently influences the processes of myocardial ischemia, cardiac fibrosis, and cardiac remodeling, ultimately leading to a series of cardiovascular events. This review examines how local microenvironmental and systemic environmental changes induce metabolic reprogramming in immune cells and explores the subsequent effects of aberrant activation or polarization of immune cells in the progression of cardiovascular disease. Finally, we discuss potential therapeutic strategies targeting metabolism to counteract abnormal immune activation.
Collapse
Affiliation(s)
- Mohan Li
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Estrada AC, Humphrey JD. Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension. Ann Biomed Eng 2025; 53:1014-1023. [PMID: 39904866 PMCID: PMC12067544 DOI: 10.1007/s10439-025-03685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Multiple cell types interact within the aortic wall to control development, homeostasis, and adaptation as well as to drive disease progression. Given the complexity of these interactions and their manifestations at the tissue level, there is a pressing need for a new class of computational models that integrate data across scales. METHODS We meld logic-based cell signaling models of vascular smooth muscle cells, adventitial fibroblasts, and macrophages and couple this multi-cell model with a tissue level-constrained mixture model of aortic growth and remodeling. The coupled multi-scale model is parameterized using data from the literature and then specialized for the case of angiotensin II-induced hypertensive remodeling of the descending thoracic aorta in wild-type mice. RESULTS We contrast important contributions of chemo- and mechano-stimulation of cell responses and identify critical roles of recruited macrophages in driving the non-homeostatic thickening of the adventitial layer that reduces biaxial wall stress below setpoint values. CONCLUSION We show the utility of a multi-scale, multi-cell model in delineating effects of different chemo-mechanical stimuli in aortic remodeling in hypertension.
Collapse
MESH Headings
- Animals
- Hypertension/pathology
- Hypertension/physiopathology
- Hypertension/metabolism
- Mice
- Models, Cardiovascular
- Vascular Remodeling
- Macrophages/pathology
- Macrophages/metabolism
- Angiotensin II
- Inflammation/pathology
- Inflammation/physiopathology
- Inflammation/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/metabolism
- Fibroblasts/pathology
- Fibroblasts/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Humans
- Computer Simulation
Collapse
Affiliation(s)
- Ana C Estrada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Electrical and Biomedical Engineering, Fairfield University, Fairfield, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Xu Z, Yu H, Zhuang R, Fan Q. Immunotherapy for hypertensive end-organ damage: a new therapeutic strategy. Essays Biochem 2025; 0:EBC20243000. [PMID: 40134277 DOI: 10.1042/ebc20243000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
Hypertension represents a highly prevalent chronic condition and stands among the foremost contributors to premature mortality on a global scale. Its etiopathogenesis is intricate and multifaceted, being shaped by a diverse array of elements such as age, genetic predisposition, and activation of the neuroendocrine apparatus. Mounting evidence has shed light on the significant part that autoimmune responses play in hypertension and the ensuing damage to end organs. Virtually all varieties of immune cells, spanning both innate and adaptive immune compartments, exhibit a close correlation with the progression of hypertension. These immune cells infiltrate the kidney and vascular mesenchyme, subsequently discharging potent cytokines, reactive oxygen species, and metalloproteinases. This cascade of events can affect the functionality of local blood vessels and potentially precipitate adverse structural and functional alterations in crucial organs like the heart and kidney. In recent times, the management of end-organ damage in hypertension has emerged as a pivotal scientific focus. A multitude of researchers are actively engaged in probing efficacious intervention regimens, among which immunotherapy strategies hold considerable promise and anticipation as a prospective avenue.
Collapse
Affiliation(s)
- Zhiyang Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210000, China
- Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Haisheng Yu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| | - Rulin Zhuang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Qin Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210000, China
| |
Collapse
|
4
|
Butler HM, McCrorey MK, Palygina L, Lacey R, Van Beusecum JP. Salt-sensitive hypertension: role of endothelial and vascular dysfunction and sex. Front Pharmacol 2025; 16:1565962. [PMID: 40144661 PMCID: PMC11936959 DOI: 10.3389/fphar.2025.1565962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
For the last 120 years, the contribution of salt has been identified in the pathophysiological elevation of blood pressure. Since then, both human and experimental murine studies have begun to elucidate the key mechanisms contributing to the development of salt-sensitive hypertension. Numerous mechanisms, including increased plasma volume, sodium retention, impaired autoregulatory capability, inflammation, and endothelial and vascular dysfunction, contribute to deleterious elevations in blood pressure during salt sensitivity. The endothelium plays a critical role in blood flow regulation, renal blood flow, and blood pressure elevations and in migrating immune cells to end-organs, contributing to end-organ damage and fibrosis. In this review, we will consider the clinical studies setting the foundation for the definition of salt-sensitive hypertension, murine models to study endothelial and vascular contributions, and endothelial cell cultures that have shed light on signaling mechanisms. Lastly, we will discuss the sex-dependent physiology and mechanisms contributing to salt-sensitive hypertension development and their clinical implications.
Collapse
Affiliation(s)
- Helen M. Butler
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Marice K. McCrorey
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- College of Graduate Studies, Medical University of South Carolina, Charleston, SC, United States
| | - Lada Palygina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ryan Lacey
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Justin P. Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson VA Healthcare System, Charleston, SC, United States
| |
Collapse
|
5
|
Dasinger JH, Abais-Battad JM, McCrorey MK, Van Beusecum JP. Recent advances on immunity and hypertension: the new cells on the kidney block. Am J Physiol Renal Physiol 2025; 328:F301-F315. [PMID: 39853324 DOI: 10.1152/ajprenal.00309.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/26/2024] [Accepted: 01/20/2025] [Indexed: 01/26/2025] Open
Abstract
Over the past 50 years, the contribution of the immune system has been identified in the development of hypertension and renal injury. Both human and experimental animal models of hypertension have demonstrated that innate and adaptive immune cells, along with their cytokines and chemokines, modulate blood pressure fluctuations and end organ renal damage. Numerous cell types of the innate immune system, specifically monocytes, macrophages, and dendritic cells, present antigenic peptides to T cells, promoting inflammation and the elevation of blood pressure. These T cells and other adaptive immune cells migrate to vascular and tubular cells of the kidney and promote end-organ fibrosis, damage, and ultimately hypertensive injury. Through the development of high-throughput screening, novel renal and immune cell subsets have been identified as possible contributors and regulators of renal injury and hypertension. In this review, we will consider classical immunological cells and their contribution to renal inflammation, and novel cell subsets, including renal stromal cells, that could potentially shed new light on renal injury and hypertension. Finally, we will discuss how interorgan inflammation contributes to the development of hypertension and hypertension-related multiorgan damage, and explore the clinical implications of the immunological components of renal injury and hypertension.
Collapse
Affiliation(s)
- John Henry Dasinger
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Justine M Abais-Battad
- Department of Physiology, Medical College of Georgia, August University, Augusta, Georgia, United States
| | - Marice K McCrorey
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Research and Development, Ralph H. Johnson VA Healthcare System, Charleston, South Carolina, United States
| |
Collapse
|
6
|
Chee YJ, Dalan R, Cheung C. The Interplay Between Immunity, Inflammation and Endothelial Dysfunction. Int J Mol Sci 2025; 26:1708. [PMID: 40004172 PMCID: PMC11855323 DOI: 10.3390/ijms26041708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The endothelium is pivotal in multiple physiological processes, such as maintaining vascular homeostasis, metabolism, platelet function, and oxidative stress. Emerging evidence in the past decade highlighted the immunomodulatory function of endothelium, serving as a link between innate, adaptive immunity and inflammation. This review examines the regulation of the immune-inflammatory axis by the endothelium, discusses physiological immune functions, and explores pathophysiological processes leading to endothelial dysfunction in various metabolic disturbances, including hyperglycemia, obesity, hypertension, and dyslipidaemia. The final section focuses on the novel, repurposed, and emerging therapeutic targets that address the immune-inflammatory axis in endothelial dysfunction.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| |
Collapse
|
7
|
Zhang W, Wang Q, Liu H, Hong F, Tang Q, Hu C, Xu T, Lu H, Ye L, Zhu Y, Song L. Systemic inflammation markers and the prevalence of hypertension in 8- to 17-year-old children and adolescents: A NHANES cross-sectional study. Nutr Metab Cardiovasc Dis 2025; 35:103727. [PMID: 39490278 DOI: 10.1016/j.numecd.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS The recent emphasis on systemic inflammation markers has focused primarily on their association with cardiac disorders, particularly the prevalence of hypertension, in adults but not children and adolescents. This research aimed to explore the associations between systemic inflammation markers and the occurrence of hypertension in 8- to 17-year-old children and adolescents in the United States. METHODS AND RESULTS Data from 6095 participants under 18 years of age were obtained from the National Health and Nutritional Examination Survey (NHANES: 1999-2020). This study examined the associations between the incidence of hypertension and four indicators of systemic inflammation: the systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR). Multivariate logistic regression analysis results are represented as odds ratios (ORs) and 95 % confidence intervals (CIs), and subgroup analyses were conducted to further explore associations. After fully adjusting for potential confounding covariates, the SII, NLR, and PLR were positively associated with hypertension. Compared with individuals in the bottom quartiles, those in the top SII, NLR, and PLR quartiles were 2.12, 2.11, and 1.57 times more likely to have hypertension, respectively. Conversely, the LMR was negatively associated with hypertension incidence, particularly among those in the highest LMR quartiles (OR = 0.59, 95 % CI = 0.39-0.88; P = 0.009). Subgroup analyses revealed that the four indicators exhibited strong correlations with hypertension in male subjects. CONCLUSION This study revealed significant relationships between systemic inflammatory markers and hypertension incidence, highlighting the potential of these markers as hypertension risk indicators, particularly among male patients.
Collapse
Affiliation(s)
- Weiyan Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China; Children's Hospital of Soochow University, Jiangsu, China
| | - Qingfeng Wang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, China
| | - Hui Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, China
| | - Fei Hong
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Qingying Tang
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Caiyu Hu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Ting Xu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Hongyi Lu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Lei Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Yuanyuan Zhu
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China
| | - Lei Song
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, China.
| |
Collapse
|
8
|
Jang S, Kim CW, Olarinoye ZY, Akter S, Kim I. Increased lamina propria B cells play roles in fructose-induced hypertension of Dahl salt-sensitive rats. Life Sci 2025; 361:123314. [PMID: 39675553 DOI: 10.1016/j.lfs.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
AIMS Although the immune system participates in the development of hypertension, the proportional contributions of distinct immune cells remain poorly understood. With the development of transcriptomics, we can profile the transcriptomes of individual immune cells and assess the relative contribution of each immune cell to the development of hypertension. So, we tested the hypothesis that increased lamina propria B cells play roles in fructose-induced hypertension of Dahl salt-sensitive (SS) rats. MATERIALS AND METHODS Eight-week-old Dahl SS and Dahl salt-resistant (SR) male rats were divided into four groups; each group received either tap water (TW) or a 20 % fructose solution (HFS) for 4 weeks. Systolic blood pressure was measured using the tail-cuff method. Single-cell RNA sequencing (scRNA-seq) analysis was performed on lamina propria (LP) cells and peripheral blood mononuclear cells (PBMCs) obtained from the SS and SR rats subjected to either TW or HFS. KEY FINDINGS Results revealed that high-fructose intake induced hypertension in the SS rats but not in the SR rats. It also increased B cells in LPs but not in PBMCs of the SS rats; their subsets showed increased follicular and naïve B cells. Increased lamina propria B cells play roles in fructose-induced hypertension of SS rats. SIGNIFICANCE This finding suggest that targeting B cells could be a potential strategy to mitigate high blood pressure in fructose-induced hypertension.
