1
|
Jones NAR, Gaffney K, Gardella G, Rowe A, Spence-Jones HC, Munson A, Houslay TM, Webster MM. A reinvestigation of cognitive styles in sticklebacks: decision success varies with behavioral type. Behav Ecol 2025; 36:arae097. [PMID: 39664074 PMCID: PMC11631196 DOI: 10.1093/beheco/arae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
The "cognitive styles" hypothesis suggests that individual differences in behavior are associated with variation in cognitive performance via underlying speed-accuracy trade-offs. While this is supported, in part, by a growing body of evidence, some studies did not find the expected relationships between behavioral type and cognitive performance. In some cases, this may reflect methodological limitations rather than the absence of a true relationship. The physical design of the testing arena and the number of choices offered in an assay can hinder our ability to detect inter-individual differences in cognitive performance. Here, we re-investigated the cognitive styles hypothesis in threespine stickleback (Gasterosteus aculeatus), adapting the maze design of a previous study which found no cost to decision success by faster (bolder) individuals. We used a similar design but increased the size of the maze and incorporated an additional choice in the form of a third maze arm. We found, in accordance with cognitive style expectations, that individuals who were consistently slower to emerge from the start chamber made fewer errors than fish that emerged faster. Activity in an open field test, however, did not show evidence of a relationship with decision success, possibly due to the low number of repeated observations per fish in this separate assay. Our results provide further empirical support for the cognitive styles hypothesis and highlight important methodological aspects to consider in studies of inter-individual differences in cognition.
Collapse
Affiliation(s)
- Nick A R Jones
- Department of Animal Physiology, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| | - Kirstin Gaffney
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Cullercoats, North Shields, NE30 4PZ, Newcastle Upon Tyne, United Kingdom
| | - Giacomo Gardella
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| | - Annie Rowe
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| | - Helen C Spence-Jones
- School of Liberal arts and Natural Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | - Amelia Munson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, United Kingdom
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, SE-907 36, Umeå, Sweden
| | | | - Mike M Webster
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, United Kingdom
| |
Collapse
|
2
|
Lou Y, Zou Y, Fang Y, Sun Y. Exploratory behavior is associated with the cognitive speed in male chestnut thrushes. Curr Zool 2024; 70:707-713. [PMID: 39678824 PMCID: PMC11634674 DOI: 10.1093/cz/zoad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2023] [Indexed: 12/17/2024] Open
Abstract
Intra-individual variation in cognitive abilities has been widely reported in animals. Recent studies have found that individual cognitive performance varies with personality traits in a wide range of animal taxa, with a speed-accuracy trade-off between cognition and personality traits. Few studies investigated whether these relationships change depending on different contexts. Here we investigate whether the personality trait (as measured by exploratory behavior in a novel environment) is associated with cognition (novel skill learning and spatial memory) in wild male chestnut thrushes Turdus rubrocanus. Using an experimental novel skill-learning task set-up, we found that fast-exploring individuals explored the experimental device (a cardboard with 8 opaque cups) sooner than slow-exploring individuals. Exploratory behavior was not associated with individual spatial memory performances or an individual's capacity to learn the novel skill. Learning speed was positively associated with the difficulty of learning phases, and fast-exploring individuals used less trials to meet the learning criterion. In addition, fast-exploring individuals took less time to complete the 24-h spatial memory test, but the accuracy of the test was not significantly different between individuals who were more or less exploratory. We suggest that variation in personality traits associates with individual learning speed in cognitive tasks and that this relationship is context-dependent.
Collapse
Affiliation(s)
- Yingqiang Lou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yuqi Zou
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Yun Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yuehua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
3
|
Rovegno E, Lucon-Xiccato T, Terrin F, Valle LD, Bertolucci C. Knockout in zebrafish reveals the role of the glucocorticoid receptor in shaping behavioral syndromes. Behav Brain Res 2024; 473:115179. [PMID: 39103124 DOI: 10.1016/j.bbr.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Glucocorticoids (GCs) have a wide spectrum of effects on animal behavior. A recently suggested effect involves determining the structure of individual differences, that is how the behavioral traits of an individual covary, forming the so-called behavioral syndromes. As GCs can exert their action in multiple ways, e.g., via rapid non-genomic effects or via the activation of two highly homologous members of the steroid receptor family acting as transcription factors, it is unclear how the GC modulation of behavioral syndromes takes place. We exploited a zebrafish line with a frameshift mutation in the gene encoding the GC receptor (Gr), to investigate this question. We found that lack of Gr altered the average score of several behavioral traits in the mutant line, determining reduced boldness, and increased activity and sociability. Critically, the pattern of covariation between these traits was also substantially affected by the loss of Gr. The most evident effect was an association of traits involved in boldness in the gr mutant line. This study reveals that, in zebrafish, Gr is not only involved in the modulation of the average value of behavioral traits, but also in how the behavioral traits of an individual are interrelated and determine the behavioral syndromes.
