1
|
Li M, Ding W, Fang X, Wang Y, Wang P, Ye L, Miao S, Song L, Ao X, Li Q, Wang J. Novel Truncated Peptide Derived From circCDYL Exacerbates Cardiac Hypertrophy. Circ Res 2025; 136:e94-e112. [PMID: 40242872 DOI: 10.1161/circresaha.124.325573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been gradually revealed to regulate the progression of heart disease in depth, showing their clinical significance. However, a mass of cardiac circRNAs still has not been functionally characterized. We aimed to explore the potential candidates that are involved in pathological cardiac hypertrophy. METHODS Public substantial RNA-sequencing data of cardiac circRNAs were utilized to search the cardiac hypertrophy-related circRNAs. Cardiomyocyte hypertrophy in vitro was induced by Ang II (angiotensin II) treatment. Mice were subjected to Ang II infusion to induce cardiac hypertrophy in vivo. Gain-of-function and loss-of-function assays were conducted to detect the effect of RNAs or proteins in cardiac hypertrophy. RESULTS A circRNA derived from the cdyl (chromodomain Y-like) gene was screened out and named circCDYL. Our results showed that the expression of circCDYL in primary rat cardiomyocytes was significantly induced by Ang II. Gain-of-function and loss-of-function assays demonstrated that circCDYL effectively promoted cardiomyocyte hypertrophy in vitro. CircCDYL could encode a ≈100-aa truncated CDYL peptide (tCDYL-100), whose sequence highly overlaps that of full-length CDYL. The translation of tCDYL-100 was activated by N6-methylation of circCDYL under prohypertrophic stimulation. tCDYL-100 fulfilled the prohypertrophic function of circCDYL. Mechanistically, tCDYL-100 competed with CDYL for binding REST (RE1-silencing transcription factor) and further disrupted the formation of REST-CDYL-EHMT2 (euchromatic histone-lysine N-methyltransferase 2) transcriptional repression complex, resulting in transcriptional activation of rhoa and nppb. Silence of circCDYL in mouse hearts could inhibit Ang II-induced cardiac hypertrophy, while forced expression of tCDYL-100 could cause cardiac hypertrophy. CONCLUSIONS In summary, our study uncovered an important circRNA-derived peptide and a regulatory mechanism on transcription mediated by N6-methyladenosine-circRNA-histone methylation in pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Mengyang Li
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University (W.D., X.F.), Qingdao University, China
| | - Xinyu Fang
- The Affiliated Hospital of Qingdao University (W.D., X.F.), Qingdao University, China
| | - Yu Wang
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| | - Peiyan Wang
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| | - Lin Ye
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| | - Shuo Miao
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| | - Lin Song
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| | - Xiang Ao
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| | - Qi Li
- School of Nursing (Q.L.), Qingdao University, China
| | - Jianxun Wang
- School of Basic Medicine (M.L., Y.W., P.W., L.Y., S.M., L.S., X.A., J.W.), Qingdao University, China
| |
Collapse
|
2
|
Hong M, Huang X, Zhu H, Ma J, Li F. The role of circular RNA in immune response to tuberculosis and its potential as a biomarker and therapeutic target. Front Immunol 2025; 16:1542686. [PMID: 40308608 PMCID: PMC12040640 DOI: 10.3389/fimmu.2025.1542686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Circular RNA (circRNA) is a new type of non-coding RNA that has gained significant attention in recent years, especially in tuberculosis research. Tuberculosis poses a major global public health threat. Its complex pathological mechanisms and worsening drug resistance urgently necessitate new research breakthroughs. The role of circRNA in mycobacterium tuberculosis infection is being gradually revealed, highlighting its importance in regulating gene expression, immune response, and inflammation. Additionally, researchers are interested in circRNA because of its potential for early tuberculosis diagnosis and its role as a biomarker. This article systematically analyzes existing literature to provide new insights into early tuberculosis diagnosis and personalized treatment. We also emphasize the need for future research to enhance the application of circRNA in tuberculosis prevention and control.
Collapse
Affiliation(s)
- Mingyang Hong
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| | - Xu Huang
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huiming Zhu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| | - Jiahui Ma
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| | - Feng Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, Jiangsu, China
| |
Collapse
|
3
|
Li D, Liu M, Lai M, Wang L, Wei L, Wu S, Liang S, Liu S, Zeng X. The regulatory role of the circELMOD3-associated ceRNA network in the progression and prognosis of hepatocellular carcinoma. Front Genet 2025; 16:1521360. [PMID: 40303979 PMCID: PMC12037612 DOI: 10.3389/fgene.2025.1521360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Background Our previously research has validated the effect of circELMOD3 on HCC tumor inhibition. However, further investigations are warranted to investigate the prognostic significance of circELMOD3 in HCC and its regulation via the competitive endogenous RNA (ceRNA) network. Methods The gene expression profiles and clinical information were obtained from The Cancer Genome Atlas (TCGA-LIHC) and International Cancer Genome Consortium (ICGC). Base on the circMine, miRWalk and TargetScan database, we constructed circELMOD3-miRNA-mRNA network. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis was used to constructed the prognostic model. Additionally, Gene set enrichment analysis (GSEA) was conducted for the prognostic-related genes. Finally, the expression levels of genes and proteins were respectively assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Results We constructed a ceRNA network comprising circELMOD3, 5 miRNAs, and 274 mRNAs. From this ceRNA network, we identified four prognostication-relation genes to develop a survival prediction model. In the TCGA-LIHC training set, the area under the curve (AUC) values for one-, three- and five-years of survival were 0.734, 0.718 and 0.707, respectively, then we validated the prognostic model in International Cancer Genome Consortium database. Gene set enrichment analysis displayed that these four prognostic genes were primary enriched pathways related to cell cycle regulation. Our finding demonstrated that circELMOD3 could affect the relative expression levels of N-cadherin, E-cadherin, CDK4, CDK6 and CyclinD1 proteins. Conclusion we constructed a novel ceRNA network based on circELMOD3, to comprehensively characterizing the prognosis of HCC, providing valuable insights for the therapy and prognosis of HCC.
Collapse
Affiliation(s)
- Deyuan Li
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Meiliang Liu
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingshuang Lai
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Lijun Wang
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Liling Wei
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Siqian Wu
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Si Liang
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Shun Liu
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyun Zeng
- School of public health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Nanning, China
- Department of Epidemiological and Health Statistics, School of Public Health, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
4
|
Zhao M, Fu W, Zhang Y, Ma J, Yang X, Nie H, Wu W, Gao F, Wu F, Xin M, Yang K, He S. Chronic hypoxia-induced upregulation of hsa_circ_0005255 attenuates myocardial injury via targeting hsa-miR-3916/FTO/m6A axis. Int J Biol Macromol 2025; 310:143228. [PMID: 40246114 DOI: 10.1016/j.ijbiomac.2025.143228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Chronic hypoxia initiates compensatory mechanisms to protect the heart. Circular RNAs (circRNAs), a recently identified class of non-coding RNAs, represent a significant portion of mammalian transcriptome. We aimed to explore the underlying mechanisms of circRNA involvement in chronic hypoxia-related cardiovascular diseases. In the presents study, we firstly observed hsa_circ_0005255 was elevated in myocardial samples collected from patients with cyanotic heart disease through using circRNA array sequencing, which was confirmed both in vivo and in vitro. The upregulation of hsa_circ_0005255 reduced the levels of N6-methyladenosine (m6A) modification and protected cardiomyocytes from chronic hypoxia induced injury. Fat mass and obesity-associated protein (FTO), the classic regulator of methylation, was proved to be regulated by hsa_circ_0005255. Further research verified the direct target interactions of hsa_circ_0005255/hsa-miR-3916 and hsa-miR-3916/FTO. Our findings suggested hsa_circ_0005255 played pivotal protective role in cardiomyocytes via hsa-miR-3916/FTO/m6A axis. We also showed that silencing hsa_circ_0005255 increased myocardial apoptosis and worsened ischemia/reperfusion (I/R) injury in vivo. In addition, the expression of hsa_circ_0005255 in clinical myocardial samples showed a significant negative correlation with myocardial enzyme levels and early clinical outcomes. This study elucidates a novel mechanism that hsa_circ_0005255/hsa-miR-3916/FTO-m6A axis is involved in myocardial adaptation to chronic hypoxia, representing a promising therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Maolin Zhao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Weijie Fu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Yaolei Zhang
- Laboratory animal center, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China
| | - Jianwen Ma
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Xuelin Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Huwei Nie
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Wei Wu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Feng Gao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Fan Wu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Mei Xin
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Ke Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China
| | - Siyi He
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 61003l, Sichuan, China.
| |
Collapse
|
5
|
Boichenko V, Noakes VM, Reilly-O’Donnell B, Luciani GB, Emanueli C, Martelli F, Gorelik J. Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells 2025; 14:553. [PMID: 40214506 PMCID: PMC11989213 DOI: 10.3390/cells14070553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, representing a complex clinical syndrome in which the heart's ability to pump blood efficiently is impaired. HF can be subclassified into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), each with distinct pathophysiological mechanisms and varying levels of severity. The progression of HF is significantly driven by cardiac fibrosis, a pathological process in which the extracellular matrix undergoes abnormal and uncontrolled remodelling. Cardiac fibrosis is characterized by excessive matrix protein deposition and the activation of myofibroblasts, increasing the stiffness of the heart, thus disrupting its normal structure and function and promoting lethal arrythmia. MicroRNAs, long non-coding RNAs, and circular RNAs, collectively known as non-coding RNAs (ncRNAs), have recently gained significant attention due to a growing body of evidence suggesting their involvement in cardiac remodelling such as fibrosis. ncRNAs can be found in the peripheral blood, indicating their potential as biomarkers for assessing HF severity. In this review, we critically examine recent advancements and findings related to the use of ncRNAs as biomarkers of HF and discuss their implication in fibrosis development.