Collapse
Affiliation(s)
- Sungmin Jang
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Zainab Yetunde Olarinoye
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sadia Akter
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
9
|
Shirokov NE, Enina TN, Zueva EV, Yaroslavskaya EI, Krinochkin DV, Musikhina NA, Petelina TI, Gapon LI. Relationship Between the Biomarkers of Collagen Regulation and Echocardiography Parameters in Patients With Heart Failure With Preserved Ejection Fraction. KARDIOLOGIIA 2024; 64:51-58. [PMID: 39784133 DOI: 10.18087/cardio.2024.12.n2706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/11/2024] [Indexed: 01/12/2025]
Abstract
AIM To study the relationship between laboratory markers and echocardiography (EchoCG) parameters in heart failure with preserved ejection fraction (HFpEF) depending on the results of the diastolic stress test (DST). MATERIAL AND METHODS The diagnostic algorithm provided by the current guidelines for the assessment of left ventricular (LV) diastolic function was used to select patients. If there were not enough criteria to make a conclusion about increased LV filling pressure (FP) based on standard resting echocardiography data in patients with arterial hypertension and ischemic heart disease, DST was performed to detect HFpEF. 80 patients (50.0% men, mean age 66.3±5.4 years) were included. Group 1 consisted of 41 patients with a positive DST, and group 2 included 39 patients with a negative DST. Concentrations of the markers of immune inflammation, endothelial dysfunction, collagen homeostasis, and myocardial stress were measured. RESULTS The DST showed significant differences in the E/e' ratio (15.1 [13.4; 15.9] in group 1 and 9.5 [7.9; 10.3] in group 2, respectively, p<0.001) and the diastolic functional reserve index (DFRI) (9.8 [6.8; 14.0] and 21.0 [13.0; 29.0], p < 0.001). Resting EchoCG revealed significant differences in the left atrial reservoir strain (LASr) (22.8 [19.6; 25.6]% and 28.0 [24.8; 30.2]%, p<0.001) and the left atrial stiffness index (LASI) (0.50 [0.40; 0.57] and 0.34 [0.27; 0.41], p<0.001). In patients with HFpEF, the laboratory parameters of collagen regulation had the greatest number of relationships. Correlations were found between the concentrations of matrix metalloproteinase-9 and other biomarkers, including interleukin-10 (IL-10) (r=0.311; p=0.048), myeloperoxidase (r=0.382; p=0.014), N-terminal propeptide of procollagen type I (procollagen I N-terminal propeptide, PINP) (r=0.722; p<0.001) and type III (r=0.591; p<0.001), C-terminal propeptide of procollagen type I (r=0.330; p=0.035), tissue inhibitor of metalloproteinases type 1 (r=0.410; p=0.008), EchoCG parameters, including left atrial volume index (LAVI) (r=0.414; p=0.007) and DFRI (r=0.354; p=0.025). In addition, correlations were found for the concentrations of PINP with IL-10 (r=0.401; p=0.009) and endothelin-1 (r= -0.337; p=0.031); PINP with LAVI (r=0.498; p=0.001) and DFRI (r=0.420; p=0.007). CONCLUSION Patients with HFpEF have a greater number of relationships between markers of collagen homeostasis disorders and EchoCG parameters characterizing an increase in LV FP.
Collapse
Affiliation(s)
- N E Shirokov
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| | - T N Enina
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| | - E V Zueva
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| | - E I Yaroslavskaya
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| | - D V Krinochkin
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| | - N A Musikhina
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| | - T I Petelina
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| | - L I Gapon
- Tyumen Cardiological Research Center, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk
| |
Collapse
|
10
|
Feng X, Cao F, Wu X, Xie W, Wang P, Jiang H. Targeting extracellular matrix stiffness for cancer therapy. Front Immunol 2024; 15:1467602. [PMID: 39697341 PMCID: PMC11653020 DOI: 10.3389/fimmu.2024.1467602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
The physical characteristics of the tumor microenvironment (TME) include solid stress, interstitial fluid pressure, tissue stiffness and microarchitecture. Among them, abnormal changes in tissue stiffness hinder drug delivery, inhibit infiltration of immune killer cells to the tumor site, and contribute to tumor resistance to immunotherapy. Therefore, targeting tissue stiffness to increase the infiltration of drugs and immune cells can offer a powerful support and opportunities to improve the immunotherapy efficacy in solid tumors. In this review, we discuss the mechanical properties of tumors, the impact of a stiff TME on tumor cells and immune cells, and the strategies to modulate tumor mechanics.
Collapse
Affiliation(s)
- Xiuqin Feng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fujun Cao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangji Wu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenyan Xie
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Jiang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Schreiber S, Arndt P, Morton L, Garza AP, Müller P, Neumann K, Mattern H, Dörner M, Bernal J, Vielhaber S, Meuth SG, Dunay IR, Dityatev A, Henneicke S. Immune system activation and cognitive impairment in arterial hypertension. Am J Physiol Cell Physiol 2024; 327:C1577-C1590. [PMID: 39495252 PMCID: PMC11684865 DOI: 10.1152/ajpcell.00219.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Chronic arterial hypertension disrupts the integrity of the cerebral microvasculature, doubling the risk of age-related dementia. Despite sufficient antihypertensive therapy in still a significant proportion of individuals blood pressure lowering alone does not preserve cognitive health. Accumulating evidence highlights the role of inflammatory mechanisms in the pathogenesis of hypertension. In this review, we introduce a temporal framework to explore how early immune system activation and interactions at neurovascular-immune interfaces pave the way to cognitive impairment. The overall paradigm suggests that prohypertensive stimuli induce mechanical stress and systemic inflammatory responses that shift peripheral and meningeal immune effector mechanisms toward a proinflammatory state. Neurovascular-immune interfaces in the brain include a dysfunctional blood-brain barrier, crossed by peripheral immune cells; the perivascular space, in which macrophages respond to cerebrospinal fluid- and blood-derived immune regulators; and the meningeal immune reservoir, particularly T cells. Immune responses at these interfaces bridge peripheral and neurovascular unit inflammation, directly contributing to impaired brain perfusion, clearance of toxic metabolites, and synaptic function. We propose that deep immunophenotyping in biofluids together with advanced neuroimaging could aid in the translational determination of sequential immune and brain endotypes specific to arterial hypertension. This could close knowledge gaps on how and when immune system activation transits into neurovascular dysfunction and cognitive impairment. In the future, targeting specific immune mechanisms could prevent and halt hypertension disease progression before clinical symptoms arise, addressing the need for new interventions against one of the leading threats to cognitive health.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patrick Müller
- Department of Cardiology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Neumann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Marc Dörner
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Jose Bernal
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ildiko R Dunay
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Solveig Henneicke
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association, Magdeburg, Germany
| |
Collapse
|
12
|
Rameshrad M, Naraki K, Memariani Z, Hosseinzadeh H. Protective effects of Panax ginseng as a medical food against chemical toxic agents: molecular and cellular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8395-8419. [PMID: 38861010 DOI: 10.1007/s00210-024-03186-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Humans are exposed to different types of toxic agents, which may directly induce organ malfunction or indirectly alter gene expression, leading to carcinogenic and teratogenic effects, and eventually death. Ginseng (Panax ginseng) is the most valuable of all medicinal herbs. Nevertheless, specific data on the antidotal mechanisms of this golden herb are currently unavailable. Based on the findings of in vitro, in vivo, and clinical studies, this review focused on the probable protective mechanisms of ginseng and its major components, such as protopanaxadiols, protopanaxatriols, and pentacyclic ginsenosides against various chemical toxic agents. Relevant articles from 2000 to 2023 were gathered from PubMed/Medline, Scopus, and Google Scholar. This literature review shows that P. ginseng and its main components have protective and antidotal effects against the deteriorative effects of pesticides, pharmaceutical agents, including acetaminophen, doxorubicin, isoproterenol, cyclosporine A, tacrolimus, and gentamicin, ethanol, and some chemical agents. These improvements occur through multi-functional mechanisms. They exhibit antioxidant activity, induce anti-inflammatory action, and block intrinsic and extrinsic apoptotic pathways. However, relevant clinical trials are necessary to validate the mentioned effects and translate the knowledge from basic science to human benefit, fulfilling the fundamental goal of all toxicologists.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Saleem M, Aden LA, Mutchler AL, Basu C, Ertuglu LA, Sheng Q, Penner N, Hemnes AR, Park JH, Ishimwe JA, Laffer CL, Elijovich F, Wanjalla CN, de la Visitacion N, Kastner PD, Albritton CF, Ahmad T, Haynes AP, Yu J, Graber MK, Yasmin S, Wagner KU, Sayeski PP, Hatzopoulos AK, Gamazon ER, Bick AG, Kleyman TR, Kirabo A. Myeloid-Specific JAK2 Contributes to Inflammation and Salt Sensitivity of Blood Pressure. Circ Res 2024; 135:890-909. [PMID: 39263750 PMCID: PMC11466692 DOI: 10.1161/circresaha.124.323595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHODS We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Luul A Aden
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Ashley L Mutchler
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Chitra Basu
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Lale A Ertuglu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Quanhu Sheng
- Department of Biostatistics (Q.S.), Vanderbilt University Medical Center, Nashville, TN
| | - Niki Penner
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine (N.P., A.R.H.)
| | - Jennifer H Park
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Cheryl L Laffer
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | | | - Celestine N Wanjalla
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Nestor de la Visitacion
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Paul D Kastner
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Claude F Albritton
- School of Graduate Studies, Meharry Medical College, Nashville, TN (C.F.A.)
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Punjab, Pakistan (T.A.)
| | - Alexandria P Haynes
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Justin Yu
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Meghan K Graber
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Sharia Yasmin
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Kay-Uwe Wagner
- Wayne State University, Department of Oncology and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI (K.-U.W.)
| | - Peter P Sayeski
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville (P.P.S.)
| | - Antonis K Hatzopoulos
- Department of Medicine, Division of Cardiovascular Medicine (C.B., A.K.H.), Vanderbilt University Medical Center, Nashville, TN
| | - Eric R Gamazon
- Department of Medicine, Division of Genetic Medicine (C.B., E.R.G.), Vanderbilt University Medical Center, Nashville, TN
| | - Alexander G Bick
- Division of Genetic Medicine (A.G.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, PA (T.R.K.)