Collapse
Affiliation(s)
- Eleonora Rovegno
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Lucon-Xiccato T. Inhibitory control in teleost fish: a methodological and conceptual review. Anim Cogn 2024; 27:27. [PMID: 38530456 PMCID: PMC10965611 DOI: 10.1007/s10071-024-01867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Inhibitory control (IC) plays a central role in behaviour control allowing an individual to resist external lures and internal predispositions. While IC has been consistently investigated in humans, other mammals, and birds, research has only recently begun to explore IC in other vertebrates. This review examines current literature on teleost fish, focusing on both methodological and conceptual aspects. I describe the main paradigms adopted to study IC in fish, identifying well-established tasks that fit various research applications and highlighting their advantages and limitations. In the conceptual analysis, I identify two well-developed lines of research with fish examining IC. The first line focuses on a comparative approach aimed to describe IC at the level of species and to understand the evolution of interspecific differences in relation to ecological specialisation, brain size, and factors affecting cognitive performance. Findings suggest several similarities between fish and previously studied vertebrates. The second line of research focuses on intraspecific variability of IC. Available results indicate substantial variation in fish IC related to sex, personality, genetic, age, and phenotypic plasticity, aligning with what is observed with other vertebrates. Overall, this review suggests that although data on teleosts are still scarce compared to mammals, the contribution of this group to IC research is already substantial and can further increase in various disciplines including comparative psychology, cognitive ecology, and neurosciences, and even in applied fields such as psychiatry research.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
5
|
Prentice PM, Thornton A, Kolm N, Wilson AJ. Genetic and context-specific effects on individual inhibitory control performance in the guppy (Poecilia reticulata). J Evol Biol 2023; 36:1796-1810. [PMID: 37916730 PMCID: PMC10947024 DOI: 10.1111/jeb.14241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023]
Abstract
Among-individual variation in cognitive traits, widely assumed to have evolved under adaptive processes, is increasingly being demonstrated across animal taxa. As variation among individuals is required for natural selection, characterizing individual differences and their heritability is important to understand how cognitive traits evolve. Here, we use a quantitative genetic study of wild-type guppies repeatedly exposed to a 'detour task' to test for genetic variance in the cognitive trait of inhibitory control. We also test for genotype-by-environment interactions (GxE) by testing related fish under alternative experimental treatments (transparent vs. semi-transparent barrier in the detour-task). We find among-individual variation in detour task performance, consistent with differences in inhibitory control. However, analysis of GxE reveals that heritable factors only contribute to performance variation in one treatment. This suggests that the adaptive evolutionary potential of inhibitory control (and/or other latent variables contributing to task performance) may be highly sensitive to environmental conditions. The presence of GxE also implies that the plastic response of detour task performance to treatment environment is genetically variable. Our results are consistent with a scenario where variation in individual inhibitory control stems from complex interactions between heritable and plastic components.
Collapse
Affiliation(s)
- Pamela M. Prentice
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- SRUC, Easter Bush, Roslin Institute BuildingMidlothianUK
| | - Alex Thornton
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - Niclas Kolm
- Department of ZoologyStockholm UniversityStockholmSweden
| | | |
Collapse
|
6
|
McCallum E, Shaw RC. Repeatability and heritability of inhibitory control performance in wild toutouwai ( Petroica longipes). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231476. [PMID: 38026029 PMCID: PMC10646466 DOI: 10.1098/rsos.231476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Despite increasing interest in the evolution of inhibitory control, few studies have examined the validity of widespread testing paradigms, the long-term repeatability and the heritability of this cognitive ability in the wild. We investigated these aspects in the inhibitory control performance of wild toutouwai (North Island robin; Petroica longipes), using detour and reversal learning tasks. We assessed convergent validity by testing whether individual performance correlated across detour and reversal learning tasks. We then further evaluated task validity by examining whether individual performance was confounded by non-cognitive factors. We tested a subset of subjects twice in each task to estimate the repeatability of performance across a 1-year period. Finally, we used a population pedigree to estimate the heritability of task performance. Individual performance was unrelated across detour and reversal learning tasks, indicating that these measured different cognitive abilities. Task performance was not influenced by body condition, boldness or prior experience, and showed moderate between-year repeatability. Yet despite this individual consistency, we found no evidence that task performance was heritable. Our findings suggest that detour and reversal learning tasks measure consistent individual differences in distinct forms of inhibitory control in toutouwai, but this variation may be environmentally determined rather than genetic.