Collapse
Affiliation(s)
- Veronika Boichenko
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Victoria Maria Noakes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Benedict Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
6
|
Xu H, Zhao Q, Cai D, Chen X, Zhou X, Gao Y, Wu J, Yuan S, Li D, Zhang R, Peng W, Li G, Nan A. o8G-modified circKIAA1797 promotes lung cancer development by inhibiting cuproptosis. J Exp Clin Cancer Res 2025; 44:110. [PMID: 40176113 PMCID: PMC11963662 DOI: 10.1186/s13046-025-03365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Lung cancer is a serious threat to human life and health, but effective screening and treatment methods are lacking. Circular RNAs (circRNAs) have important biological functions and are closely related to tumour development. Some studies have shown that the 8-oxo-7,8-dihydroguanosine (o8G) modification plays a key role in the disease process, but the effect of the o8G modification on circRNAs has not been elucidated. Moreover, cuproptosis is a novel mode of cell death in which copper ions directly promote protein aggregation and the disruption of cellular metabolic pathways. The present study revealed that the o8G modification of circKIAA1797 occurs and promotes lung cancer development by inhibiting cuproptosis, which provides new perspectives for epitranscriptomic studies and the development of novel therapeutic approaches for lung cancer. METHODS circRNA differential expression profiles in lung cancer were revealed via RNA high-throughput sequencing, and circKIAA1797 expression in lung cancer cell lines and tissues was detected using qPCR. Experiments such as o8G RNA immunoprecipitation (o8G RIP) and crosslinking immunoprecipitation (CLIP) were performed to explore the presence of o8G on circKIAA1797. The regulation of circKIAA1797 by the o8G reader Y-box binding protein 1 (YBX1) was explored using nuclear-cytoplasmic fractionation, actinomycin D (Act D) stability experiments and other experiments. circKIAA1797 silencing and overexpression systems were constructed for in vivo and in vitro experiments to study the role of circKIAA1797 in lung cancer development. Tagged RNA affinity purification (TRAP), RNA immunoprecipitation (RIP), coimmunoprecipitation (Co-IP), and immunofluorescence (IF) staining were subsequently conducted to reveal the molecular mechanism by which circKIAA1797 regulates cuproptosis and promotes lung cancer development. RESULTS This study is the first to reveal the presence of o8G on circKIAA1797 and that YBX1 is a reader that recognises ROS-induced circKIAA1797 o8G modifications and increases the stability and cytoplasmic expression of circKIAA1797. circKIAA1797, which is associated with the tumour stage and prognosis, has been shown to significantly promote the biological function of lung cancer development both in vivo and in vitro. This study revealed that circKIAA1797 inhibits intracellular cuproptosis by binding to the ferredoxin 1 (FDX1) mRNA, decreasing FDX1 mRNA stability, inhibiting FDX1 expression, and binding to the signal transducer and activator of transcription 1 (STAT1) protein and inhibiting lipoyltransferase 1 (LIPT1) transcription; moreover, circKIAA1797 promotes the closure of the mitochondrial permeability transition pore (mPTP), inhibits cuproptosis, and ultimately promotes lung cancer development. CONCLUSIONS This study revealed the presence of the o8G modification in circKIAA1797, which plays an important role in the development of lung cancer. circKIAA1797 can inhibit cuproptosis by inhibiting key cuproptosis proteins and promoting mPTP closure, ultimately promoting the development of lung cancer. This study provides not only a new theoretical basis for an in-depth understanding of the molecular mechanisms of lung cancer development but also a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xingcai Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaodong Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yihong Gao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Shengyi Yuan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Deqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
7
|
Wu H, Jiang X, Fan H, Li J, Li Y, Lin Y, Zhao D, Han X, Yu M, Tang JM, Hu S, Lei W. Inhibition of circALPK2 enhances proliferation and therapeutic potential of human pluripotent stem cell-derived cardiomyocytes in myocardial infarction. Stem Cell Res Ther 2025; 16:107. [PMID: 40025553 PMCID: PMC11872338 DOI: 10.1186/s13287-025-04230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Understanding the mechanisms regulating human cardiomyocyte proliferation holds significant promise for developing effective therapies to enhance cardiac regeneration and repair. This study investigates the role of circALPK2, a circular RNA derived from the back-splicing of the 4th exon of alpha protein kinase 2 (ALPK2), in regulating cardiomyocyte proliferation and its therapeutic efficacy in myocardial infarction (MI) treatment. METHODS Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were used to assess the expression and function ofcircALPK2. Lentiviral shRNA-mediated knockdown of circALPK2 was performed in hESC-CMs, followed by RNA sequencing to identify targeted genes and biological processes. The proliferative capacity of wild-type and circALPK2 knockdown hESC-CMs was evaluated using CCK-8 assay, EdU staining and RT-qPCR analysis of cell cycle-related genes. Dual luciferase assays were conducted to validate the predicted miRNA targets and their downstream effects. For in vivo evaluation, MI mice were injected with either wild-type or circALPK2 knockdown hESC-CMs, and the therapeutic potential was assessed by echocardiographic and histological analyses. RESULTS We identified circALPK2 as a negative regulator of cell proliferation in hESC-CMs. CircALPK2 was abundantly expressed in hESC-CMs. Knockdown of circALPK2 significantly enhanced cell proliferation in hESC-CMs, as demonstrated by CCK-8 assays (p < 0.001) and EdU staining (p < 0.001), and accelerated the expression of cell cycle-related genes, including CCNA2(p < 0.05) and CDK1 (p < 0.01). Furthermore, circALPK2 was found to function as a sponge to inhibit miR-9 activity, while miR-9 mimics significantly boosted the proliferative capacity of hESC-CMs. Glycogen synthase kinase 3β (GSK3B), a key inhibitor of WNT signaling, was identified as a direct target of miR-9, mediating the regulation of cardiomyocyte proliferation. Importantly, circALPK2 knockdown improved the myocardial repair potential of hESC-CMs when injected into infarcted mouse hearts, as indicated by improved left ventricular ejection fraction (p < 0.01) and fractional shortening (p < 0.05). CONCLUSIONS Our study identifies the circALPK2/miR-9/GSK3B axis as a novel target for promoting cardiomyocyte proliferation and enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xue Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Hao Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yuan Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Yingjiong Lin
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Dandan Zhao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
8
|
Cai Y, Qiu R, Huang Q, Lai W, Han Y, Lu X, Qin J, Ouyang Q, Yang M. Circ_0088200 acts as a sponge for miR-127-5p to promote the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2025; 6:7-20. [PMID: 40191465 PMCID: PMC11966198 DOI: 10.1515/rir-2025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/04/2025] [Indexed: 04/09/2025]
Abstract
Background Circular RNAs (circRNAs) play a crucial role in the development of various diseases. However, few studies have investigated the role of circRNAs in rheumatoid arthritis (RA). Herein, we aimed to identified the novel circRNAs involved in the migration and invasion of RA fibroblast-like synoviocytes (RA-FLS). Methods The RA-FLS were isolated from the synovial membrane of patients with RA. The CircRNA profile was screened by CircRNA microarray analysis. Circ_0088200 and miR-127-5p expression levels were detected using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The protein level of matrix metalloproteinase 1 (MMP1) was evaluated by western blotting. Wound healing and Transwell assays were performed to analyze the migration and invasion of RA-FLS. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were used to validate the interaction between Circ_0088200 and miR-127-5p. Collagen-induced arthritis (CIA) mouse models were established to evaluate the role of Circ_0088200 in the development of arthritis in vivo. Results Circ_0088200 was highly expressed in RA-FLS compared with osteoarthritis fibroblast-like synoviocytes (OAFLS) and correlated positively with the disease activity score in 28 joints. Inhibition of Circ_0088200 suppressed the migration and invasion of RA-FLS. Conversely, overexpression of Circ_0088200 significant promoted the migration and invasion of RA-FLS. Mechanistically, Circ_0088200 functions as a sponge for miR-127-5p and relieve its repressive effect on MMP1, thereby promoting the migration and invasion of RA-FLS. Importantly, intra-articular injection of Adenoassociated virus expressing Circ_0088200 significantly increased the severity of arthritis in mice with CIA. Conclusion Circ_0088200 promotes the migration and invasion of RA-FLS by sponging miR-127-5p. Thus Circ_0088200 is a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Yujie Cai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Rong Qiu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Qin Huang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Weinan Lai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Yipeng Han