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology (M.S., L.A.A., A.L.M., L.A.E., J.H.P., J.A.I., C.L.L., C.N.W., N.d.l.V., P.D.K., T.A., A.P.H., J.Y., M.K.G., S.Y., A.K.), Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation (A.K.)
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN (A.K.)
| |
Collapse
|
14
|
Yang J, Sun R, Pei Z. Improvement of the Immunity System Through Sports: Novel Regulatory Mechanisms for Hypertension. Rev Cardiovasc Med 2024; 25:385. [PMID: 39484112 PMCID: PMC11522756 DOI: 10.31083/j.rcm2510385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 11/03/2024] Open
Abstract
Hypertension and its resulting target organ damage is a complex process associated with a range of physiological and molecular factors, including immune regulation. The profound effects of exercise on normal immune system function and the development and progression of hypertension are well known. This review aims to create new avenues for preventing and treating hypertension and its associated target organ damage. This narrative review emphasizes the role of exercise training in the prevention/treatment of hypertension development through immune response modulation and presents current perspectives on the available scientific evidence. Several studies have shown that exercise regulates hypertension by altering immune cells, which is partly attributable to the anti-inflammatory effects of exercise training. Regular exercise modifies immune modulation and could represent a new mechanism for regulating hypertension. Although the utilization of exercise training and the immune system in conjunction for treating and preventing hypertension is still in its early stages, current scientific literature indicates numerous potential physiological links between exercise training, the immune system, and hypertension.
Collapse
Affiliation(s)
- Jin Yang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
| | - Rui Sun
- Emergency Department, The First Affiliated Hospital of Dalian Medical University, 116011 Dalian, Liaoning, China
| | - Zuowei Pei
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, 116033 Dalian, Liaoning, China
- Faculty of Medicine, Dalian University of Technology, 116024 Dalian, Liaoning, China
| |
Collapse
|
15
|
Zhou Y, Xu Y, Tian T, Xu Y. Antihypertensive and antioxidant effects of food-derived bioactive peptides in spontaneously hypertensive rats. Food Sci Nutr 2024; 12:8200-8210. [PMID: 39479630 PMCID: PMC11521693 DOI: 10.1002/fsn3.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 11/02/2024] Open
Abstract
Hypertension significantly impacts the survival and quality of life of animals, often leading to chronic kidney failure. Current clinical drugs used to manage hypertension carry the risk of causing adverse reactions. In contrast, certain natural peptides have demonstrated the ability to safely reduce blood pressure by inhibiting the production of angiotensin. We administered four biologically active peptide solutions to spontaneously hypertensive rats: derived from corn, wheat, egg white, and soybean. The efficacy of these peptides in reducing blood pressure was assessed through regular measurements of systolic pressure. Additionally, we analyzed levels of angiotensin-converting enzyme and angiotensin 2 using immunohistochemistry and ELISA in vivo. The indicators of oxidative stress and inflammation in hypertensive rats were evaluated using qRT-PCR and ELISA, respectively. Both wheat (from 182.5 ± 12.26 mmHg at day 0 to 168.86 ± 5.86 mmHg at day 20, p = .0435) and soybean (from 189 ± 2.19 mmHg at day 0 to 178.25 ± 5.14 mmHg at day 20, p = .0017) notably lowered systolic blood pressure compared to their starting systolic blood pressures in spontaneously hypertensive rats. Both wheat and soybean peptides significantly reduced plasma ANG II levels, akin to captopril's effect. Wheat peptides additionally exhibited antioxidant properties. Only the corn peptide showed a significant increase in transcript levels of the proinflammatory factors IL-6 and TNF-α. At the protein level, all four kinds of peptides significantly elevated IL-6 levels while inhibiting TNF-α secretion. This study demonstrates that wheat peptides and soybean peptides administered as dietary supplements exhibit significant hypotensive and antioxidant effects.
Collapse
Affiliation(s)
| | - Yixin Xu
- Nourse Centre for Pet NutritionWuhuChina
| | | | - Yanping Xu
- Nourse Centre for Pet NutritionWuhuChina
| |
Collapse
|
16
|
Kim JW, Kim JY, Bae HE, Kim CD. Biophysically stressed vascular smooth muscle cells express MCP-1 via a PDGFR-β-HMGB1 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:449-456. [PMID: 39198225 PMCID: PMC11361998 DOI: 10.4196/kjpp.2024.28.5.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) under biophysical stress play an active role in the progression of vascular inflammation, but the precise mechanisms are unclear. This study examined the cellular expression of monocyte chemoattractant protein 1 (MCP-1) and its related mechanisms using cultured rat aortic VSMCs stimulated with mechanical stretch (MS, equibiaxial cyclic stretch, 60 cycles/ min). When the cells were stimulated with 10% MS, MCP-1 expression was markedly increased compared to those in the cells stimulated with low MS intensity (3% or 5%). An enzyme-linked immunosorbent assay revealed an increase in HMGB1 released into culture media from the cells stimulated with 10% MS compared to those stimulated with 3% MS. A pretreatment with glycyrrhizin, a HMGB1 inhibitor, resulted in the marked attenuation of MCP-1 expression in the cells stimulated with 10% MS, suggesting a key role of HMGB1 on MCP-1 expression. Western blot analysis revealed higher PDGFR-α and PDGFR-β expression in the cells stimulated with 10% MS than 3% MS-stimulated cells. In the cells deficient of PDGFR-β using siRNA, but not PDGFR-α, HMGB1 released into culture media was significantly attenuated in the 10% MS-stimulated cells. Similarly, MCP-1 expression induced in 10% MS-stimulated cells was also attenuated in cells deficient of PDGFR-β. Overall, the PDGFR-β signaling plays a pivotal role in the increased expression of MCP-1 in VSMCs stressed with 10% MS. Therefore, targeting PDGFR-β signaling in VSMCs might be a promising therapeutic strategy for vascular complications in the vasculatures under excessive biophysical stress.
Collapse
Affiliation(s)
- Ji Won Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ju Yeon Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Hee Eun Bae
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
| |
Collapse
|
17
|
Li X, Ding H, Feng G, Huang Y. Role of angiotensin converting enzyme in pathogenesis associated with immunity in cardiovascular diseases. Life Sci 2024; 352:122903. [PMID: 38986897 DOI: 10.1016/j.lfs.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Angiotensin converting enzyme (ACE) is not only a critical component in the renin-angiotensin system (RAS), but also suggested as an important mediator for immune response and activity, such as immune cell mobilization, metabolism, biogenesis of immunoregulatory molecules, etc. The chronic duration of cardiovascular diseases (CVD) has been increasingly considered to be triggered by uncontrolled pathologic immune reactions from myeloid cells and lymphocytes. Considering the potential anti-inflammatory effect of the traditional antihypertensive ACE inhibitor (ACEi), we attempt to elucidate whether ACE and its catalytically relevant substances as well as signaling pathways play a role in the immunity-related pathogenesis of common CVD, such as arterial hypertension, atherosclerosis and arrythmias. ACEi was also reported to benefit the prognoses of COVID-19-positive patients with CVD, and COVID-19 disease with preexisting CVD or subsequent cardiovascular damage is featured by a significant influx of immune cells and proinflammatory molecules, suggesting that ACE may also participate in COVID-19 induced cardiovascular injury, because COVID-19 disease basically triggers an overactive pathologic immune response. Hopefully, the ACE inhibition and manipulation of those associated bioactive signals could supplement the current medicinal management of various CVD and bring greater benefit to patients' cardiovascular health.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Huasheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaoke Feng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Duni A, Kitsos A, Bechlioulis A, Lakkas L, Markopoulos G, Tatsis V, Koutlas V, Tzalavra E, Baxevanos G, Vartholomatos G, Mitsis M, Naka KK, Dounousi E. Identification of Novel Independent Correlations between Cellular Components of the Immune System and Strain-Related Indices of Myocardial Dysfunction in CKD Patients and Kidney Transplant Recipients without Established Cardiovascular Disease. Int J Mol Sci 2024; 25:9162. [PMID: 39273110 PMCID: PMC11395156 DOI: 10.3390/ijms25179162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The role of immune system components in the development of myocardial remodeling in chronic kidney disease (CKD) and kidney transplantation remains an open question. Our aim was to investigate the associations between immune cell subpopulations in the circulation of CKD patients and kidney transplant recipients (KTRs) with subclinical indices of myocardial performance. We enrolled 44 CKD patients and 38 KTRs without established cardiovascular disease. A selected panel of immune cells was measured by flow cytometry. Classical and novel strain-related indices of ventricular function were measured by speckle-tracking echocardiography at baseline and following dipyridamole infusion. In CKD patients, the left ventricular (LV) relative wall thickness correlated with the CD14++CD16- monocytes (β = 0.447, p = 0.004), while the CD14++CD16+ monocytes were independent correlates of the global radial strain (β = 0.351, p = 0.04). In KTRs, dipyridamole induced changes in global longitudinal strain correlated with CD14++CD16+ monocytes (β = 0.423, p = 0.009) and CD4+ T-cells (β = 0.403, p = 0.01). LV twist and untwist were independently correlated with the CD8+ T-cells (β = 0.405, p = 0.02 and β = -0.367, p = 0.03, respectively) in CKD patients, whereas the CD14++CD16+ monocytes were independent correlates of LV twist and untwist in KTRs (β = 0.405, p = 0.02 and β = -0.367, p = 0.03, respectively). Immune cell subsets independently correlate with left ventricular strain and torsion-related indices in CKD patients and KTRs without established CVD.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
- Kidney Transplant Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Athanasios Kitsos
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
- Kidney Transplant Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Aris Bechlioulis
- Second Department of Cardiology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Lampros Lakkas
- Second Department of Cardiology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Georgios Markopoulos
- Laboratory of Haematology-Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Vasileios Tatsis
- Kidney Transplant Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Vasileios Koutlas
- Kidney Transplant Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Eirini Tzalavra
- Kidney Transplant Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Gerasimos Baxevanos
- Laboratory of Haematology-Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 455 00 Ioannina, Greece
- Department of Internal Medicine, General Hospital of Ioannina, G. Chatzikosta, 454 45 Ioannina, Greece
| | - Georgios Vartholomatos
- Laboratory of Haematology-Unit of Molecular Biology and Translational Flow Cytometry, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Michail Mitsis
- Kidney Transplant Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Katerina K Naka
- Second Department of Cardiology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
- Kidney Transplant Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, University of Ioannina, 455 00 Ioannina, Greece
| |
Collapse
|
19
|
Nguyen BA, Alexander MR, Harrison DG. Immune mechanisms in the pathophysiology of hypertension. Nat Rev Nephrol 2024; 20:530-540. [PMID: 38658669 PMCID: PMC12060254 DOI: 10.1038/s41581-024-00838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Hypertension is a leading risk factor for morbidity and mortality worldwide. Despite current anti-hypertensive therapies, most individuals with hypertension fail to achieve adequate blood pressure control. Moreover, even with adequate control, a residual risk of cardiovascular events and associated organ damage remains. These findings suggest that current treatment modalities are not addressing a key element of the underlying pathology. Emerging evidence implicates immune cells as key mediators in the development and progression of hypertension. In this Review, we discuss our current understanding of the diverse roles of innate and adaptive immune cells in hypertension, highlighting key findings from human and rodent studies. We explore mechanisms by which these immune cells promote hypertensive pathophysiology, shedding light on their multifaceted involvement. In addition, we highlight advances in our understanding of autoimmunity, HIV and immune checkpoints that provide valuable insight into mechanisms of chronic and dysregulated inflammation in hypertension.