Collapse
Affiliation(s)
- Ella McCallum
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| | - Rachael C. Shaw
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
7
|
Lucon-Xiccato T, De Russi G, Cannicci S, Maggi E, Bertolucci C. Embryonic exposure to artificial light at night impairs learning abilities and their covariance with behavioural traits in teleost fish. Biol Lett 2023; 19:20230436. [PMID: 37990566 PMCID: PMC10663786 DOI: 10.1098/rsbl.2023.0436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
The natural light cycle has profound effects on animals' cognitive systems. Its alteration owing to human activities, such as artificial light at night (ALAN), affects the biodiversity of mammalian and avian species by impairing their cognitive functions. The impact of ALAN on cognition, however, has not been investigated in aquatic species, in spite of the common occurrence of this pollution along water bodies. We exposed eggs of a teleost fish (the zebrafish Danio rerio) to ALAN and, upon hatching, we measured larvae' cognitive abilities with a habituation learning paradigm. Both control and ALAN-exposed larvae showed habituation learning, but the latter learned significantly slower, suggesting that under ALAN conditions, fish require many more events to acquire ecologically relevant information. We also found that individuals' learning performance significantly covaried with two behavioural traits in the control zebrafish, but ALAN disrupted one of these relationships. Additionally, ALAN resulted in an average increase in larval activity. Our results showed that both fish's cognitive abilities and related individual differences are negatively impacted by light pollution, even after a short exposure in the embryonic stage.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Gaia De Russi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefano Cannicci
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Elena Maggi
- Department of Biology, CoNISMa, University of Pisa, Pisa, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Pintos S, Lucon-Xiccato T, Vera LM, Bertolucci C. Daily rhythms in the behavioural stress response of the zebrafish Danio rerio. Physiol Behav 2023; 268:114241. [PMID: 37201692 DOI: 10.1016/j.physbeh.2023.114241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
In nature, animals are exposed to stressors that occur with different likelihood throughout the day, such as risk of predation and human disturbance. Hence, the stress response is expected to vary plastically to adaptively match these challenges. Several studies have supported this hypothesis in a wide range of vertebrate species, including some teleost fish, mostly through evidence of circadian variation in physiology. However, in teleost fish, circadian variation in behavioural stress responses is less understood. Here, we investigated the daily rhythm of stress response at the behavioural level in the zebrafish Danio rerio. We exposed individuals and shoals to an open field test every 4 h over a 24 h cycle, recording three behavioural indicators of stress and anxiety levels in novel environments (thigmotaxis, activity and freezing). Thigmotaxis and activity significantly varied throughout the day with a similar pattern, in line with a stronger stress response in the night phase. The same was suggested by analysis of freezing in shoals, but not in individual fish, in which variation appeared mostly driven by a single peak in the light phase. In a control experiment, we observed a set of subjects after familiarisation with the open-field apparatus. This experiment indicated that activity and freezing might present a daily rhythmicity that is unrelated to environmental novelty, and thus to stress responses. However, the thigmotaxis was constant through the day in the control condition, suggesting that the daily variation of this indicator is mostly attributable to the stress response. Overall, this research indicates that behavioural stress response of zebrafish does follow a daily rhythm, although this may be masked using behavioural indicators other than thigmotaxis. This rhythmicity can be relevant to improve welfare in aquaculture and reliability of behavioural research in fish models.
Collapse
Affiliation(s)
- Santiago Pintos
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Lucon-Xiccato T, Montalbano G, Bertolucci C. Adaptive phenotypic plasticity induces individual variability along a cognitive trade-off. Proc Biol Sci 2023; 290:20230350. [PMID: 37357854 PMCID: PMC10291716 DOI: 10.1098/rspb.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023] Open
Abstract
Animal species, including humans, display patterns of individual variability in cognition that are difficult to explain. For instance, some individuals perform well in certain cognitive tasks but show difficulties in others. We experimentally analysed the contribution of cognitive plasticity to such variability. Theory suggests that diametrically opposed cognitive phenotypes increase individuals' fitness in environments with different conditions such as resource predictability. Therefore, if selection has generated plasticity that matches individuals' cognitive phenotypes to the environment, this might produce remarkable cognitive variability. We found that guppies, Poecilia reticulata, exposed to an environment with high resource predictability (i.e. food available at the same time and in the same location) developed enhanced learning abilities. Conversely, guppies exposed to an environment with low resource predictability (i.e. food available at a random time and location) developed enhanced cognitive flexibility and inhibitory control. These cognitive differences align along a trade-off between functions that favour the acquisition of regularities such as learning and functions that adjust behaviour to changing conditions (cognitive flexibility and inhibitory control). Therefore, adaptive cognitive plasticity in response to resource predictability (and potentially similar factors) is a key determinant of cognitive individual differences.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
10
|
Daniel DK, Bhat A. Correlations begin at home: drivers of co-occurrence patterns in personality and cognitive ability in wild populations of zebrafish. Anim Cogn 2023:10.1007/s10071-023-01787-w. [PMID: 37248284 DOI: 10.1007/s10071-023-01787-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023]
Abstract
Aquatic habitats are extremely dynamic, with constantly changing ecological factors, which has now been exacerbated due to human-induced rapid environmental change. In such variable environments, it becomes essential to understand how personality and cognition in organisms affect the adaptability of individuals to different habitat conditions. To test this, we studied how personality-related traits as well as cognitive ability differ between populations of wild-caught zebrafish (Danio rerio) from habitats that differed in various environmental factors. We measured emergence into a novel environment as an indicator of boldness, and performance in a spatial task inferred from feeding latencies in a maze over repeated trials to assess learning and memory, as an indicator of cognitive ability. We found that personality affects cognition and although bolder fish are better learners, they show poorer retention of memory across populations. Although personality and cognitive ability varied between habitats, the patterns of their correlations remained similar within each population. However, the individual traits (such as sex and size) that were drivers of personality and cognition differed between the habitats, suggesting that not only do behavioral traits vary between populations, but also the factors that are important in determining them. Personality and cognitive ability and the correlations between these traits determine how well an organism performs in its habitat, as well as how likely it is to find new habitats and adapt to them. Studying these across wild zebrafish populations helps predict performance efficiencies among individuals and also explains how fish adapt to extremely dynamic environments that can lead to variation in behavioral traits and correlations between them. This study not only sheds light on the drivers of interindividual variation and co-occurrence patterns of personality and cognition, but also individual and population factors that might have an effect on them.