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Xiaoxi Lu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Jiayu Qin
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Qingqing Ouyang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| | - Min Yang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510510, Guangdong Province, China
| |
Collapse
|
9
|
Chen L, Wang W, Zhao Y, Zhang S, Zhou X. Circular RNA CHACR is involved in the pathogenesis of cardiac hypertrophy. Theranostics 2025; 15:3627-3642. [PMID: 40093901 PMCID: PMC11905130 DOI: 10.7150/thno.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Circular RNAs (circRNAs) exhibit differential expression in cardiac hypertrophy; however, their functions and mechanisms remain largely unexplored. This study aimed to determine the involvement of circRNAs in the pathogenesis of myocardial hypertrophy. Methods: A mouse model of cardiac hypertrophy was established using transverse aortic constriction (TAC) and differentially expressed circRNAs were identified via high-throughput sequencing. To facilitate gene overexpression or knockdown, related viruses were injected into myocardial tissues of the mice. Cardiomyocyte hypertrophy was assessed using quantitative real-time PCR and immunofluorescence staining. RNA immunoprecipitation, RNA pull-down assay and fluorescence in situ hybridization were conducted to confirm the interaction between circRNAs and proteins. Protein expression and degradation were evaluated using cycloheximide-chase assay, immunoprecipitation, and western blotting. Results: Cardiac hypertrophy-associated circRNA (CHACR) was significantly downregulated in myocardial tissues from TAC mice. CHACR can attenuate cardiac hypertrophy through upregulating carnitine palmitoyltransferase-1b (CPT1b) expression. Mechanistically, CHACR directly interacted with CPT1b and decreased its protein degradation by inhibiting the ubiquitin-proteasome pathway to increase its expression in cardiomyocytes. Moreover, CPT1b overexpression decreased L-carnitine levels and inhibited the Jak2/Stat3 signaling pathway, which was associated with the pathogenesis of myocardial hypertrophy. Conclusions: CHACR attenuated cardiomyocyte hypertrophy by facilitating the expression of CPT1b, which plays a role in regulating the Jak2/Stat3 pathway via L-carnitine. CHACR may thus be a potential therapeutic target for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Lili Chen
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjing Wang
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiheng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Shi J, Song C, Zhang P, Wang J, Huang W, Yu T, Wei Z, Wang L, Zhao L, Zhang R, Hou L, Zhang Y, Chen H, Wang H. Microglial circDlg1 modulates neuroinflammation by blocking PDE4B ubiquitination-dependent degradation associated with Alzheimer's disease. Theranostics 2025; 15:3401-3423. [PMID: 40093898 PMCID: PMC11905123 DOI: 10.7150/thno.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Abnormal activation of microglia occurs in the early stage of Alzheimer's disease (AD) and leads to subsequent neuroinflammation and major AD pathologies. Circular RNAs (circRNAs) are emerging as great potential therapeutic targets in AD. However, the extent of circRNAs entwined and the underlying mechanism in microglia-driven neuroinflammation in AD remain elusive. Methods: The circular RNA Dlg1 (circDlg1) was identified using circRNA microarray screening in magnetic-isolated microglia of APP/PS1 mice. CircDlg1 expression in microglia of APP/PS1 mice and AD patients was validated by FISH. Flow cytometry and immunostaining were conducted to explore the roles of circDlg1 in microglia. Adeno-associated virus 9 preparations for interfering with microglial circDlg1 were microinjected into mouse lateral ventricle to explore influences on microglial response, neuroinflammation and AD pathologies. Y-maze, novel object recognition and Morris water maze tasks were performed to assess cognitive performance. RNA pulldown assays, mass spectrometry analysis, RNA immunoprecipitation, and co-immunoprecipitation were performed to validate the underlying regulatory mechanisms of circDlg1. Results: A novel circular RNA circDlg1 was observed elevated using circRNA microarray screening in microglia isolated from APP/PS1 mice and validated increased in intracerebral microglia of AD patients. Microglia-specific knockdown of circDlg1 remarkably ameliorated microglial recruitment and envelopment of amyloid-β (Aβ), mitigated neuroinflammation, and prevented cognitive decline in APP/PS1 mice. Mechanistically, circDlg1 interfered with the interaction between phosphodiesterase 4b (PDE4B) and Smurf2, an E3 ubiquitin ligase of PDE4B. The formed ternary complex protected PDE4B from ubiquitination-dependent degradation via unique N-terminal targeting domain, thus consequently decreasing cAMP levels. We further confirmed that microglial circDlg1 downregulation significantly activated PKA/CREB anti-inflammatory pathway by decreasing PDE4B protein levels in APP/PS1 mice. Conclusion: The novel microglia-upregulated circDlg1 tightly involves in neuroinflammation in APP/PS1 mice via determining the protein fate of PDE4B. Microglial loss of circDlg1 promotes microglial protective response to Aβ deposition and relieves neuroinflammation, thus suggesting a potential therapeutic strategy that specifically targets the microglial response in AD.
Collapse
Affiliation(s)
- Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zijie Wei
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lina Hou
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shuguang Lab of Future Health, Shanghai Frontiers Science Center of TCM Chemical Biology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
11
|
Zhao S, Zhang Y, Zhao Y, Lu X. Cellular senescence as a key player in chronic heart failure pathogenesis: Unraveling mechanisms and therapeutic opportunities. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:8-18. [PMID: 39961550 DOI: 10.1016/j.pbiomolbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Chronic heart failure (CHF) is the final stage of heart disease and is caused by various factors. Unfortunately, CHF has a poor prognosis and a high mortality rate. Recent studies have found that aging is a significant risk factor for the development of CHF and that cellular senescence plays a vital role in its development. This article reviews different types of cellular senescence, mitochondrial dysfunction in senescent cells, autophagy in senescent cells, and senescence-associated secretory phenotype (SASP), and epigenetic regulation, to provide new perspectives on the research and treatment of CHF.
Collapse
Affiliation(s)
- Shuqing Zhao
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiaohui Lu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
12
|
Fu G, Qiu L, Wang J, Li S, Tian J, Wu J, Lin X, Zhu Y, Liu Z, Luo L, Wang K, Zhao F, Kuang J, Liang S, Liang S, Guo Y, Hong Y, Yi Y, Huang J, Niu Y, Kang K, Gou D. Genome-wide characterization of circular RNAs in three rat models of pulmonary hypertension reveals distinct pathological patterns. BMC Genomics 2025; 26:127. [PMID: 39930385 PMCID: PMC11812181 DOI: 10.1186/s12864-025-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a devastating disease marked by elevated pulmonary artery pressure, resulting in right ventricular (RV) failure and mortality. Despite the identification of several dysregulated genes in PH, the involvement of circular RNAs (circRNAs), a subset of long noncoding RNAs, remains largely unknown. METHODS In this study, high-throughput RNA sequencing was performed to analyze the genome-wide expression patterns of circRNAs in pulmonary arteries from three models of PH rats induced by hypoxia (Hyp), hypoxia/Sugen5416 (HySu), and monocrotaline (MCT). Differentially expressed circRNAs (DEcircRNAs) were identified, and a weighted gene coexpression network was constructed to explore circRNA networks associated with PH pathogenesis. A circRNA-miRNA-mRNA regulatory network was built, and the functional significance of targeted mRNAs was evaluated. Single-cell RNA sequencing provided insights into the distribution of cell type-specific circRNAs across PH progression. RESULTS Our analysis revealed 45 circRNAs exhibiting significant changes across all three PH rat models, with their host genes participating in the calcium signaling and muscle contraction. We identified 372 PH-related circRNA-miRNA-mRNA interactions, shedding light on the regulatory networks during PH development. Furthermore, we uncovered 186, 195 and 311 Hyp-, Hysu- and MCT-specific circRNAs, respectively. These circRNAs were enriched in distinct biological processes, emphasizing their unique regulatory roles. Single-cell spatial distribution analysis of these circRNAs in the pulmonary arteries of PH patients revealed that Hyp-specific circRNA predominantly appeared in the pulmonary vascular structural cells, while HySu- and MCT-specific circRNAs exhibited broader distribution, including significant enrichment in immune-related cells. CONCLUSION Our study presents the first comprehensive view of circRNA regulatory networks in the pulmonary arteries of three PH rat models. We provide insights into PH-associated circRNAs, particularly their involvement in calcium signaling and muscle contraction.