Collapse
Affiliation(s)
- Bianca A Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Matthew R Alexander
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Harrison DG, Patrick DM. Immune Mechanisms in Hypertension. Hypertension 2024; 81:1659-1674. [PMID: 38881474 PMCID: PMC11254551 DOI: 10.1161/hypertensionaha.124.21355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
It is now apparent that immune mediators including complement, cytokines, and cells of the innate and adaptive immune system contribute not only to blood pressure elevation but also to the target organ damage that occurs in response to stimuli like high salt, aldosterone, angiotensin II, and sympathetic outflow. Alterations of vascular hemodynamic factors, including microvascular pulsatility and shear forces, lead to vascular release of mediators that affect myeloid cells to become potent antigen-presenting cells and promote T-cell activation. Research in the past 2 decades has defined specific biochemical and molecular pathways that are engaged by these stimuli and an emerging paradigm is these not only lead to immune activation, but that products of immune cells, including cytokines, reactive oxygen species, and metalloproteinases act on target cells to further raise blood pressure in a feed-forward fashion. In this review, we will discuss these molecular and pathophysiological events and discuss clinical interventions that might prove effective in quelling this inflammatory process in hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Nashville, TN 37212
| |
Collapse
|
21
|
Totoń-Żurańska J, Mikolajczyk TP, Saju B, Guzik TJ. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024; 138:817-850. [PMID: 38920058 DOI: 10.1042/cs20220797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Optimal vascular structure and function are essential for maintaining the physiological functions of the cardiovascular system. Vascular remodelling involves changes in vessel structure, including its size, shape, cellular and molecular composition. These changes result from multiple risk factors and may be compensatory adaptations to sustain blood vessel function. They occur in diverse cardiovascular pathologies, from hypertension to heart failure and atherosclerosis. Dynamic changes in the endothelium, fibroblasts, smooth muscle cells, pericytes or other vascular wall cells underlie remodelling. In addition, immune cells, including macrophages and lymphocytes, may infiltrate vessels and initiate inflammatory signalling. They contribute to a dynamic interplay between cell proliferation, apoptosis, migration, inflammation, and extracellular matrix reorganisation, all critical mechanisms of vascular remodelling. Molecular pathways underlying these processes include growth factors (e.g., vascular endothelial growth factor and platelet-derived growth factor), inflammatory cytokines (e.g., interleukin-1β and tumour necrosis factor-α), reactive oxygen species, and signalling pathways, such as Rho/ROCK, MAPK, and TGF-β/Smad, related to nitric oxide and superoxide biology. MicroRNAs and long noncoding RNAs are crucial epigenetic regulators of gene expression in vascular remodelling. We evaluate these pathways for potential therapeutic targeting from a clinical translational perspective. In summary, vascular remodelling, a coordinated modification of vascular structure and function, is crucial in cardiovascular disease pathology.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz P Mikolajczyk
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Blessy Saju
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| | - Tomasz J Guzik
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
22
|
Das A, Smith RJ, Andreadis ST. Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts. Cardiovasc Res 2024; 120:839-854. [PMID: 38742656 PMCID: PMC11218695 DOI: 10.1093/cvr/cvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Cell-free tissue-engineered vascular grafts provide a promising alternative to treat cardiovascular disease, but timely endothelialization is essential for ensuring patency and proper functioning post-implantation. Recent studies from our lab showed that blood cells like monocytes (MCs) and macrophages (Mϕ) may contribute directly to cellularization and regeneration of bioengineered arteries in small and large animal models. While MCs and Mϕ are leucocytes that are part of the innate immune response, they share common developmental origins with endothelial cells (ECs) and are known to play crucial roles during vessel formation (angiogenesis) and vessel repair after inflammation/injury. They are highly plastic cells that polarize into pro-inflammatory and anti-inflammatory phenotypes upon exposure to cytokines and differentiate into other cell types, including EC-like cells, in the presence of appropriate chemical and mechanical stimuli. This review focuses on the developmental origins of MCs and ECs; the role of MCs and Mϕ in vessel repair/regeneration during inflammation/injury; and the role of chemical signalling and mechanical forces in Mϕ inflammation that mediates vascular graft regeneration. We postulate that comprehensive understanding of these mechanisms will better inform the development of strategies to coax MCs/Mϕ into endothelializing the lumen and regenerate the smooth muscle layers of cell-free bioengineered arteries and veins that are designed to treat cardiovascular diseases and perhaps the native vasculature as well.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY 14203, USA
- Cell, Gene and Tissue Engineering (CGTE) Center, University at Buffalo, The State University of New York, 813 Furnas Hall, Buffalo, NY 14260-4200, USA
| |
Collapse
|
23
|
Shao HH, Yin RX. Pathogenic mechanisms of cardiovascular damage in COVID-19. Mol Med 2024; 30:92. [PMID: 38898389 PMCID: PMC11186295 DOI: 10.1186/s10020-024-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND COVID-19 is a new infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Since the outbreak in December 2019, it has caused an unprecedented world pandemic, leading to a global human health crisis. Although SARS CoV-2 mainly affects the lungs, causing interstitial pneumonia and severe acute respiratory distress syndrome, a number of patients often have extensive clinical manifestations, such as gastrointestinal symptoms, cardiovascular damage and renal dysfunction. PURPOSE This review article discusses the pathogenic mechanisms of cardiovascular damage in COVID-19 patients and provides some useful suggestions for future clinical diagnosis, treatment and prevention. METHODS An English-language literature search was conducted in PubMed and Web of Science databases up to 12th April, 2024 for the terms "COVID-19", "SARS CoV-2", "cardiovascular damage", "myocardial injury", "myocarditis", "hypertension", "arrhythmia", "heart failure" and "coronary heart disease", especially update articles in 2023 and 2024. Salient medical literatures regarding the cardiovascular damage of COVID-19 were selected, extracted and synthesized. RESULTS The most common cardiovascular damage was myocarditis and pericarditis, hypertension, arrhythmia, myocardial injury and heart failure, coronary heart disease, stress cardiomyopathy, ischemic stroke, blood coagulation abnormalities, and dyslipidemia. Two important pathogenic mechanisms of the cardiovascular damage may be direct viral cytotoxicity as well as indirect hyperimmune responses of the body to SARS CoV-2 infection. CONCLUSIONS Cardiovascular damage in COVID-19 patients is common and portends a worse prognosis. Although the underlying pathophysiological mechanisms of cardiovascular damage related to COVID-19 are not completely clear, two important pathogenic mechanisms of cardiovascular damage may be the direct damage of the SARSCoV-2 infection and the indirect hyperimmune responses.
Collapse
Affiliation(s)
- Hong-Hua Shao
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Rui-Xing Yin
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China.
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
24
|
Li X, Li Q, Wang L, Ding H, Wang Y, Liu Y, Gong T. The interaction between oral microbiota and gut microbiota in atherosclerosis. Front Cardiovasc Med 2024; 11:1406220. [PMID: 38932989 PMCID: PMC11199871 DOI: 10.3389/fcvm.2024.1406220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis (AS) is a complex disease caused by multiple pathological factors threatening human health-the pathogenesis is yet to be fully elucidated. In recent years, studies have exhibited that the onset of AS is closely involved with oral and gut microbiota, which may initiate or worsen atherosclerotic processes through several mechanisms. As for how the two microbiomes affect AS, existing mechanisms include invading plaque, producing active metabolites, releasing lipopolysaccharide (LPS), and inducing elevated levels of inflammatory mediators. Considering the possible profound connection between oral and gut microbiota, the effect of the interaction between the two microbiomes on the initiation and progression of AS has been investigated. Findings are oral microbiota can lead to gut dysbiosis, and exacerbate intestinal inflammation. Nevertheless, relevant research is not commendably refined and a concrete review is needed. Hence, in this review, we summarize the most recent mechanisms of the oral microbiota and gut microbiota on AS, illustrate an overview of the current clinical and epidemiological evidence to support the bidirectional connection between the two microbiomes and AS.