Collapse
Affiliation(s)
- Danita K Daniel
- Department of Biological Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Anuradha Bhat
- Department of Biological Science, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
11
|
Lucon-Xiccato T, Tomain M, D’Aniello S, Bertolucci C. bdnf loss affects activity, sociability, and anxiety-like behaviour in zebrafish. Behav Brain Res 2023; 436:114115. [DOI: 10.1016/j.bbr.2022.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
12
|
The effect of sex, age and boldness on inhibitory control. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Torgerson-White L, Sánchez-Suárez W. Looking beyond the Shoal: Fish Welfare as an Individual Attribute. Animals (Basel) 2022; 12:ani12192592. [PMID: 36230333 PMCID: PMC9559274 DOI: 10.3390/ani12192592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The fish farming industry is characterized by settings where large numbers of fishes are raised together at high stocking densities, effectively obliterating the individual. Given that animal welfare is an individual attribute that refers to how an animal experiences her world, it follows that ensuring good welfare for the different individuals is difficult in fish farms. In this paper we review evidence supporting the notion that fishes are individuals and fish welfare should thus also be considered at the individual level, examine the ways that animal welfare is assessed in fish farms, evaluate these practices in light of individualized terrestrial animal welfare assessment methods, and make recommendations regarding research that could lead to a better understanding of how to provide each individual fish with good welfare in captivity. Abstract Welfare is an individual attribute. In general, providing captive nonhuman animals with conditions conducive to good welfare is an idea more easily applied when dealing with few individuals. However, this becomes much harder—if not impossible—under farming conditions that may imply high numbers of animals living in large group sizes. Although this is a problem inherent to intensive animal farming, it is possibly best exemplified in fish farming, for these practices often rely on extremely high numbers. In this paper we review evidence supporting the notion that fishes are individuals and fish welfare should thus also be considered at the individual level, examine the current state of welfare assessment in the aquaculture industry, evaluate these practices in light of individualized terrestrial animal welfare assessment methods, and make recommendations regarding research that could lead to a better understanding of how to provide each individual fish with good welfare in captivity.
Collapse
Affiliation(s)
- Lauri Torgerson-White
- Department of Research, Farm Sanctuary, Watkins Glen, NY 14891, USA
- Correspondence: (L.T.-W.); (W.S.-S.); Tel.: +1-248-835-4770 (L.T.-W.)
| | - Walter Sánchez-Suárez
- Department of Research, Mercy For Animals, Los Angeles, CA 90046, USA
- Correspondence: (L.T.-W.); (W.S.-S.); Tel.: +1-248-835-4770 (L.T.-W.)
| |
Collapse
|
14
|
Lucon-Xiccato T, Montalbano G, Frigato E, Loosli F, Foulkes NS, Bertolucci C. Medaka as a model for seasonal plasticity: Photoperiod-mediated changes in behaviour, cognition, and hormones. Horm Behav 2022; 145:105244. [PMID: 35988451 DOI: 10.1016/j.yhbeh.2022.105244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Teleosts display the highest level of brain plasticity of all vertebrates. Yet we still know little about how seasonality affects fish behaviour and the underlying cognitive mechanisms since the common neurobehavioral fish models are native to tropical environments where seasonal variation is absent or reduced. The medaka, Oryzias latipes, which inhabits temperate zone habitats, represents a promising model in this context given its large phenotypic changes associated with seasonality and the possibility to induce seasonal plasticity by only manipulating photoperiod. Here, we report the first extended investigation of seasonal plasticity in medaka behaviour and cognition, as well as the potential underlying molecular mechanisms. We compared medaka exposed to summer photoperiod (16 h light:8 h dark) with medaka exposed to winter photoperiod (8 h light:16 h dark), and detected substantial differences. Medaka were more active and less social in summer photoperiod conditions, two effects that emerged in the second half of an open-field and a sociability test, respectively, and might be at least in part related to habituation to the testing apparatus. Moreover, the cognitive phenotype was significantly affected: in the early response to a social stimulus, brain functional lateralisation shifted between the two hemispheres under the two photoperiod conditions, and inhibitory and discrimination learning performance were reduced in summer conditions. Finally, the expression of genes encoding key pituitary hormones, tshß and gh, and of the tshß regulatory transcription factor tef in the brain was increased in summer photoperiod conditions. This work reveals remarkable behavioural and cognitive phenotypic plasticity in response to photoperiod in medaka, and suggests a potential regulatory role for the same hormones involved in seasonal plasticity of other vertebrates.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
15
|
Riley RJ, Gillie ER, Savage JL, Manica A, Boogert NJ. Familiarity, personality, and foraging performance in three-spined sticklebacks. Behav Processes 2022; 200:104699. [DOI: 10.1016/j.beproc.2022.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
|
16
|
Lucon-Xiccato T. The contribution of executive functions to sex differences in animal cognition. Neurosci Biobehav Rev 2022; 138:104705. [PMID: 35605792 DOI: 10.1016/j.neubiorev.2022.104705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 01/17/2023]
Abstract
Cognitive sex differences have been reported in several vertebrate species, mostly in spatial abilities. Here, I review evidence of sex differences in a family of general cognitive functions that control behaviour and cognition, i.e., executive functions such as cognitive flexibility and inhibitory control. Most of this evidence derives from studies in teleost fish. However, analysis of literature from other fields (e.g., biomedicine, genetic, ecology) concerning mammals and birds reveals that more than 40% of species investigated exhibit sex differences in executive functions. Among species, the direction and magnitude of these sex differences vary greatly, even within the same family, suggesting sex-specific selection due to species' reproductive systems and reproductive roles of males and females. Evidence also suggests that sex differences in executive functions might provide males and females highly differentiated cognitive phenotypes. To understand the evolution of cognitive sex differences in vertebrates, future research should consider executive functions.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