Collapse
Affiliation(s)
- Gaohui Fu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jinglin Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jiayu Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xinyang Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yiheng Zhu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zixin Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lingjie Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ku Wang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Feilong Zhao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jiahao Kuang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Shuangqing Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shiran Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yuqing Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yuping Hong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yonghao Yi
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jinyong Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Kang Kang
- College of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
13
|
Kulus M, Farzaneh M, Sheykhi-Sabzehpoush M, Ghaedrahmati F, Mehravar F, Józkowiak M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Podhorska-Okołów M, Zabel M, Mozdziak P, Dzięgiel P, Kempisty B. Exosomes and non-coding RNAs: Exploring their roles in human myocardial dysfunction. Biomed Pharmacother 2025; 183:117853. [PMID: 39827809 DOI: 10.1016/j.biopha.2025.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Myocardial dysfunction, characterized by impaired cardiac muscle function, arises from diverse etiologies, including coronary artery disease, myocardial infarction, cardiomyopathies, hypertension, and valvular heart disease. Recent advancements have highlighted the roles of exosomes and non-coding RNAs in the pathophysiology of myocardial dysfunction. Exosomes are small extracellular vesicles released by cardiac and other cells that facilitate intercellular communication through their molecular cargo, including ncRNAs. ncRNAs are known to play critical roles in gene regulation through diverse mechanisms, impacting oxidative stress, fibrosis, and other factors associated with myocardial dysfunction. Dysregulation of these molecules correlates with disease progression, presenting opportunities for therapeutic interventions. This review explores the mechanistic interplay between exosomes and ncRNAs, underscoring their potential as biomarkers and therapeutic agents in myocardial dysfunction. Emerging evidence supports the use of engineered exosomes and modified ncRNAs to enhance cardiac repair by targeting signaling pathways associated with fibrosis, apoptosis, and angiogenesis. Despite promising preclinical results, delivery, stability, and immunogenicity challenges remain. Further research is needed to optimize clinical translation. Understanding these intricate mechanisms may drive the development of innovative strategies for diagnosing and treating myocardial dysfunction, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mehravar
- Department of Biostatistics and Epidemiology, School of Health, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Marzenna Podhorska-Okołów
- Department of Human Morphology and Embryology, Division of Ultrastructure Research, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland; Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| |
Collapse
|
14
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
15
|
Ou W, Tan R, Zhai J, Sun L, Quan Z, Huang X, Xu F, Xu Q, Zhou C. Silencing circ_0043256 inhibited CoCl2-induced proliferation, migration, and aerobic glycolysis in gastric cancer cells. Sci Rep 2025; 15:171. [PMID: 39748101 PMCID: PMC11697268 DOI: 10.1038/s41598-024-84548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
We aimed to explore the role of circular RNA 0043256 (circ_0043256) in gastric cancer (GC) and its underlying mechanisms. The impact of circ_0043256 silencing on the proliferation, migration, apoptosis, and aerobic glycolysis of MKN-45 and AGS cells induced by CoCl2 was assessed through the utilization of CCK-8, wound healing assay, flow cytometry, and metabolic analysis. The interaction between circ_0043256 and miR-593-5p, as well as the involvement of the miR-593-5p/RRM2 axis in gastric cancer, were confirmed via luciferase assay, Western blot, and bioinformatics analysis. We found that circ_0043256 was up-regulated in GC tissues and CoCl2-treated MKN-45 and AGS cells. Silencing of circ_0043256 reversed CoCl2-induced proliferation, migration, and aerobic glycolysis in MKN-45 and AGS cells. Additionally, circ_0043256 silencing enhanced cell apoptosis and G2/M phase cell cycle arrest in response to CoCl2 treatment. Furthermore, the miR-593-5p/RRM2 axis was identified as a regulatory mechanism for circ_0043256 function in GC. Silencing of circ_0043256 and miR-593-5p mimic co-transfection significantly inhibited CoCl2-induced cellular responses in MKN-45 and AGS cells. A glycolysis inhibitor 2-DG further enhanced the inhibitory effect of circ_0043256 silencing on aerobic glycolysis of CoCl2-induced MKN-45 and AGS cells. Additionally, the inhibition of circ_0043256 resulted in a reduction in tumor volume and the expression of proliferation marker proteins in nude mice. Moreover, the suppression of circ_0043256 led to an increase in miR-593-5p expression and a decrease in RRM2 expression, ultimately causing a decrease in glycolytic-related proteins associated with the glycolytic pathway. Targeting this axis may offer a novel therapeutic approach for treating GC.
Collapse
Affiliation(s)
- Wenting Ou
- The Departments of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Rongjian Tan
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Jiawei Zhai
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Lijun Sun
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Zhenhao Quan
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Xianjin Huang
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Feipeng Xu
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Qingwen Xu
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China
| | - Caijin Zhou
- Departments of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, No. 57, South of Renmin Avenue, Zhanjiang, 524001, Guangdong Province, China.
| |
Collapse
|
16
|
Bernasconi R, Kuster GM. Non-coding RNAs and their potential exploitation in cancer therapy-related cardiotoxicity. Br J Pharmacol 2025; 182:296-315. [PMID: 38802331 DOI: 10.1111/bph.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Life expectancy in cancer patients has been extended in recent years, thanks to major breakthroughs in therapeutic developments. However, this also unmasked an increased incidence of cardiovascular diseases in cancer survivors, which is in part attributable to cancer therapy-related cardiovascular toxicity. Non-coding RNAs (ncRNAs) have received much appreciation due to their impact on gene expression. NcRNAs, which include microRNAs, long ncRNAs and circular RNAs, are non-protein-coding transcripts that are involved in the regulation of various biological processes, hence shaping cell identity and behaviour. They have also been implicated in disease development, including cardiovascular diseases, cancer and, more recently, cancer therapy-associated cardiotoxicity. This review outlines key features of cancer therapy-associated cardiotoxicity, what is known about the roles of ncRNAs in these processes and how ncRNAs could be exploited as therapeutic targets for cardioprotection. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Riccardo Bernasconi
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Myocardial Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Cardiology, University Heart Center Basel, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
17
|
Bibi A, Bartekova M, Gandhi S, Greco S, Madè A, Sarkar M, Stopa V, Tastsoglou S, de Gonzalo-Calvo D, Devaux Y, Emanueli C, Hatzigeorgiou AG, Nossent AY, Zhou Z, Martelli F. Circular RNA regulatory role in pathological cardiac remodelling. Br J Pharmacol 2025; 182:316-339. [PMID: 38830749 DOI: 10.1111/bph.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024] Open
Abstract
Cardiac remodelling involves structural, cellular and molecular alterations in the heart after injury, resulting in progressive loss of heart function and ultimately leading to heart failure. Circular RNAs (circRNAs) are a recently rediscovered class of non-coding RNAs that play regulatory roles in the pathogenesis of cardiovascular diseases, including heart failure. Thus, a more comprehensive understanding of the role of circRNAs in the processes governing cardiac remodelling may set the ground for the development of circRNA-based diagnostic and therapeutic strategies. In this review, the current knowledge about circRNA origin, conservation, characteristics and function is summarized. Bioinformatics and wet-lab methods used in circRNA research are discussed. The regulatory function of circRNAs in cardiac remodelling mechanisms such as cell death, cardiomyocyte hypertrophy, inflammation, fibrosis and metabolism is highlighted. Finally, key challenges and opportunities in circRNA research are discussed, and orientations for future work to address the pharmacological potential of circRNAs in heart failure are proposed. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Institute of Physiology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Shrey Gandhi
- Institute of Immunology, University of Münster, Münster, Germany
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Moumita Sarkar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Victoria Stopa
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Spyros Tastsoglou
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - A Yaël Nossent
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
18
|
Fan JH, Li XM. Mesangial cell-derived CircRNAs in chronic glomerulonephritis: RNA sequencing and bioinformatics analysis. Ren Fail 2024; 46:2371059. [PMID: 38946402 PMCID: PMC467094 DOI: 10.1080/0886022x.2024.2371059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS The expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.
Collapse
Affiliation(s)
- Ji Hui Fan
- Department of Nephrology, Huaibei People’s Hospital, Huaibei, China
| | - Xiao Min Li
- Department of Nephrology, Huaibei People’s Hospital, Huaibei, China
- Department of Traditional Chinese Medicine, Huaibei People’s Hospital, Huaibei, China
| |
Collapse
|
19
|
Cheng KY, Wang SW, Lan T, Mao ZJ, Xu YY, Shen Q, Zeng XX. CircRNA-mediated regulation of cardiovascular disease. Front Cardiovasc Med 2024; 11:1411621. [PMID: 39660120 PMCID: PMC11628502 DOI: 10.3389/fcvm.2024.1411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders affecting the heart and blood vessels, such as coronary heart disease, cerebrovascular disease (e.g., stroke), peripheral arterial disease, congenital heart anomalies, deep vein thrombosis, and pulmonary embolism. CVDs are often referred to as the leading cause of mortality worldwide. Recent advancements in deep sequencing have unveiled a plethora of noncoding RNA transcripts, including circular RNAs (circRNAs), which play pivotal roles in the regulation of CVDs. A decade of research has differentiated various circRNAs by their vasculoprotective or deleterious functions, revealing potential therapeutic targets. This review provides an overview of circRNAs and a comprehensive examination of CVDs, the regulatory circRNAs within the vasculature, and the burgeoning research domain dedicated to these noncoding RNAs.
Collapse
Affiliation(s)
- Ke-yun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Tian Lan
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhu-jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - You-yao Xu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
20
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
21
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Yuan Z, Huang S, Jin X, Li S. Circular RNAs in Cardiovascular Diseases: Molecular Mechanisms, Therapeutic Advances, and Innovations. Genes (Basel) 2024; 15:1423. [PMID: 39596623 PMCID: PMC11593509 DOI: 10.3390/genes15111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as promising therapeutic targets due to their unique covalently closed-loop structures and their regulatory roles in gene expression. Despite their potential, challenges in circRNA-based therapies include ensuring stability, tissue specificity, and efficient intracellular delivery. This review explores the implications of circRNAs in cardiovascular diseases (CVDs), providing an overview of their biogenesis, molecular mechanisms, and roles in disease pathology. In addition to discussing molecular features, this review highlights therapeutic advances, including small-molecule drugs targeting circRNAs, synthetic circRNA sponges, and innovations in drug delivery systems that enhance the effectiveness of these therapies. Finally, current challenges and future directions are addressed, emphasizing the need for continued research to fully unlock the therapeutic potential of circRNA-based strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Zheng Yuan
- College of Science, China University of Petroleum-Beijing, Beijing 102249, China
| | - Shaoyuan Huang
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| | - Shanshan Li
- School of Medicine, Nankai University, Tianjin 300071, China; (S.H.); (X.J.)
| |
Collapse
|
23
|
Yang Y, Cheng H. Emerging Roles of ncRNAs in Type 2 Diabetes Mellitus: From Mechanisms to Drug Discovery. Biomolecules 2024; 14:1364. [PMID: 39595541 PMCID: PMC11592034 DOI: 10.3390/biom14111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM), a high-incidence chronic metabolic disorder, has emerged as a global health issue, where most patients need lifelong medication. Gaining insights into molecular mechanisms involved in T2DM development is expected to provide novel strategies for clinical prevention and treatment. Growing evidence validates that non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) function as crucial regulators in multiple biological processes of T2DM, inspiring various potential targets and drug candidates. In this review, we summarize the current understanding of ncRNA roles in T2DM and discuss the potential use of ncRNAs as targets and active molecules for drug discovery.