Collapse
Affiliation(s)
- Xinsi Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Qian Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Li Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Huifen Ding
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yizhong Wang
- Department of Research & Development, Zhejiang Charioteer Pharmaceutical Co., Ltd, Taizhou, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Gong
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal KeyLaboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Department of Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Gedney JR, Mattia V, Figueroa M, Barksdale C, Fannin E, Silverman J, Xiong Y, Mukherjee R, Jones JA, Ruddy JM. Biomechanical dysregulation of SGK-1 dependent aortic pathologic markers in hypertension. Front Cardiovasc Med 2024; 11:1359734. [PMID: 38903966 PMCID: PMC11187291 DOI: 10.3389/fcvm.2024.1359734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction In hypertension (HTN), biomechanical stress may drive matrix remodeling through dysfunctional VSMC activity. Prior evidence has indicated VSMC tension-induced signaling through the serum and glucocorticoid inducible kinase-1 (SGK-1) can impact cytokine abundance. Here, we hypothesize that SGK-1 impacts production of additional aortic pathologic markers (APMs) representing VSMC dysfunction in HTN. Methods Aortic VSMC expression of APMs was quantified by QPCR in cyclic biaxial stretch (Stretch) +/- AngiotensinII (AngII). APMs were selected to represent VSMC dedifferentiated transcriptional activity, specifically Interleukin-6 (IL-6), Cathepsin S (CtsS), Cystatin C (CysC), Osteoprotegerin (OPG), and Tenascin C (TNC). To further assess the effect of tension alone, abdominal aortic rings from C57Bl/6 WT mice were held in a myograph at experimentally derived optimal tension (OT) or OT + 30% +/-AngII. Dependence on SGK-1 was assessed by treating with EMD638683 (SGK-1 inhibitor) and APMs were measured by QPCR. Then, WT and smooth muscle cell specific SGK-1 heterozygous knockout (SMC-SGK-1KO+/-) mice had AngII-induced HTN. Systolic blood pressure and mechanical stress parameters were assessed on Day 0 and Day 21. Plasma was analyzed by ELISA to quantify APMs. Statistical analysis was performed by ANOVA. Results In cultured aortic VSMCs, expression of all APMs was increased in response to biomechanical stimuli (Stretch +/-AngII,). Integrating the matrix contribution to signal transduction in the aortic rings led to IL-6 and CysC demonstrating SGK-1 dependence in response to elevated tension and interactive effect with concurrent AngII stimulation. CtsS and TNC, on the other hand, primarily responded to AngII, and OPG expression was unaffected in aortic ring experimentation. Both mouse strains had >30% increase in blood pressure with AngII infusion, reduced aortic distensibility and increased PPV, indicating increased aortic stiffness. In WT + AngII mice, IL-6, CtsS, CysC, and TNC plasma levels were significantly elevated, but these APMs were unaffected by HTN in the SMC-SGK-1KO+/- +AngII mice, suggesting SGK-1 plays a major role in VSMC biomechanical signaling to promote dysfunctional production of selected APMs. Conclusion In HTN, changes in the plasma levels of markers associated with aortic matrix homeostasis can reflect remodeling driven by mechanobiologic signaling in dysfunctional VSMCs, potentially through the activity of SGK-1. Further defining these pathways may identify therapeutic targets to reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- J. Ryan Gedney
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Victoria Mattia
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Mario Figueroa
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Christian Barksdale
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ethan Fannin
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jonah Silverman
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Ying Xiong
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Rupak Mukherjee
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jeffrey A. Jones
- Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Healthcare System, Charleston, SC, United States
| | - Jean Marie Ruddy
- Division of Vascular Surgery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
26
|
Kim JY, Kim CW, Oh SY, Jang S, Yetunde OZ, Kim BA, Hong SH, Kim I. Akkermansia muciniphila extracellular vesicles have a protective effect against hypertension. Hypertens Res 2024; 47:1642-1653. [PMID: 38503939 DOI: 10.1038/s41440-024-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/14/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
Akkermansia muciniphila (Am) shows a beneficial role as a probiotic in the treatment of metabolic syndrome. However, the mechanism remains to be elucidated. We tested the hypothesis that Am extracellular vesicles (AmEVs) have a protective effect against hypertension. Extracellular vesicles purified from anaerobically cultured Am were characterized by nanoparticle tracking analysis, transmission electron microscopy, and silver stain after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). AmEVs (1.0 × 1010 log particles/L) or vehicles were added into organ baths to induce vasorelaxation. In addition, AmEVs (1.0 × 108 or 1.0 × 109 particles/kg) or vehicles were injected into the tail veins of Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) weekly for 4 weeks. Peripheral blood mononuclear cells (PBMCs) and splenocytes isolated from both rat strains were analyzed by flow cytometry, RT-qPCR, and western blot. AmEVs affected neither vascular contraction nor endothelial relaxation in thoracic aortas. Moreover, AmEVs protected against the development of hypertension in SHRs without a serious adverse reaction. Additionally, AmEVs increased the population of T regulatory (Treg) cells and tended to reduce proinflammatory cytokines. These results indicate that AmEVs have a protective effect against hypertension without a serious adverse reaction. Therefore, it is foreseen that AmEVs may be utilized as a novel therapeutic for the treatment of hypertension.
Collapse
Affiliation(s)
- Jee Young Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Su Young Oh
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Olarinoye Zainab Yetunde
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Bo A Kim
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Inkyeom Kim
- Department of Pharmacology, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
27
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
29
|
Krishnan J, Hennen EM, Ao M, Kirabo A, Ahmad T, de la Visitación N, Patrick DM. NETosis Drives Blood Pressure Elevation and Vascular Dysfunction in Hypertension. Circ Res 2024; 134:1483-1494. [PMID: 38666386 PMCID: PMC11116040 DOI: 10.1161/circresaha.123.323897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are composed of DNA, enzymes, and citrullinated histones that are expelled by neutrophils in the process of NETosis. NETs accumulate in the aorta and kidneys in hypertension. PAD4 (protein-arginine deiminase-4) is a calcium-dependent enzyme that is essential for NETosis. TRPV4 (transient receptor potential cation channel subfamily V member 4) is a mechanosensitive calcium channel expressed in neutrophils. Thus, we hypothesize that NETosis contributes to hypertension via NET-mediated endothelial cell (EC) dysfunction. METHODS NETosis-deficient Padi4-/- mice were treated with Ang II (angiotensin II). Blood pressure was measured by radiotelemetry, and vascular reactivity was measured with wire myography. Neutrophils were cultured with or without ECs and exposed to normotensive or hypertensive uniaxial stretch. NETosis was measured by flow cytometry. ECs were treated with citrullinated histone H3, and gene expression was measured by quantitative reverse transcription PCR. Aortic rings were incubated with citrullinated histone H3, and wire myography was performed to evaluate EC function. Neutrophils were treated with the TRPV4 agonist GSK1016790A. Calcium influx was measured using Fluo-4 dye, and NETosis was measured by immunofluorescence. RESULTS Padi4-/- mice exhibited attenuated hypertension, reduced aortic inflammation, and improved EC-dependent vascular relaxation in response to Ang II. Coculture of neutrophils with ECs and exposure to hypertensive uniaxial stretch increased NETosis and accumulation of neutrophil citrullinated histone H3. Histone H3 and citrullinated histone H3 exposure attenuates EC-dependent vascular relaxation. Treatment of neutrophils with the TRPV4 agonist GSK1016790A increases intracellular calcium and NETosis. CONCLUSIONS These observations identify a role of NETosis in the pathogenesis of hypertension. Moreover, they define an important role of EC stretch and TRPV4 as initiators of NETosis. Finally, they define a role of citrullinated histones as drivers of EC dysfunction in hypertension.
Collapse
Affiliation(s)
- Jaya Krishnan
- Division of Clinical Pharmacology, Department of Medicine (J.K., A.K., T.A., N.d.l.V., D.M.P.), Vanderbilt University Medical Center, Nashville, TN
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (E.M.H.)
| | - Mingfang Ao
- Department of Anesthesiology (M.A.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine (J.K., A.K., T.A., N.d.l.V., D.M.P.), Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology (A.K.)
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN (A.K.)
- Vanderbilt Institute for Global Health, Nashville, TN (A.K.)
| | - Taseer Ahmad
- Division of Clinical Pharmacology, Department of Medicine (J.K., A.K., T.A., N.d.l.V., D.M.P.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan (T.A.)
| | - Néstor de la Visitación
- Division of Clinical Pharmacology, Department of Medicine (J.K., A.K., T.A., N.d.l.V., D.M.P.), Vanderbilt University Medical Center, Nashville, TN
- Division of Cardiovascular Medicine, Department of Medicine (D.M.P.), Vanderbilt University Medical Center, Nashville, TN
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine (J.K., A.K., T.A., N.d.l.V., D.M.P.), Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs, Nashville, TN (D.M.P.)
| |
Collapse
|
30
|
Roberts MJ, Hamrouni M, Linsley V, Moorthy A, Bishop NC. Exercise as an anti-inflammatory Therapy in Axial Spondyloarthritis Therapeutic Intervention (EXTASI) study: a randomized controlled trial. Rheumatol Adv Pract 2024; 8:rkae062. [PMID: 38854418 PMCID: PMC11157140 DOI: 10.1093/rap/rkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/19/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Axial SpA (axSpA) is a chronic inflammatory disease, yet despite known anti-inflammatory effects of exercise, the effect of exercise on inflammatory immune cell populations and associated inflammatory profiles in axSpA is unknown. This randomized controlled trial investigated the effect of 12 weeks of walking on symptom severity, cardiometabolic health, inflammatory biomarkers and immune cell populations. Methods Twenty people (60% male) living with axSpA who were on a stable dose of NSAIDs participated. Participants were randomly assigned to control or exercise (30 min of walking five times per week). Participants were invited back every 4 weeks for assessment. Results There was a 0% dropout rate and no adverse events in the exercise group, showing walking exercise was well tolerated. Home-based walking for 12 weeks lowered the proportion of pro-inflammatory monocytes, whereas they increased in the control group. Changes were associated with lower IL-6 and CRP concentrations, lower spinal pain and lower systolic blood pressure in the exercise group, whereas these markers increased in the control group. Reductions in IL-6 and pro-inflammatory monocytes with exercise were independent of lower body fat percentage. Conclusions Supplementing NSAID therapy with walking exercise can improve inflammatory immune profiles in people with axSpA, coinciding with reductions in spinal pain. Importantly, the exercise was well tolerated, suggesting walking exercise can be used as an adjuvant anti-inflammatory therapy for NSAID treatments. This should now be explored in people living with axSpA who have had high enough disease activity to necessitate the prescription of biologic or synthetic DMARD treatments. Trial registration ClinicalTrials.gov (http://clinicaltrials.gov), NCT04368494.
Collapse
Affiliation(s)
- Matthew J Roberts
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research Leicester Biomedical Research Centre, University Hospitals of Leicester, National Health Service Trust and the University of Leicester, Leicester, UK
| | - Malik Hamrouni
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research Leicester Biomedical Research Centre, University Hospitals of Leicester, National Health Service Trust and the University of Leicester, Leicester, UK
| | - Victoria Linsley
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research Leicester Biomedical Research Centre, University Hospitals of Leicester, National Health Service Trust and the University of Leicester, Leicester, UK
| | - Arumugam Moorthy
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Department of Rheumatology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Nicolette C Bishop
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Institute for Health Research Leicester Biomedical Research Centre, University Hospitals of Leicester, National Health Service Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
31
|
Shukla AK, Awasthi K, Usman K, Banerjee M. Role of renin-angiotensin system/angiotensin converting enzyme-2 mechanism and enhanced COVID-19 susceptibility in type 2 diabetes mellitus. World J Diabetes 2024; 15:606-622. [PMID: 38680697 PMCID: PMC11045416 DOI: 10.4239/wjd.v15.i4.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus. It has affected over 768 million people worldwide, resulting in approximately 6900000 deaths. High-risk groups, identified by the Centers for Disease Control and Prevention, include individuals with conditions like type 2 diabetes mellitus (T2DM), obesity, chronic lung disease, serious heart conditions, and chronic kidney disease. Research indicates that those with T2DM face a heightened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals. Examining the renin-angiotensin system (RAS), a vital regulator of blood pressure and pulmonary stability, reveals the significance of the angiotensin-converting enzyme (ACE) and ACE2 enzymes. ACE converts angiotensin-I to the vasoconstrictor angiotensin-II, while ACE2 counters this by converting angiotensin-II to angiotensin 1-7, a vasodilator. Reduced ACE2 expression, common in diabetes, intensifies RAS activity, contributing to conditions like inflammation and fibrosis. Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels, concerns arise regarding the potential elevation of ACE2 receptors on cell membranes, potentially facilitating COVID-19 entry. This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome coronavirus 2 infection and associated complications in T2DM. Potential treatment strategies, including recombinant human ACE2 therapy, broad-spectrum antiviral drugs, and epigenetic signature detection, are discussed as promising avenues in the battle against this pandemic.