17
|
Lucon-Xiccato T, Loosli F, Conti F, Foulkes NS, Bertolucci C. Comparison of anxiety-like and social behaviour in medaka and zebrafish. Sci Rep 2022; 12:10926. [PMID: 35764691 PMCID: PMC9239998 DOI: 10.1038/s41598-022-14978-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
The medaka, Oryzias latipes, is rapidly growing in importance as a model in behavioural research. However, our knowledge of its behaviour is still incomplete. In this study, we analysed the performance of medaka in 3 tests for anxiety-like behaviour (open-field test, scototaxis test, and diving test) and in 3 sociability tests (shoaling test with live stimuli, octagonal mirror test, and a modified shoaling test with mirror stimulus). The behavioural response of medaka was qualitatively similar to that observed in other teleosts in the open-field test (thigmotaxis), and in 2 sociability tests, the shoaling test and in the octagonal mirror test (attraction towards the social stimulus). In the remaining tests, medaka did not show typical anxiety (i.e., avoidance of light environments and preference for swimming at the bottom of the aquarium) and social responses (attraction towards the social stimulus). As a reference, we compared the behaviour of the medaka to that of a teleost species with well-studied behaviour, the zebrafish, tested under the same conditions. This interspecies comparison indicates several quantitative and qualitative differences across all tests, providing further evidence that the medaka responds differently to the experimental settings compared to other fish models.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Francesca Conti
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Davidson GL, Reichert MS, Coomes JR, Kulahci IG, de la Hera I, Quinn JL. Inhibitory control performance is repeatable over time and across contexts in a wild bird population. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Garnham LC, Boddington R, Løvlie H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim Cogn 2022; 25:867-879. [PMID: 35122185 PMCID: PMC9334373 DOI: 10.1007/s10071-022-01598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
20
|
Montalbano G, Bertolucci C, Lucon-Xiccato T. Cognitive Phenotypic Plasticity: Environmental Enrichment Affects Learning but Not Executive Functions in a Teleost Fish, Poecilia reticulata. BIOLOGY 2022; 11:64. [PMID: 35053062 PMCID: PMC8772815 DOI: 10.3390/biology11010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Many aspects of animal cognition are plastically adjusted in response to the environment through individual experience. A remarkable example of this cognitive phenotypic plasticity is often observed when comparing individuals raised in a barren environment to individuals raised in an enriched environment. Evidence of enrichment-driven cognitive plasticity in teleost fish continues to grow, but it remains restricted to a few cognitive traits. The purpose of this study was to investigate how environmental enrichment affects multiple cognitive traits (learning, cognitive flexibility, and inhibitory control) in the guppy, Poecilia reticulata. To reach this goal, we exposed new-born guppies to different treatments: an enrichment environment with social companions, natural substrate, vegetation, and live prey or a barren environment with none of the above. After a month of treatment, we tested the subjects in a battery of three cognitive tasks. Guppies from the enriched environment learned a color discrimination faster compared to guppies from the environment with no enrichments. We observed no difference between guppies of the two treatments in the cognitive flexibility task, requiring selection of a previously unrewarded stimulus, nor in the inhibitory control task, requiring the inhibition of the attack response toward live prey. Overall, the results indicated that environmental enrichment had an influence on guppies' learning ability, but not on the remaining cognitive functions investigated.
Collapse
Affiliation(s)
- Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | | |
Collapse
|
21
|
Lucon-Xiccato T, Montalbano G, Reddon AR, Bertolucci C. Social environment affects inhibitory control via developmental plasticity in a fish. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
22
|
Loyant L, Waller BM, Micheletta J, Joly M. Heterogeneity of performances in several inhibitory control tasks: male rhesus macaques are more easily distracted than females. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211564. [PMID: 34849250 PMCID: PMC8611350 DOI: 10.1098/rsos.211564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Inhibitory control, the ability to override a dominant response, is crucial in many aspects of everyday life. In animal studies, striking individual variations are often largely ignored and their causes rarely considered. Hence, our aims were to systematically investigate individual variability in inhibitory control, to replicate the most common causes of individual variation (age, sex and rank) and to determine if these factors had a consistent effect on three main components of inhibitory control (inhibition of a distraction, inhibition of an action, inhibition of a cognitive set). We tested 21 rhesus macaques (Macaca mulatta) in a battery of validated touchscreen tasks. We first found individual variations in all inhibitory control performances. We then demonstrated that males had poorer performances to inhibit a distraction and that middle-aged individuals exhibited poorer performance in the inhibition of a cognitive set. Hence, the factors of age and sex were not consistently associated with the main components of inhibitory control, suggesting a multi-faceted structure. The rank of the subjects did not influence any inhibitory control performances. This study adopts a novel approach for animal behaviour studies and gives new insight into the individual variability of inhibitory control which is crucial to understand its evolutionary underpinnings.