Collapse
Affiliation(s)
- Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
Ji DN, Jin SD, Jiang Y, Xu FY, Fan SW, Zhao YL, Liu XQ, Sun H, Cheng WZ, Zhang XY, Guan XX, Zhang BW, Du ZM, Wang Y, Wang N, Zhang R, Zhang MY, Xu CQ. CircNSD1 promotes cardiac fibrosis through targeting the miR-429-3p/SULF1/Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 2024; 45:2092-2106. [PMID: 38760544 PMCID: PMC11420342 DOI: 10.1038/s41401-024-01296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-β1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/β-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.
Collapse
Affiliation(s)
- Dong-Ni Ji
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Sai-di Jin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Yuan Jiang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Fei-Yong Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Shu-Wei Fan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Lin Zhao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Qi Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Hao Sun
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Wen-Zheng Cheng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yue Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Xiang Guan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhi-Min Du
- Institute of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ning Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China
| | - Rong Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Ming-Yu Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| | - Chao-Qian Xu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
25
|
Pan F, Huang F, Chen M. Construction of cirRNA-miRNA-mRNA network and MAPK1 protein signaling pathway in patients with valvular disease affected by artificial heart valve replacement surgery. Int J Biol Macromol 2024; 278:134243. [PMID: 39084422 DOI: 10.1016/j.ijbiomac.2024.134243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The progress of modern medical technology has made artificial heart valve replacement an effective means to treat valvular disease, but the impact of cardiac function on patients after surgery is still a key issue. The purpose of this study was to construct the cirRNA-miRNA-mRNA network after artificial heart valve replacement in valvular disease patients, and to explore the regulatory mechanism related to MAPK1 protein, so as to reveal its potential role in affecting cardiac function. We downloaded cyclic cRNA expression profiles from the GEO database. Use the limma package to identify dec. WGCNA is used to identify key modules of circular rna. The target miRNAs of circular rna and the corresponding target genes of miRNAs were screened by ring intertome and target scan database. GO and KEGG analysis using the DAVID database. The genes associated with iron sag disease were derived from FerrDb database. The overlapping genes were obtained by Wien analysis. Next, the CircrNa-mirNa-mrna network was constructed based on the circRNA-miRNA pair and miRNA-mRNA pair and their cyclic landscape software. This study revealed the changes in the structure and expression of MAPK1 protein in the cirRNA-miRNA-mRNA network after artificial heart valve replacement in valvular disease patients, suggesting the potential role of MAPK1 protein in regulating cardiac function, and laying a foundation for further revealing its mechanism and clinical application.
Collapse
Affiliation(s)
- Fan Pan
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fangyang Huang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
27
|
YuYan, Yuan E. Regulatory effect of N6-methyladenosine on tumor angiogenesis. Front Immunol 2024; 15:1453774. [PMID: 39295872 PMCID: PMC11408240 DOI: 10.3389/fimmu.2024.1453774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Previous studies have demonstrated that genetic alterations governing epigenetic processes frequently drive tumor development and that modifications in RNA may contribute to these alterations. In the 1970s, researchers discovered that N6-methyladenosine (m6A) is the most prevalent form of RNA modification in advanced eukaryotic messenger RNA (mRNA) and noncoding RNA (ncRNA). This modification is involved in nearly all stages of the RNA life cycle. M6A modification is regulated by enzymes known as m6A methyltransferases (writers) and demethylases (erasers). Numerous studies have indicated that m6A modification can impact cancer progression by regulating cancer-related biological functions. Tumor angiogenesis, an important and unregulated process, plays a pivotal role in tumor initiation, growth, and metastasis. The interaction between m6A and ncRNAs is widely recognized as a significant factor in proliferation and angiogenesis. Therefore, this article provides a comprehensive review of the regulatory mechanisms underlying m6A RNA modifications and ncRNAs in tumor angiogenesis, as well as the latest advancements in molecular targeted therapy. The aim of this study is to offer novel insights for clinical tumor therapy.
Collapse
Affiliation(s)
- YuYan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enwu Yuan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Mei S, Ma X, Zhou L, Wuyun Q, Cai Z, Yan J, Ding H. Circular RNA in Cardiovascular Diseases: Biogenesis, Function and Application. Biomolecules 2024; 14:952. [PMID: 39199340 PMCID: PMC11352787 DOI: 10.3390/biom14080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases pose a significant public health challenge globally, necessitating the development of effective treatments to mitigate the risk of cardiovascular diseases. Recently, circular RNAs (circRNAs), a novel class of non-coding RNAs, have been recognized for their role in cardiovascular disease. Aberrant expression of circRNAs is closely linked with changes in various cellular and pathophysiological processes within the cardiovascular system, including metabolism, proliferation, stress response, and cell death. Functionally, circRNAs serve multiple roles, such as acting as a microRNA sponge, providing scaffolds for proteins, and participating in protein translation. Owing to their unique properties, circRNAs may represent a promising biomarker for predicting disease progression and a potential target for cardiovascular drug development. This review comprehensively examines the properties, biogenesis, and potential mechanisms of circRNAs, enhancing understanding of their role in the pathophysiological processes impacting cardiovascular disease. Furthermore, the prospective clinical applications of circRNAs in the diagnosis, prognosis, and treatment of cardiovascular disease are addressed.
Collapse
Affiliation(s)
- Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China; (S.M.); (X.M.); (L.Z.); (Q.W.); (Z.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave., Wuhan 430030, China
| |
Collapse
|
29
|
Hu Y, Cao H, Sheng J, Sun Y, Zhu Y, Lin Q, Yi N, He S, Peng L, Li L. Functional role of circRNA CHRC through miR-431-5p/KLF15 signaling axis in the progression of heart failure. J Genet Genomics 2024; 51:844-854. [PMID: 38575112 DOI: 10.1016/j.jgg.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Pathological myocardial hypertrophy is a common early clinical manifestation of heart failure, with noncoding RNAs exerting regulatory influence. However, the molecular function of circular RNAs (circRNAs) in the progression from cardiac hypertrophy to heart failure remains unclear. To uncover functional circRNAs and identify the core circRNA signaling pathway in heart failure, we construct a global triple network (microRNA, circRNA, and mRNA) based on the competitive endogenous RNA (ceRNA) theory. We observe that cardiac hypertrophy-related circRNA (circRNA CHRC), within the ceRNA network, is down-regulated in both transverse aortic constriction mice and Ang-II--treated primary mouse cardiomyocytes. Silencing circRNA CHRC increases cross-sectional cell area, atrial natriuretic peptide, and β-myosin heavy chain levels in primary mouse cardiomyocytes. Further screening shows that circRNA CHRC targets the miR-431-5p/KLF15 axis implicated in heart failure progression in vivo and in vitro. Immunoprecipitation with anti-Ago2-RNA confirms the interaction between circRNA CHRC and miR-431-5p, while miR-431-5p mimics reverse Klf15 activation caused by circRNA CHRC overexpression. In summary, circRNA CHRC attenuates cardiac hypertrophy via sponging miR-431-5p to maintain the normal level of Klf15 expression.
Collapse
Affiliation(s)
- Yi Hu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Huaming Cao
- Department of Cardiology, Shanghai Shibei Hospital, Shanghai 200435, China
| | - Jie Sheng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Yizhuo Sun
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Zhu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Lin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Na Yi
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Siyu He
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China
| | - Luying Peng
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200120, China.
| | - Li Li
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Arrhythmias Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Laboratory of Molecular Genetics and Stem Cell Differentiation, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200120, China.
| |
Collapse
|
30
|
Abubakar M, Hajjaj M, Naqvi ZEZ, Shanawaz H, Naeem A, Padakanti SSN, Bellitieri C, Ramar R, Gandhi F, Saleem A, Abdul Khader AHS, Faraz MA. Non-Coding RNA-Mediated Gene Regulation in Cardiovascular Disorders: Current Insights and Future Directions. J Cardiovasc Transl Res 2024; 17:739-767. [PMID: 38092987 DOI: 10.1007/s12265-023-10469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/23/2023] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVDs) pose a significant burden on global health. Developing effective diagnostic, therapeutic, and prognostic indicators for CVDs is critical. This narrative review explores the role of select non-coding RNAs (ncRNAs) and provides an in-depth exploration of the roles of miRNAs, lncRNAs, and circRNAs in different aspects of CVDs, offering insights into their mechanisms and potential clinical implications. The review also sheds light on the diverse functions of ncRNAs, including their modulation of gene expression, epigenetic modifications, and signaling pathways. It comprehensively analyzes the interplay between ncRNAs and cardiovascular health, paving the way for potential novel interventions. Finally, the review provides insights into the methodologies used to investigate ncRNA-mediated gene regulation in CVDs, as well as the implications and challenges associated with translating ncRNA research into clinical applications. Considering the broader implications, this research opens avenues for interdisciplinary collaborations, enhancing our understanding of CVDs across scientific disciplines.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, Punjab, Pakistan.