Collapse
Affiliation(s)
- Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Komal Awasthi
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Kauser Usman
- Department of Medicine, King Georges’ Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Institute of Advanced Molecular Genetics, and Infectious Diseases (IAMGID), University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
32
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
33
|
Bock F, Dong X, Li S, Viquez OM, Sha E, Tantengco M, Hennen EM, Plosa E, Ramezani A, Brown KL, Whang YM, Terker AS, Arroyo JP, Harrison DG, Fogo A, Brakebusch CH, Pozzi A, Zent R. Rac1 promotes kidney collecting duct repair by mechanically coupling cell morphology to mitotic entry. SCIENCE ADVANCES 2024; 10:eadi7840. [PMID: 38324689 PMCID: PMC10849615 DOI: 10.1126/sciadv.adi7840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.
Collapse
Affiliation(s)
- Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shensen Li
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Sha
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew Tantengco
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Hennen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erin Plosa
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alireza Ramezani
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
- Department of Physics and Astronomy, University of California, Riverside, CA, USA
| | - Kyle L. Brown
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Young Mi Whang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cord H. Brakebusch
- Biotech Research Center, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Molecular Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
34
|
Liuizė (Abramavičiūtė) A, Mongirdienė A. TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int J Mol Sci 2024; 25:2104. [PMID: 38396781 PMCID: PMC10889676 DOI: 10.3390/ijms25042104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of oxidised lipoproteins on the endothelium, monocytes, platelets, and macrophages is a key factor in the initiation and development of atherosclerosis. Antioxidant action, lipoprotein metabolism, and chronic inflammation are the fields of research interest for better understanding the development of the disease. All the fields are related to inflammation and hence to the secretion of cytokines, which are being investigated as potential diagnostic markers for the onset of atherosclerosis. Pathways of vascular damage are crucial for the development of new laboratory readouts. The very early detection of endothelial cell damage associated with the onset of atherosclerosis, allowing the initiation of therapy, remains a major research goal. This article summarises the latest results on the relationship of tumour growth factor beta (TGF-β) isoforms and growth differentiation factor 15 (GDF-15) to the pathogenesis of atherosclerosis: which cells involved in atherosclerosis produce them, which effectors stimulate their synthesis and secretion, how they influence atherosclerosis development, and the relationship between the levels of TGF-β and GDF-15 in the blood and the development and extent of atherosclerosis.
Collapse
Affiliation(s)
| | - Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
35
|
Gan L, Ye D, Feng Y, Pan H, Lu X, Wan J, Ye J. Immune cells and hypertension. Immunol Res 2024; 72:1-13. [PMID: 38044398 DOI: 10.1007/s12026-023-09414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/10/2023] [Indexed: 12/05/2023]
Abstract
Hypertension is one of the leading causes of death due to target organ injury from cardiovascular disease. Although there are many treatments, only one-sixth of hypertensive patients effectively control their blood pressure. Therefore, further understanding the pathogenesis of hypertension is essential for the treatment of hypertension. Much research shows that immune cells play an important role in the pathogenesis of hypertension. Here, we discuss the roles of different immune cells in hypertension. Many immune cells participate in innate and adaptive immune responses, such as monocytes/macrophages, neutrophils, dendritic cells, NK cells, and B and T lymphocytes. Immune cells infiltrate the blood vessels, kidneys, and hearts and cause damage. The mechanism is that immune cells secrete cytokines such as interleukin, interferon, and tumor necrosis factor, which affect the inflammatory reaction, oxidative stress, and kidney sodium water retention, and finally aggravate or reduce the dysfunction, remodeling, and fibrosis of the blood vessel, kidney, and heart to participate in blood pressure regulation. This article reviews the research progress on immune cells and hypertension.
Collapse
Affiliation(s)
- Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China.
- Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
36
|
Zhang C, Xin QP, Xie YB, Guo XY, Xing EH, Dou ZJ, Zhao C. Relationship between methylenetetrahydrofolate reductase C677T gene polymorphism and neutrophil gelatinase-associated lipocalin in early renal injury in H-type hypertension. BMC Cardiovasc Disord 2024; 24:55. [PMID: 38238653 PMCID: PMC10795344 DOI: 10.1186/s12872-024-03704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024] Open
Abstract
OBJECTIVE To analyse the relationship between the polymorphisms of the H-type hypertensive methylenetetrahydrofolate reductase (MTHFR) C677T gene and neutrophil gelatinase-associated lipocalin (NGAL) in early kidney injury. METHOD A total of 279 hospitalised patients with hypertension were selected and grouped according to their homocysteine (Hcy) level. If their blood Hcy level was ≥ 10 µmol/L they were assigned to the H-type hypertensive group, and if it was < 10 µmol/L they were assigned to the non-H-type hypertensive group. Blood lipid indexes, renal function indexes and blood glucose indexes were collected, and the differences between the two groups were compared. Furthermore, MTHFR C677T genotype distribution and allele frequency and Hcy level of MTHFR C677T genotype were compared, and logistic multiple regression analysis was conducted for the correlation of different genotypes of MTHFR C677T and the early kidney injury marker NGAL. RESULTS In the non-H-type hypertensive group, the levels of Hcy and NGAL, cystatin, blood urea nitrogen, serum creatinine, uric acid, serum β2-microglobulin and urinary microalbumin-to-creatinine ratio increased significantly, and the glomerular filtration rate level decreased significantly, when compared with the H-type hypertensive group, with statistical differences (p < 0.05). The H-type hypertensive group and the non-H-type hypertensive group had significant differences in the CC, CT and TT genotypes and allele frequencies at the MTHFR C677T locus. The MTHFR C677T gene mutation rate of the H-type hypertensive group was significantly higher than that of the non-H-type hypertensive group. The H-type hypertensive group had higher levels of the TT genotype and CT genotype Hcy. There was a statistical difference (p < 0.05). CONCLUSION Methylenetetrahydrofolate reductase C677T polymorphism is correlated with the Hcy level, and its gene polymorphism will affect the Hcy level. Methylenetetrahydrofolate reductase C677T polymorphism has an interactive effect with NGAL. Screening NGAL and reducing Hcy levels are valuable methods for the prevention and treatment of early renal injury in patients with H-type hypertension and help improve the prognosis of patients and their quality of life.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Neurology, Affiliated Hospital of Chengde Medical University, No. 36 of Nanyingzi Street, Shidongzigou District, Chengde, 067000, China
| | - Qiu-Ping Xin
- Department of General Practice, Affiliated Hospital of Chengde Medical University, No. 36 of Nanyingzi Street, Shidongzigou District, Chengde, 067000, China
| | - Yun-Bo Xie
- Department of General Practice, Affiliated Hospital of Chengde Medical University, No. 36 of Nanyingzi Street, Shidongzigou District, Chengde, 067000, China
| | - Xiang-Yu Guo
- Department of General Practice, Affiliated Hospital of Chengde Medical University, No. 36 of Nanyingzi Street, Shidongzigou District, Chengde, 067000, China
| | - En-Hong Xing
- Central Laboratory, Affiliated Hospital of Chengde Medical University, Chengde, 067000, China
| | - Zhi-Jie Dou
- Department of Neurology, Affiliated Hospital of Chengde Medical University, No. 36 of Nanyingzi Street, Shidongzigou District, Chengde, 067000, China.
| | - Cui Zhao
- Department of General Practice, Affiliated Hospital of Chengde Medical University, No. 36 of Nanyingzi Street, Shidongzigou District, Chengde, 067000, China.
| |
Collapse
|
37
|
Zhang H, Dhalla NS. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int J Mol Sci 2024; 25:1082. [PMID: 38256155 PMCID: PMC10817020 DOI: 10.3390/ijms25021082] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
With cardiovascular disease (CVD) being a primary source of global morbidity and mortality, it is crucial that we understand the molecular pathophysiological mechanisms at play. Recently, numerous pro-inflammatory cytokines have been linked to several different CVDs, which are now often considered an adversely pro-inflammatory state. These cytokines most notably include interleukin-6 (IL-6),tumor necrosis factor (TNF)α, and the interleukin-1 (IL-1) family, amongst others. Not only does inflammation have intricate and complex interactions with pathophysiological processes such as oxidative stress and calcium mishandling, but it also plays a role in the balance between tissue repair and destruction. In this regard, pre-clinical and clinical evidence has clearly demonstrated the involvement and dynamic nature of pro-inflammatory cytokines in many heart conditions; however, the clinical utility of the findings so far remains unclear. Whether these cytokines can serve as markers or risk predictors of disease states or act as potential therapeutic targets, further extensive research is needed to fully understand the complex network of interactions that these molecules encompass in the context of heart disease. This review will highlight the significant advances in our understanding of the contributions of pro-inflammatory cytokines in CVDs, including ischemic heart disease (atherosclerosis, thrombosis, acute myocardial infarction, and ischemia-reperfusion injury), cardiac remodeling (hypertension, cardiac hypertrophy, cardiac fibrosis, cardiac apoptosis, and heart failure), different cardiomyopathies as well as ventricular arrhythmias and atrial fibrillation. In addition, this article is focused on discussing the shortcomings in both pathological and therapeutic aspects of pro-inflammatory cytokines in CVD that still need to be addressed by future studies.
Collapse
Affiliation(s)
- Hannah Zhang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
38
|
Zhang J, Tu Y, Wei J, Zheng R, Shao J, Chen Q, Liang G, Ying H, Han X, Shi Q. Dectin1 contributes to hypertensive vascular injury by promoting macrophage infiltration through activating the Syk/NF-κB pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166911. [PMID: 37813169 DOI: 10.1016/j.bbadis.2023.166911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Vascular injury is an early manifestation leading to end-organ damage in hypertension pathogenesis, which involves a macrophage-associated immune response. Dendritic cell-associated C-type lectin-1 (Dectin1) is a pivotal player in regulating inflammation-mediated cardiovascular disease. However, its role in hypertension-induced vascular damage and the underlying mechanisms remain unclear. We hypothesized that Dectin1 might accelerate angiotensin II (Ang II)- or deoxycorticosterone acetate-salt (DOCA-salt)-induced vascular injury through proinflammatory actions in macrophages. Macrophage Dectin1 was upregulated in mouse aortic tissues stimulated with Ang II. In the peripheral blood, Ang II also increased CD11b+F4/80+ macrophages in mice. In our constructed Dectin1 knockout mice, Dectin1 deletion protected against Ang II-induced EB extravasation and aortic wall thickness. Deficiency of Dectin1 or its pharmacological inhibition considerably improved fibrosis and inflammation responses, accompanied by a reduction in M1 macrophage polarization as well as proinflammatory cytokines and chemokines induced by Ang II or DOCA-salt. Through the bone marrow (BM) transplantation assay, these effects were verified in the wild type mice reconstituted with Dectin1-deficient BM cells. Mechanistically, Ang II promoted Dectin1 homodimerization, thereby triggering the spleen tyrosine kinase/nuclear factor kappa B pro-inflammatory cascade to induce the expression of inflammatory factors and chemokines in vivo and in vitro. In conclusion, Dectin1 has an essential role in the pathogenic procedure of Ang II-stimulated or DOCA-salt-induced vascular damage in mice and represents a promising therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Ruyi Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Ji Shao
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518101, China
| | - Guang Liang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou 310013, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| | - Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou 310013, China.