Collapse
Affiliation(s)
- Louise Loyant
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
| | - Bridget M. Waller
- Department of Psychology, Nottingham Trent University, Nottingham, UK
| | - Jérôme Micheletta
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
| | - Marine Joly
- Centre for Comparative and Evolutionary Psychology, Department of Psychology, University of Portsmouth, King Henry Building, Portsmouth PO1 2DY, UK
| |
Collapse
|
23
|
Coomes JR, Davidson GL, Reichert MS, Kulahci IG, Troisi CA, Quinn JL. Inhibitory control, exploration behaviour and manipulated ecological context are associated with foraging flexibility in the great tit. J Anim Ecol 2021; 91:320-333. [PMID: 34693529 DOI: 10.1111/1365-2656.13600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
Organisms are constantly under selection to respond effectively to diverse, sometimes rapid, changes in their environment, but not all individuals are equally plastic in their behaviour. Although cognitive processes and personality are expected to influence individual behavioural plasticity, the effects reported are highly inconsistent, which we hypothesise is because ecological context is usually not considered. We explored how one type of behavioural plasticity, foraging flexibility, was associated with inhibitory control (assayed using a detour-reaching task) and exploration behaviour in a novel environment (a trait closely linked to the fast-slow personality axis). We investigated how these effects varied across two experimentally manipulated ecological contexts-food value and predation risk. In the first phase of the experiment, we trained great tits Parus major to retrieve high value (preferred) food that was hidden in sand so that this became the familiar food source. In the second phase, we offered them the same familiar hidden food at the same time as a new alternative option that was visible on the surface, which was either high or low value, and under either high or low perceived predation risk. Foraging flexibility was defined as the proportion of choices made during 4-min trials that were for the new alternative food source. Our assays captured consistent differences among individuals in foraging flexibility. Inhibitory control was associated with foraging flexibility-birds with high inhibitory control were more flexible when the alternative food was of high value, suggesting they inhibited the urge to select the familiar food and instead selected the new food option. Exploration behaviour also predicted flexibility-fast explorers were more flexible, supporting the information-gathering hypothesis. This tendency was especially strong under high predation risk, suggesting risk aversion also influenced the observed flexibility because fast explorers are risk prone and the new unfamiliar food was perceived to be the risky option. Thus, both behaviours predicted flexibility, and these links were at least partly dependent on ecological conditions. Our results demonstrate that an executive cognitive function (inhibitory control) and a behavioural assay of a well-known personality axis are both associated with individual variation in the plasticity of a key functional behaviour. That their effects on foraging flexibility were primarily observed as interactions with food value or predation risk treatments also suggest that the population-level consequences of some behavioural mechanisms may only be revealed across key ecological conditions.
Collapse
Affiliation(s)
- Jenny R Coomes
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Gabrielle L Davidson
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Michael S Reichert
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ipek G Kulahci
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Department of Biological Sciences, University of Notre Dame, Galvin Life Science Centre, Notre Dame, Indiana, USA
| | - Camille A Troisi
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Department of Experimental Psychology, Ghent University, Gent, Belgium
| | - John L Quinn
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Savaşçı BB, Lucon-Xiccato T, Bisazza A. Ontogeny and personality affect inhibitory control in guppies, Poecilia reticulata. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Haraldstad T, Haugen TO, Olsen EM, Forseth T, Höglund E. Hydropower-induced selection of behavioural traits in Atlantic salmon (Salmo salar). Sci Rep 2021; 11:16444. [PMID: 34385548 PMCID: PMC8360942 DOI: 10.1038/s41598-021-95952-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Renewable energy projects such as hydropower facilities contribute towards meeting the world`s growing energy demands and urgent need for mitigating climate change. However, such infrastructure has the potential to substantially alter the environment which, in turn, can induce new challenges related to for instance fish migration conditions. As a consequence, local adaptations related to pre-development migration conditions may be affected for influenced populations. To explore selection regimes operating at a river hydropower plant, we monitored Atlantic salmon smolt individuals during their seaward migration. When passing the hydropower plant, the smolts chose between a surface fish passage or a submerged turbine intake. Smolts were scored for behavioural type (basal locomotor activity, net restrain (a measure of escape responses) and willingness to leave a familiar environment) prior to their migration choice, and we found that smolts with high basal activity had higher probability of using the fish passage than the turbine intake. In addition, migration route choice was a partly consistent trait in that fish that had previously passed a hydroelectric facility by using a fish passage rather than the turbine intake were significantly more likely to use it again when faced with the same choice. Higher mortality among turbine migrants could potentially reduce or eliminate particular behaviour types within populations- and the corresponding population genetic diversity that is essential to cope with future environmental challenges.