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Zil E Zehra Naqvi
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | - Hameed Shanawaz
- Department of Internal Medicine, Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | - Ammara Naeem
- Department of Cardiology, Heart & Vascular Institute, Dearborn, Michigan, USA
| | | | | | - Rajasekar Ramar
- Department of Internal Medicine, Rajah Muthiah Medical College, Chidambaram, Tamil Nadu, India
| | - Fenil Gandhi
- Department of Family Medicine, Lower Bucks Hospital, Bristol, PA, USA
| | - Ayesha Saleem
- Department of Internal Medicine, Jinnah Hospital, Lahore, Punjab, Pakistan
| | | | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Postgraduate Medical Institute, Lahore, Punjab, Pakistan
| |
Collapse
|
31
|
Zhang L, Wang M, Liao R, Han Q. Clinical Significance and Potential Mechanism of Circ_00008842 in Acute Myocardial Infarction. Int Heart J 2024; 65:703-712. [PMID: 39010224 DOI: 10.1536/ihj.24-009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
This study aimed to evaluate the clinical value of circ_0008842 in acute myocardial infarction (AMI) and explore the potential mechanisms.GSE149051 and GSE160717 datasets analyze common differentially expressed circRNAs (coDEcircRNA) in AMI. RT-qPCR analysis of circ_0008842 mRNA levels in patients with AMI. ROC curve assesses the diagnostic value of circ_0008842 in AMI. A cell model of AMI was constructed by hypoxia-reoxygenation (H/R) -induced H9c2. Cell viability and apoptosis were examined by CCK-8 and flow cytometry. Enzyme-linked immunosorbent assay was used to explore myocardial injury markers CK-MB and cTnI secretion. Dual luciferase reporter assays validate circ_0008842 binding to miRNA. PPI network and gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment reveal potential functions and pathways of targets from the miRNA in AMI.circ_0008842 is recognized as coDEcircRNA in AMI-related databases. circ_0008842 was greatly lower and miR-574-5p was significantly higher in patients with AMI than in healthy individuals. miR-574-5p is a target of circ_0008842. The sensitivity and specificity of circ_0008842 for diagnosing patients with AMI were 87.40% and 83.50%, respectively. Overexpression of circ_0008842 inhibited H/R induced apoptosis, increased cell viability, and decreased CK-MB and cTnI levels, which were partially abrogated by overexpression of miR-574-5p. Calmodulin-like protein 4 (CALML4) was the most connected hub gene in the PPI network of miR-574-5p predicted target genes.circ_0008842 is a diagnostic biomarker for AMI and participates in myocardial injury in AMI by regulating miR-574-5p. Our study provides new insights into the diagnosis for AMI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No.1 People's Hospital
| | - Ming Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Jiujiang University
| | - Ran Liao
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No.1 People's Hospital
| | - Qing Han
- Department of Cardiovascular Medicine, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang No.1 People's Hospital
| |
Collapse
|
32
|
Tantawy M, Langaee T, Wang D, Rubinstein SM, Cornell RF, Lenihan D, Fradley MG, Gong Y. Differential Expression of Circulating miRNAs and Carfilzomib-Related Cardiovascular Adverse Events in Patients with Multiple Myeloma. Int J Mol Sci 2024; 25:7795. [PMID: 39063038 PMCID: PMC11276722 DOI: 10.3390/ijms25147795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the association between circulating microRNA (miRNA) expression and cardiovascular adverse events (CVAE) in multiple myeloma (MM) patients treated with a carfilzomib (CFZ)-based regimen. A cohort of 60 MM patients from the Prospective Observation of Cardiac Safety with Proteasome Inhibitor (PROTECT) study was analyzed. Among these, 31 patients (51.6%) developed CVAE post-CFZ treatment. The Taqman OpenArray Human microRNA panels were used for miRNA profiling. We identified 13 differentially expressed miRNAs at baseline, with higher expressions of miR-125a-5p, miR-15a-5p, miR-18a-3p, and miR-152-3p and lower expression of miR-140-3p in patients who later developed CVAE compared to those free of CVAE, adjusting for age, gender, race, and higher B-type natriuretic peptide levels. We also identified three miRNAs, including miR-150-5p, that were differentially expressed in patients with and without CVAE post-treatment. Additionally, five miRNAs responded differently to CFZ treatment in CVAE vs. non-CVAE patients, including significantly elevated post-treatment expression of miR-140-3p and lower expressions of miR-598, miR-152, miR-21, and miR-323a in CVAE patients. Pathway enrichment analysis highlighted the involvement of these miRNAs in cardiovascular diseases and vascular processes. These findings suggest that specific miRNAs could serve as predictive biomarkers for CVAE and provide insights into the underlying mechanisms of CFZ-CVAE. Further investigation is warranted before these findings can be applied in clinical settings.
Collapse
Affiliation(s)
- Marwa Tantawy
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.T.)
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.T.)
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.T.)
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Samuel M. Rubinstein
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert F. Cornell
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Daniel Lenihan
- Cape Cardiology Group, Saint Francis Medical Center, Cape Girardeau, MO 63703, USA
| | - Michael G. Fradley
- Thalheimer Center for Cardio-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (M.T.)
- Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Cardio-Oncology Working Group, UF Health Cancer Center, Gainesville, FL 32610, USA
| |
Collapse
|
33
|
Jiang J, Wu H, Ji Y, Han K, Tang JM, Hu S, Lei W. Development and disease-specific regulation of RNA splicing in cardiovascular system. Front Cell Dev Biol 2024; 12:1423553. [PMID: 39045460 PMCID: PMC11263117 DOI: 10.3389/fcell.2024.1423553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Alternative splicing is a complex gene regulatory process that distinguishes itself from canonical splicing by rearranging the introns and exons of an immature pre-mRNA transcript. This process plays a vital role in enhancing transcriptomic and proteomic diversity from the genome. Alternative splicing has emerged as a pivotal mechanism governing complex biological processes during both heart development and the development of cardiovascular diseases. Multiple alternative splicing factors are involved in a synergistic or antagonistic manner in the regulation of important genes in relevant physiological processes. Notably, circular RNAs have only recently garnered attention for their tissue-specific expression patterns and regulatory functions. This resurgence of interest has prompted a reevaluation of the topic. Here, we provide an overview of our current understanding of alternative splicing mechanisms and the regulatory roles of alternative splicing factors in cardiovascular development and pathological process of different cardiovascular diseases, including cardiomyopathy, myocardial infarction, heart failure and atherosclerosis.
Collapse
Affiliation(s)
- Jinxiu Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hongchun Wu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yabo Ji
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Kunjun Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
34
|
Wang D, Yang S, Lyu M, Xu L, Zhong S, Yu D. Circular RNA HSDL2 promotes breast cancer progression via miR-7978 ZNF704 axis and regulating hippo signaling pathway. Breast Cancer Res 2024; 26:105. [PMID: 38937788 PMCID: PMC11210124 DOI: 10.1186/s13058-024-01864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Circular RNAs (circRNAs) are a new group of endogenous RNAs recently found to be involved in the development of various diseases, including their confirmed involvement in the progression of several types of cancers. Unluckily, the abnormal expression and functions of circRNAs in breast cancer shall be further investigated. This work aims to elucidate the action and molecular mechanism of circHSDL2 in the malignant progression of breast cancer. Differential expression profiles of circRNAs in breast cancer tissues relative to normal breast tissues and in the exosomes of breast cancer patients compared to healthy women were analyzed from databases to identify potentially functional circRNAs. CircHSDL2 was selected for further investigation. Cell proliferation, migration and invasion assays were done to assess the effect of circHSDL2 overexpression on breast cancer cells. Bioinformatics test and dual-luciferase reporter experiments were done to explore the interaction between circHSDL2 and miRNA. Downstream target genes were further investigated through proteomics analysis and Western blotting. The influence of circHSDL2 on breast cancer in vivo was evaluated through xenograft experiments in nude mice. Functional analysis demonstrated circHSDL2 overexpression promoted the division, movement, and invasion of breast cancer cells both in vivo and in vitro. Mechanistically, circHSDL2 acted as a sponge for miR-7978 to affect ZNF704 expression and thereby regulate the Hippo pathway in breast cancer cells. In conclusion, circHSDL2 regulates the Hippo pathway through the miR-7978/ZNF704 axis to facilitate the malignancy of breast cancer. This may be a potential biomarker and treatment target.
Collapse
Affiliation(s)
- Dandan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, P.R. China
| | - Sujin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, P.R. China
| | - Mengmeng Lyu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and the Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing, 210029, P.R. China
| | - Liping Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, P.R. China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, China.
| | - Dandan Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, P.R. China.
| |
Collapse
|
35
|
Zhong X, Wang K, Wang Y, Wang L, Wang S, Huang W, Jia Z, Dai SS, Huang Z. Angiotension II directly bind P2X7 receptor to induce myocardial ferroptosis and remodeling by activating human antigen R. Redox Biol 2024; 72:103154. [PMID: 38626575 PMCID: PMC11035111 DOI: 10.1016/j.redox.2024.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024] Open
Abstract
Continuous remodeling of the heart can result in adverse events such as reduced myocardial function and heart failure. Available evidence indicates that ferroptosis is a key process in the emergence of cardiac disease. P2 family purinergic receptor P2X7 receptor (P2X7R) activation plays a crucial role in numerous aspects of cardiovascular disease. The aim of this study was to elucidate any potential interactions between P2X7R and ferroptosis in cardiac remodeling stimulated by angiotensin II (Ang II), and P2X7R knockout mice were utilized to explore the role of P2X7R and elucidate its underlying mechanism through molecular biological methods. Ferroptosis is involved in cardiac remodeling, and P2X7R deficiency significantly alleviates cardiac dysfunction, remodeling, and ferroptosis induced by Ang II. Mechanistically, Ang II interacts with P2X7R directly, and LYS-66 and MET-212 in the in the ATP binding pocket form a binding complex with Ang II. P2X7R blockade influences HuR-targeted GPX4 and HO-1 mRNA stability by affecting the shuttling of HuR from the nucleus to the cytoplasm and its expression. These results suggest that focusing on P2X7R could be a possible therapeutic approach for the management of hypertensive heart failure.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Kangwei Wang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Yonghua Wang
- Department of Physical Education, WenZhou Medical University, WenZhou, ZheJiang, China
| | - Luya Wang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Sudan Wang
- Department of Respiratory, Wenzhou People's Hospital of Zhejiang Province, WenZhou, ZheJiang, China
| | - Weijian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Zhuyin Jia
- Department of Cardiology, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China.
| | - Shan-Shan Dai
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, Zhejiang, China.
| | - Zhouqing Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
36
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Ashrafizadeh M, Dai J, Torabian P, Nabavi N, Aref AR, Aljabali AAA, Tambuwala M, Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell Mol Life Sci 2024; 81:214. [PMID: 38733529 PMCID: PMC11088560 DOI: 10.1007/s00018-024-05236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyuan Dai
- School of computer science and information systems, Northwest Missouri State University, Maryville, MO, 64468, USA.