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou 310013, China; Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
39
|
Jia J, Wang M, Ma Y, Meng J, Zhu D, Chen X, Shi H, Sun Y, Liu H, Cheng X, Su Y, Ye J, Chi H, Liu T, Zhou Z, Wang F, Chen L, Yi D, Xiao Y, Yang C, Teng J, Hu Q. Neutrophil extracellular trap-induced intermediate monocytes trigger macrophage activation syndrome in adult-onset Still's disease. BMC Med 2023; 21:507. [PMID: 38124139 PMCID: PMC10734198 DOI: 10.1186/s12916-023-03231-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Adult-onset Still's disease (AOSD) is a systemic autoinflammatory disease characterized by innate immune system activation, with a high risk for macrophage activation syndrome (MAS). MAS development is associated with monocyte/macrophage activation and cytokine storm. Monocytes consist of three different subsets, classical monocytes (CMs, CD14brightCD16 -), intermediate monocytes (IMs, CD14brightCD16 +), and non-classical monocytes (NCMs, CD14dimCD16 +), each has distinct roles in inflammatory regulation. However, the frequencies and regulatory mechanism of monocyte subsets in AOSD patients have not been identified. METHODS We performed flow cytometry, RNA sequencing, phagocytosis analysis, and enzyme-linked immunosorbent assay to evaluate monocyte subsets, cell functions, and potential biomarkers. The effect of neutrophil extracellular traps (NETs) on monocytes was determined by evaluating mRNA levels of DNA sensors, surface CD16 expression, and inflammasome pathway activation. RESULTS Higher proportions of intermediate monocytes (IMs) were identified in active AOSD patients. IMs displayed higher expression of CD80, CD86, HLA-DR, and CD163 than CMs and NCMs. CD163 upregulation was noted on AOSD IMs, accompanied by increased phagocytic activity and elevated cytokine/chemokine production, including IL-1β, IL-6, CCL8, and CXCL10. The frequencies of IMs were correlated with disease activity and higher in AOSD patients with MAS (AOSD-MAS). CCL8 and CXCL10 were highly expressed in RNA sequencing of monocytes from AOSD-MAS patients and plasma CXCL10 level could serve as a potential biomarker for AOSD-MAS. Moreover, DNA-sensing pathway was activated in monocytes from AOSD-MAS patients. Stimulation with NETs derived from AOSD induced DNA sensor expression, the expansion of IMs, and inflammasome pathway activation. These effects can be abrogated by DNase I treatment. CONCLUSIONS Our results demonstrated that the proportions of IMs were elevated in AOSD and associated with MAS. The DNA component in NETs from AOSD plays an important role in the formation of IMs, shedding new light for the therapeutic target.
Collapse
Affiliation(s)
- Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Dehao Zhu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xia Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Longfang Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Da Yi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yu Xiao
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
40
|
Meng T, Zhang D, Zhang Y, Tian P, Chen J, Liu A, Li Y, Song C, Zheng Y, Su G. Tamoxifen induced cardiac damage via the IL-6/p-STAT3/PGC-1α pathway. Int Immunopharmacol 2023; 125:110978. [PMID: 37925944 DOI: 10.1016/j.intimp.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
Tamoxifen (TAM) is an effective anticancer drug for breast and ovarian cancer. However, increased risk of cardiotoxicity is a long-term clinical problem associated with TAM, while the underlying mechanisms remain unclear. Here, we performed experiments in cardiomyocytes and tumor-bearing or nontumor-bearing mice, and demonstrated that TAM induced cardiac injury via the IL-6/p-STAT3/PGC-1α/IL-6 feedback loop, which is responsible for reactive oxygen species (ROS) accumulation. Compared with non-tumor bearing mice, tumor-bearing mice showed stronger cardiac toxicity after TAM injection, although there was no significant difference. In vitro experiments demonstrated STAT3 phosphorylation inhibitor can increase PGC-1α expression and protect cardiomyocyte via decreasing ROS. Since tumor has higher STAT3 phosphorylation and IL-6 expression level, our research results indicated combining TAM and STAT3 inhibitor might be an effective treatment strategy which can provide both tumor killing and cardioprotective function. Further in vivo research is needed to fully elucidate the effect and mechanisms of the combination therapy of TAM and STAT3 inhibitor.
Collapse
Affiliation(s)
- Tingting Meng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Zhang
- Jinan Central Hospital, Jinan, Shandong, China
| | - Yu Zhang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Tian
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jianlin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Weifang Medical University, Weifang, China
| | - Anbang Liu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunhong Song
- Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
41
|
Guo T, Chen L, Li F, Cao Y, Li D, Xiong Q, Ling Z. Biomimetic nanoparticles loaded lutein functionalized by macrophage membrane for targeted amelioration pressure overload-induced cardiac fibrosis. Biomed Pharmacother 2023; 167:115579. [PMID: 37776637 DOI: 10.1016/j.biopha.2023.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Lutein is a strong antioxidant with anti-inflammatory, anti-oxidative and cardioprotective effects and could be a promising candidate for the treatment of hypertensive heart disease (HHD), but is not clinically appealing because of its low oral bioavailability and main distribution in the eyes. To address this, a biomimetic drug delivery system-MMLNPs was established by coating macrophage membranes (MMs) onto lutein-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (LNPs). This study characterized the physical properties of biomimetic nanoparticles and examined the targeting capability, therapeutic effects and mechanism, and biosecurity of administering them for cardiac fibrosis therapy in the transverse aortic constriction (TAC) model and in vitro. Transmission electron microscope mapping and dynamic light scattering analysis proved that MMLNPs were spherical nanoparticles camouflaged by a layer of cell membrane and had negative zeta potential. Confocal laser scanning microscopy and flow cytometry analysis showed that MMs on the biomimetic nanoparticles hindered the phagocytosis of macrophages and facilitated the targeting of activated endothelial cells. Ex vivo fluorescence imaging experiments demonstrated the targeting of biomimetic nanoparticles to the injured heart. EdU assay indicated that MMLNPs have the same potential to inhibit angiotensin (Ang) II-induced cardiac fibroblast proliferation as free lutein. Furthermore, echocardiography showed that MMLNPs improved cardiac function and structure, and Masson staining and western blotting showed that MMLNPs ameliorated cardiac fibrosis. We found MMLNPs inhibited the interleukin (IL)-11/ERK signaling pathway which was up-regulated in the TAC model compared to the sham-operated mouse. Biochemical testing and hematoxylin and eosin staining proved that the long-term use of MMLNPs lacked biological toxicity. Collectively, MMLNPs might be a promising nanodrug delivery approach to attenuate pressure overload (PO)-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Lihua Chen
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Fang Li
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Dan Li
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Qingsong Xiong
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Zhiyu Ling
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
42
|
Alves JM, Germano DB, Kim YJ, Fonseca FAH, Izar MC, Tuleta ID, Nagai R, Novo NF, Juliano Y, Neves LM, Pallos D, França CN. Modulation of monocyte subtypes in diabetes after non-surgical periodontal treatment. Clin Oral Investig 2023; 27:6847-6854. [PMID: 37843636 DOI: 10.1007/s00784-023-05299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES The current study aims to evaluate the effect of non-surgical periodontal treatment on the modulation of monocyte phenotype, in the presence or absence of diabetes. MATERIALS AND METHODS The identification, quantification, and phenotypic characterization of monocyte subtypes (classical, intermediate, and non-classical) were performed by flow cytometry, at baseline and 1 month after the end of non-surgical periodontal treatment, in patients with periodontitis, associated or not with diabetes. RESULTS There was an increase in non-classical monocytes after treatment and a reduction in intermediate monocytes, without differences for the classical subtype, regardless of the diabetes status. Furthermore, there was a reduction in intermediate monocytes and an increase in non-classical and classical monocytes after treatment in the diabetes group, while no significant differences were observed for classical, intermediate, and non-classical monocytes in the group without diabetes. Comparisons between the two groups showed significant differences for classical, intermediate, and non-classical monocytes at baseline; these differences were not found one month after treatment. CONCLUSIONS Non-surgical periodontal treatment leads to modulation of monocytes to a less inflammatory phenotype, especially in individuals with diabetes. CLINICAL RELEVANCE A better understanding of the role of these biomarkers in the periodontitis contex may constitute a new strategic target for a better treatment of patiens with diabetes associated to periodontitis. CLINICAL TRIAL REGISTRATION Brazilian Registry of Clinical Trials-RBR-35szwc. Jhefferson Miranda Alves and Danielle Borges Germano contributed equality to this study and should be considered first authors.
Collapse
Affiliation(s)
- Jhefferson Miranda Alves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Danielle Borges Germano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yeon Jung Kim
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | | | - Maria Cristina Izar
- Department of Medicine, Federal University of Sao Paulo, Cardiology Division, Sao Paulo, Brazil
| | | | - Rogério Nagai
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Lucas Melo Neves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Débora Pallos
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil.
| |
Collapse
|
43
|
Barhoumi T, Todryk S. Role of monocytes/macrophages in renin-angiotensin system-induced hypertension and end organ damage. Front Physiol 2023; 14:1199934. [PMID: 37854465 PMCID: PMC10579565 DOI: 10.3389/fphys.2023.1199934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The renin-angiotensin system (RAS) is a central modulator of cardiovascular physiology. Pathophysiology of hypertension is commonly accompanied by hyper-activation of RAS. Angiotensin II receptor blockers (ARBs) and Angiotensin-converting enzyme (ACE) inhibitors are the gold standard treatment for hypertension. Recently, several studies highlighted the crucial role of immune system in hypertension. Angiotensin-II-induced hypertension is associated with low grade inflammation characterized by innate and adaptive immune system dysfunction. Throughout the progression of hypertension, monocyte/macrophage cells appear to have a crucial role in vascular inflammation and interaction with the arterial wall. Since myelomonocytic cells potentially play a key role in angiotensin-II-induced hypertension and organ damage, pharmacological targeting of RAS components in monocyte/macrophages may possibly present an innovative strategy for treatment of hypertension and related pathology.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
44
|
Nordbø OP, Landolt L, Eikrem Ø, Scherer A, Leh S, Furriol J, Apeland T, Mydel P, Marti H. Transcriptomic analysis reveals partial epithelial-mesenchymal transition and inflammation as common pathogenic mechanisms in hypertensive nephrosclerosis and Type 2 diabetic nephropathy. Physiol Rep 2023; 11:e15825. [PMID: 37813528 PMCID: PMC10562137 DOI: 10.14814/phy2.15825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Hypertensive nephrosclerosis (HN) and Type 2 diabetic nephropathy (T2DN) are the leading causes of chronic kidney disease (CKD). To explore shared pathogenetic mechanisms, we analyzed transcriptomes of kidney biopsies from patients with HN or T2DN. Total RNA was extracted from 10 μm whole kidney sections from patients with HN, T2DN, and normal controls (Ctrl) (n = 6 for each group) and processed for RNA sequencing. Differentially expressed (log2 fold change >1, adjusted p < 0.05) genes (DEG) and molecular pathways were analyzed, and selected results were validated by immunohistochemistry (IHC). ELISA on serum samples was performed on a related cohort consisting of patients with biopsy-proven HN (n = 13) and DN (n = 9), and a normal control group (n = 14). Cluster analysis on RNA sequencing data separated diseased and normal tissues. RNA sequencing revealed that 88% (341 out of 384) of DEG in HN were also altered in T2DN, while gene set enrichment analysis (GSEA) showed that over 90% of affected molecular pathways, including those related to inflammation, immune response, and cell-cycle regulation, were similarly impacted in both HN and T2DN samples. The increased expression of genes tied to interleukin signaling and lymphocyte activation was more pronounced in HN, while genes associated with extracellular matrix organization were more evident in T2DN. Both HN and T2DN tissues exhibited significant upregulation of genes connected with inflammatory responses, T-cell activity, and partial epithelial to mesenchymal transition (p-EMT). Immunohistochemistry (IHC) further confirmed T-cell (CD4+ and CD8+ ) infiltration in the diseased tissues. Additionally, IHC revealed heightened AXL protein expression, a key regulator of inflammation and p-EMT, in both HN and T2DN, while serum analysis indicated elevated soluble AXL levels in patients with both conditions. These findings underline the shared molecular mechanisms between HN and T2DN, hinting at the potential for common therapeutic strategies targeting both diseases.