Collapse
Affiliation(s)
- Tormod Haraldstad
- Norwegian Institute for Water Research, Jon Lilletuns vei 3, NO-4879, Grimstad, Norway.
| | - Thrond O Haugen
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Esben M Olsen
- Institute of Marine Research, Flødevigen, NO-4817, His, Norway
| | - Torbjørn Forseth
- Norwegian Institute for Nature Research, NO-7485, Trondheim, Norway
| | - Erik Höglund
- Norwegian Institute for Water Research, Jon Lilletuns vei 3, NO-4879, Grimstad, Norway
| |
Collapse
|
26
|
Individual behavioural traits not social context affects learning about novel objects in archerfish. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02996-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Learning can enable rapid behavioural responses to changing conditions but can depend on the social context and behavioural phenotype of the individual. Learning rates have been linked to consistent individual differences in behavioural traits, especially in situations which require engaging with novelty, but the social environment can also play an important role. The presence of others can modulate the effects of individual behavioural traits and afford access to social information that can reduce the need for ‘risky’ asocial learning. Most studies of social effects on learning are focused on more social species; however, such factors can be important even for less-social animals, including non-grouping or facultatively social species which may still derive benefit from social conditions. Using archerfish, Toxotes chatareus, which exhibit high levels of intra-specific competition and do not show a strong preference for grouping, we explored the effect of social contexts on learning. Individually housed fish were assayed in an ‘open-field’ test and then trained to criterion in a task where fish learnt to shoot a novel cue for a food reward—with a conspecific neighbour visible either during training, outside of training or never (full, partial or no visible presence). Time to learn to shoot the novel cue differed across individuals but not across social context. This suggests that social context does not have a strong effect on learning in this non-obligatory social species; instead, it further highlights the importance that inter-individual variation in behavioural traits can have on learning.
Significance statement
Some individuals learn faster than others. Many factors can affect an animal’s learning rate—for example, its behavioural phenotype may make it more or less likely to engage with novel objects. The social environment can play a big role too—affecting learning directly and modifying the effects of an individual’s traits. Effects of social context on learning mostly come from highly social species, but recent research has focused on less-social animals. Archerfish display high intra-specific competition, and our study suggests that social context has no strong effect on their learning to shoot novel objects for rewards. Our results may have some relevance for social enrichment and welfare of this increasingly studied species, suggesting there are no negative effects of short- to medium-term isolation of this species—at least with regards to behavioural performance and learning tasks.
Collapse
|
27
|
|
28
|
Macario A, Darden SK, Verbruggen F, Croft DP. Intraspecific variation in inhibitory motor control in guppies, Poecilia reticulata. JOURNAL OF FISH BIOLOGY 2021; 98:317-328. [PMID: 33128393 DOI: 10.1111/jfb.14608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Inhibitory control (IC) is the ability to overcome impulsive or prepotent but ineffective responses in favour of more appropriate behaviours. The ability to inhibit internal predispositions or external temptations is vital in coping with a complex and variable world. Traditionally viewed as cognitively demanding and a main component of executive functioning and self-control, IC was historically examined in only a few species of birds and mammals but recently a number of studies has shown that a much wider range of taxa rely on IC. Furthermore, there is growing evidence that inhibitory abilities may vary within species at the population and individual levels owing to genetic and environmental factors. Here we use a detour-reaching task, a standard paradigm to measure motor inhibition in nonhuman animals, to quantify patterns of interindividual variation in IC in wild-descendant female guppies, Poecilia reticulata. We found that female guppies displayed inhibitory performances that were, on average, half as successful as the performances reported previously for other strains of guppies tested in similar experimental conditions. Moreover, we showed consistent individual variation in the ability to inhibit inappropriate behaviours. Our results contribute to the understanding of the evolution of fish cognition and suggest that IC may show considerable variation among populations within a species. Such variation in IC abilities might contribute to individual differences in other cognitive functions such as spatial learning, quantity discrimination or reversal learning.
Collapse
Affiliation(s)
- Alessandro Macario
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Safi K Darden
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Frederick Verbruggen
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Darren P Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
29
|
Development of Open-Field Behaviour in the Medaka, Oryzias latipes. BIOLOGY 2020; 9:biology9110389. [PMID: 33182555 PMCID: PMC7696969 DOI: 10.3390/biology9110389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Animal models play an important role in research on behaviour and its impairment. Fish larvae allow researchers to conduct experiments on large samples in just a few days and with small-scale experimental infrastructure, substantially increasing research output. However, several aspects of larval biology, including their behaviour, are frequently unknown. Our study has demonstrated that the most important behavioural paradigm for studying anxiety and stress in animals, the open-field test, can be used in the larvae of an important fish genetic model, the medaka. This finding will allow researchers to develop models to study anxiety and stress disorders based on medaka larvae. Abstract The use of juvenile and larval fish models has been growing in importance for several fields. Accordingly, the evaluation of behavioural tests that can be applied to larvae and juveniles is becoming increasingly important. We tested medaka at four different ages (1, 10, 30, and 120 dph) in the open field test, one of the most commonly used behavioural assays, to investigate its suitability for larvae and juveniles of this species. We also explored ontogenetic variation in behaviour during this test. On average, adult 120-day-old medaka showed higher locomotor activity in terms of distance moved compared with younger fish. Our analysis suggests that this effect was derived from both quantitative changes in locomotion related to the ontogenetic increase in fish size as well as qualitative changes in two aspects of locomotor behaviour. Specifically, time spent moving was similar between 1- and 10-day-old medaka, but progressively increased with development. In addition, we revealed that adult medaka showed constant levels of activity, whereas younger medaka progressively reduced their activity over the course of the entire experiment. The thigmotaxis behaviour typically used to assess anxiety in the open field test emerged at 120 days post-hatching, even though a difference in the temporal pattern of spatial preference emerged earlier, between 10 and 30 days post-hatching. In conclusion, some measures of the open field test such as total distance moved allow behavioural phenotyping in the medaka of all ages, although with some degree of quantitative and qualitative developmental variation. In contrast, immature medaka appear not to exhibit thigmotactic behaviour.