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, Boston, MA, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Minglin Zhu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan, Hubei, 430071, China.
| |
Collapse
|
38
|
Spagnolo CC, Pepe F, Ciappina G, Nucera F, Ruggeri P, Squeri A, Speranza D, Silvestris N, Malapelle U, Santarpia M. Circulating biomarkers as predictors of response to immune checkpoint inhibitors in NSCLC: Are we on the right path? Crit Rev Oncol Hematol 2024; 197:104332. [PMID: 38580184 DOI: 10.1016/j.critrevonc.2024.104332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Immune checkpoints inhibitors (ICIs) have markedly improved the therapeutic management of advanced NSCLC and, more recently, they have demonstrated efficacy also in the early-stage disease. Despite better survival outcomes with ICIs compared to standard chemotherapy, a large proportion of patients can derive limited clinical benefit from these agents. So far, few predictive biomarkers, including the programmed death-ligand 1 (PD-L1), have been introduced in clinical practice. Therefore, there is an urgent need to identify novel biomarkers to select patients for immunotherapy, to improve efficacy and avoid unnecessary toxicity. A deeper understanding of the mechanisms involved in antitumor immunity and advances in the field of liquid biopsy have led to the identification of a wide range of circulating biomarkers that could potentially predict response to immunotherapy. Herein, we provide an updated overview of these circulating biomarkers, focusing on emerging data from clinical studies and describing modern technologies used for their detection.
Collapse
Affiliation(s)
- Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Francesco Nucera
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Paolo Ruggeri
- Respiratory Medicine Unit, Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), University of Messina, Messina 98122, Italy
| | - Andrea Squeri
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Via S. Pansini, Naples 80131, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina 98122, Italy.
| |
Collapse
|
39
|
Bai P, Xiang X, Kang J, Xiang X, Jiang J, Fu X, Zhang Y, Li L. DFMG decreases angiogenesis to uphold plaque stability by inhibiting the TLR4/VEGF pathway in mice. PLoS One 2024; 19:e0302387. [PMID: 38635560 PMCID: PMC11025810 DOI: 10.1371/journal.pone.0302387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
The aim of this study was to elucidate the specific mechanism through which 7-difluoromethoxy-5,4'-dimethoxygenistein (DFMG) inhibits angiogenesis in atherosclerosis (AS) plaques, given its previously observed but poorly understood inhibitory effects. In vitro, a model using Human Umbilical Vein Endothelial (HUVEC-12) cells simulated the initial lesion in the atherosclerotic pathological process, specifically oxidative stress injury, by exposing cells to 30 μmol/L LPC. Additionally, an AS mouse model was developed in ApoE knockout mice through a 16-week period of high-fat feeding. DFMG demonstrated a reduction in tubule quantities in the tube formation assay and neovascularization induced by oxidative stress-damaged endothelial cells in the chicken embryo chorioallantoic membrane assay. Furthermore, DFMG decreased lipid levels in the blood of ApoE knockout mice with AS, along with a decrease in atherosclerotic plaques and neovascularizations in the aortic arch and descending aorta of AS animal models. DFMG treatment upregulated microRNA140 (miR-140) expression and suppressed VEGF secretion in HUVEC-12 cells. These effects were counteracted by Toll-like receptor 4 (TLR4) overexpression in HUVEC-12 cells subjected to oxidative injury or in a mouse model of AS. Dual-luciferase reporter assays demonstrated that miR-140 directly targeted TLR4. Immunohistochemical assay findings indicated a significant inverse relationship between miR-140 expression and TLR4 expression in ApoE knockout mice subjected to a high-fat diet. The study observed a close association between DFMG inhibitory effects on angiogenesis and plaque stability in AS, and the inhibition of the TLR4/NF-κB/VEGF signaling pathway, negatively regulated by miR-140.
Collapse
Affiliation(s)
- Pingjuan Bai
- Pathology Department, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
- Medical College of Hunan Normal University, Changsha, Hunan Province, China
| | - Xueping Xiang
- Medical College of Hunan Normal University, Changsha, Hunan Province, China
| | - Jiawen Kang
- Medical College of Hunan Normal University, Changsha, Hunan Province, China
| | - Xiaoqing Xiang
- Medical College of Hunan Normal University, Changsha, Hunan Province, China
| | - Jingwen Jiang
- Medical College of Hunan Normal University, Changsha, Hunan Province, China
| | - Xiaohua Fu
- Medical College of Hunan Normal University, Changsha, Hunan Province, China
| | - Yong Zhang
- Medical College of Hunan Normal University, Changsha, Hunan Province, China
| | - Lesai Li
- Hunan Cancer Hospital, Changsha, Hunan Province, China
| |
Collapse
|
40
|
Liu J, Shao Y, Li C. YTHDC1/CRM1 Facilitates m6A-Modified circRNA388 Nuclear Export to Induce Coelomocyte Autophagy via the miR-2008/ULK Axis in Apostichopus japonicus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1319-1333. [PMID: 38426898 DOI: 10.4049/jimmunol.2300761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.
Collapse
Affiliation(s)
- Jiqing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
41
|
Wu K, Du J. Knockdown of circSlc8a1 inhibited the ferroptosis in the angiotensin II treated H9c2 cells via miR-673-5p/TFRC axis. J Bioenerg Biomembr 2024; 56:159-170. [PMID: 38158500 DOI: 10.1007/s10863-023-10000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND This study aimed to investigate the role of circSlc8a1 in cardiac hypertrophy (CH), a pathological change in various cardiovascular diseases. METHODS An in vitro CH model was established using angiotensin II (AngII) treated H9c2 cells, followed by western blotting and RT-qPCR for detecting relative expressions. Cell viability and proliferation were analyzed using CCK-8 and EdU assays, while lactate dehydrogenase (LDH), reactive oxygen species (ROS), glutathione (GSH), and iron levels were determined using corresponding kits. Moreover, dual-luciferase reporter and RNA pull-down assays were performed to demonstrate whether miR-673-5p is bound to circSlc8a1 or transferrin receptor (TFRC). RESULTS The results indicated that the expressions of circSlc8a1 and TFRC were increased, while miR-673-5p was decreased in the AngII treated H9c2 cells. The ferroptosis inhibitor treatment decreased the atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-major histocompatibility complex (β-MHC) protein expressions, and circSlc8a1 expressions. Knocking down of circSlc8a1 inhibited promoted the cell viability and proliferation, increased the GSH content, glutathione peroxidase 4, and solute carrier family 7 member 11 protein expressions, and decreased the LDH, ROS, iron levels, and RAS protein expressions. The MiR-673-5p inhibitor antagonized the role of si-circSlc8a1, and the over-expressed TFRC reversed the miR-673-5p mimicking effects in AngII treated H9c2 cells. CONCLUSION CircSlc8a1 promoted the ferroptosis in CH via regulating the miR-673-5p/TFRC axis.
Collapse
Affiliation(s)
- Kaidi Wu
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, 121001, China
| | - Jiawei Du
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou City, Liaoning Province, 121001, China.
| |
Collapse
|
42
|
Chi K, Liu J, Li X, Wang H, Li Y, Liu Q, Zhou Y, Ge Y. Biomarkers of heart failure: advances in omics studies. Mol Omics 2024; 20:169-183. [PMID: 38224222 DOI: 10.1039/d3mo00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Heart failure is a complex syndrome characterized by progressive circulatory dysfunction, manifesting clinically as pulmonary and systemic venous congestion, alongside inadequate tissue perfusion. The early identification of HF, particularly at the mild and moderate stages (stages B and C), presents a clinical challenge due to the overlap of signs, symptoms, and natriuretic peptide levels with other cardiorespiratory pathologies. Nonetheless, early detection coupled with timely pharmacological intervention is imperative for enhancing patient outcomes. Advances in high-throughput omics technologies have enabled researchers to analyze patient-derived biofluids and tissues, discovering biomarkers that are sensitive and specific for HF diagnosis. Due to the diversity of HF etiology, it is insufficient to study the diagnostic data of early HF using a single omics technology. This study reviewed the latest progress in genomics, transcriptomics, proteomics, and metabolomics for the identification of HF biomarkers, offering novel insights into the early clinical diagnosis of HF. However, the validity of biomarkers depends on the disease status, intervention time, genetic diversity and comorbidities of the subjects. Moreover, biomarkers lack generalizability in different clinical settings. Hence, it is imperative to conduct multi-center, large-scale and standardized clinical trials to enhance the diagnostic accuracy and utility of HF biomarkers.