Collapse
Affiliation(s)
- Ole Petter Nordbø
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of Medicine, Haugesund HospitalHelse FonnaHaugesundNorway
| | - Lea Landolt
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Øystein Eikrem
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Sabine Leh
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Jessica Furriol
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - Piotr Mydel
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| |
Collapse
|
45
|
Sakr HF, Sirasanagandla SR, Das S, Bima AI, Elsamanoudy AZ. Insulin Resistance and Hypertension: Mechanisms Involved and Modifying Factors for Effective Glucose Control. Biomedicines 2023; 11:2271. [PMID: 37626767 PMCID: PMC10452601 DOI: 10.3390/biomedicines11082271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Factors such as aging, an unhealthy lifestyle with decreased physical activity, snacking, a standard Western diet, and smoking contribute to raising blood pressure to a dangerous level, increasing the risk of coronary artery disease and heart failure. Atherosclerosis, or aging of the blood vessels, is a physiological process that has accelerated in the last decades by the overconsumption of carbohydrates as the primary sources of caloric intake, resulting in increased triglycerides and VLDL-cholesterol and insulin spikes. Classically, medications ranging from beta blockers to angiotensin II blockers and even calcium channel blockers were used alone or in combination with lifestyle modifications as management tools in modern medicine to control arterial blood pressure. However, it is not easy to control blood pressure or the associated complications. A low-carbohydrate, high-fat (LCHF) diet can reduce glucose and insulin spikes, improve insulin sensitivity, and lessen atherosclerosis risk factors. We reviewed articles describing the etiology of insulin resistance (IR) and its impact on arterial blood pressure from databases including PubMed, PubMed Central, and Google Scholar. We discuss how the LCHF diet is beneficial to maintaining arterial blood pressure at normal levels, slowing down the progression of atherosclerosis, and reducing the use of antihypertensive medications. The mechanisms involved in IR associated with hypertension are also highlighted.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Abdulhadi I. Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| | - Ayman Z. Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| |
Collapse
|
46
|
Colvert CA, Hawkins KP, Semenikhina M, Stefanenko M, Pavlykivska O, Oates JC, DeLeon-Pennell KY, Palygin O, Van Beusecum JP. Endothelial mechanical stretch regulates the immunological synapse interface of renal endothelial cells in a sex-dependent manner. Am J Physiol Renal Physiol 2023; 325:F22-F37. [PMID: 37167273 PMCID: PMC10292970 DOI: 10.1152/ajprenal.00258.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Increased mechanical endothelial cell stretch contributes to the development of numerous cardiovascular and renal pathologies. Recent studies have shone a light on the importance of sex-dependent inflammation in the pathogenesis of renal disease states. The endothelium plays an intimate and critical role in the orchestration of immune cell activation through upregulation of adhesion molecules and secretion of cytokines and chemokines. While endothelial cells are not recognized as professional antigen-presenting cells, in response to cytokine stimulation, endothelial cells can express both major histocompatibility complex (MHC) I and MHC II. MHCs are essential to forming a part of the immunological synapse interface during antigen presentation to adaptive immune cells. Whether MHC I and II are increased under increased mechanical stretch is unknown. Due to hypertension being multifactorial, we hypothesized that increased mechanical endothelial stretch promotes the regulation of MHCs and key costimulatory proteins on mouse renal endothelial cells (MRECs) in a stretch-dependent manner. MRECs derived from both sexes underwent 5%, 10%, or 15% uniaxial cyclical stretch, and immunological synapse interface proteins were determined by immunofluorescence microscopy, immunoblot analysis, and RNA sequencing. We found that increased endothelial mechanical stretch conditions promoted downregulation of MHC I in male MRECs but upregulation in female MRECs. Moreover, MHC II was upregulated by mechanical stretch in both male and female MRECs, whereas CD86 and CD70 were regulated in a sex-dependent manner. By bulk RNA sequencing, we found that increased mechanical endothelial cell stretch promoted differential gene expression of key antigen processing and presentation genes in female MRECs, demonstrating that females have upregulation of key antigen presentation pathways. Taken together, our data demonstrate that mechanical endothelial stretch regulates endothelial activation and immunological synapse interface formation in renal endothelial cells in a sex-dependent manner.NEW & NOTEWORTHY Endothelial cells contribute to the development of renal inflammation and have the unique ability to express antigen presentation proteins. Whether increased endothelial mechanical stretch regulates immunological synapse interface proteins remains unknown. We found that antigen presentation proteins and costimulatory proteins on renal endothelial cells are modulated by mechanical stretch in a sex-dependent manner. Our data provide novel insights into the sex-dependent ability of renal endothelial cells to present antigens in response to endothelial mechanical stimuli.
Collapse
Affiliation(s)
- C Alex Colvert
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kennedy P Hawkins
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Olesia Pavlykivska
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jim C Oates
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Kristine Y DeLeon-Pennell
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
47
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
48
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
49
|
Wu XH, He YY, Chen ZR, He ZY, Yan Y, He Y, Wang GM, Dong Y, Yang Y, Sun YM, Ren YH, Zhao QY, Yang XD, Wang LY, Fu CJ, He M, Zhang SJ, Fu JF, Liu H, Jing ZC. Single-cell analysis of peripheral blood from high-altitude pulmonary hypertension patients identifies a distinct monocyte phenotype. Nat Commun 2023; 14:1820. [PMID: 37002243 PMCID: PMC10066231 DOI: 10.1038/s41467-023-37527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Immune and inflammatory responses have an important function in the pathophysiology of pulmonary hypertension (PH). However, little is known about the immune landscape in peripheral circulation in patients with high-altitude pulmonary hypertension (HAPH). We apply single-cell transcriptomics to characterize the monocytes that are significantly enriched in the peripheral blood mononuclear cells (PBMC) of HAPH patients. We discover an increase in C1 (non-classical) and C2 (intermediate) monocytes in PBMCs and a decrease in hypoxia-inducible transcription factor-1α (HIF-1α) in all monocyte subsets associated with HAPH. In addition, we demonstrate that similar immune adaptations may exist in HAPH and PH. Overall, we characterize an immune cell atlas of the peripheral blood in HAPH patients. Our data provide evidence that specific monocyte subsets and HIF-1α downregulation might be implicated in the pathogenesis of HAPH.
Collapse
Affiliation(s)
- Xin-Hua Wu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Henan, China
| | - Zhang-Rong Chen
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Ze-Yuan He
- Department of Cardiology, Yulong People's Hospital, Yunnan, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangzhige He
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guang-Ming Wang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yu Dong
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Ying Yang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yi-Min Sun
- CapitalBio Technology Corporation, Beijing, China
| | | | - Qiu-Yan Zhao
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Xiao-Dan Yang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Li-Ying Wang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Cai-Jun Fu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Miao He
- Institute of Pharmacy, Dali University, Yunnan, China
| | - Si-Jin Zhang
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Fen Fu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Hong Liu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
50
|
Ye S, Huang H, Han X, Luo W, Wu L, Ye Y, Gong Y, Zhao X, Huang W, Wang Y, Long X, Fu G, Liang G. Dectin-1 Acts as a Non-Classical Receptor of Ang II to Induce Cardiac Remodeling. Circ Res 2023; 132:707-722. [PMID: 36786193 DOI: 10.1161/circresaha.122.322259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Cardiac remodeling in heart failure involves macrophage-mediated immune responses. Recent studies have shown that a PRR (pattern recognition receptor) called dectin-1, expressed on macrophages, mediates proinflammatory responses. Whether dectin-1 plays a role in pathological cardiac remodeling is unknown. Here, we identified a potential role of dectin-1 in this disease. METHODS To model aberrant cardiac remodeling, we utilized mouse models of chronic Ang II (angiotensin II) infusion. In this model, we assessed the potential role of dectin-1 through using D1KO (dectin-1 knockout) mice and bone marrow transplantation chimeric mice. We then used cellular and molecular assays to discover the underlying mechanisms of dectin-1 function. RESULTS We found that macrophage dectin-1 is elevated in mouse heart tissues following chronic Ang II administration. D1KO mice were significantly protected against Ang II-induced cardiac dysfunction, hypertrophy, fibrosis, inflammatory responses, and macrophage infiltration. Further bone marrow transplantation studies showed that dectin-1 deficiency in bone marrow-derived cells prevented Ang II-induced cardiac inflammation and dysfunction. Through detailed molecular studies, we show that Ang II binds directly to dectin-1, causing dectin-1 homodimerization and activating the downstream Syk (spleen tyrosine kinase)/NF-κB (nuclear factor kappa B) signaling pathway to induce expression of inflammatory and chemoattractant factors. Mutagenesis studies identified R184 in the C-type lectin domain to interact with Ang II. Blocking dectin-1 in macrophages suppresses Ang II-induced inflammatory mediators and subsequent intercellular cross talk with cardiomyocytes and fibroblasts. CONCLUSIONS Our study has discovered dectin-1 as a new nonclassical receptor of Ang II and a key player in cardiac remolding and dysfunction. These studies suggest that dectin-1 may be a new target for treating hypertension-related heart failure.
Collapse
Affiliation(s)
- Shiju Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.).,Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (S.Y., W.H.)
| | - He Huang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.)
| | - Wu Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.).,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| | - Lili Wu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Yang Ye
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Yingchao Gong
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Xia Zhao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.)
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (S.Y., W.H.)
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| | - Xiaohong Long
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.).,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (S.Y., H.H., L.W., Y.Y., Y.G., G.F.)
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (S.Y., X.H., W.L., X.Z., G.L.).,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (W.L., Y.W., X.L., G.L.)
| |
Collapse
|