Collapse
|
30
|
Montalbano G, Bertolucci C, Lucon-Xiccato T. Measures of inhibitory control correlate between different tasks but do not predict problem-solving success in a fish, Poecilia reticulata. INTELLIGENCE 2020. [DOI: 10.1016/j.intell.2020.101486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Lucon-Xiccato T, Montalbano G, Dadda M, Bertolucci C. Lateralization correlates with individual differences in inhibitory control in zebrafish. Biol Lett 2020; 16:20200296. [PMID: 32750269 DOI: 10.1098/rsbl.2020.0296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Individual fitness often depends on the ability to inhibit behaviours not adapted to a given situation. However, inhibitory control can vary greatly between individuals of the same species. We investigated a mechanism that might maintain this variability in zebrafish (Danio rerio). We demonstrate that inhibitory control correlates with cerebral lateralization, the tendency to process information with one brain hemisphere or the other. Individuals that preferentially observed a social stimulus with the right eye and thus processed social information with the left brain hemisphere, inhibited foraging behaviour more efficiently. Therefore, selective pressures that maintain lateralization variability in populations might provide indirect selection for variability in inhibitory control. Our study suggests that individual cognitive differences may result from complex multi-trait selection mechanisms.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
32
|
Lucon-Xiccato T, Bisazza A, Bertolucci C. Guppies show sex and individual differences in the ability to inhibit behaviour. Anim Cogn 2020; 23:535-543. [PMID: 32034539 DOI: 10.1007/s10071-020-01357-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022]
Abstract
In humans, individual and sex differences have been long reported for several cognitive tasks and are at least in part due to variability in the function that inhibits behaviour (i.e. inhibitory control). Similar evidence of individual and sex differences in inhibitory abilities is also present in other vertebrates, but is scarce outside primates. Experiments on reversal learning, which requires inhibiting behaviours, suggest that this variability may exist in a teleost fish, the guppy, Poecilia reticulata. We tested this hypothesis by observing guppies in an inhibitory task. Guppies were exposed to unreachable prey inside a transparent tube for six trials. Guppies showed a marked reduction in the number of attempts to catch the prey within the first trial and also over repeated trials. We found a striking sex difference in the capacity to inhibit foraging behaviour. Males attempted to attack the prey twice as often as females and showed negligible improvement over trials. Irrespective of sex, individuals remarkably differed in their performance, with some guppies being systematically more skilled than others across the repeated trials. These results confirm that individual and sex differences in the ability to inhibit behaviour are not restricted to humans and other primates, suggesting that they might be widespread among vertebrates. Variability in inhibitory ability provides an explanation for emerging records of variability in other cognitive tasks in fish.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
33
|
Brandão ML, Fernandes AMTDA, Gonçalves-de-Freitas E. Male and female cichlid fish show cognitive inhibitory control ability. Sci Rep 2019; 9:15795. [PMID: 31673023 PMCID: PMC6823373 DOI: 10.1038/s41598-019-52384-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Inhibitory control is a way to infer cognitive flexibility in animals by inhibiting a behavioral propensity to obtain a reward. Here we tested whether there are differences in inhibitory control between females and males of the fish Nile tilapia owing to their distinct reproductive roles. Individuals were tested under a detour-reaching paradigm, consisting of training fish to feed behind an opaque barrier and, thereafter, testing them with a transparent one. Fish is expected to avoid trying to cross through the transparent barrier to achieve food (reward), thus showing inhibitory control by recovering the learned detour with the opaque apparatus. Both males and females learned to detour the transparent barrier with similar scores of correct responses, whereas females reached the food faster. This result is probably associated to their different sex roles in reproduction: females care for the eggs and fry inside their mouth (thus requiring a high inhibitory control not to swallow them), whereas males have to stay inside the territory defending it against intruder males, which also demands some inhibitory ability not to leave the spawning site and take the risk of losing it. Furthermore, this evidence of cognitive flexibility can enable social fish to deal with unpredictable interactions.
Collapse
Affiliation(s)
- Manuela Lombardi Brandão
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Ana Marina Tabah de Almeida Fernandes
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Eliane Gonçalves-de-Freitas
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil.
- Centro de Aquicultura da UNESP, São José do Rio Preto, SP, Brasil.
| |
Collapse
|