Collapse
Affiliation(s)
- Kuo Chi
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Jing Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Xinghua Li
- Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - He Wang
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yanliang Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yabin Zhou
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| | - Yuan Ge
- Department of Cardiovascular Disease II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
43
|
Zhang L, Li X, Gao H, Li P. The Role of Circular RNA Variants Generated from the NFIX Gene in Different Diseases. Mol Pharm 2024; 21:1027-1037. [PMID: 38315004 DOI: 10.1021/acs.molpharmaceut.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Circular RNAs (circRNAs) have been identified as important regulators in different developmental processes and disease pathogenesis. The loop structure of circRNAs makes them very stable in different conditions and microenvironments. circRNAs can affect microRNA (miRNA) and RNA binding protein (RBP) activity, encode functional proteins and regulate gene transcription. Recently, two circNFIX variants derived from the same gene, the Nuclear Factor I X (NFIX) gene, were determined as participants in the pathological processes of various diseases such as heart diseases and cancers. Both circNFIX variants are exonic circular RNAs and mainly function by sponging miRNAs. In this review, we summarize the current knowledge on circRNAs, elucidate the origins and properties of two circNFIX variants, explore the roles of two circNFIX variants in different diseases, and present clinical perspectives.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| |
Collapse
|
44
|
Mariappan V, Srinivasan R, Pratheesh R, Jujjuvarapu MR, Pillai AB. Predictive biomarkers for the early detection and management of heart failure. Heart Fail Rev 2024; 29:331-353. [PMID: 37702877 DOI: 10.1007/s10741-023-10347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Cardiovascular disease (CVD) is a serious public health concern whose incidence has been on a rise and is projected by the World Health Organization to be the leading global cause of mortality by 2030. Heart failure (HF) is a complicated syndrome resulting from various CVDs of heterogeneous etiologies and exhibits varying pathophysiology, including activation of inflammatory signaling cascade, apoptosis, fibrotic pathway, and neuro-humoral system, thereby leading to compromised cardiac function. During this process, several biomolecules involved in the onset and progression of HF are released into circulation. These circulating biomolecules could serve as unique biomarkers for the detection of subclinical changes and can be utilized for monitoring disease severity. Hence, it is imperative to identify these biomarkers to devise an early predictive strategy to stop the deterioration of cardiac function caused by these complex cellular events. Furthermore, measurement of multiple biomarkers allows clinicians to divide HF patients into sub-groups for treatment and management based on early health outcomes. The present article provides a comprehensive overview of current omics platform available for discovering biomarkers for HF management. Some of the existing and novel biomarkers for the early detection of HF with special reference to endothelial biology are also discussed.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Rajesh Srinivasan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Ravindran Pratheesh
- Department of Neurosurgery, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Muraliswar Rao Jujjuvarapu
- Radiodiagnosis and Imageology, Aware Gleneagles Global Hospital, LB Nagar, Hyderabad, Telangana, 500035, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India.
| |
Collapse
|
45
|
Wang X, Wu P, Fu Y, Yang R, Li C, Chen Y, He A, Chen X, Ma D, Ma J, Zhang T. The circular RNA expression profile of human auricle cartilage and the role of circCOL1A2 in isolated microtia. Cell Signal 2024; 115:111017. [PMID: 38123043 DOI: 10.1016/j.cellsig.2023.111017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microtia is one of the most common craniofacial birth defects worldwide, and its primary clinical manifestation is auricle deformity. Epigenetic factors are known to contribute to the etiology of microtia, yet the involvement of circular RNAs (circRNAs) in human auricle development and their association with microtia remains poorly understood. In this study, we aimed to analyze differentially expressed circRNAs and explore their functional implications in isolated microtia. By employing circRNA microarray analysis and bioinformatics approaches, we identified 340 differentially expressed circRNAs in auricle cartilage of patients with isolated microtia, comprising 152 upregulated and 188 downregulated circRNAs. A circRNA-mRNA co-expression network was constructed, followed by gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Subsequently, we selected four significantly upregulated circRNAs from the co-expression network based on their association with cartilage development and validated their expressions in 30 isolated microtia and 30 control clinical auricle cartilage samples. Among these circRNAs, circCOL1A2, the most significantly upregulated circRNA, was selected as a representative circRNA for investigating its role in isolated microtia. Overexpression of circCOL1A2 significantly inhibited chondrocyte proliferation and chondrogenic differentiation of human mesenchymal stem cells. Additionally, circCOL1A2 upregulated Dermatan Sulfate Epimerase Like (DSEL) expression by sponging miR-637 through the competing endogenous RNA (ceRNA) mechanism. Notably, the downregulation of DSEL attenuated the inhibitory effect of circCOL1A2 overexpression on cell proliferation and chondrogenic differentiation. Collectively, these findings highlight the involvement of circCOL1A2 in the pathogenesis of isolated microtia and emphasize the potential significance of dysregulated circRNAs in disease development.
Collapse
Affiliation(s)
- Xin Wang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Peixuan Wu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yaoyao Fu
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Run Yang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenlong Li
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ying Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Aijuan He
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xin Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200031, China.
| |
Collapse
|
46
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
47
|
Wu R, Xu F, Li J, Wang F, Chen N, Wang X, Chen Q. Circ-CIMIRC inhibition alleviates CIH-induced myocardial damage via FbxL4-mediated ubiquitination of PINK1. iScience 2024; 27:108982. [PMID: 38333696 PMCID: PMC10850785 DOI: 10.1016/j.isci.2024.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep disordered breathing diseases that characterized by chronic intermittent hypoxia (CIH). This work aimed to explore the role of circ-CIMIRC in CIH-induced myocardial injury. CIH aggravated myocardial tissue damage in rats. Circ_CIMIRC overexpression promoted apoptosis and reduced the colocalization of Tom20 and Parkin and mitophagy in CIH-treated H9c2 cells. Additionally, FbxL4 interacted with PINK1, FbxL4 silencing reduced PINK1 ubiquitination in H9c2 cells. Two major ubiquitination sites (K319 and K433) were responsible for ubiquitination of PINK1. Circ_CIMIRC promoted FbxL4-mediated ubiquitination and degradation of PINK1. Furthermore, circ_CIMIRC inhibition alleviated the pathological damage, fibrosis and apoptosis of myocardial tissues, reduced oxidative stress in CIH rats. In conclusion, circ_CIMIRC silencing repressed FbxL4-mediated ubiquitination and degradation of PINK1 and then enhanced PINK1/Parkin-mediated mitophagy, thereby alleviating myocardial damage in CIH rats. Thus, circ_CIMIRC may be a potential strategy to alleviate CIH-induced myocardial damage.
Collapse
Affiliation(s)
- Runhua Wu
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Fengsheng Xu
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Jingyi Li
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Feng Wang
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Naijie Chen
- College of Integrated Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Xiaoting Wang
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| | - Qin Chen
- Clinical Skills Teaching Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350100, China
| |
Collapse
|
48
|
Xie Q, Ma Y, Ren Z, Gu T, Jiang Z. Circular RNA: A new expectation for cardiovascular diseases. J Cell Biochem 2024; 125:e30512. [PMID: 38098251 DOI: 10.1002/jcb.30512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.
Collapse
Affiliation(s)
- Qiao Xie
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhe Gu
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
49
|
Ren Z, Liu Y, Cai A, Yu Y, Wang X, Lan L, Guo X, Yan H, Gao X, Li H, Tian Y, Ji H, Chen H, Ding F, Ma W, Wang N, Cai B, Yang B. Cannabidiol represses miR-143 to promote cardiomyocyte proliferation and heart regeneration after myocardial infarction. Eur J Pharmacol 2024; 963:176245. [PMID: 38052413 DOI: 10.1016/j.ejphar.2023.176245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Mammalian heart is capable to regenerate almost completely early after birth through endogenous cardiomyocyte proliferation. However, this regenerative capacity diminishes gradually with growth and is nearly lost in adulthood. Cannabidiol (CBD) is a major component of cannabis and has various biological activities to regulate oxidative stress, fibrosis, inflammation, and cell death. The present study was conducted to investigate the pharmacological effects of CBD on heart regeneration in post-MI mice. MI models in adult mice were constructed via coronary artery ligation, which were administrated with or without CBD. Our results demonstrate that systemic administration (10 mg/kg) of CBD markedly increased cardiac regenerative ability, reduced infarct size, and restored cardiac function in MI mice. Consistently, in vitro study also showed that CBD was able to promote the proliferation of neonatal cardiomyocytes. Mechanistically, the expression of miR-143-3p related to cardiomyocyte proliferation was significantly down-regulated in CBD-treated cardiomyocytes, while the overexpression of miR-143-3p inhibited cardiomyocyte mitosis and eliminated CBD-induced cardiomyocyte proliferation. Moreover, CBD enhanced the expression of Yap and Ctnnd1, which were demonstrated as the target genes of miR-143-3p. Silencing of Yap and Ctnnd1 hindered the proliferative effects of CBD. We further revealed that inhibition of the cannabinoid receptor 2 impeded the regulatory effect of CBD on miR-143-3p and its downstream target Yap/Ctnnd1, which ultimately eliminated the pro-proliferative effect of CBD on neonatal and adult cardiomyocytes. Taken together, CBD promotes cardiomyocyte proliferation and heart regeneration after MI via miR-143-3p/Yap/Ctnnd1 signaling pathway, which provides a new strategy for cardiac repair in adult myocardium.
Collapse
Affiliation(s)
- Zhongyu Ren
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yining Liu
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ao Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Yu
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiuxiu Wang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lan Lan
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaofei Guo
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hong Yan
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xinlu Gao
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hanjing Li
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yanan Tian
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Haoyu Ji
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hongyang Chen
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fengzhi Ding
- Department of Physiology, Wannan Medical College, Wuhu, 241000, China
| | - Wenya Ma
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ning Wang
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Benzhi Cai
- Department of Pharmacy, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital Harbin Medical University, Harbin, 150001, China.
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
50
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|